06/0:54128 A1 IR 0 VO O 0O

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 May 2006 (26.05.2006)

(10) International Publication Number

WO 2006/054128 A1l

(51) International Patent Classification : GO6F 1/00,
HO4L 29/06
(21) International Application Number:
PCT/1B2004/003805

(22) International Filing Date:
22 November 2004 (22.11.2004)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): NOKIA
CORPORATION [FI/FI]; Keilalahdentie 4, FIN-02150
Espoo (FI).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ASOKAN, Nadara-
jah [CA/FI]; Ankkurinvarsi 6 K, FIN-02320 Espoo
(FI). MANTYLA, Janne [FI/FI]; Kokinkylintie 20 G,
FIN-02180 Espoo (FI). SERAFAT, Reza [DE/DE]; Os-
kar-Hoffmann-Strasse 108, 44789 Bochum (DE).

(74) Agent: KURIG, Thomas; Becker, Kurig, Straus, Bavari-
astrasse 7, 80336 Miinchen (DE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE,
SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND DEVICE FOR VERIFYING THE INTEGRITY OF PLATFORM SOFTWARE OF AN ELECTRONIC

DEVICE

102

accessing
software module

104

114

performing hash i~ /
function -> H, T
_,‘ obtaining signature ’
» :
obtaining verification
Koy VK. I~ 116
compare
108”7 [HoandH. !
v_erify 118
¢ signature S [~
with VK 122
110 e Y Z
o integrity
o venﬁca(tll;); yes verification
succre)e succeeded
- verification

12 failed

120

<
<

(57) Abstract: A method for verifying the integrity of platform software of an electronic device is provided, the method comprising
& accessing amodule of said platform software, obtaining a signature (S), obtaining a verification key (VK), said verification key (VK)
O corresponding to a signing key (SK), verifying if said signature (S) was derived by signing said platform software module with said
signing key (SK), by using said verification key (VK), and establishing a positive verification of said platform software module
if said verification is successful. The invention also provides a method for providing a platform software module to perform the
aforementioned method, and a device on which the aforementioned method can be performed.

10

15

20

25

30

WO 2006/054128 PCT/IB2004/003805

Method and Device for verifying the integrity of platform software

of an electronic device

The present invention relates to methods and a device for enabling application software to verify

the integrity of platform software of an electronic device.

A software platform on an electronic device is an operating system or a runtime environment
(like Java or a mobile agent platform) by which software is loaded aﬁd executed. A typical piece
of software is, for example, a game application that can be executed on a device with a suitable
software platform. In order to provide a wide variety of compatible devices and software
applications, different manufacturers may use the same software platform on their products.
While the software platform or operating system is thus similar or even identical, the products
equipped with it, however, usually comprise very specific hardware. Also, while the core of the
platform software might be identical, there are lots of other parts like devices drivers which may

not be identical or even at all present in different electronic devices.

So a situation may occur where a software application is to be executed on a device with an
unsuitable software platform or hardware. Some reasons for unsuitability are, for example, an
insufficient amount of Random-Access Memory (RAM) for storing the needed data, a display
without an adequate resolution and/or number of colours, missing online connectivity (W-LAN,
bluetooth etc.), or a keyboard not including adequate control and action keys. If any of these
requirements are not fulfilled, using the respective application on such a device might not be
satisfactory for the user and he will be dissatisfied with the purchased piece of software. In some
cases running an application on a wrong device may even result in loss of user data and or

malfunctions of the device possibly requiring costly repair services.

Generally there also exists another kind of threat regarding software platforms and imported
software, i.e. software from an external source, i.e malicious software, or so-called “malware”. A

lot of attention has been paid to different kinds of methods for a software platform to verify the

CONFIRMATION COPY

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

2

integrity of imported software. However also the inverse situation may be regarded, i.e., that the
software platform may also subvert the operation of imported software. At the moment many
protection schemes are based on different kinds of identifications such as device ID or Multi
Media Card ID. In other words, the software application relies on a certain piece of platform
software to retrieve a needed ID. If an attacker is able to spoof the needed ID, the whole
protection scheme falls apart. Therefore the application itself should be able to verify that it is

installed on a device that is able and authorised to run it.

In the state of the art a software application can verify the integrity of the software platform by
computing a cryptographic hash for a selected software module of the platform software and
comparing the hash with a hash contained in the verification routine of the software application.
If the hashes correspond to each other the platform is successfully verified and the software
application can be executed on the device. The selected software module may be, for example,
software like device drivers or some other piece of software that is needed for runming the
application. The disadvantage of the conventional approach with a fixed expected hash value in
the application is that any updates or replacements of a software module of the platform lead to a
negative verification of the platform, which, in turn, results in non-execution of older
applications. As it is rather common that the software of electronic devices like mobile phones
and the like will have to be updated during their lifetime, e.g. to remove security flaws and

software errors, such a conventional approach is not suitable to deal with these demands.

Therefore it is an object of the invention to remove or at least alleviate the problems discussed

above.

To achieve this object the present invention provides methods and a device for enabling a

verification of the integrity of a platform software of an electronic device.

According to a first aspect of the present invention a method for verifying the integrity of
platform software of an electronic device is provided. The method comprises accessing a module
of the platform software, obtaining a signature, obtaining a verification key, wherein the
verification key corresponds to a signing key, using the verification key for verifying if the

signature was derived by signing the platform software module with the signing key, and

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

3

establishing a positive verification of the platform software module if the verification is
successful. In this way the integrity of platform software can be verified by application software,
to ensure that it will Tun on an authorized and suitable platform. In this fashion also old
applications will be compatible with new or updated versions of platform software modules

while still being enabled to verify the integrity.

According to one exemplary embodiment obtaining said signature is preceded byperforming a
hash function on the platform software module to derive a computed hash, obtaining an
expected hash and comparing the computed hash and the expected hash. If the hashes correspond
to each other the steps of the following method are performed. Further the verification of the
signature comprises verifying if the signature was derived by signing the expected hash with the
signing key, by using the verification key. Using hashes is a convenient way of doing the
verification, also the additional check of the hashes before the signature is checked provides for

an improved security.

According to one exemplary embodiment accessing of the module of the platform software is
preceded by accessing a monitor module, performing a hash function on the monitor module to
derive a second computed hash, then obtaining a second expected hash and comparing the
hashes. If the hashes correspond to each other the method comprises invoking the monitor
module to perform the following steps as mentioned before. Checking the integrity of a monitor
module and using the monitor module to perform the integrity check of the platform software for
an application may be advantageous if the monitor software is not likely to be changed when new
parts of platform software are installed. In this fashion application software may be kept more

simple and is required to use fewer steps for verification itself.

Tt should be noted that the keys SK (signing key) and VK (verification key) may be respective
keys of an asymmetric key pair from a suitable public key digital signature scheme like RSA or
DSS. However, it is also possible for SK and VK to be the same secret key K (K = SK = VK) to
be used with a symmetric key digital signature scheme like HMAC_SHAI. The latter case may
especially be useful in embodiments of the invention using the monitor module, as platform
software module and monitor module are presumably provided by the same developer, so that it

is tractable to use a shared symmetric key for signatures. The advantage here would be that the

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

signatures will be much smaller.

In order to provide a more reliable integrity check from the application’s point of view, the

second expected hash may be embedded in the application.

According to one embodiment a negative verification of the monitor module is established and

invocation of the monitor module is denied if the hashes do not correspond.

According to another embodiment a negative verification of the platform software module is
established and further access to the platform software module is denied if the hashes do not
correspond. A negative verification of the platform software module is also established and
further access to the platform software module is denied if the verification of the signature is not
successful. Hence, a positive verification may only be established when both checks succeed,

which provides for a more reliable verification.

According to one exemplary embodiment, the verification key is embedded in the application
performing the verification, or in the monitor module. Similar to the aforementioned this might

help to improve reliability, as the verification key comes from an obviously trusted source.

According to one exemplary embodiment the expected hash is provided by the platform software
module. The signature may also be provided by the platform software module. One way to
provide the hash and the signature would be to have one or both of them inciuded in the software

module as static variables.

According to a second aspect of the invention a method for providing a platform software
module for enabling a verification of the integrity of platform software of an electronic device is
provided. The method comprises obtaining a platform software module, obtaining a signing key,
deriving a signature by signing the platform software module with the signing key and providing

the platform software module and the signature in the electronic device.

According to one exemplary embodiment the method further comprises performing a hash

function on said platform software module to derive an expected hash, and additionally providing

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

5

said expected hash in said electronic device. Further the deriving of said signature comprises

signing said expected hash with said signing key.

According to one exemplary embodiment the platform software module is provided in the
electronic device with the expected hash being integrated into the platform software module as a

static variable. This is a convenient and reliable way to provide the hash.

According to one exemplary embodiment the signature is provided in the electronic device
separate from the platform software module. This might be advantageous when the platform
software module is stored in a location where an attacker can not tamper with it, like a ROM or

the like. Then the signature can also be provided separately.

According to another embodiment the platform software module is provided in the electronic
device with the signature being integrated into the platform software module as a static variable.

Similar to the aforementioned this is a convenient and reliable way to provide the signature.

The signing key and the verification key may be respective keys of an asymmetric key pair, €.g.

of a public key/private key scheme.

In another embodiment of the invention the signing key and the verification key may be
respective keys of a symmetric key pair. As already mentioned this may provide for smaller
signatures and simplify the verification, while care has to be taken to keep the symmetric (secret)
keys to trustworthy entities.

According to a third aspect of the invention a computer program product is provided, comprising
program code means for carrying out a method as described before when the program product is

run on a computer or network device.

According to a fourth aspect of the invention computer program product comprising program
code means stored on a computer readable medium is provided, for carrying out a method as

described before when the software tool is run on a computer or network device.

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

6

According to a fifth aspect of the invention a computer program product comprising program
code means is provided, downloadable from a server for carrying out a method as described

before when the program product is run on a computer or network device.

According to a sixth aspect of the invention an electronic device for enabling 2 verification of the
integrity of platform software of an electronic device is provided. The device comprises a loader
component adapted for accessing a module of the platform software and a receptor component
adapted for obtaining a signature and a verification key. The device also comprises a verification
component adapted for verifying the signature using the verification key.

According to one exemplary embodiment the electronic device further comprises a hash
calculator component adapted for performing a hash function on said platform software module
to derive a computed hash, and a comparator component adapted for comparing a computed hash
from the hash calculator component and an expected hash obtained from the receptor component.
The receptor component is further adapted for obtaining the expected hash, and the verification
component is further adapted for verifying if the signature was derived by signing the expected
hash with the signing key.

Further features and advantages of the present invention will become apparent from the

following description and the accompanying drawings, in which:

Fig. 1 is a schematic flow diagram of an embodiment of the inventive method;

Fig. 2 is schematic flow diagram showing steps of an alternative embodiment of the inventive

method preceding the steps depicted in fig. 1;

Fig. 3 is a schematic diagram of another embodiment of the inventive method, being performed

with a platform software module;

Fig. 4 is a diagram showing steps of an embodiment of the method according to the invention,

the steps being executed by application sofiware;

Fig. 5 is a diagram showing steps of an embodiment of the method according to the invention,

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

7

the steps being executed by application software;

Fig. 6 is a diagram showing steps of an embodiment of the method according to the invention,

the steps being executed by a monitor software module; and

Fig. 7 shows an electronic device according to the present invention.

In fig. 1 the steps of an embodiment of the present invention are shown in a flow diagram. The
process starts with accessing a sofiware module of a platform software of an electronic device,
step 102. This module may e.g. be a device driver or any other module of the platform software.
In step 104 a hash function if performed on the module, to derive a hash H.. As hash function all
possible kinds may be used. In step 106 another hash, an expected H, is obtained. This hash H.
can be provided by the accessed software module, but also other sources are conceivable. In step
108 the hashes H, and H, are compared to determine if they correspond. In its simplest
implementation this will mean to determine if both hashes are completely identical. However it
may also be possible to check if only a predetermined section of the hashes is identical, i.e.
checking if they correspond in some aspect. If H, and H. are not corresponding to each other
(step 110), verification fails and the process is ended with a negative outcome (step 112). If
however H, and H, do correspond, in step 114 a signature S is obtained. This signature S may
again be provided by the software module, but also by other sources. In step 116 a verification
key VK is obtained, e.g. a public key of a private key/public key pair. The verification key VK
has to be obtained from a trusted source, therefore this key VK will e.g. be embedded into the
application software. However it can also be received from another source, provided this source
may be trusted. In step 118 the signature S is verified using the verification key VK. Such
verification procedures are per se known, so a detailed explanation is omitted here. If the
verification succeeds (step 120) the verification procedure ends with a positive outcome (step
122), the platform software module is now verified and may be used by the application software.
Tn case of a negative verification in step 120 verification fails (step 112) such that further access

to the platform software module is denied.

Fig. 2 describes an alternative embodiment of the invention. In step 202 a monitor module being

part of the platform software is accessed. Such a monitor module may be provided in the

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

8

platform software for verifying other platform software modules. To use this monitor module a
software first has to verify the integtity of this monitor module. As the monitor module is not
expected to be changed like other parts of the platform software this can be performed using
static integrity metrics. In step 204 a hash function is performed on the monitor module to
compute a hash H;,. A hash H, is obtained in step 206. Similar to the process in fig. 1 the hashes
H.; and H., are compared to determine if the correspond. If it is confirmed in step 210 that they
do correspond the process continues with step 214. Of course otherwise verification will fail
(step 212), the monitor module is not verified and will not be invoked. In step 214 the monitor
module will be invoked subsequent to a positive verification of its integrity. Now a process being
almost identical to the one described in fig. 1 starts, with the major exception that not an
application software but the monitor module will perform the process. For the further steps

please refer to the description of fig. 1.

Fig. 3 is an illustration of an embodiment of the invention for providing a software module 2
according to the invention. The following steps will usually be performed by the software
provider of the respective software module. A hashing function is performed (step 300), over
some or all segments of the software module, to derive a hash H.. The hash H, is then signed
using a signing key SK (step 302), which may be a secret or private key of a public/private key
pair, to derive a signature S. In order to provide the software module in an electronic device a
preferred way is to include the computed hash H,; and the corresponding signature S integrated in
the software module. Such integration may for example be to include hash H. and signature S as
static variables. When later performing a hashing function for verification on the software
module this part is of course not used. However in special cases the signature S and even the
hash H, may be provided separately from the software module in the electronic device. For such
purposes memory devices can be used for providing the module not permitting access for

possible attackers, like Read Only Memories ROM or the like.

When a software module as described here is to be verified an application software, or in another
embodiment of the invention a monitor module, will perform a hashing function, indicated by
304, on the software module. Of course the hash H, and the signature S, if included, will not be
used by the hashing function. The application software or monitor module will also access the

hash H, and the signature S (indicated by 306 and 308) for the verification.

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

Fig. 4 is a diagram showing steps of an embodiment of the method according to the invention,
the steps being executed by application software 4. When a software module (not shown, see fig.
3) is to be verified the application software 4 will perform a hashing function, indicated by 304,
on the software module, to derive a computed hash H.. Of course a hash He and a signature S, if
included in the software module, will not be used by the hashing function. The application
software 4 will also access the hash H, and the signature S (indicated by 306 and 308) for the
verification. In step 402 the verification starts with comparing the hashes He and H.. If they are
not identical are corresponding verification fails (step 410). Otherwise the verification continues,
in step 404, with verifying the signature S using the verification key VK. The verification key
VK may be embedded in the application software 4, but may as well be obtained from an
external source (internet server or the like). If the verification succeeds, i.e. if it can be confirmed
(step 406) that the signature S was derived by signing hash H, with the signing key (not shown)
which corresponds to the verification key VK, integrity verification has been successfully
concluded. Of course otherwise, i.e. if either the hashes H, and He do not match or the signature
S is not positively verified, the verification will fail (step 410). In case of a positive verification
the integrity of the respective software module is intact, and it may subsequently be used by the
application software 4. In case of a failed verification further access to the respective software

module will be denied.

Fig. 5 is to be read in conjunction with fig. 6, which has been separated for sake of intelligibility.
Fig. 5 depicts the steps of an embodiment of the invention that are performed by an application
software 8. First in step 402 a hashing function is performed on a monitor module to derive a
computed hash H, the monitor (not shown, see fig. 6) module being a part of the platform
software of an electronic device. An expected hash He, is obtained, which may either be
embedded into the application software 8 or be received from an external source. As the monitor
module is a part not being supposed to change, this hash He; can thus also be distributed over the
internet or the like. In step 602 the hashes H,, and H., are compared to determine if they match
or correspond. In case they do not, verification of the monitor module ends with a failed result
(step 610), and it will thus not be invoked to proceed with the verification. Otherwise the monitor
module is invoked to perform the main part of the verification procedure according to this

embodiment (see fig. 6). If the monitor module returns a positive verification, indicated by “yes”,

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

10

integrity verification has succeeded (step 608). Either a negative verification result may also be
received (not shown), or the application software 8 may derive a negative outcome, if no positive
answer is given by the monitor module in a certain timeframe. The application software 8 may
now safely use the respective software module (not shown) the monitor module has checked. If

the monitor module does not return a positive verification, verification will fail (step 612).

Fig. 6 describes the steps that follow an invocation of the monitor module as mentioned in
conjunction with fig. 5. When a software module (not shown, see fig. 3) is to be verified the
monitor module 6 will perform a hashing function, indicated by 304, on the software module, to
derive a computed hash H,. Of course a hash He and a signature S, if included in the software
module, will not be used by the hashing function. The monitor module 6 will also access the hash
H, and the signature S (indicated by 306 and 308) for the verification. In step 502, following an
invocation according to what has been describes in fig. 6, the verification starts with comparing
the hashes H, and H.. If they are not identical are corresponding verification fails (step 508).
Otherwise the verification continues, in step 504, with verifying the signature S using the
verification key VK. The verification key VK may be embedded in the monitor module 6, but
may as well be obtained from an external source (internet server or the like) in a sufficiently
trustworthy manner. If the verification succeeds, i.e. if it can be confirmed (step 506) that the
signature S was derived by signing hash H, with the signing key (not shown) which corresponds
to the verification key VK, integrity verification has been successfully concluded. The positive
outcome of the verification is sent to the application software (not shown), indicated by “yes”.
On the side of the monitor module the verification is now completed. Of course otherwise, i.e. if
either the hashes H, and H, do not match or the signature S is not positively verified, the
verification will fail (step 508). The negative verification outcome may also be sent (not shown)
to the application. Another possibility is to use a certain timeframe. If in that timeframe no
positive verification is sent to the application it may derive a negative outcome thereof. In case of
a positive verification the integrity of the respective software module is intact, and it may
subsequently be used by the application software. In case of a failed verification further access to

the respective software module will be denied by the monitor module.

Using such a monitor module can be advantageous, as the application software itself can use a

very simply check to verify the integrity of the monitor module, while the monitor module itself

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

11

performs the major part of the verification procedure. The monitor module can easily be

integrated into the platform software.

Fig. 7 shows an electronic device 20 according to the invention, which may be a mobile phone,
PDA or the like. It comprises a loader component 10, a hash calculator component 12, a receptor
component 14, a comparator component 16 and a verification component 18. The hash calculator
component 12 is connected with both the loader component 10 and the comparator cbmponent
16. The receptor component 14 is connected with both the comparator component 16 and the
verification component 18. The loader component 10 is adapted for accessing a module of the
platform software of the electronic device 20. The hash calculator component 12 is adapted for
performing a hash function on the platform software module to derive a computed hash. The
receptor component 14 is adapted for obtaining an expected hash, a signature and a verification
key. The comparator component 16 is adapted for comparing a computed hash from the hash
calculator component 12 and an expected hash from the receptor component 14. The verification
component 18 is adapted for verifying the signature, by applying the verification key so the
signature.

The present invention utilizes (cryptographic) hash functions and asymmetric cryptographic keys,
so-called public/private key pairs. Hash functions are take arbitrary binary data as an input and
produce a fixed-size binary string as an output. Such hashing and asymmetric cryptography with
public and private keys are in itself well known and therefore a detailed description is omitted
here. While asymmetric keys are mainly used for encrypting data they may also be used for
signing purposes. Using the private key a signature can be derived, for example by a software
provider to enable his customers to verify the source of distributed software. The customers can

apply the public key to the signature to verify that the software is authentic.

According to an exemplary embodiment of the present invention an application software verifies
the integrity of platform software of an electronic device. Application software may be, for
example, a game application, an office application, a drawing application, a calendar application,
or some part of application software that is to be executed on the device. Platform software that
is to be verified may be implemented on, for example, a computer, a mobile phone, a personal

digital assistant (PDA) or the like.

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

12

The verification of platform software is carried out by an application software such that the
application software accesses a software module of platform software and performs a hash
function on the software module to derive a hash H,. The hash function may be of any suitable
kind for verifying part of a software. The derived hash H, is compared to an expected hash He
that is provided by the platform software module. The hash He is created by performing a hash
function on a selected platform software module and it is included in the platform software
module; these steps will usually be performed by the provider of the platform software. The hash
He. is then signed utilizing a signing key SK to derive a signature S that may be included in the
platform software module or alternatively somewhere separate from the platform software
module, in case the platform software module is stored in an untamperable location like a ROM
or the like. Separating the platform software module and the signature S may in such cases be
advantageous, especially if the software module cannot be easily reached by an attacker, as
describe above. In another exemplary embodiment the hash H. and the signing key SK are static

variables that are included in the platform software module.

If hashes H. and H, match or correspond, respectively, the application software receives a
signature S that is then being verified by a verification key VK. According to one embodiment
the verification key VK is embedded in the application software and the signature S is provided
by the platform software module. If the verification results of both aforementioned checks are
positive, i.e. the authenticity of the software module has been confirmed, the verification is
successful and further access to the respective platform software module is allowed. On the other
hand, in case of a negative verification of the software module, i.e. if either the hashes H; and H,
do not match or if the verification of the signature S is not successful, further access to the

platform software module is denied.

According to one exemplary embodiment a monitor software module is utilized in verifying the
integrity of the platform software module. Usually monitor software will be included in the
platform software module and it is not expected to change when new platform software modules
are installed and/or updated. In other words, in this embodiment the verification routine is part of
the platform software module itself. Therefore the application software first needs to confirm that

this monitor module is authentic. As this monitor module is supposed not to be changed at all,

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

13

this can be achieved by using (static) integrity metrics. The application software performs a hash
function on the monitor software module to derive a hash H,,. The hash H; is then compared
with an expected hash He,, which is embedded in the application software. If hashes H; and He
match or correspond, the monitor software module is invoked to verify the integrity of the
platform software module. On the other hand, in case of a negative verification of the monitor
software module, i.e. if the hashes He; and He; do not match, further access to the monitor
software module i 1s denied. This will usually imply that the application software will not execute,

as no integrity check may performed with the monitor module.

If the verification of the monitor software module succeeds, the monitor software module verifies
the integrity of the platform software module. Similar to the aforementioned embodiments
without the monitor module the monitor software module performs a hash function for the
platform software module to derive a hash H; and compares the hash H,; with an expected hash
He.,. Typically the hash H,; is provided by the platform software module, for example, as a static
variable that is included in the module. If the hashes H; and H,; match the monitor software uses
a verification key VK embedded in the monitor software module to verify a signature S provided
by the platform software module. If the result is positive, i.e. both aforementioned security
checks give a positive result, the verification is successful and the application software is allowed
further access to the platform software module by the monitor module. On the other hand, in case
of a negative verification of the software module, i.e. if either the hashes H¢; and He; do not
match or if the verification of the signature S is not successful, further access to the respective
platform software module is denied by the monitor module. This will of course imply that the

application software will not execute.

Especially verification keys must of course be obtained from a trusted source. The same holds
basically true for expected hashes, however, faking such a hash will not be enough to circumvent
the inventive concept completely, as the attacker will then have to fake also the signature, which
in absence of the secret signing key may not be done without being noticed. Although in the
embodiment with the monitor module the developer of a software has to obtain the expected hash
of the monitor module from a trusted source under all circumstances, otherwise the protection

scheme will of course not work.

10

15

20

25

30

WO 2006/054128 PCT/1B2004/003805

14

It is to be noted that these approaches can also indirectly be used for a verification of the

hardware platform. Tn other words, application software verifies the operating system module,

- which, in turn, is able to verify the hardware on which it is running. This is to ensure that for

example a game application will not execute on an inappropriate platform. As it is quite common
that many electronic devices of the same or even of different manufacturers share an identical
operating system and/or parts of software precautions have to be taken to ensure a specific
application will only run on those devices that are authorised and suitably equipped to use the

application.

For example a game that is designed to run only on a mobile gaming deck like the Nokia ® N-
Gage may in principle be also executed on a mobile phone using the same operating system. As
the phone will most likely not provide enough RAM memory, processing capability or required
control and actions keys, respectively, or the like, it is not desirable that the game may be
executed on the phone. The user will of course not be satisfied when he is not able to
appropriately control the game. If the game uses a special key not present on the phone to
terminate the game he might even be forced to shut down the phone by removing the battery to
return to normal operation. Other issues that may occur are crashes or the occurrence of data
losses, for example if the game uses up all available memory. Such effects are to be avoided by
the present invention. On the one hand this improves usability and user comfort. On the other
hand it may provide both the manufacturer of electronic devices and providers of application
software with a fine-tuned control over which kind of software is allowed to run on which

devices.

As mentioned before, the data required for verification must be obtained in a trustworthy manner
in order to assure its integrity. When data is embedded in the application software (VK or Hep) it
must be protected from undetectable modification. This is achieved by, for example, the use of

software obfuscation techniques.

When symmetric key digital signatures are used, in addition to integrity the secrecy of a key K

must also be assured. Again, this can be achieved by the use of software obfuscation techniques.

Tt is to be noted that the present invention does not directly involve checking if certain hardware

WO 2006/054128 PCT/IB2004/003805

15

or software features are present that are required for an application. However this can be
accomplished by the platform software and the present invention ensures that this platform
software is authentic, or in other words, its integrity is valid. The platform software is then able
to perform the mentioned checks and deny the execution of an application if this is necessary, in
a way the provider of the platform software or the manufacturer of the respective electronic

device wishes.

10

15

20

25

30

1.

WO 2006/054128 PCT/1B2004/003805

16

Claims

A method for verifying the integrity of platform software of an electronic device,

comprising:

accessing (102) a module of said platform sofiware;

obtaining (114) a signature (S);

obtaining (116) a verification key (VK), said verification key (VK) corresponding
to a signing key (SK);

verifying (118) if said signature (S) was derived by signing said platform software
module with said signing key (SK), by using said verification key (VK); and
establishing (122) a positive verification of said platform software module if said

verification is successful.

A method according to claim 1, wherein obtaining said signature is preceded by:

performing (104) a hash function on said platform software module to derive a
computed hash (H);

obtaining (106) an expected hash (He);

comparing (108) said hashes (Hc) and (He), and, if said hashes (H.) and (He)
correspond to each other,

wherein said verification of said signature (S) comprises verifying (118) if said
signature (S) was derived by signing said expected hash (He) with said signing key
(SK), by using said verification key (VK).

A method according to claim 1 or 2, wherein said accessing of said module of said

platform software is preceded by

accessing (202) a monitor module;

performing (204) a hash function on said monitor module to derive a second
computed hash (Hc);

obtaining (206) a second expected hash (He);

comparing (208) said hashes (Hcz) and (H), and if said hashes (He;) and (Heo)

correspond to each other

10

15

20

25

30

10.

11.

WO 2006/054128 PCT/1B2004/003805

17

- invoking (214) said monitor module to perform the following method

steps.

A method according to claim 3, wherein said second expected hash (He) is embedded in

an application performing the verification.

A method according to claims 3 or 4, wherein a negative verification of said monitor
module is established and invocation of said monitor module is denied if said hashes

(H,2) and (He2) do not correspond.

A method according to any of claims 2 to 5, wherein a negative verification of said
platform software module is established and further access to said platform software

module is denied if said hashes (H) and (He) do not correspond.

A method according to any of the preceding claims, wherein a negative verification of
said platform software module is established and further access to said platform software

module is denied if said verification of said signature (S) is not successful.

A method according to any of the preceding claims, wherein said verification key (VK) is

embedded in the application performing the verification or said monitor module.

A method according to any of the preceding claims, wherein said expected hash (He) is

provided by said platform software module.

A method according to any of the preceding claims, wherein said signature (S) is

provided by said platform software module.

A method for providing a platform software module for enabling a verification of the
integrity of platform software of an electronic device, comprising:

- obtaining a platform software module;

- obtaining a signing key (SK);

- deriving a signature (S) by signing (302) said platform software module with said

10

15

20

25

30

12.

13.

14.

15.

16.

17.

18.

WO 2006/054128 PCT/1B2004/003805

18

signing key (SK); and
- providing said platform software module and said signature (S) in said electronic

device.

A method according to claim 11, further comprising:

- performing (300) a hash function on said platform software module to derive an
expected hash (He); and

- providing said expected hash (H,) in said electronic device,

wherein said deriving of said signature comprises signing (302) said expected hash (He)

with said signing key (SK).

A method according to claim 12, wherein said platform software module is provided in

said electronic device with said expected hash (H.) being integrated into said platform

software module as a static variable.

A method according to any of claims 11 to 13, wherein said signature (S) is provided in

said electronic device separate from said platform software module.

A method according to any of claims 11 to 13, wherein said platform software module is
provided in said electronic device with said signature (S) being integrated into said

platform software module as a static variable.

A method according to any of the preceding claims, wherein said signing key (SK) and

said verification key (VK) are respective keys of an asymmetric key pair.

A method according to any of the preceding claims, wherein said signing key (SK) and

said verification key (VK) are respective keys of a symmetric key pair.

Computer program product comprising program code means for carrying out the method
of anyone of claims 1 to 17 when said program product is run on a computer or network

device.

10

15

20

25

19.

20.

21.

22.

WO 2006/054128 PCT/1B2004/003805

19

Computer program product comprising program code means stored on a computer
readable medium for carrying out the method of anyone of claims 1 to 17 when said

software tool is run on a computer or network device.

Computer program product comprising program code means, downloadable from a server
for carrying out the method of anyone of claims 1 to 17 when said program product is run

on a computer or network device.

An electronic device (20) for enabling an application to verify the integrity of platform

software of an electronic device, comprising:

- a loader component (10) adapted for accessing a module of said platform
software;

- a receptor component (14) adapted for obtaining a signature (S) and a verification
key (VK); and

- a verification component (18) adapted for verifying said signature (S) using said

verification key (VK).

Electronic device according to claim 21, further comprising:

- a hash calculator component (12) adapted for performing a hash function on said
platform software module to derive a computed hash (He, Hep); and

- a comparator component (16) adapted for comparing a computed hash (Hc, Hcz)
from said hash calculator component and an expected hash (H,, Hey) from said
receptor component,

wherein said receptor component (14) is further adapted for obtaining an expected hash

(He, Hep), and said verification component (18) is further adapted for verifying if said

signature (S) was derived by signing said expected hash (H,) with said signing key (SK).

PCT/IB2004/003805

WO 2006/054128

1/7

>
parte} 711
UONROLLIDA
Ppapasoons é
UOI)EOIJLIOA popodoons ou
T UOTJBOIJLIOA
Ayudoyut
N A sok 011
[44!
2IA s
~| g ompeuSis %
STI1 @E@ A
‘HPuw’H | 801
+ oredwod "
UOT}EOILIoA Surure)qo
4 *g Summreige s 20"
Q omjeudis Sumure}qo (€ %
L °H <- nonouny
o~ ysey Suruzoyzed
149} Y01 ﬂ
O[NPOUI 2IBMIJOS
/ Surssoooe
7~ .
01

[814

PCT/IB2004/003805

WO 2006/054128

2/7

T "S1q

anunuod

o[npowr
JIOJTUOUI SUTOAUL

\

yic

SoA

porrey YALA
UOHBOYLIOA [~
ou
01¢
CPHpue ®H | P 80C
oredwod
[ysey Sururejqo-~—~ 90c

%

©°H <- uonouny
sey] Sururioyrod
voz A~ ysey %]I
9[npow J0JTuoTU
guissoooe
0T ~ .

PCT/IB2004/003805

WO 2006/054128

3/7

2IMpoud 403U
uonvonddp og

y0¢ V
womN

(g

00¢

-

[npout A0JTUOUL
Juonworddy o1

mur

Q-

90¢ M

w)

c0¢

¢ 81

PCT/IB2004/003805

WO 2006/054128

4/7

/' Po[rey
01y — V] UONJBOIJLIoA y0€
Aoy
ou
wm A T _
A\\ apnpout
24DMIJOS uio4f
2oy / — —~__-80¢
H ajnpout |
301 soA — 24pmgfos wosf
14014 S
L 2IA s
S aImjeusIs
/ ~ Ayuoa / "
papaodons :
UOTJBOIJLIOA S
SuBorr 2IA
90y
K 2 .
oty ™ papasoons ¥ 814
L WONBOLLIoA
/ pore; v
UOT)ROILIDA AJLIZoUl

PCT/IB2004/003805

WO 2006/054128

517

G 31

(€Y%

! |

' PaJIey
oG\/\ uoneogLaA
Ayuigoyur
ou
209
Sok
809
09
/ J/ s[npowr
— JojIuow
popa2oons SNOAUL
UOTBOTJLIOA
AyuiSeyur
b
504 Popa99ons
210 UOT)BOIJLIOA
parres
UOTJBOILIoA AJLISojuL

909

a[npout
Aojruout wodf

a[npout
AOJIUHOUL O]

a[npoud
Aojruout wioaf

col

sok

PCT/IB2004/003805

WO 2006/054128

6/7

0¥ porres
uonesyLoA y0¢g
gos — | Awsen
A ' | ou
uonpoyddp o3 H A ' |
A\ ampout
\\\V a4pmzfos wiof
— 208 A// 80€
Erag Al\
uonyvoyddp woif » H oppou
° 24DM1f0s wio4f
.W A%
- DIA UM
¥0S — _ g amyeudis
: 90¢
3110
% A
» ddi
uonponddp o1 £ .
= : 9 314
popasoons 5
ﬂ 805 TONJEohTIdA 9
\
parey 90S
UONBOIJLISA
AmSayur

WO 2006/054128 PCT/IB2004/003805
i

Fig. 7

INTERNATIONAL SEARCH REPORT International application No.
A PCT/IB 2004/003805

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: GOGF 1/00, HOAL 29/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification sym't;ols)

IPC7: GO6F, HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (nanlae of data base and, where practicable, search terms used)

EPO-INTERNAL,WPI,PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 20040054906 Al (F.I.CARRO), 18 March 2004 1-2,6-22
(18.03.2004), figure 2, abstract, [0020]-[0021] ’

X US 6141756 A (M.W.BRIGHT ET AL), 31 October 2000 1-2,6-22
(31.10.2000), column 2, line 33 - line 43, figures
2-3, claims 10-12, abstract

X WO 03049106 A2 (KONINKLIJKE PHILIPS ELECTRONICS 1-2,6-22
N.V.), 12 June 2003 (12.06.2003), page 3,

Tine 1 - page 5, line 14, figures 7A,8, claim 1,
abstract

Further documents are listed in the continuation of Box C. I:)ﬂ See patent family annex.

* Special categories of cited documents: “T” later document published after the international filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
“E” earlier application or patent but published on or after the international "X” document of particular relevance: the claimed invention cannot be
filing date . considered novel or cannot be considered to involve an inventive
“1” document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other K R , .
special reason (as specified) . “Y” document of particular relevance: the claimed m\éentlon cannot be
”Q” document referring to an oral disclosure, use, exhibition or other cangldared to nvolve an inventive step when the docment is

combined with one or more other such documents, such combination

vpr ;neans ¢ published prior to the i . ine date but later than being obvious to a person skilled in the art
ﬂff;ﬁgﬁtf,’ ?mle c'fair’,’fégr o the intemational fling date but later "&” document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report
27 June 2005 D4 -07- 2003

Name and mailing address of the ISA/ Authorized officer

Swedish Patent Office

Box 5055, §-102 42 STOCKHOLM Par Heimdal /itw

Facsimile No. +46 8 666 02 86 Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (January 2004)

2

INTERNATIONAL SEARCH REPORT International application No.
PCT/IB 2004/003805

C (Continuvation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X ROZENBLIT, Moshe. Secure Software Distribution. 1-2,6-22
Proceedings of the 1994 IEEE Network Operations and
Management Symposium; Kissimmee, FL, USA.
1994~-02-14. ISBN 0-7803-1811-0. pages: 486 - 496
abstract

A US 20020138554 Al (R.G.FEIGEN ET AL), 26 Sept 2002 1-22
(26.09.2002), figure 2, abstract

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

: International application No.
Information on patent family members

28/05/2005 | PCT/IB 2004/003805

US 20040054906 Al 18/03/2004 NONE

us 6141756 A 31/10/2000 AU 3183499 A 16/11/1999
BR 9906398 A 26/09/2000
CA 2292667 A,C 04/11/1999
CN 1266571 A,T 13/09/2000
EP 0990326 A 05/04/2000
IL 133247 D 00/00/0000
JP 2002507307 T 05/03/2002
Wo 9956428 A 04/11/1999

WO 03049106 A2 12/06/2003 AU 2002351099 A 00/00/0000 -
EP 1459314 A 22/09/2004
GB 0129065 D 00/00/0000
JP 2005512258 T 28/04/2005
US 20050076225 A 07/04/2005

Tt e o o ottt M G . MO B a8 M M P o o S G S B S e St St S M S P e S Tt B S P P S Pt M M S S e o et i MR T o et M G W S et S S (o

- M W A S0 T B S ot G P S S G e S A T S S O S ot i A i W S St Pt Bt R S Bt W v S o 0 hdl B Mot S e e St i B N Y O S MM T S U (e P . S B e B

Form PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

