METHODS AND APPARATUS FOR CONTROLLING MASK LEAK IN CPAP TREATMENT

A method of operating a device for treating sleep disordered breathing (SDB), wherein the device provides continuous positive airway pressure during sleep, includes determining whether treatment pressure at the patient interface is below a desired value (301), in response to the determining, increasing pressure generated by the flow generator (302), in response to the increasing, making a determination that the increase in flow generator pressure has resulted in less than a desired increase in treatment pressure at the patient interface (303), and in response to the determination, reducing or inhibiting further increase of the flow generator pressure (304, 306).
Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
— of inventorship (Rule 4.17(iv))
Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
TITLE OF THE INVENTION

METHODS AND APPARATUS FOR CONTROLLING
MASK LEAK IN CPAP TREATMENT

BACKGROUND OF THE INVENTION

[0001] This application claims the benefit of Australian Application No. AU2006900774, filed February 16, 2006, Australian Application No. AU2005903089, filed June 14, 2005, Australian Application No. 2005906122, filed November 4, 2005, and Australian Application No. 2005906193, filed November 8, 2005, each of which is incorporated herein by reference in its entirety.

1. Field of the Invention

[0002] This invention relates to mechanical ventilation of sleep disordered breathing (SDB), and in particular to methods and apparatus for improving patient compliance in Continuous Positive Airway Pressure (CPAP) treatment.

2. Description of Related Art

[0004] The use of nasal Continuous Positive Airway Pressure (CPAP) to treat Obstructive Sleep Apnea (OSA) was invented by Cohn Sullivan, see U.S. Patent No. 4,944,310. Generally, the treatment involves providing a supply of air or breathable gas from a blower to a patient via an air delivery conduit and a patient interface, such as a full-face or nasal mask, or nasal prongs. While treatment is effective, some patients find it uncomfortable. Improving patient comfort and compliance is a continuing challenge.

[0005] One way to improve comfort is to provide a more comfortable patient interface. In this regard, the ResMed MIRAGE™ masks have provided significant improvement in comfort. See U.S. Patent Nos. 6,112,746; 6,357,441; 6,581,602; and

[0006] In the early days of nasal CPAP systems for treating OSA, patients were first titrated in a clinical study to determine an optimal treatment pressure. Titration involves a patient sleeping overnight in a clinic and being tested with a mask and CPAP device. The treatment pressure provided by the CPAP device is adjusted until apneas are eliminated. The treatment pressure is usually in the range of 4-20cmH₂O. A device would be set to that pressure and given to the patient to take home. A subsequent development was the automatically adjusting device that a patient could take home. The automatically adjusting device will raise and/or lower the treatment pressure based on indications of obstructive sleep apnea, such as snoring. Such CPAP devices are sometime generically referred to as Automatic Positive Airway Pressure (APAP) devices. See U.S. Patent Nos. 5,245,995; 6,398,739; and 6,635,021.

[0007] Another type of nasal CPAP device provides a first pressure during inhalation (sometimes termed an IPAP) and a second, lower pressure during exhalation (sometimes termed an EPAP). Examples of these include the ResMed VPAP™ series, and the Respironics BiPAP series. Bilevel CPAP devices may be prescribed for patients who do not comply with single pressure CPAP devices. Some patients perceive that the lower pressure during exhalation is more comfortable, at least while they are awake.

[0008] Another way of improving patient comfort and compliance is to start each therapy session at a low therapeutic pressure, e.g., 4cmH₂O, and ramp up to fill therapeutic pressure over the first hour, to allow the patient to adjust to the sensation while falling asleep. Alternatively, the device may set to implement a time delay before fill therapeutic pressure is applied, to allow the patient time to fall asleep before full therapeutic pressure is applied. See U.S. Patent Nos. 5,199,424 and 5,522,382.

[0009] Another form of automatically adjusting CPAP device is the ResMed AUTOSET™ SPIRIT™ device. In this device, the CPAP pressure is automatically increased or decreased in accordance with indications of flow limitation, such as flow flattening, snore, apnea and hypopnea. See U.S. Patent Nos. 5,704,345; 6,029,665; 6,138,675; and 6,363,933.
An advantage of an automatically adjusting system is that over time the treatment pressure required may vary for a particular patient and a correctly functioning automatic system can obviate the need for the patient to return for a subsequent sleep study. These patents also describe a method and apparatus for distinguishing between so-called "central" and obstructive apneas.

[0010] The contents of all the aforesaid patents are incorporated by cross-reference.

[0011] Some OSA patients find treatment with the above devices uncomfortable and they become non-compliant with the therapy. Other patients such as cardiovascular patients with Congestive Heart Failure, patients with REM Hypoventilation, and patients with Respiratory Insufficiency could also benefit from a more comfortable and/or effective form of therapy.

[0012] One hurdle to patient acceptance of the therapy is in the initial fitting of the patient interface (e.g., mask), where the mask fit is tested under relatively low pressure and high flow. This may result in noisy operation of the device and high flow air leaks as the mask is adjusted to the patient, which can be a noisy and unsettling initial experience for the patient.

[0013] Another impediment to patient comfort and compliance may be the patient or bed partner being disturbed by air leaks from the mask.

SUMMARY OF THE INVENTION

[0014] One aspect of the invention relates to a method and apparatus to overcome or ameliorate one or more of these disadvantages.
Mask leak control

[0015] A first aspect of the invention relates to a method of operating a device for treating sleep disordered breathing (SDB), wherein said device provides continuous positive airway pressure during sleep, the method comprising:

determining whether treatment pressure at the patient interface is below a desired value;

in response to said determining, increasing pressure generated by the flow generator;

in response to said increasing, making a determination that the increase in flow generator pressure has resulted in less than a desired increase in treatment pressure at the patient interface; and

in response to said determination, reducing or inhibiting further increase of the flow generator pressure.

[0016] A further aspect of the invention relates to a method of operating a device for treating sleep disordered breathing (SDB), wherein said device provides continuous positive airway pressure during sleep, the method comprising:

determining whether treatment pressure at the patient interface is below a desired value;

in response to said determining, increasing pressure generated by the flow generator;

in response to said increasing, making a determination that the increase in flow generator pressure has resulted in a greater than desired increase in air leak from the patient interface, or has increased the air leak from the patient interface; and

in response to said determination, reducing or inhibiting further increase of the flow generator pressure.
[0017] In one form, making a determination is made by comparison of a mask leak parameter to a mask leak threshold. The mask leak parameter may be a mask leak impedance parameter.

[0018] In an embodiment, the mask leak threshold is determined with reference to a patient arousal index, such as an Apnea Hypopnea Index (AHI), and/or a sleep phase index of the patient.

[0019] A further aspect of the invention relates to a method of operating a device for treating sleep disordered breathing (SDB), wherein said device provides continuous positive airway pressure during sleep, the method comprising:

- comparing a mask leak parameter to a mask leak threshold to determine excessive leak at the patient interface;

- in response to said determination of excessive leak, reducing the flow generator pressure; and

- continuing to compare said mask leak parameter to said mask leak threshold at said reduced flow generator pressure.

[0020] In an embodiment, the mask leak parameter is a mask leak impedance parameter.

[0021] In one embodiment, reducing the flow generator pressure includes reducing the pressure to a ramp start pressure, and the method further includes ramping up the pressure to a treatment pressure over a predetermined ramp time while continuing to compare the mask leak parameter to the mask leak threshold.

[0022] The method may further include halting the pressure ramping upon further determination of excessive leak at the patient interface.

[0023] In another embodiment, reducing the pressure includes reducing the pressure by a pressure increment to a first reduced pressure, and optionally incrementally further reducing the pressure if excessive leak is detected at the first reduced pressure.
[0024] A further aspect of the invention relates to a method of assessing the fit of a patient interface (e.g., a mask) to a patient for a device for treating sleep disordered breathing (SDB), wherein said device provides continuous positive airway pressure during sleep, the method comprising:

- generating a treatment pressure at a flow generator of the device;
- limiting gas flow applied to the patient to a predetermined flow rate;
- determining that treatment pressure at the patient interface is below a desired value; and
- making a determination that the seal of the patient interface to the patient is inadequate.

[0025] In an embodiment, the flow rate is determined with reference to a vent flow rate of the patient interface.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] The accompanying drawings facilitate an understanding of the various embodiments of this invention. In such drawings:

[0027] Fig. 1 illustrates a ventilator apparatus according to an embodiment of the present invention for implementing methods according to embodiments of the invention;

[0028] Fig. 2 is a graph of a mask pressure against blower set pressure, showing mask leak; and

[0029] Fig. 3 is a flowchart illustrating mask leak control according to an embodiment of the invention.
Detailed Description of Illustrated Embodiments

Hardware

[0030] A positive airway pressure (PAP) device in accordance with an embodiment of the invention includes a blower and blower-controller. The blower can deliver a supply of air at positive pressure 2-40 cmH₂O, but generally in the range of 4-20 cmH₂O to a patient interface via an air delivery conduit.

[0031] The device also includes a flow sensor to measure the flow of air along the conduit, and pressure sensors to measure the pressure of air at the blower outlet.

[0032] In one form, the device alternatively includes an additional pressure sensor to detect the pressure in the patient interface.

[0033] For example, Fig. 1 illustrates a ventilator device according to an embodiment of the invention. As illustrated, the ventilator device may include a servo-controlled blower 2, a flow sensor 4f, pressure sensor 4p, a mask 6, and an air delivery conduit 8 for connection between the blower 2 and the mask 6. Exhaust gas is vented via exhaust 13.

[0034] Mask flow may be measured by a flow sensor, such as a pneumotachograph and differential pressure transducer to derive a flow signal F(t). Alternatively, the pneumotachograph may be replaced by a bundle of small tubes aligned in parallel with the flow from the blower with the pressure difference measured by the differential pressure transducer across the bundle.

[0035] Mask pressure is preferably measured at a pressure tap using a pressure transducer to derive a pressure signal P_{mask}(t). The pressure sensor 4p and flow sensor 4f have been shown only symbolically in Fig. 1 since it is understood that those skilled in the art would understand how to measure flow and pressure.

[0036] Flow F(t) and pressure P_{mask}(t) signals are sent to a controller or microprocessor - referred to herein as processor 15 - to derive a pressure request signal.
$P_{\text{Request}}(t)$. The controller or processor is configured and adapted to perform the methodology described in more detail herein. The controller or processor may include integrated chips, a memory and/or other instruction or data storage medium to implement the control methodology. For example, programmed instructions with the control methodology are either coded on integrated chips in the memory of the device or loaded as software. As those skilled in the art will recognize, analogue devices may also be implemented in the control apparatus.

[0037] The controller or processor 15 is further adapted to derive parameters indicative of the patient's breathing and sleep pattern, such as for deriving indications of flow limitation, such as flow flattening, snore, apnea and hypopnea and the Apnea Hypopnea Index (AHI), and for distinguishing between REM and non-REM sleep. See U.S. Patents 5,704,345 and 6,029,665.

[0038] The apparatus of Fig. 1 includes other sensors, communication interfaces and displays, a servo, etc., and functional blocks the details of which are not necessary for an understanding of the present invention.

[0039] In an embodiment, the controller may be programmable by the clinician using the menu system to alter the parameters of the 'first timer' mode, for example, to set the initial therapy session pressure and/or the daily pressure increment according to the severity of the patient's sleep disordered breathing and the clinician's opinion of how long the patient may take to acclimatize to the sensations of the CPAP therapy.

[0040] At the commencement of the therapy session, the session timer of the controller is started.

[0041] Where the flow generator is of the type which provides for this, and where this feature is selected, the treatment pressure is ramped up over a 5 to 20 minute period at the beginning of each treatment session, starting at a low pressure, for example 4cmH$_2$O, and ramps up to the desired full therapeutic pressure for the therapy session.
Mask leak control

[0042] In an embodiment of the invention, described with reference to Figs. 2 and 3, the response of the blower to changes indicative of excessive air leakage at the patient interface is controlled for improved patient comfort and compliance and reduced possibility of disturbance.

[0043] Fig. 2 is a schematic graph of mask pressure against flow generator pressure illustrating mask leak where the mask is not sitting properly and sealing completely on the patient's face, for example where the mask and headgear has not been optimally adjusted or where the patient may have partially dislodged the mask during sleep.

[0044] With reference to Fig. 2, the blower set pressure is on the x axis and the mask pressure on they axis.

[0045] It can be seen that the pressure lost due to the mask leak is the vertical distance between the mask pressure curve and the 45° line. In a typical situation, the mask leak at lower blower pressures will be approximately linear with blower pressure, but above a certain blower pressure will begin to depart more significantly from the blower pressure as the increased pressure and flow causes a significant increase in mask leakage. The point at which this departure commences, and the gradient of this departure, will depend on the type and fit of the mask to the patient, and may also vary from one session to the next, or within a therapy session, depending on the patient's sleeping position.

[0046] In prior art APAP machines, air leakage at the mask is detected by a drop in the pressure at the nasal interface, and the response of the blower as governed by the controller is to increase the blower pressure to compensate for the leak and thus maintain adequate treatment pressures to normalize the patient's AH1. However, in some instances this increased pressure merely serves to further reduce the sealing of the mask onto the patient's face, and the increased pressure is wholly or largely lost by increased leakage. In such instances, the volume of air being leaked is increased with little or no net benefit to efficacy of the therapy, and with increased chance of arousal of or disturbance to the patient and/or the bed partner.
[0047] In the present embodiment of the invention, the response of the blower to
detection of mask leak is modified.

[0048] Fig. 3 is a flowchart illustrating the steps of the mask leak control method
according to an embodiment of the invention.

[0049] At first detection of excessive mask leak (step 301), for example as
determined by low mask pressure, by an excessive differential between the blower pressure
and the pressure at the mask or by a computed mask impedance parameter below a certain
threshold, the blower controller causes an increase in the blower pressure (step 302) to
compensate for the leak and maintain the therapeutic pressure to desired levels, thus moving
further to the right along the mask pressure curve of Fig. 2.

[0050] Another determination of mask pressure is made (step 303) and, if the
increased blower pressure has corrected the mask pressure to compensate for the leakage then
the higher blower pressure is continued (step 304). The patient continues to be monitored for
arousal (step 305).

[0051] If however the increased blower pressure has resulted in less than a
predetermined pressure increase in the mask, or a greater than predetermined flow volume
increase, this means that the blower is operating at a low-gradient part of the mask pressure
curve of Fig. 2. In this case, the controller is programmed to then recognize that the pressure
increase has wholly, or mostly, been ineffectual due to increased leakage at the mask.

[0052] When detecting this condition, the controller is programmed to then reduce the
blower pressure (step 306) (for example, by a set percentage of the treatment pressure or to
the ramp start pressure) or to inhibit further increases in the flow generator output pressure.

[0053] The mask leak threshold against which the increased mask leak is compared
(step 308) may be a fixed quantity or proportion, for example where a 2 cmH2O increase in
blower results in less than a 1 cmH2O pressure increase at the mask.
Alternatively, the mask leak threshold may vary as a function of a patient sleep phase indicator so that a greater amount of mask leakage is tolerated if the patient is in a heavier phase of sleep and thus less likely to be disturbed, or if other indicators of disturbance of the patient — such as respiratory rate — remain low. Indicators of sleep phase are known per se in sleep medicine and include monitoring of brain waves and/or respiration.

In a further alternative form of this embodiment, the mask leak threshold may vary as a function of indications of flow limitation, such as flow flattening, snore, apnea and hypopnea, or the Apnea Hypopnea Index (AHI), so that a greater amount of mask leakage is tolerated if the patient is more in need of higher treatment pressure. The blower controller is preferably programmable by the clinician to adjust the mask leak threshold, or turn off the mask leak control function, for patients with historically high flow limitation measurements.

By controlling the response of the flow generator to mask leak to operate the apparatus at a lower mask leak portion of the mask pressure/flow generator pressure curve of Fig 2, the amount of flow generator energy wasted in producing undesirable outcomes of unwanted mask leak and noise is minimized.

By reducing or capping the blower set pressure in circumstances of high mask leakage, rather than increasing the pressure further as was done in the prior art, disturbance of the patient and/or bed partner by the noise or air flow caused by excessive air leakage is minimized. While the therapy may continue at sub-optimal pressure, it may continue to provide some airway support and is considered that this may in many instances be preferable to waking the patient or having the patient remove the mask during sleep. The former is a substantial patient comfort and compliance issue and the latter may deny the patient the entire benefit of the therapy. It is expected that, by reducing patient arousals, total sleep time and adherence to the treatment can be improved.

Furthermore, by reducing the blower set pressure in response to excessive mask leak, the mask may settle back into improved conformity with the patient's face and the mask leakage be reduced, thus altering the mask pressure curve shown in Fig. 2 to one closer to the 45° line.

The controller may be programmed to make one or more further attempts to
ramp up blower pressure after a predetermined time periods, for example 15 minutes, have elapsed to reassess the quality of the mask-to-patient seal.

[0060] The controller may also be programmed to monitor in real time the patient's AHI and other patient arousal and flow limitation indicators, to detect any reduction in effectiveness of therapy at the lower pressure. If the indicators show increased flow limitation and/or patient arousal at the lower treatment pressure, indicative of insufficient treatment pressure for airway stability, the controller will re-increase the blower pressure (step 307).

[0061] Patient arousal may also be sensed by monitoring body position. Continual movement, if detected in conjunction with high leak, may indicate patient arousal due to mask leak.

[0062] Snoring is indicative of airway narrowing, and may be used as an indicator that the treatment pressure is too low and must be increased regardless of leak.

[0063] In essence, this embodiment seeks to apply the lowest pressure required to treat the patient effectively and limits maximum pressure in circumstances of mask leak, whereas previous treatments did only the former. In this way, a balance is achieved between patient arousal due to mask leak and effectiveness of the treatment, to help maintain patient compliance with the therapy.

[0064] The controller keeps a record of incidents where the blower pressure is reduced in response to excessive mask leak, for subsequent review by the clinician to help with mask selection and adjustment for the patient.

[0065] Also, at the end of a session where excessive mask leak has been detected, the controller may cause to be displayed on the machine a message alerting the patient to the need to adjust the fit of the mask, and/or to contact the clinician.

[0066] The CPAP machine may have one or more leak control modes. If the CPAP machine comprises a plurality of modes a control system may control selecting between these modes depending for example on patient preference and compliance levels. In a first of these modes, which for example may be selected for less compliant patients, the machine on
detection of a leak reduces the treatment flow/pressure and maintains the pressure at a level below full-therapeutic to allow the mask to seal against the patient's face.

[0067] In the second mode of the leak control method, the flow/pressure is reduced to a sub-therapeutic pressure for a brief predetermined period, for example 15-60 seconds, to allow the mask to reseal against the patient's face, and then is ramped back up to therapeutic pressure. For example, upon detection of mask leak in excess of the mask leak threshold, the pressure may be reduced to the ramp start pressure used for the commencement of the therapy session, and then ramped back up to full therapeutic pressure over a shortened ramp time, such as 50% of the ramp time used at the commencement of therapy.

[0068] In a further mode, upon detection of mask leak in excess of the mask leak threshold, the pressure may be reduced by a set increment, e.g., by 1 cmH\textsubscript{2}O, and the mask leak parameter is measured again for a set period of time. If the leak remains above the threshold, the pressure is further incrementally reduced, the mask leak measured again, and so on until the leak has been corrected or fallen below the mask leak threshold.

[0069] After a predetermined period of operation below the mask leak threshold, the controller re-increases the flow generator pressure to re-assess the mask-to-patient seal, as previously discussed.

[0070] In a further embodiment, a mask seal testing and mask fitting regimen is provided wherein the mask is fitted to the patient in a clinical setting and the device switched to a "mask fitting" operational mode. In this mode, the flow generator is controlled to apply a normal range treatment pressure, with the flow rate limited to a flow approximately equal to or slightly above the vent flow rate for the mask.

[0071] If the mask seals well, the pressure at the mask will be at or near full therapeutic pressure. If there is a substantial mask leak, this may be detected by insufficient pressure in the mask, without the noisy operation and large volume air leaks which the prior art low pressure-high volume mask fitting modes regimens. In this way, the mask fit may be adjusted without undue noise and a large volume of air flow rushing past the patient's face, and a further hurdle to patient adoption of and compliance with the therapy is reduced.
[0072] In this specification, the word "comprising" is to be understood in its "open" sense, that is, in the sense of "including", and thus not limited to its "closed" sense, that is the sense of "consisting only of". A corresponding meaning is to be attributed to the corresponding words "comprise, comprised and comprises where they appear.

[0073] While the invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. Also, the various embodiments described above may be implemented in conjunction with other embodiments, e.g., aspects of one embodiment may be combined with aspects of another embodiment to realize yet other embodiments. In addition, while the invention has particular application to patients who suffer from OSA, it is to be appreciated that patients who suffer from other illnesses (e.g., congestive heart failure, diabetes, morbid obesity, stroke, bariatric surgery, etc.) can derive benefit from the above teachings. Moreover, the above teachings have applicability with patients and non-patients alike in non-medical applications.
WHAT IS CLAIMED IS:

1. A method of operating a device for treating sleep disordered breathing (SDB), wherein said device provides continuous positive airway pressure during sleep, the method comprising:
 determining whether treatment pressure at the patient interface is below a desired value;
 in response to said determining, increasing pressure generated by the flow generator;
 in response to said increasing, making a determination that the increase in flow generator pressure has resulted in less than a desired increase in treatment pressure at the patient interface; and
 in response to said determination, reducing or inhibiting further increase of the flow generator pressure.

2. The method according to claim 1, wherein making a determination includes making a comparison of a mask leak parameter to a mask leak threshold.

3. The method according to claim 2, wherein the mask leak parameter is a mask leak impedance parameter.

4. The method according to any one of claims 2-3, wherein the mask leak threshold is determined with reference to a patient arousal index.

5. The method according to claim 4, wherein the patient arousal index includes an Apnea Hypopnea Index (AHI) and/or a sleep phase index of the patient.

6. The method according to claim 5, wherein the sleep phase index includes monitoring of brain waves and/or respiration.

7. The method according to any one of claims 5-6, wherein the patient arousal index includes monitoring body position.

8. The method according to any one of claims 5-7, wherein the patient arousal index includes monitoring snoring.
9. The method according to any one of claims 2-8, wherein the mask leak threshold varies as a function of indications of flow limitation.

10. The method according to claim 9, wherein the indications of flow limitation include flow flattening, snore, apnea, hypopnea, and/or Apnea Hypopnea Index (AHI).

11. The method according to any one of claims 2-10, further comprising programming a flow generator controller to adjust the mask leak threshold or turn off a mask leak control function.

12. The method according to any one of claims 2-11, further comprising maintaining a record of incidents where the flow generator pressure is reduced in response to excessive mask leak for subsequent review by a clinician to facilitate mask selection and/or adjustment for the patient.

13. The method according to any one of claims 2-12, further comprising displaying a message on the device at the end of a session where excessive mask leak has been detected that alerts the patient to adjust the fit of the mask and/or contact a clinician.

14. The method according to any one of claims 2-13, wherein the device includes one or more leak control modes.

15. The method according to claim 14, wherein one or more leak control modes are selectable depending on patient preference and/or compliance levels.

16. The method according to any one of claims 14-15, wherein the one or more leak control modes includes reducing the flow generator pressure upon detection of a mask leak and maintaining the flow generator pressure at a level below full-therapeutic to allow the mask to seal against the patient's face.

17. The method according to any one of claims 14-15, wherein the one or more leak control modes includes reducing the flow generator pressure to a sub-therapeutic pressure for a brief predetermined period to allow the mask to reseal against the patient's face, and then ramping back up to therapeutic pressure.
18. The method according to claim 17, wherein brief predetermined period is 15-60 seconds.

19. The method according to any one of claims 14-15, wherein the one or more leak control modes includes reducing the flow generator pressure upon detection of mask leak in excess of the mask leak threshold to a ramp start pressure used for commencement of the therapy session, and then ramping back up to full therapeutic pressure over a shortened ramp time.

20. The method according to claim 19, wherein the shortened ramp time is 50% of the ramp time used at the commencement of therapy.

21. The method according to any one of claims 14-15, wherein the one or more leak control modes includes reducing the flow generator pressure by a set increment upon detection of mask leak in excess of the mask leak threshold, measuring the mask leak parameter for a set period of time, and further incrementally reducing the flow generator pressure if the mask leak remains above the mask leak threshold.

22. The method according to claim 21, wherein the set increment is 1 cmH₂O.

23. The method according to any one of claims 2-22, further comprising re-increasing the flow generator pressure to re-assess mask-to-patient seal after a predetermined period of operation below the mask leak threshold.

24. The method according to any one of claims 1-23, further comprising providing a mask seal testing and mask fitting regimen wherein a mask is fitted to the patient in a clinical setting and the device switched to a mask fitting operational mode wherein the flow generator is controlled to apply a normal range treatment pressure.

25. The method according to claim 24, wherein a flow rate is limited to a flow approximately equal to or slightly above a vent flow rate for the mask.

26. The method according to claim 25, wherein substantial mask leak is detected by insufficient pressure in the mask, and mask fit may be adjusted without undue noise and a large volume of air flow rushing past the patient's face.
27. A method of operating a device for treating sleep disordered breathing (SDB), wherein said device provides continuous positive airway pressure during sleep, the method comprising:

determining whether treatment pressure at the patient interface is below a desired value;

in response to said determining, increasing pressure generated by the flow generator;

in response to said increasing, making a determination that the increase in flow generator pressure has resulted in a greater than desired increase in air leak from the patient interface, or has increased the air leak from the patient interface; and

in response to said determination, reducing or inhibiting further increase of the flow generator pressure.

28. The method according to claim 27, wherein making a determination includes making a comparison of a mask leak parameter to a mask leak threshold.

29. The method according to claim 28, wherein the mask leak parameter is a mask leak impedance parameter.

30. The method according to any one of claims 28-29, wherein the mask leak threshold is determined with reference to a patient arousal index.

31. The method according to claim 30, wherein the patient arousal index includes an Apnea Hypopnea Index (AHI) and/or a sleep phase index of the patient.

32. The method according to claim 31, wherein the sleep phase index includes monitoring of brain waves and/or respiration.

33. The method according to any one of claims 31-32, wherein the patient arousal index includes monitoring body position.

34. The method according to any one of claims 31-33, wherein the patient arousal index includes monitoring snoring.

35. The method according to any one of claims 28-34, wherein the mask leak threshold varies as a function of indications of flow limitation.
36. The method according to claim 35, wherein the indications of flow limitation include flow flattening, snore, apnea, hypopnea, and/or Apnea Hypopnea Index (AHI).

37. The method according to any one of claims 28-36, further comprising programming a flow generator controller to adjust the mask leak threshold or turn off a mask leak control function.

38. The method according to any one of claims 28-37, further comprising maintaining a record of incidents where the flow generator pressure is reduced in response to excessive mask leak for subsequent review by a clinician to facilitate mask selection and/or adjustment for the patient.

39. The method according to any one of claims 28-38, further comprising displaying a message on the device at the end of a session where excessive mask leak has been detected that alerts the patient to adjust the fit of the mask and/or contact a clinician.

40. The method according to any one of claims 28-39, wherein the device includes one or more leak control modes.

41. The method according to claim 40, wherein one or more leak control modes are selectable depending on patient preference and/or compliance levels.

42. The method according to any one of claims 40-41, wherein the one or more leak control modes includes reducing the flow generator pressure upon detection of a mask leak and maintaining the flow generator pressure at a level below full-therapeutic to allow the mask to seal against the patient's face.

43. The method according to any one of claims 40-41, wherein the one or more leak control modes includes reducing the flow generator pressure to a sub-therapeutic pressure for a brief predetermined period to allow the mask to reseal against the patient's face, and then ramping back up to therapeutic pressure.

44. The method according to claim 43, wherein brief predetermined period is 15-60 seconds.

45. The method according to any one of claims 40-41, wherein the one or more
leak control modes includes reducing the flow generator pressure upon detection of mask leak in excess of the mask leak threshold to a ramp start pressure used for commencement of the therapy session, and then ramping back up to full therapeutic pressure over a shortened ramp time.

46. The method according to claim 45, wherein the shortened ramp time is 50% of the ramp time used at the commencement of therapy.

47. The method according to any one of claims 40-41, wherein the one or more leak control modes includes reducing the flow generator pressure by a set increment upon detection of mask leak in excess of the mask leak threshold, measuring the mask leak parameter for a set period of time, and further incrementally reducing the flow generator pressure if the mask leak remains above the mask leak threshold.

48. The method according to claim 47, wherein the set increment is 1 cmH₂O.

49. The method according to any one of claims 28-48, further comprising re-increasing the flow generator pressure to re-assess mask-to-patient seal after a predetermined period of operation below the mask leak threshold.

50. The method according to any one of claims 27-49, further comprising providing a mask seal testing and mask fitting regimen wherein a mask is fitted to the patient in a clinical setting and the device switched to a mask fitting operational mode wherein the flow generator is controlled to apply a normal range treatment pressure.

51. The method according to claim 50, wherein a flow rate is limited to a flow approximately equal to or slightly above a vent flow rate for the mask.

52. The method according to claim 51, wherein substantial mask leak is detected by insufficient pressure in the mask, and mask fit may be adjusted without undue noise and a large volume of air flow rushing past the patient's face.

53. A method of operating a device for treating sleep disordered breathing (SDB), wherein said device provides continuous positive airway pressure during sleep, the method comprising:

 comparing a mask leak parameter to a mask leak threshold to determine
excessive leak at the patient interface;
in response to said determination of excessive leak, reducing the flow
generator pressure; and
continuing to compare said mask leak parameter to said mask leak threshold at
said reduced flow generator pressure.

54. The method according to claim 53, wherein the mask leak parameter is a mask
leak impedance parameter.

55. The method according to any one of claims 53-54, wherein reducing the flow
generator pressure includes reducing the pressure to a ramp start pressure.

56. The method according to claim 55, further comprising ramping up the pressure
to a treatment pressure over a predetermined ramp time while continuing to compare the
mask leak parameter to the mask leak threshold.

57. The method according to claim 56, further comprising halting the pressure
ramping upon further determination of excessive leak at the patient interface.

58. The method according to any one of claims 53-57, wherein reducing the
pressure includes reducing the pressure by a pressure increment to a first reduced pressure.

59. The method according to claim 58, further comprising incrementally further
reducing the pressure if excessive leak is detected at the first reduced pressure.

60. A method of assessing the fit of a patient interface to a patient for a device for
treating sleep disordered breathing (SDB), wherein said device provides continuous positive
airway pressure during sleep, the method comprising:
generating a treatment pressure at a flow generator of the device;
limiting gas flow applied to the patient to a predetermined flow rate;
determining that treatment pressure at the patient interface is below a desired
value; and
making a determination that the seal of the patient interface to the patient is
inadequate.

61. The method according to claim 60, wherein the flow rate is determined with
reference to a vent flow rate of the patient interface.
62. A PAP device for carrying out the method of any one of claims 1-61.
FIG. 2
FIG. 3

301
Determine that mask pressure is below optimal therapeutic pressure due to mask leak.

302
Increase blower pressure.

303
Does mask leak increase exceed mask threshold?

304
Continue therapy at higher blower pressure.

305
Monitor patient for arousal.

306
Reduce blower pressure to reduce mask leak.

307
Monitor patient and re-increase blower pressure if increased arousal detected.

308
Determine mask leak threshold as function of patient sleep state or arousal index.
INTERNATIONAL SEARCH REPORT

CLASSIFICATION OF SUBJECT MATTER

Int. Cl. **A61M 16/00** (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

DWPI: A61M 16/-, A61H 31/-, A62B 7/-, 9/-, 18/- IPC & keywords: (mask, interface, pressure, flow, increase, decrease, reduce, inhibit, adjust, vary, alter, change, respond, compliance, comfort, fit, leak, seal, compare, assess, measure, threshold, test, monitor, determine) and similar terms

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>AU 703829 (40463/95) B2 (SUNRISE MEDICAL HHG INC.) 20 June 1996 See the abstract, figure 6, pages 7, 18-21.</td>
<td>53-59, 62</td>
</tr>
<tr>
<td>X</td>
<td>US 6425395 B1 (BREWER et al.) 30 July 2002 See the abstract; column 2, lines 29-38, 63-67; column 4, lines 9-49.</td>
<td>50-52, 60-62</td>
</tr>
<tr>
<td>X</td>
<td>US 5901704 A (ESTES et al.) 11 May 1999 See figures 3, 15; column 8, lines 43-57; column 30, lines 48-65.</td>
<td>60-62</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C

X See patent family annex

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * "&" document member of the same patent family

Date of the actual completion of the international search

18 July 2006

Date of mailing of the international search report

25 AUG 2006

Name and mailing address of the ISA/AU

AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
E-mail address: pct@ipaustralia.gov.au
Facsimile No. (02) 6285 3929

Authorized officer

PETER T. WEST
Telephone No: (02) 6283 2108

Form PCT/ISA/210 (second sheet) (April 2005)
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See annexed sheet.

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

□ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

□ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

□ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)
INTERNATIONAL SEARCH REPORT

Supplemental Box
(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: III

This International Application does not comply with the requirements of unity of invention because it does not relate to one invention or to a group of inventions so linked as to form a single general inventive concept.

In assessing whether there is more than one invention claimed, I have given consideration to those features which can be considered to potentially distinguish the claimed combination of features from the prior art. Where different claims have different distinguishing features they define different inventions.

This International Searching Authority has found that there are different inventions as follows:

- Claims 1 to 26 are directed to a method of operating a device for treating sleep disordered breathing (SDB), wherein said device provides continuous positive airway pressure during sleep. The method includes the steps of determining whether the treatment pressure at the patient interface is below a desired value; if so, increasing the pressure generated by the flow generator; in response to the increased pressure, making a determination that the increase in flow generator pressure has resulted in a less than desired pressure increase at the patient interface; and reducing or inhibiting further increase of the flow generator pressure. It is considered that the steps of making a determination that the increase in flow generator pressure has resulted in a less than desired pressure increase at the patient interface and, in response, reducing or inhibiting further increases in flow generator pressure comprise a first distinguishing feature set.

- Claims 27 to 52 are directed to a method of operating a device for treating sleep disordered breathing (SDB), wherein said device provides continuous positive airway pressure during sleep. The method includes the steps of determining whether the treatment pressure at the patient interface is below a desired value; if so, increasing the pressure generated by the flow generator; in response to the increased pressure, making a determination that the increase in flow generator pressure has resulted in an increase in air leak from the patient interface; and reducing or inhibiting a further increase in the flow generator pressure. It is considered that the steps of determining that the increase in flow generator pressure has resulted in an increase in air leak from the patient interface and, in response, reducing or inhibiting further increases in flow generator pressure comprise a second distinguishing feature set.

- Claims 53 to 59 are directed to a method of operating a device for treating sleep disordered breathing (SDB), wherein said device provides continuous positive airway pressure during sleep. The method includes the steps of comparing a mask leak parameter to a mask leak threshold to determine excessive leak at a patient interface; if leak is excessive, reducing the flow generator pressure; and continuing to compare the mask leak parameter to the mask leak threshold at the reduced flow generator pressure. It is considered that the method steps described above comprise a third distinguishing feature set.

- Claims 60 and 61 are directed to a method of assessing the fit of a patient interface to a patient for a device for treating sleep disordered breathing (SDB), wherein said device provides continuous positive airway pressure during sleep. The method comprises the steps of generating a treatment pressure at a flow generator, limiting gas flow applied to the patient to a predetermined flow rate, determining whether the pressure at the patient interface is below a desired value, and making a determination that the seal of the patient interface to the patient is inadequate. It is considered that the steps described above comprise a fourth distinguishing feature set.

- Claim 62 is directed to a PAP device for carrying out any of the methods of claims 1 to 61. A PAP device for carrying out the claimed methods is only a claim to a PAP device capable of carrying out the claimed methods. Therefore, claim 62 is only directed to a PAP device. This feature comprises a fifth distinguishing feature set.

[See Supplemental Box]
PCT Rule 13.2, first sentence, states that unity of invention is only fulfilled when there is a technical relationship among the claimed inventions involving one or more of the same or corresponding special technical features. PCT Rule 13.2, second sentence, defines a special technical feature as a feature which makes a contribution over the prior art.

Each of the abovementioned groups of claims has a different distinguishing feature and they do not share any feature which could satisfy the requirement for being a special technical feature. Because there is common special technical feature it follows that there is no technical relationship between the identified inventions. Therefore the claims do not satisfy the requirement of unity of invention a priori.
INTERNATIONAL SEARCH REPORT

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AU 703829 AU 13181/99 AU 40463/95 AU 93238/98</td>
<td></td>
</tr>
<tr>
<td>BR 9505908 CA 2163855 EP 0722747</td>
<td></td>
</tr>
<tr>
<td>US 5551419</td>
<td></td>
</tr>
<tr>
<td>US 6425395 AU 22683/00 AU 65370/99 EP 1144036</td>
<td></td>
</tr>
<tr>
<td>US 2002056452 WO 2000/037135</td>
<td></td>
</tr>
<tr>
<td>US 5901704 AU 14276/99 AU 29268/92 AU 30678/95</td>
<td></td>
</tr>
<tr>
<td>AU 30679/95 AU 38508/93 AU 39130/95</td>
<td></td>
</tr>
<tr>
<td>AU 62221/90 AU 98118/98 CA 2024477</td>
<td></td>
</tr>
<tr>
<td>CA 2122590 CA 2162981 EP 0425092</td>
<td></td>
</tr>
<tr>
<td>JP 8257016 US 5148802 US 5239995</td>
<td></td>
</tr>
<tr>
<td>US 5313937 US 5433193 US 5492113</td>
<td></td>
</tr>
<tr>
<td>US 5551418 US 5632269 US 5803065</td>
<td></td>
</tr>
<tr>
<td>US 5823187 US 5904141 US 5970975</td>
<td></td>
</tr>
<tr>
<td>US 6029664 US 6305374 US 6427689</td>
<td></td>
</tr>
<tr>
<td>US 6539940 US 6629527 US 6948497</td>
<td></td>
</tr>
<tr>
<td>US 7013892 US 200203645 US 2003145856</td>
<td></td>
</tr>
<tr>
<td>US 2004016433 US 2005224078 US 2006118112</td>
<td></td>
</tr>
<tr>
<td>WO 1993/008857</td>
<td></td>
</tr>
</tbody>
</table>

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

END OF ANNEX