

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2015301726 B2

(54) Title
Production of fully processed and functional Factor X in a furin-secreting mammalian expression system

(51) International Patent Classification(s)
C12N 9/64 (2006.01)

(21) Application No: **2015301726** (22) Date of Filing: **2015.08.12**

(87) WIPO No: **WO16/025615**

(30) Priority Data

(31) Number **62/036,438** (32) Date **2014.08.12** (33) Country **US**

(43) Publication Date: **2016.02.18**
(44) Accepted Journal Date: **2021.10.21**

(71) Applicant(s)
Takeda Pharmaceutical Company Limited

(72) Inventor(s)
Bohm, Ernst;Horling, Franziska;Koehn, Jadranka;Dockal, Michael

(74) Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art
Liu et al., "Improved Expression of Recombinant Human Factor IX by Co-expression of GGCS, VKOR and Furin" 33 Protein Journal 174-183 (2014)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/025615 A1

(43) International Publication Date
18 February 2016 (18.02.2016)

(51) International Patent Classification:
C12N 9/64 (2006.01)

(21) International Application Number:
PCT/US2015/044883

(22) International Filing Date:
12 August 2015 (12.08.2015)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/036,438 12 August 2014 (12.08.2014) US

(71) Applicants: **BAXALTA INCORPORATED** [US/US];
1200 Lakeside Drive, Bannockburn, IL 60015 (US). **BAX-
ALTA GMBH** [CH/CH]; Thurgauerstrasse 130, CH-8152
Glattpark (Opfikon) (CH).

(72) Inventors: **BÖHM, Ernst**; Muhlgweg 94, A-1210 Vienna
(AT). **HORLING, Franziska**; Bauernfeldgasse 3/9, A-
2230 Ganserndorf (AT). **KOEHN, Jadranka**; Speisinger
Str. 16/4, A-1130 Vienna (AT). **DOCKAL, Michael**;
Mariahilferstrasse 173-175/2/54, A-1150 Vienna (AT).

(74) Agents: **CULLMAN, Louis, C.** et al.; K&L Gates LLP, 1
Park Plaza, Twelfth Floor, Irvine, CA 92614 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

WO 2016/025615 A1

(54) Title: PRODUCTION OF FULLY PROCESSED AND FUNCTIONAL FACTOR X IN A FURIN-SECRETING MAMMALIAN EXPRESSION SYSTEM

(57) Abstract: Disclosed herein are methods for production of fully-processed mature Factor X in an expression system producing a controlled amount of furin between 50 U/mL and 300 U/mL of culture supernatant. Also disclosed are transformed cells, expression systems, and expression vectors for the expression of furin and Factor X.

PRODUCTION OF FULLY PROCESSED AND FUNCTIONAL FACTOR X IN A FURIN-SECRETING MAMMALIAN EXPRESSION SYSTEM

FIELD

[0001] Disclosed herein are expression systems, transformed cells, and methods related thereto, for expression of fully-processed and active recombinant Factor X in the presence of furin.

BACKGROUND

[0002] Human coagulation Factor X (FX), activated FX (FXa), and variants thereof, are used as therapeutic agents in blood coagulation disorders including, but not limited to, hemophilia and von Willebrand disease. FX, a vitamin K-dependent serine protease, is synthesized as a single chain precursor protein in the endoplasmic reticulum, with subsequent intracellular proteolytic furin cleavage in the Golgi apparatus before secretion by the producing cell into the blood stream, or into the culture medium in case of recombinant expression. Three furin cleavage sites in FX are responsible for proper FX proteolytic processing. The mature form of FX is a disulfide-linked two-chain molecule consisting of a heavy and light chain, formed after cleavage of the precursor protein. Further modifications of the molecule include γ -carboxylation of the light chain and N- and O-linked glycosylation of the activation peptide which is attached to the heavy chain.

[0003] Besides FX, further Vitamin K-dependent coagulation factors bearing the consensus recognition site Arg-X-Lys/Arg-Arg (SEQ ID NO:4) are substrates of the ubiquitously expressed endoprotease furin, also known as paired basic amino acid residue-cleaving enzyme (PACE). Adequate proteolytic processing of recombinant proteins of the coagulation cascade are impaired in cell culture expression systems due to intracellular processing limitations at high yield expression. Similar to von Willebrand Factor and coagulation Factor IX (FIX) which exhibit insufficient proteolytic processing at high expression rates in recombinant mammalian cells, FX secretion in low producing CHO cell clones is characterized by fully processed FX, whereas high producing clones comprise unprocessed single chain FX and multiple unprocessed forms of FX light chain, in addition to the correctly processed FX heavy and light chain species. Types and degrees of unprocessed FX light chain varied among individual cell clones and under different cell culture conditions such as cell density. Additional *in vivo* furin co-expression or post-cell culture *in vitro* furin incubation is needed to support the endogenous furin proteolytic machinery, facilitating intact protein cleavage.

[0004] Furin co-expression is indispensable for the expression of fully processed FX at high yield. However, to date no threshold level of furin has been reported that would ensure a high percentage of intact processed FX in cell culture systems. High levels of furin are toxic, therefore levels of furin expression by FX-producing mammalian expression systems must be balanced between levels that are toxic, yet potentially process 100% of the FX precursor protein, and those that are too low, resulting in healthy cell cultures in which suboptimal processed FX is produced.

SUMMARY

[0005] Disclosed herein is a system for expressing furin and a human Factor X (FX) in the same cell line and thereby providing a critical furin concentration in the culture supernatant for the generation of fully processed and fully active FX, while maintaining the viability of the culture.

[0006] Thus, disclosed herein is a transformed cell comprising a nucleotide sequence encoding a human furin, such that the transformed cell expresses and secretes functional furin into a culture supernatant, wherein the functional furin is secreted at a concentration of about 50 U/mL to about 300 U/mL in the culture supernatant after culture for between about 36 and about 78 hours. In one embodiment, the transformed cells further comprise a nucleotide sequence encoding a protein cleavable by furin and exhibiting an Arg-(Lys/Arg)-Arg motif. In another embodiment, the nucleotide sequence encoding human furin and the nucleotide sequence encoding the protein are on different expression vectors. In another embodiment, the nucleotide sequence encoding human furin and the nucleotide sequence encoding the protein are on the same expression vector.

[0007] Also provided is a eukaryotic protein expression system comprising a cell line suitable for expression of mammalian proteins; a first expression vector adapted for expression of human furin by the cell line, wherein the first expression vector includes a nucleotide sequence encoding a human furin polypeptide; and a second expression vector adapted for expression of a protein by the cell line, wherein the second expression vector includes a nucleotide sequence encoding a protein cleavable by furin and exhibiting an Arg-(Lys/Arg)-Arg motif, wherein the cell line is capable of secreting functional furin into the culture supernatant at a concentration of about 50 U/mL to about 300 U/mL after culture for between about 36 and about 78 hours.

[0008] Also provided is a eukaryotic protein expression system comprising a cell line suitable for expression of mammalian proteins; a first expression vector adapted for expression of human furin and a protein cleavable by furin, and exhibiting an Arg-(Lys/Arg)-Arg motif, by the cell line, wherein the first expression vector includes a nucleotide sequence encoding a human furin polypeptide and a nucleotide sequence encoding the protein cleavable by furin, wherein the cell line is capable of secreting functional furin into the culture supernatant at a concentration of about 50 U/mL to about 300 U/mL after culture for between about 36 and about 78 hours. In one embodiment, the nucleotide sequence encoding human furin and the nucleotide sequence encoding the protein are on different expression vectors. In another embodiment, the nucleotide sequence encoding human furin and the nucleotide sequence encoding the protein are on the same expression vector.

[0009] Also provided is a transformed cell comprising a first nucleotide sequence encoding a human furin and a second nucleotide sequence encoding a human FX, such that the transformed cell expresses and secretes functional furin and FX into a culture supernatant, wherein the furin is secreted at a concentration of about 50 U/mL to about 300 U/mL in the culture supernatant after culture for between about 36 and about 78 hours and at least 85% of the FX is fully processed. In one embodiment, the nucleotide sequence encoding human furin and the nucleotide sequence encoding the FX are on different expression vectors. In another embodiment, the nucleotide sequence encoding human furin and the nucleotide sequence encoding the FX are on the same expression vector.

[0010] Also provided is a eukaryotic protein expression system comprising a cell line suitable for expression of mammalian proteins; a first expression vector adapted for expression of human furin by the cell line, wherein the first expression vector includes a nucleotide sequence encoding a human furin polypeptide; and a second expression vector adapted for expression of FX by the cell line, wherein the second expression vector includes a nucleotide sequence encoding FX, wherein the cell line is capable of secreting functional furin into the culture supernatant at a concentration of about 50 U/mL to about 300 U/mL after culture for between about 36 and about 78 hours.

[0011] Further provided is a eukaryotic protein expression system comprising a cell line suitable for expression of mammalian proteins; a first expression vector adapted for expression of human furin and FX, wherein the first expression vector includes a nucleotide sequence encoding a human furin polypeptide and a nucleotide sequence encoding FX, wherein the cell

line is capable of secreting functional furin into the culture supernatant at a concentration of about 50 U/mL to about 300 U/mL after culture for between about 36 and about 78 hours.

[0012] Also provided is a method of preparing a recombinant protein comprising transfecting a cell line suitable for expression of mammalian proteins with a first expression vector adapted for expression of human furin by the cell line, wherein the first expression vector includes a nucleotide sequence encoding a human furin polypeptide; and transfecting the cell line with a second expression vector adapted for expression of a protein by the cell line, wherein the second expression vector includes a nucleotide sequence encoding a protein exhibiting an Arg-(Lys/Arg)-Arg motif; wherein the cell line transfected with the first and the second expression vectors expresses and secretes functional human furin at a concentration of about 50 U/mL to about 300 U/mL in the culture supernatant after culture for between about 40 and about 80 hours or about 36 and about 78 hours. In one embodiment, the cell line is transfected with the first expression vector and the second expression vector substantially simultaneously. In another embodiment, the cell line is transfected with the first expression vector and cells secreting stable levels of furin are obtained prior to transfecting the cell line with the second expression vector. In yet another embodiment, the cell line is transfected with the second expression vector and cells secreting stable levels of the protein are obtained prior to transfecting the cell line with the first expression vector.

[0013] In one embodiment, the protein is von Willebrand Factor, Factor II, Factor IX, Factor X, Protein C, Protein S, or Protein Z. In another embodiment, the protein is Factor X.

[0014] Also provided is a method of preparing a recombinant protein comprising transfecting a cell line suitable for expression of mammalian proteins with a first expression vector adapted for expression of human furin by the cell line, wherein the first expression vector includes a nucleotide sequence encoding a human furin polypeptide; and transfecting the cell line with a second expression vector adapted for expression of FX by the cell line, wherein the second expression vector includes a nucleotide sequence encoding a FX polypeptide; wherein the cell line transfected with the first and the second expression vectors expresses and secretes functional human furin at a concentration of about 50 U/mL to about 300 U/mL in the culture supernatant after culture for between about 36 and about 78 hours. In one embodiment, the cell line is transfected with the first expression vector and the second expression vector substantially simultaneously. In another embodiment, the cell line is transfected with the first expression vector and cells secreting stable levels of furin are obtained prior to transfecting the cell line with the second expression vector. In yet another embodiment, the cell line is transfected with the

second expression vector and cells secreting stable levels of the protein are obtained prior to transfecting the cell line with the first expression vector.

[0015] In another embodiment, the cells are capable of secreting functional furin into the culture supernatant at a concentration of at least about 50 to about 60 U/mL after culture for between about 36 and about 78 hours and wherein at least 90% of the FX is fully processed. In another embodiment, the cells are capable of secreting functional furin into the culture supernatant at a concentration of at least about 90 to about 100 U/mL after culture for between about 36 and about 78 hours and wherein at least 95% of the FX is fully processed.

[0016] Also provided is a recombinant FX produced by a transformed cell disclosed herein.

[0017] Further provided is a recombinant FX produced by an expression system disclosed herein.

[0018] Also provided is a recombinant FX produced by a method disclosed herein.

[0019] Also provided is an expression system for recombinant FX adapted to secrete furin into a culture supernatant at a concentration of between about 50 U/mL and about 300 U/mL after culture for between about 36 and about 78 hours.

[0020] Also provided is a method of producing mature, fully-processed FX comprising an expression system secreting furin into a culture supernatant at a concentration between about 50 U/mL and about 300 U/mL after culture for between about 36 and about 78 hours.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1A depicts the RCL.012-74.pD3H-Furin expression vector and FIG. 1B depicts the nucleotide sequence of the vector (SEQ ID NO:1). The human furin sequence is underlined and the start and stop codons are double underlined.

[0022] FIG. 2 depicts the nucleotide sequence of human furin (SEQ ID NO:2). Start and stop codons are double underlined.

[0023] FIG. 3 depicts the amino acid sequence of human furin (SEQ ID NO:3).

[0024] FIG. 4 depicts the degree of fully processed Factor X (FX) in cultures. Densitometric quantification was conducted of a FX Western blot under reducing conditions and stained with a polyclonal anti-FX antibody. The clones (clone ID 42 to 52) exhibit up to 4 species of FX with varying pixel intensities including the unprocessed FX single chain (box 1, 5, 9, etc.), the FX heavy chain (box 2, 6, 10, etc.), the unprocessed propeptide-containing FX light chain

(box 3, 7, 11, etc.) and the processed FX light chain (box 4, 8, 12, etc.). The pixel intensity of boxes 45-48 was determined for background subtraction.

[0025] FIG. 5 depicts the secreted furin concentration and the percentage of fully processed FX/total FX in culture. A dose-response relationship exists between the secreted furin concentration in the cell culture supernatant (determined with a furin activity assay) and the % fully processed FX/total FX (determined by densitometric quantification of respective bands in Western blots).

[0026] FIG. 6 depicts an analysis of furin dose and fully processed FX. Data (circles) with cell specific (dark lines) and population average (light lines) predicted fully processed FX/total FX (%) as a function of furin concentration with the E_{max} model.

[0027] FIGs. 7A-D depict an E_{max} model validity test. FIG. 7A depicts residual of response versus predicted response where data points are scattered symmetrically around zero indicating no systematic trend. FIG. 7B depicts a normal Q-Q plot for the residuals indicating that the assumption of normal distributed errors hold as data points are scattered around the line of identity. FIG. 7C depicts residual of response versus cell line where data points are scattered symmetrically around zero indicating no systematic trend. FIG. 7D depicts observed and predicted values plotted against each other indicating a good fit of the data as the data points are scattered symmetrically around the line of identity.

[0028] FIG. 8 depicts a null model for testing the hypothesis that the degree of FX processing is independent of furin concentration. Data (circles) and the fitted null model with intercepts only assuming that processed FX is independent from the furin concentration (cell specific and population averages fits as dark and light lines, respectively).

[0029] FIG. 9 depicts a dose-response curve and calculated furin minimum concentrations to yield 90% and 95% processed FX. The population average predicted of fully processed FX/total FX (%) as a function of furin concentration (black line) along with furin concentrations that give 90% and 95% fully processed FX/total FX obtained by numerical optimization of the fitted model.

DETAILED DESCRIPTION

[0030] Provided herein are transformed cells, eukaryotic expression systems, methods for producing recombinant proteins, and recombinant proteins made by the methods, all directed to expression of furin and Factor X (FX) in the same cell line and thereby providing a critical furin

concentration in the culture supernatant for the generation of fully processed and mature FX, while maintaining the viability of the culture.

[0031] Common to the transformed cells, eukaryotic expression systems and methods for production of recombinant proteins is the ability of the host cell to produce consistent levels of recombinant furin. Furin is necessary for cleavage of certain mammalian proteins, including FX, from a precursor protein form to a mature, fully processed form. Low concentrations of furin in the culture supernatant of the expression system result in accumulation of propeptide-containing and other non- or partially-processed forms of the protein. Concentrations of furin that are too high result in impaired growth of the host cells and ultimately cell death.

[0032] As used herein, the term “furin” includes full-length furin as well as any furin fragment capable of cleavage of the consensus recognition site Arg–X–Lys/Arg–Arg. Active truncated forms of furin are known in the art and are suitable for use in the instant disclosure, Non-limiting examples of suitable furin fragments can be found in U.S. 6,210,926 and Preininger et al. (Cytotechnology 30:1-15, 1999), both of which are incorporated by reference herein for all they disclose regarding truncated forms of recombinant furin.

[0033] Also within the scope of the present disclosure are variants of the furin and Factor X proteins disclosed herein. For example, conservative amino acid changes may be made, which although they alter the primary sequence of the protein or peptide, do not normally alter its function. Conservative amino acid substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; and lysine, arginine; phenylalanine, tyrosine.

[0034] Also included are fusion proteins, or other modifications, or FX which have increased half-life after administration to a subject. Examples of such would be fusions with an immunoglobulin Fc domain, an albumin domain, an extended (XTEN) recombinant polypeptide (see US 8,673,860 which is incorporated by reference herein for all it discloses regarding XTEN polypeptides), poly Glu or poly Asp sequences, transferrin, or a PAS (Pro Ala Ser)-containing polypeptides attached to the FX sequence.

[0035] Modifications (which do not normally alter primary sequence) include *in vivo*, or *in vitro* chemical derivatization of polypeptides, e.g., acetylation, or carboxylation. Also included are modifications of glycosylation, e.g., those made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing or in further processing steps; e.g. by exposing the polypeptide to enzymes which affect glycosylation, e.g., mammalian glycosylating or

deglycosylating enzymes. Also embraced are sequences which have phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine. Proteins can also be modified chemically after purification with water soluble biocompatible polymers, e.g., polyethylene glycol, polysialic acid, or hydroxyethyl starch.

[0036] Also included are polypeptides which have been modified using ordinary molecular biological techniques so as to improve their resistance to proteolytic degradation or to optimize solubility properties. Analogs of such polypeptides include those containing residues other than naturally occurring L-amino acids, e.g., D-amino acids or non-naturally occurring synthetic amino acids. The peptides of the invention are not limited to products of any of the specific exemplary processes listed herein.

[0037] The disclosure herein is generally directed to systems, transformed cells, expression vectors, and methods for producing at least one recombinant mammalian protein which is post-translationally processed by furin (a recombinant furin-requiring mammalian protein). The mammalian protein is one or more of von Willebrand Factor, Factor II, Factor IX, Factor X, Protein C, Protein S, or Protein Z. In another embodiment, the protein is FX.

[0038] The concentration of furin in the culture supernatant is targeted within an optimum range for production of mature, fully-processed proteins while maintaining viability of the culture after a defined period of culture. Thus, a useful concentration of furin in a culture supernatant for the production of a mature, fully-processed mammalian protein is between about 50 U/mL and about 400 U/mL, between about 50 U/mL and about 350 U/mL, between about 50 U/mL and about 300 U/mL, between about 50 U/mL and about 250 U/mL, between about 50 U/mL and about 200 U/mL, between about 50 U/mL and about 175 U/mL, between about 50 U/mL and about 150 U/mL, between about 50 U/mL and about 125 U/mL, or between about 50 U/mL and about 100 U/mL. In one embodiment, the concentration of furin in the culture supernatant is not less than 50 U/mL.

[0039] In other embodiment, the useful concentration of furin in the culture supernatant for the production of a mature, fully-processed mammalian protein after a defined period of culture is between about 50 U/mL and about 60 U/mL, between about 55 U/mL and about 65 U/mL, between about 60 U/mL and about 70 U/mL, between about 65 U/mL and about 75 U/mL, between about 70 U/mL and about 80 U/mL, between about 75 U/mL and about 85 U/mL, between about 80 U/mL and about 90 U/mL, between about 85 U/mL and about 95 U/mL, between about 90 U/mL and about 95 U/mL, between about 95 U/mL and about 105 U/mL, between about 100 U/mL and about 110 U/mL, between about 115 U/mL and about 125 U/mL,

between about 120 U/mL and about 130 U/mL, between about 125 U/mL and about 135 U/mL, between about 130 U/mL and about 140 U/mL, between about 135 U/mL and about 145 U/mL, between about 140 U/mL and about 150 U/mL, between about 145 U/mL and about 155 U/mL, between about 150 U/mL and about 160 U/mL, between about 155 U/mL and about 165 U/mL, between about 160 U/mL and about 170 U/mL, between about 165 U/mL and about 175 U/mL, between about 170 U/mL and about 180 U/mL, between about 175 U/mL and about 185 U/mL, between about 180 U/mL and about 190 U/mL, between about 185 U/mL and about 195 U/mL, or between about 190 U/mL and about 200 U/mL. In another embodiment, the useful concentration of furin in the culture supernatant for the production of a mature, fully-processed mammalian protein after a defined period of culture is between about 50 U/mL and about 60 U/mL, or about 57 U/mL. In another embodiment, the useful concentration of furin in the culture supernatant for the production of a mature, fully-processed mammalian protein is between about 90 U/mL and about 100 U/mL, or about 96 U/mL.

[0040] In other embodiments, the useful concentration of furin in the culture supernatant for the production of a mature, fully-processed mammalian protein after a defined period of culture is less than about 400 U/mL, less than about 375 U/mL, less than about 350 U/mL, less than about 325 U/mL, less than about 300 U/mL, less than about 275 U/mL, less than about 250 U/mL, less than about 225 U/mL, less than about 200 U/mL, less than about 175 U/mL, less than about 150 U/mL, less than about 125 U/mL, or less than about 100 U/mL.

[0041] In other embodiments, the useful concentration of furin in the culture supernatant for the production of a mature, fully-processed mammalian protein after a defined period of culture is more than about 50 U/mL, more than about 60 U/mL, more than about 70 U/mL, more than about 80 U/mL, more than about 90 U/mL, more than about 100 U/mL, more than about 110 U/mL, more than about 120 U/mL, more than about 130 U/mL, more than about 140 U/mL, more than about 150 U/mL, more than about 160 U/mL, more than about 170 U/mL, more than about 180 U/mL, more than about 190 U/mL, or more than about 200 U/mL.

[0042] For the purposes of the present disclosure, the levels of furin in culture supernatants disclosed herein are generated within a period of time from about 12 hours to about 96 hours after the initiation of the culture (after culture for about 12 hours to about 96 hours) and reflect the levels of furin which accumulate in the culture supernatant during that period. In other embodiments, the desired levels of furin in culture supernatants are reached within about 18 hours to about 90 hours, about 24 hours to about 84 hours, about 30 hours to about 78 hours, about 36 to about 72 hours, about 40 hours to about 80 hours, about 42 hours to about 68

hours, or about 48 hours to about 72 hours after the initiation of the culture, or after culture for the indicated period of time.

[0043] Alternatively, the levels of furin in culture supernatants disclosed herein are expressed as a concentration of furin secreted by a quantity of cells per volume of culture supernatant per day. In a non-limiting example, the concentration of furin is expressed as U/10⁶ cells/day. In other embodiment, a useful concentration of furin in the culture supernatant for the production of a mature, fully-processed mammalian protein is between about 20 U/10⁶ cells/day and about 75 U/10⁶ cells/day, between about 25 U/10⁶ cells/day and about 75 U/10⁶ cells/day, between about 30 U/10⁶ cells/day and about 75 U/10⁶ cells/day, between about 35 U/10⁶ cells/day and about 75 U/10⁶ cells/day, between about 40 U/10⁶ cells/day and about 75 U/10⁶ cells/day, between about 45 U/10⁶ cells/day and about 75 U/10⁶ cells/day, between about 50 U/10⁶ cells/day and about 75 U/10⁶ cells/day, between about 55 U/10⁶ cells/day and about 75 U/10⁶ cells/day, between about 60 U/10⁶ cells/day and about 75 U/10⁶ cells/day, between about 20 U/10⁶ cells/day and about 65 U/10⁶ cells/day, between about 20 U/10⁶ cells/day and about 60 U/10⁶ cells/day, between about 20 U/10⁶ cells/day and about 55 U/10⁶ cells/day, between about 25 U/10⁶ cells/day and about 55 U/10⁶ cells/day, between about 25 U/10⁶ cells/day and about 50 U/10⁶ cells/day, between about 25 U/10⁶ cells/day and about 45 U/10⁶ cells/day, or between about 25 U/10⁶ cells/day and about 40 U/10⁶ cells/day.

[0044] The concentration of furin in the culture supernatant is sufficient to process at least about 75% of the mammalian precursor protein to a mature, functional protein. The protein is any protein translated as a precursor protein and processed into a mature form, at least in part, by the actions of furin. In one embodiment, the protein is FX. In other embodiments, the furin concentration is sufficient to process at least about 80% of the mammalian FX precursor protein to a mature, functional FX protein, to process at least about 82% of the mammalian FX precursor protein to a mature, functional FX protein, to process at least about 84% of the mammalian FX precursor protein to a mature, functional FX protein, to process at least about 86% of the mammalian FX precursor protein to a mature, functional FX protein, to process at least about 88% of the mammalian FX precursor protein to a mature, functional FX protein, to process at least about 90% of the mammalian FX precursor protein to a mature, functional FX protein, to process at least about 92% of the mammalian FX precursor protein to a mature, functional FX protein, to process at least about 93% of the mammalian FX precursor protein to a mature, functional FX protein, to process at least about 94% of the mammalian FX precursor

protein to a mature, functional FX protein, to process at least about 95% of the mammalian FX precursor protein to a mature, functional FX protein, to process at least about 96% of the mammalian FX precursor protein to a mature, functional FX protein, to process at least about 97% of the mammalian FX precursor protein to a mature, functional FX protein, to process at least about 98% of the mammalian FX precursor protein to a mature, functional FX protein, to process at least about 99% of the mammalian FX precursor protein to a mature, functional FX protein, or to process 100% of the mammalian FX precursor protein to a mature, functional FX protein.

[0045] As used herein, the term “precursor protein” refers to a precursor protein that is inactive and is turned into an active form by cleavage and, optionally, other post-translational modifications in the cell after synthesis.

[0046] Thus, provided herein are transformed cells adapted for secretion of both furin and a mammalian protein, such as FX. The transformed cells can be any eukaryotic cell suitable for secretion of mammalian proteins, regardless of whether the cells produce endogenous furin. Suitable cell lines for generation of the transformed cells include, but are not limited to, Chinese hamster ovary (CHO) cells, human embryonic kidney cells, primate kidney cells (e.g., COS cells, HEK293), fibroblasts (e.g., murine fibroblasts), and mouse myeloma cells (e.g., NSO-GS). Suitable cell lines are capable of high level expression of mammalian proteins and are capable of post-translational modifications, e.g., glycosylation, formation of disulfide bonds, phosphorylation, and γ -carboxylation. Methods for selecting and culturing host cells and for inducing the host cells to express a polypeptide are generally known to the person skilled in the art.

[0047] Also disclosed herein are expression systems comprising cells suitable for production of mammalian proteins and at least one expression vector adapted for expression of at least one mammalian protein. Eukaryotic expression vectors are generally available for expression in mammalian cells. In order to enable furin and a mammalian protein, such as FX, to be expressed according to the methods disclosed herein, nucleotide sequences encoding the proteins are introduced into a eukaryotic cell by means of transfection, transformation or infection with an expression vector, whereby the polypeptides are expressed. The expression of the furin and/or mammalian proteins can be either transient or stable. The furin and mammalian nucleotide sequences are present as a plasmid, or as a part of a viral or non-viral expression vector. Particularly suitable viral vectors include, but are not limited to, baculoviruses, vaccinia viruses, adenoviruses, cytomegaloviruses, adeno-associated viruses, replication-competent

lentiviruses (RCL), and herpes viruses. Non-limiting examples of viral eukaryotic expression vectors include Rc/CMV, Rc/RSV, RCL, and SV40 vectors. Exemplary non-viral eukaryotic expression vectors include, but are not limited to, virosomes, liposomes, cationic lipids, plasmids, and polylysine-conjugated DNA. Exemplary plasmid expression vectors include, but are not limited to, pSLX, pcDNA, and others known to persons of ordinary skill in the art.

[0048] In another embodiment, disclosed herein is an expression vector comprising a furin-encoding nucleotide sequence, a mammalian protein-encoding nucleotide sequence, such as an FX-encoding nucleotide sequence, or a combination thereof. In one embodiment, both the furin and the protein sequences are expressed from a single expression vector. In another embodiment, the furin sequence and the protein sequences are expressed from different expression vectors. In one embodiment, if the furin and protein nucleotide sequences are expressed from the same expression vector, they are optionally separated by an internal ribosome entry site (IRES). The genes can be expressed from one or more promoters. Furthermore, nucleotide sequences encoding for each protein can be oriented in opposite directions on the plasmid or oriented in the same direction. The expression vectors further comprise selectable elements and other regulatory sequences for effective production of mammalian proteins as is understood by persons of ordinary skill in the art.

[0049] Also disclosed herein are expression vectors that allow expression of furin and other mammalian proteins by use of recombinase-mediated cassette exchange.

[0050] If furin and the mammalian protein are expressed from different expression vectors, then the expression vectors will have different selection markers so that cells transformed with the vector can be selected. Such selected cells may then be isolated and grown into monoclonal cultures

[0051] Promoters which permit constitutive, regulatable, tissue-specific, cell type-specific, cell cycle-specific, or metabolism-specific expression in eukaryotic cells are suitable, for example, for expression in mammalian cells. Regulatable elements are promoters, activator sequences, enhancers, silencers and/or repressor sequences. Examples of regulatable elements which permit constitutive expression in eukaryotes are promoters which are recognized by RNA polymerase III or viral promoters, cytomegalovirus (CMV) enhancer, CMV promoter, SV40 promoter or long terminal repeat (LTR) promoters, e.g. derived from MMTV (mouse mammary tumor virus) and other viral promoter and activator sequences which are derived from, for example, hepatitis B virus (HBV), hepatitis C virus (HCV), herpes simplex virus (HSV), human papilloma virus (HPV), Epstein-Barr virus (EBV), heat shock promoters, or human

immunodeficiency virus (HIV). Examples of regulatable elements which permit inducible expression in eukaryotes are the tetracycline operator in combination with an appropriate repressor. The expression of furin and mammalian protein nucleotide sequences can also take place under the control of tissue-specific, or protein-specific, promoters. Non-limiting examples of protein-specific promoters are FX gene promoters or furin gene promoters.

[0052] In certain embodiments, the cells are transformed with another protein in addition to furin and the mammalian protein. In one embodiment, the additional protein is vitamin K epoxide reductase (VKOR). In certain embodiments, the additional protein is expressed from the same expression vector as one, or both, of furin and the mammalian protein, or the additional protein is expressed from a different expression vector.

[0053] Also disclosed herein are expression systems comprising host cells and one or more expression vectors adapted to express furin and at least one additional mammalian protein, e.g. FX.

[0054] Also disclosed herein are methods of producing fully processed recombinant furin-requiring mammalian proteins, such as FX. In one embodiment, a stable, recombinant furin-producing cell line is produced and subsequently transfected with an expression vector containing the nucleotide sequence for at least one furin-requiring mammalian protein. Stable, recombinant furin-producing cell lines can be established and stored for transfection with an expression vector containing the nucleotide sequence for at least one furin-requiring mammalian protein as needed. Alternatively, expression vectors for furin and for the furin-requiring mammalian protein, such as FX, can be transfected into the host cells within about 30 minutes, about 60 minutes, about 2 hours, about 6 hours, about 12 hours, or about 24 hours of each other. In another embodiment, two or more expression vectors are transfected into the host cells substantially simultaneously. For the purposes of the present disclosure, substantially simultaneously refers to any time period that is less than or equal to 1 hour.

[0055] Transformed cells are selected according to the selection markers present in the expression vector(s) to produce stable pools of transformed cells and then the pools are optionally cloned to yield stable clones. The stable clones produce between about 50 U/mL and about 300 U/mL, between about 50 U/mL and about 400 U/mL, between about 50 U/mL and about 350 U/mL, between about 50 U/mL and about 300 U/mL, between about 50 U/mL and about 250 U/mL, between about 50 U/mL and about 200 U/mL, between about 50 U/mL and about 175 U/mL, between about 50 U/mL and about 150 U/mL, between about 50 U/mL and about 125 U/mL, or between about 50 U/mL and about 100 U/mL of furin in the culture

supernatant after about 36 to about 78 hours, about 36 to about 72 hours, about 40 hours to about 78 hours, about 42 hours to about 68 hours, or about 48 hours to about 72 hours after the initiation of the culture, or after culture for the indicated period of time. Furthermore, the stable clones yield more than 80% fully-processed and active recombinant mammalian protein, such as FX, of all the recombinant protein, such as FX, produced by the transformed cells.

[0056] Also disclosed herein is an expression system for recombinant furin and recombinant FX secreting furin into the culture supernatant at an accumulated concentration of between about 50 U/mL and about 300 U/mL after about 36 to about 78 hours of culture.

[0057] Also disclosed herein is a method of producing mature, fully-processed FX comprising use of an expression system secreting furin into the culture supernatant at an accumulated concentration between about 50 U/mL and about 300 U/mL after about 36 to about 78 hours of culture.

[0058] Also encompassed herein are recombinant mammalian proteins produced by the claimed methods and any full-processed mammalian recombinant FX.

EXAMPLES

Example 1. Production of fully processed and fully active recombinant Factor X by defined levels of furin

[0059] For FX expression, the mammalian expression plasmid pSLX containing either human codon-optimized FX or both, human codon-optimized FX and human codon-optimized vitamin K epoxide reductase (FX/VKOR), separated by an internal ribosome entry site (IRES), was used. Constructs for Chinese hamster ovary (CHO)-S and CHO-DG44 expression systems included geneticin selection and dihydrofolate reductase (dhfr) selection, respectively. For furin expression, the mammalian expression plasmid pcDNA3.1 containing human full length furin in combination with hygromycin as selection marker was used (FIG. 1A).

[0060] Initially, CHO-derived cell lines (CHO-S and CHO DG44) were transfected with the FX or FX/VKOR constructs to generate stable pools and subsequently the pools were subjected to subcloning to generate stable clones. In a second round of transfection and subcloning, a selected number of FX- or FX/VKOR-expressing clones were each super-transfected with furin resulting in stable pools and stable clones expressing FX/furin or FX/VKOR/furin.

[0061] Stable recombinant FX-producing CHO-S and CHO-DG44 cell lines were grown in animal component-free media, in shaker flasks for about 42 to about 72 hours and with starting

cell numbers of 0.3×10^6 or 0.5×10^6 cells/mL. CHO-S cells were maintained in PowerCHO[®]-CD media (Lonza BioWhittaker) supplemented with 4 mM glutamine, 500 μ g/mL geneticin, 500 μ g/mL hygromycin and 5 μ g/mL vitamin K1. CHO-DG44 cells were maintained in OptiCHO[™]-CD media (Life Technologies) supplemented with 6 mM glutamine, 500 nM methotrexate (MTX) and 5 μ g/mL vitamin K1.

[0062] The harvested cell culture supernatant was analyzed by Western blotting under reducing conditions to determine the quality of recombinant human FX using a polyclonal goat anti-human FX or polyclonal sheep anti-human FX (Affinity Biologicals). Densitometric analysis of the Western blots enabled the quantification of the different species of correctly processed FX, termed heavy chain FX (HC) and light chain FX (LC), and inadequately cleaved FX species, termed single chain FX (SC) and propeptide-containing light chain FX (PP-LC).

[0063] For FX quantification, the cell culture supernatant was analyzed with ELISA to determine the FX concentration and with the FXa chromogenic assay using Russell's viper venom (RVV) as activator to determine the concentration of active FX. These assays were calibrated using plasma-derived FX (Hyphen Biomed). The specific activity is given in %, by dividing the concentration of active FX by the concentration of total FX multiplied by 100. For furin quantification, active furin was determined in a furin fluorogenic assay calibrated against a furin reference material (New England Biolabs).

[0064] For statistical analysis, fully processed FX/total FX (%) was modeled as a function of furin concentration using the E_{max} model on CHO-DG44 transfection pools (A), CHO-S transfection pools (B), and CHO-S single cell-derived clones (C). This model is used for statistical evaluation of dose-response studies. The E_{max} model uses four parameters (E_0 , E_{max} , ED_{50} , and n) to model FX as a function of furin as follows:

$$y = E_0 + (x^n \cdot E_{max}) / (ED_{50}^n + x^n)$$

where y refers to the fully-processed FX/total FX and x refers to the furin concentration. The parameter E_0 refers to the basal effect corresponding to the response when the furin concentration is zero, E_{max} to the maximum effect attributable to the furin concentration, ED_{50} to the furin concentration which produces half of E_{max} , and the parameter n represents the slope (Hill factor) determining the steepness of the curve.

[0065] To account that fully-processed FX/total FX approaches 100% if furin approaches an infinite large concentration, the E_{max} model was modified to a function with three parameters to be estimated as follows;

$$y = E_0 + (x^n \cdot (100-E_0)/(ED^n_{50} = x^n)$$

[0066] This model was fitted to the data taking the variability among the three different cell lines into account using a non-linear mixed effects model by allowing the parameters E_0 and n to vary between the different cell lines by also modeling these two parameters as random effects.

[0067] Model diagnostics was done to validate the applied model. A comparison of the fitted E_{max} model with the null model using the likelihood ratio test was performed to determine statistical evidence for the E_{max} model estimating the percentage of fully processed FX of total FX depending on the furin concentration.

[0068] Results

[0069] The CHO-based heterologous expression system for human FX, comprising CHO-DG44 transfection pools (A), CHO-S transfection pools (B), and CHO-S single cell-derived clones (C), was used as a basis to study the effect of furin expression on human FX processing following different transfection strategies. Transfection pools, as well as clones, additionally expressed VKOR which had no impact on the study.

[0070] After an incubation period of two to three culture days, the cell culture supernatant was subjected to a series of analyses, including Western blot analysis under reducing conditions, furin activity assay, ELISA and RVV assay (Table 1). On average, FX-producing CHO pools and clones revealed a FX specific activity of over 50%, partly reaching 100% (Table 1). Western blot analyses showed that the recombinant FX was inadequately processed to different degrees, as shown by two incompletely processed forms of FX (i.e. the propeptide-containing FX light chain and the FX single chain) besides the fully processed, propeptide-free FX light chain and FX heavy chain (FIG. 4). By means of densitometric analysis of these four species of FX, the percentage of fully processed FX, i.e. FX light chain plus FX heavy chain in relation to total FX, ranged between 30% and almost 100% in cell culture supernatants (Table 1, FIG. 4). Furthermore, no pre-activation was observed, which would be visible as heavy chain band shortened by the size of the missing activation peptide. Also evaluated was whether the concentration of secreted furin had an influence on the degree of processed FX by plotting these two parameters (FIG. 5). As shown in FIG. 5, only partial processing of FX is feasible with low concentrations of secreted furin (< 20 U/mL), whereas higher levels of secreted furin correlate with better processed FX.

Table 1: Data summary of FX and furin co-expressing cell lines: shown are FX productivities, furin productivities and titers, and percentages of fully processed FX/total FX measured for each cell line.

Clone / Pool ID	Expressed Recombinant Proteins	Cell line (pool or clone)	Furin conc. (U/mL)	Final cell density [10^6 cells/mL]	Furin Specific Productivity [U/ 10^6 cells/day]	FX specific activity [%]	Fully processed FX/total FX (%)
1	FX	CHO-DG44 pool	8.03	2.015	2.22	5.64	30.34
2	FX/Furin	CHO-DG44 pool	8.05	1.155	3.45	7.58	45.69
3	FX/VKOR	CHO-DG44 pool	7.88	1.436	2.86	6.44	31.05
4	FX/VKOR/Furin	CHO-DG44 pool	7.88	1.029	3.68	11.16	40.08
5	FX	CHO-DG44 pool	2.74	1.518	0.95	9.04	41.42
6	FX/Furin	CHO-DG44 pool	11.59	0.952	5.71	14.12	71.78
7	FX/VKOR	CHO-DG44 pool	2.38	1.152	1.02	15.14	36.92
8	FX/VKOR /Furin	CHO-DG44 pool	2.82	0.795	1.58	29.37	57.17
9	FX	CHO-DG44 pool	5.36	2.438	1.26	9.23	34.46
10	FX/Furin	CHO-DG44 pool	9.94	1.503	3.48	12.23	59.30
11	FX/VKOR	CHO-DG44 pool	4.88	2.162	1.27	14.57	33.12
12	FX/VKOR /Furin	CHO-DG44 pool	4.78	1.372	1.80	20.48	46.98
13	FX	CHO-DG44 pool	8.07	2.005	2.24	47.68	40.93
14	FX/Furin	CHO-DG44 pool	8.83	1.851	2.62	64.80	60.54
15	FX/VKOR	CHO-DG44 pool	8.42	1.843	2.50	45.48	33.98
16	FX/VKOR /Furin	CHO-DG44 pool	6.72	2.220	1.71	58.04	47.46
17	FX	CHO-DG44 pool	2.59	1.246	1.05	78.72	46.40
18	FX/Furin	CHO-DG44 pool	55.91	1.396	20.75	98.49	73.47
19	FX/VKOR	CHO-DG44 pool	2.59	1.207	1.07	70.43	47.61

Clone / Pool ID	Expressed Recombinant Proteins	Cell line (pool or clone)	Furin conc. (U/mL)	Final cell density [10^6 cells/mL]	Furin Specific Productivity [U/ 10^6 cells/day]	FX specific activity [%]	Fully processed FX/total FX (%)
20	FX/ VKOR /Furin	CHO-DG44 pool	3.48	1.431	1.27	93.42	60.04
21	FX	CHO-DG44 pool	5.96	2.035	1.63	71.19	37.77
22	FX/Furin	CHO-DG44 pool	27.57	2.226	7.00	104.40	71.85
23	FX/VKOR	CHO-DG44 pool	4.40	1.827	1.32	69.50	42.84
24	FX/ VKOR /Furin	CHO-DG44 pool	5.20	2.283	1.29	75.60	49.19
25	FX/VKOR	CHO-S pool	0.00	2.224	0.00	90.59	63.96
26	FX/VKOR/Furin	CHO-S pool	51.34	1.828	25.20	99.57	88.97
27	FX/VKOR	CHO-S pool	0.00	2.851	0.00	49.99	57.75
28	FX/VKOR/Furin	CHO-S pool	62.84	2.248	26.13	48.73	87.78
29	FX/VKOR	CHO-S pool	0.00	3.584	0.00	81.39	68.02
30	FX/VKOR/Furin	CHO-S pool	66.98	2.362	26.75	66.57	89.64
31	FX/VKOR	CHO-S pool	0.00	2.870	0.00	69.04	67.02
32	FX/VKOR/Furin	CHO-S pool	55.08	2.295	22.52	52.91	89.99
33	FX/VKOR	CHO-S pool	0.00	2.645	0.00	59.62	71.13
34	FX/Furin	CHO-S pool	116.89	2.083	50.52	51.40	86.56
35	FX	CHO-S pool	0.00	2.230	0.00	67.49	62.65
36	FX/Furin	CHO-S pool	46.62	1.846	22.18	19.29	82.99
37	FX	CHO-S pool	0.00	2.049	0.00	11.47	51.69
38	FX/Furin	CHO-S pool	48.41	1.457	27.61	<25.33	77.46
39	FX	CHO-S pool	0.00	2.265	0.00	95.04	45.87
40	FX/Furin	CHO-S pool	60.72	1.566	32.80	27.69	84.27

Clone / Pool ID	Expressed Recombinant Proteins	Cell line (pool or clone)	Furin conc. (U/mL)	Final cell density [10^6 cells/mL]	Furin Specific Productivity [U/ 10^6 cells/day]	Furin Specific activity [%]	Fully processed FX/total FX (%)
41	FX	CHO-S pool	0.00	2.018	0.00	35.63	49.28
42	FX/VKOR/Furin	CHO-S clone	113.45	3.704	26.99	90.30	95.91
43	FX/VKOR/Furin	CHO-S clone	63.41	3.133	17.45	92.26	96.23
44	FX/VKOR/Furin	CHO-S clone	92.86	2.893	27.37	98.55	98.12
45	FX/VKOR/Furin	CHO-S clone	173.37	3.430	44.11	79.46	98.42
46	FX/VKOR/Furin	CHO-S clone	23.54	2.816	7.10	86.31	91.69
47	FX/VKOR/Furin	CHO-S clone	105.42	2.918	30.84	78.63	95.14
48	FX/VKOR/Furin	CHO-S clone	33.77	3.542	8.35	80.02	92.21
49	FX/VKOR/Furin	CHO-S clone	135.62	2.777	41.39	94.46	95.18
50	FX/VKOR/Furin	CHO-S clone	82.03	2.193	30.46	48.80	93.75
51	FX/VKOR/Furin	CHO-S clone	8.06	2.280	2.90	67.11	52.38
52	FX/VKOR/Furin	CHO-S clone	81.02	2.889	23.91	85.37	95.61

[0071] To understand the influence of furin on FX processing and to provide statistical support of the data, fully processed FX of total FX (%) was modeled as a function of furin concentration using the E_{max} model on cell lines A, B and C (FIG. 6). Four model diagnostics plots, indicating a good fit of the model to the data, are provided in FIGs. 7A-D. A comparison of the fitted E_{max} model with the null model using the likelihood ratio test resulted in a p-value <0.0001, providing statistical evidence for a higher percentage of fully processed FX of total FX depending on a higher furin concentration (FIG. 8), once again proving validity of the data. Based on the statistical analysis, the estimated furin concentrations to be produced by the production cell line as detected in the cell culture medium together with FX resulting in equal or higher 90% and equal or higher 95% fully processed FX of total FX were at least 57 U/mL and at least 96 U/mL, respectively (FIG. 9).

[0072] In summary, the data provides a defined minimal level of secreted furin (at least 57 U/mL and at least 96 U/mL) in the cell culture supernatant that is required for sufficient FX processing (equal or higher 90% and equal or higher 95%).

[0073] In biotechnological processes that express high levels of recombinant protein, furin overexpression may be used to obtain fully processed zymogens. With our invention, we provide for the first time a defined minimum of secreted furin warranting for high FX processing (≥ 57 U/mL to achieve at least 90% fully processed FX and ≥ 96 U/mL furin for at least 95% fully processed FX). This finding is particularly beneficial to fermentation processes expressing recombinant FX, FXa and variants from human and animal species, where the furin level may be used as an indicator for adequate processing of the FX precursor protein, and as target for cell line and process development.

[074] Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about." As used herein the terms "about" and "approximately" means within 10 to 15%, preferably within 5 to 10%. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain

errors necessarily resulting from the standard deviation found in their respective testing measurements.

[075] The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.

[076] Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.

[077] Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

[078] Specific embodiments disclosed herein may be further limited in the claims using consisting of or consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of”

limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.

[079] Furthermore, numerous references have been made to patents and printed publications throughout this specification. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.

[080] In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

CLAIMS:

1. A transformed cell comprising:

a first nucleotide sequence encoding a human furin and a second nucleotide sequence encoding a human Factor X, such that the transformed cell expresses and secretes functional furin and the human Factor X into a culture supernatant, wherein the furin is secreted at a concentration of about 50 U/mL to about 300 U/mL in the culture supernatant after culture for about 36 to about 78 hours.

2. The transformed cell of claim 1, wherein at least 85% of the Factor X produced by the transformed cell is fully processed.

3. The transformed cell of claim 1 or claim 2, wherein the first nucleotide sequence encoding human furin and the second nucleotide sequence encoding human Factor X are on different expression vectors.

4. The transformed cell of claim 1 or claim 2, wherein the first nucleotide sequence encoding human furin and the second nucleotide sequence encoding human Factor X are on the same expression vector.

5. The transformed cell of any one of claims 1-4, wherein the functional furin is secreted at a concentration of 60 U/mL to 300 U/mL in the culture supernatant.

6. The transformed cell of claim 5, wherein at least 90% of the Factor X produced by the transformed cell is fully processed.

7. The transformed cell of any one of claims 1-4, wherein the functional furin is secreted at a concentration of 90 to 300 U/mL in the culture supernatant.

8. The transformed cell of claim 7 wherein at least 95% of the Factor X produced by the transformed cell is fully processed.

9. The transformed cell of any one of claims 1-8, wherein the cell is selected from the group consisting of a Chinese hamster ovary (CHO) cell, a human embryonic kidney cell, a primate kidney cell, a fibroblast, and a mouse myeloma cells.

10. The transformed cell of any one of claims 1-9, further comprising an exogenous nucleotide sequence encoding a human vitamin K epoxide reductase (VKOR).

11. A method of preparing a recombinant Factor X comprising:

transfected a cell line suitable for expression of mammalian proteins with a first expression vector adapted for expression of human furin by the cell line, wherein the first expression vector includes a nucleotide sequence encoding a human furin polypeptide; and

transfected the cells line with a second expression vector adapted for expression of human Factor X by the cell line, wherein the second expression vector includes a nucleotide sequence encoding human Factor X;

wherein the cell line transfected with the first and the second expression vectors expresses and secretes a functional human furin at a concentration of about 50 U/mL to about 300 U/mL in the culture supernatant after culture for about 36 to about 78 hours.

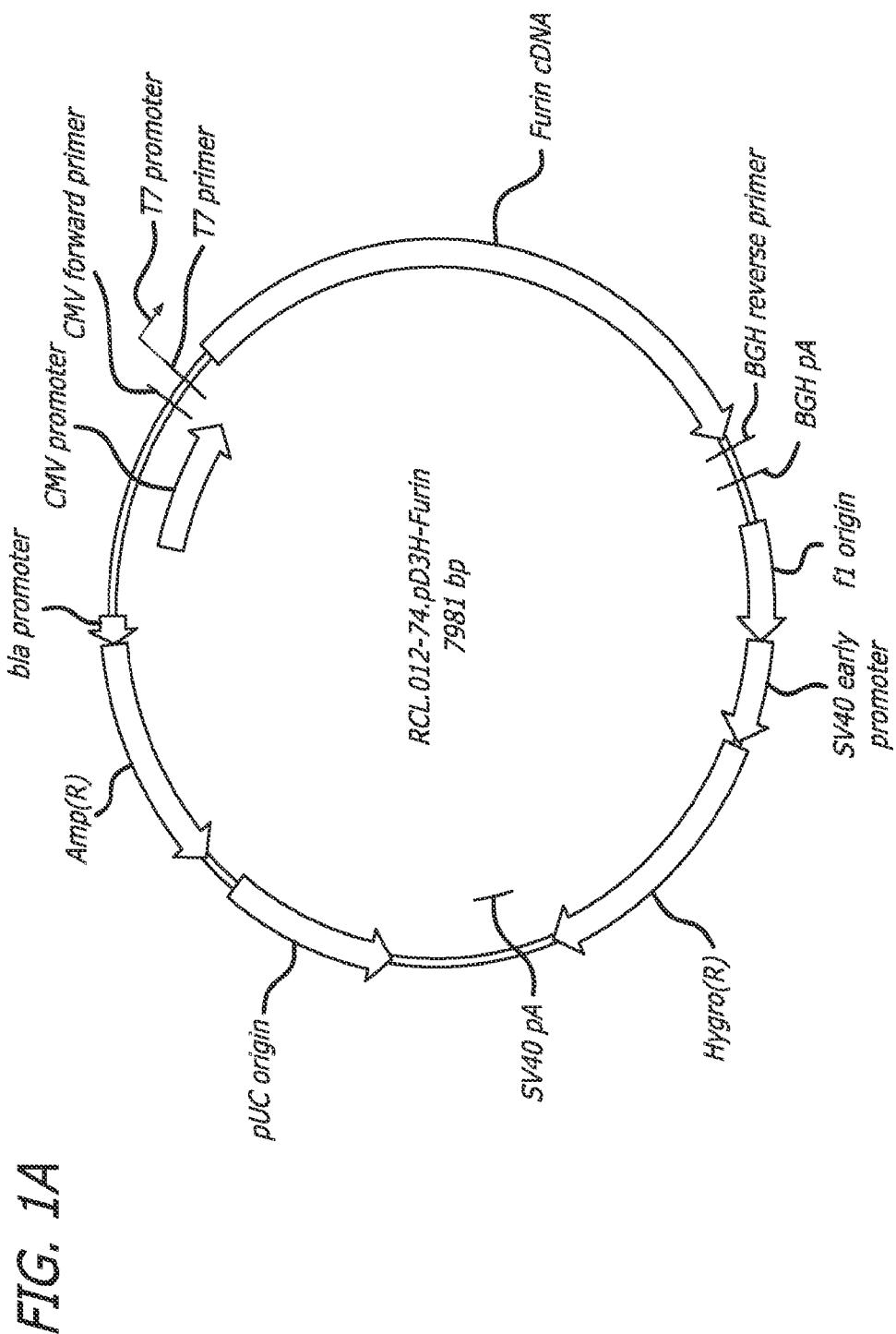
12. The method of claim 11, wherein at least 85% of the Factor X produced by the cell line is fully processed.

13. The method of claim 11 or claim 12 , wherein the functional furin is secreted by the cell line at a concentration of 60 U/mL to 300 U/mL in the culture supernatant after culture for about 36 to about 78 hours.

14. The method of claim 13, wherein at least 90% of the Factor X produced by the cell line is fully processed.

15. The method of claim 11 or claim 12 , wherein the functional furin is secreted by the cell line at a concentration of 90 U/mL to 300 U/mL in the culture supernatant after culture for about 36 to about 78 hours.

16. The method of claim 15, wherein at least 95% of the Factor X produced by the cell line is fully processed.


17. The method of any one of claims 11-16, wherein the cell line is transfected with the first expression vector and the second expression vector substantially simultaneously.

18. The method of any one of claims 11-16, wherein the cell line is transfected with the first expression vector and cells secreting stable levels of furin are obtained prior to transfecting the cell line with the second expression vector.
19. The method of any one of claims 11-16, wherein the cell line is transfected with the second expression vector and cells secreting stable levels of the protein are obtained prior to transfecting the cell line with the first expression vector.
20. The method of any one of claims 11-19, wherein the cell line is selected from the group consisting of a Chinese hamster ovary (CHO) cell, a human embryonic kidney cell, a primate kidney cell, a fibroblast, and a mouse myeloma cells.
21. The method of any one of claims 11-20, further comprising transfecting the cell line with a third expression vector comprising a nucleotide sequence encoding a human vitamin K epoxide reductase (VKOR).
22. A method of producing mature, fully-processed Factor X comprising culturing the transformed cell of any one of claims 1-10 to produce mature, fully-processed Factor X from culture supernatant.
23. A method of treatment of a coagulation disorder comprising:
administering to a subject in need thereof a fully-processed recombinant Factor X produced by the method of any one of claims 11-22, wherein as a result of the administration, the coagulation disorder is treated.
24. The method according to claim 23, wherein the coagulation disorder is hemophilia or von Willebrand disease.
25. A recombinant Factor X produced by the method of any one of claims 11-22.

Takeda Pharmaceutical Company Limited

Patent Attorneys for the Applicant/Nominated Person

SPRUSON & FERGUSON

2/14

FIG. 1B

3/14

FIG. 1B (cont.)

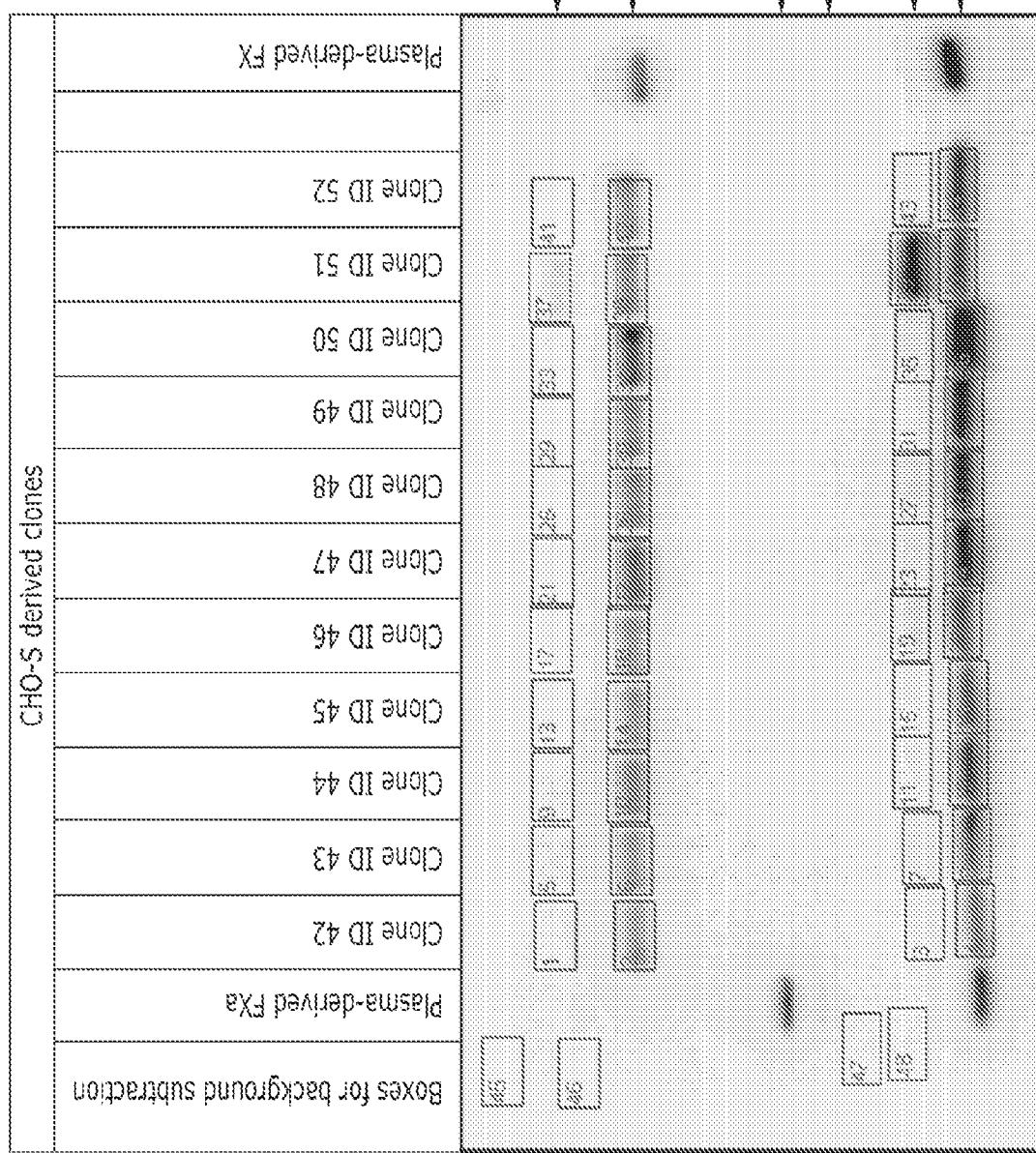
4/14

FIG. 1B (cont.)

5/14

ATGGTTGTGCCAAAAAGCGGTTAGCTCCCTTCGGATCGTTGCTCAGAAGTAAGTTGGCCGAGTTACACTCATGGTTATGGC
AGCACTGGCATTAATTCTCTTACTGTCTATGCCATCGTAAGATGCTTCTGGACTCGGTGACTCAACCAAGTCATTCTGAGAATAGT
GTATGGGGGACCGAGTTGGCTCTTGGCCGGGTCATAACGGGATAATAACGGGCAACTAGGAGAACTTAAAGTGCTCATTCATTGGA
AACGGTTCTCGGGGGAAACTCTCAAGGATCTTACCGCTGTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTC
AGCATCTTTACTTCAACAGGTTTCAATTTCAAAACAGGAAGGCAAATGCGCAGGGAAATAAGGGATAAACGGGACACGGAAAT
GTTGAATAACTCATACTCTTCCCTTTCAATATTGAAAGCATTATCAGGGTTATGGTCTCATGAGGGATAACATATTGAAATGTATT
TAGAAAAATAACAAATAAGGGTTCCGGCACATTCCCCGAAAGTGCCACCTGACGTC

FIG. 1B (cont.)


FIG. 2

7/14

MELRPWLLWWVAATGTLVLLAADAQGQKVFTNTWAVRIPGGPAVANSVARKHGFNLNGQIFGDDYYHFWHRGVTKRSLSPHRPRHSRLQR.
EPQVQWLEQQVAKRRTIKRDVYQEPIDPKFPQOWYLSGVTQRDNLNVKAAWAQGYTGHGIVVSIILDDGIEKHNHPDLAGNYDPGASFVDNDQ
DPDPQPRYTQMNDNRHGTRCAGEVAAVANNGVGVGVAYNARIGVRLDGEVTDAVEARSLGLNPNHIIHYSASWGPEDDGKTVLGPA
RLAEEAFFRGVSQGRGGLGSIEVWASGNGREHDSCNCDGYTNSIYTLSISATQFGNVPWYSEACSSSTLATTYSGGNQNEKQIVTTDL
RQKCTESHTGTSASAPLAAGIIALTLEANKNLTRDMQHLLVVQTSKPAHLNANDWATNGVGRKVSHSYGYGLLDAGAMVALAQNWTTVA
PORKCIIIDILTEPKDICKRLEVTKTVACLGEPNHITRLEHAQARLTLSYNNRRGDLAIHLVSPMGTRSTILLAARPHDYSADGFENDWAFM
TTHSWDEDPSGEWVLEIENTSEANNYGLTKEFLVLYGTAPEGLFPVPESSGCKTLTSSQACVVCCEEGFSLHQKSCVQHCPGFAPOVIL
DTHYSTENDVETIRASVCAPIHASCATCQGPALTDCLSCPSSASLDPPVEQTCSRQSQQSRESPPQQQPPRLPPEVEAGQRILRAGLLPSH
LPEVVAGLSCAFIVLVFTVFLVQLRSGFESFRGVKVTMDRGLISYKGLPPEAWQEECPSDSEEDEGRGERTAFTIKDQSAL.

FIG. 3

FIG. 4

9/14

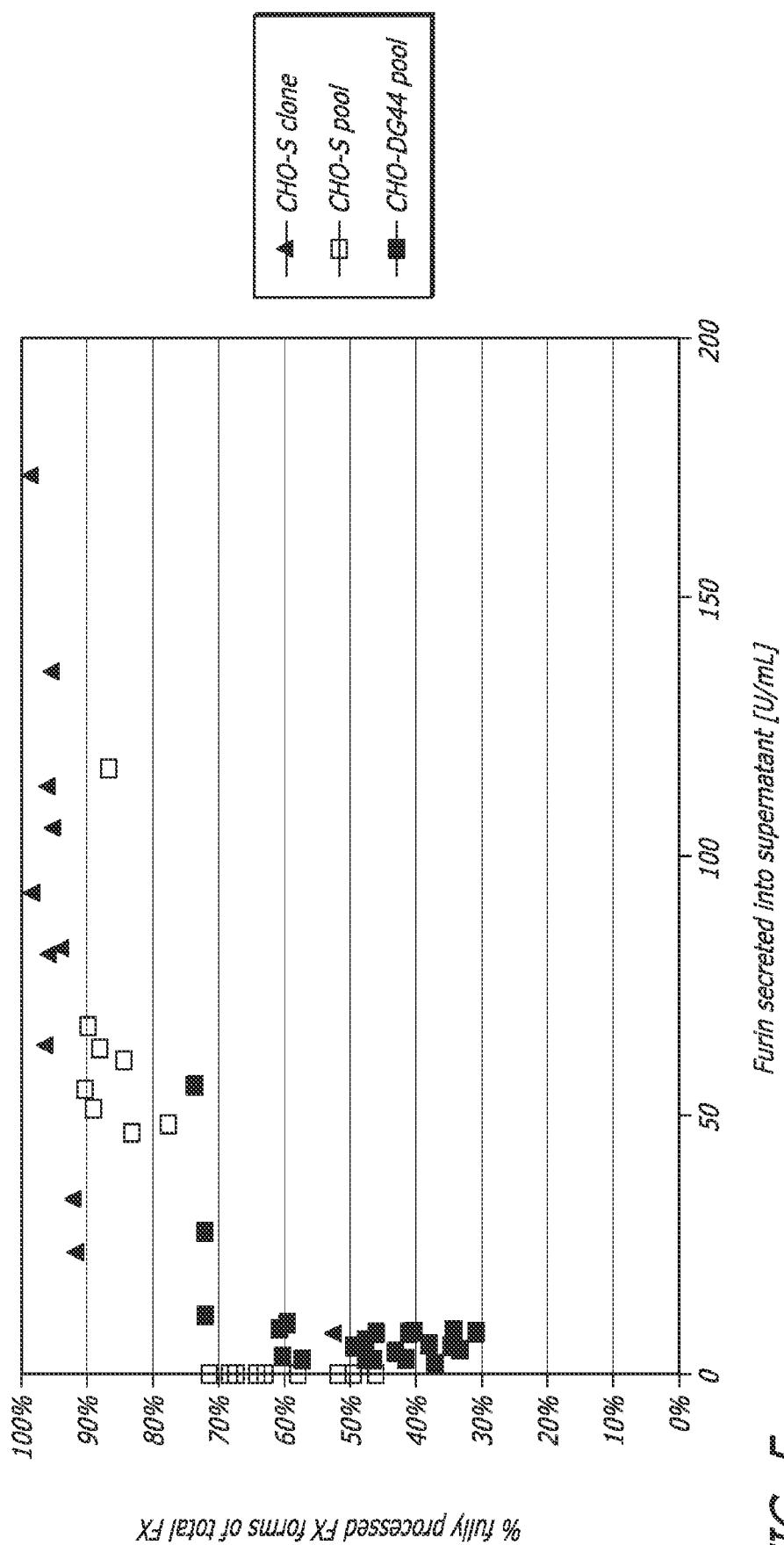
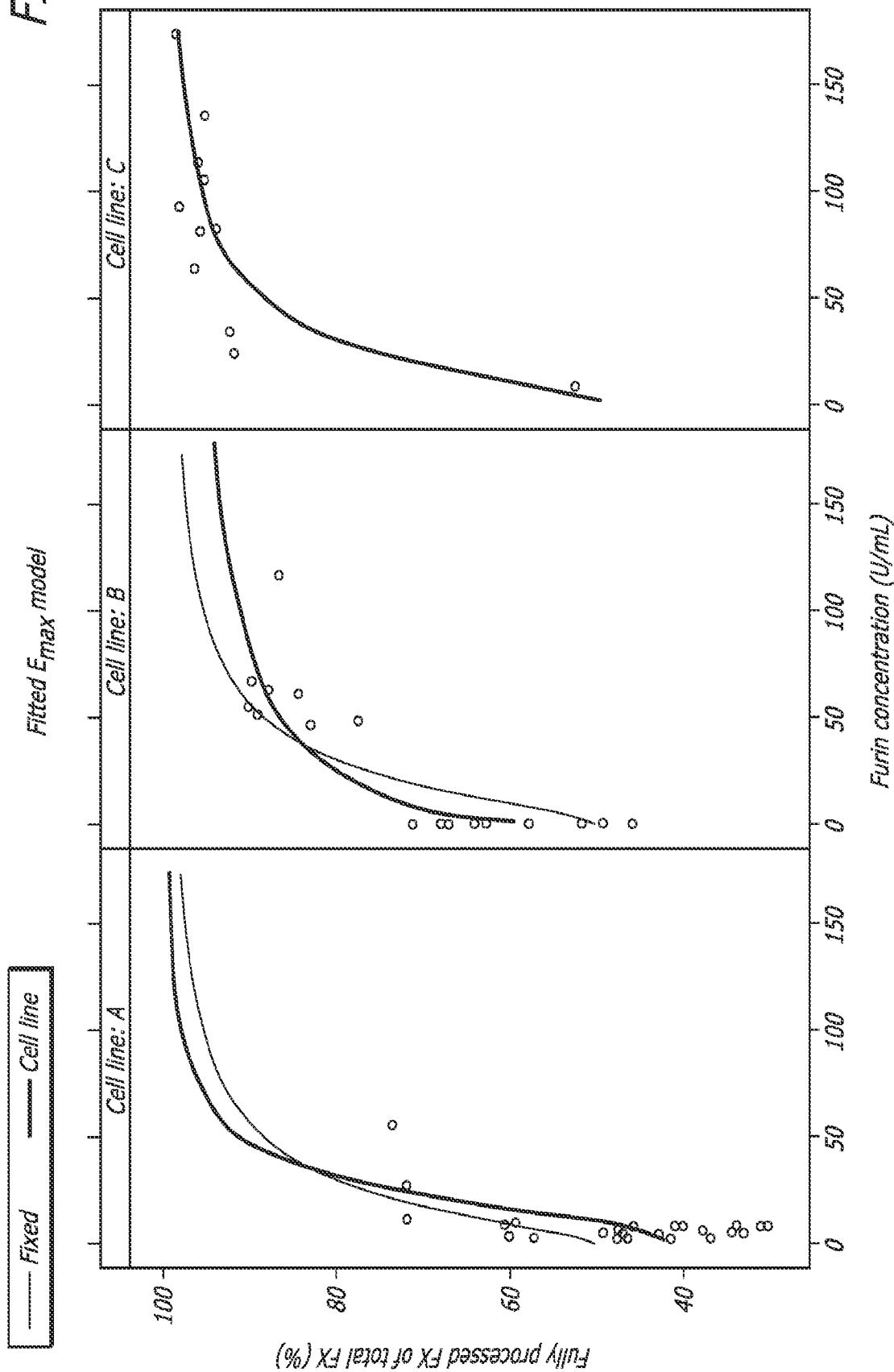



FIG. 5

10/14

FIG. 6

11/14

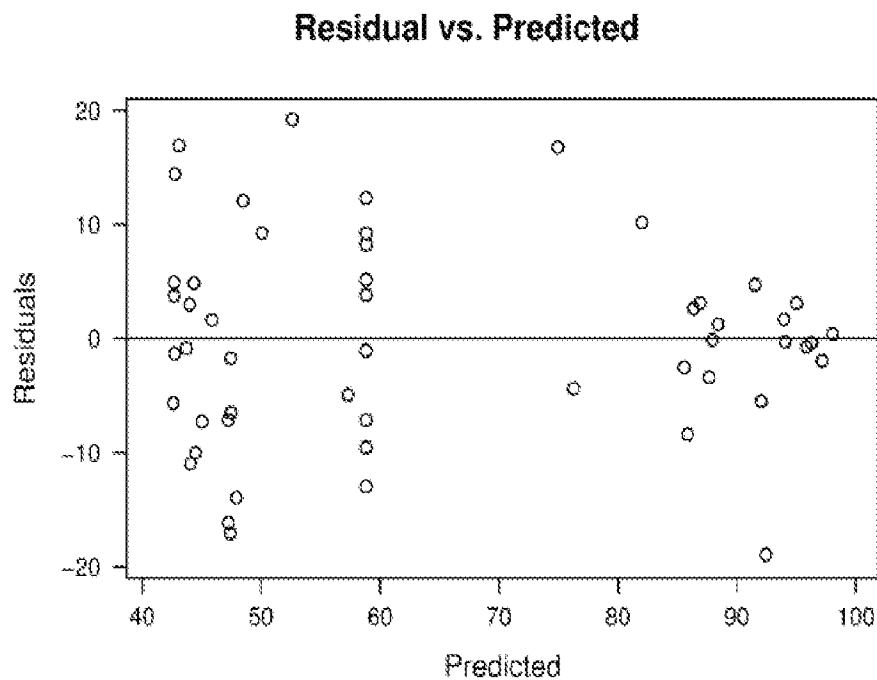


FIG. 7A

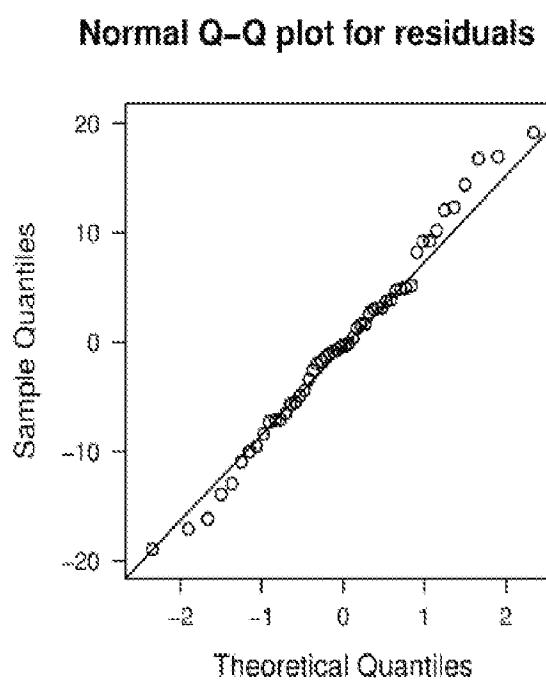


FIG. 7B

12/14

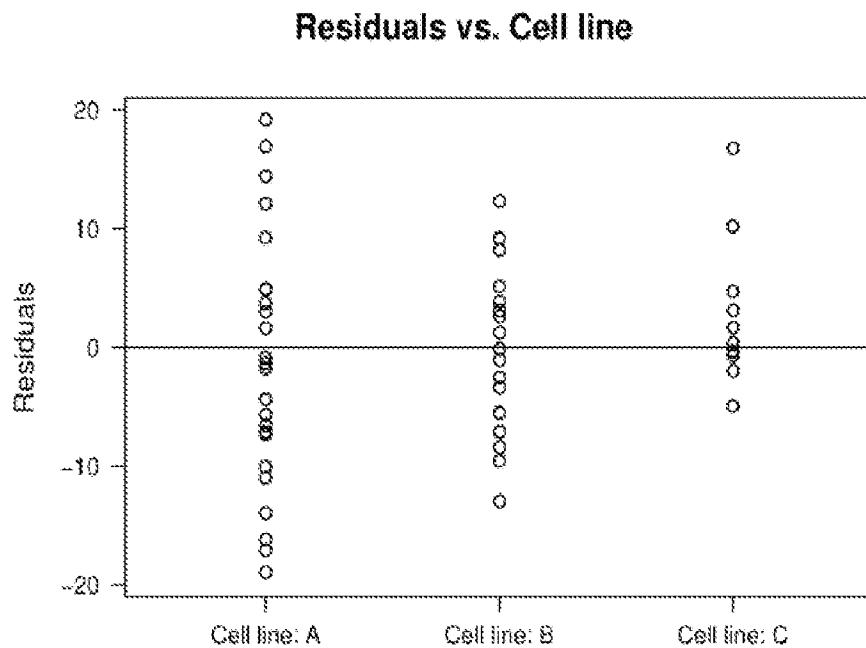


FIG. 7C

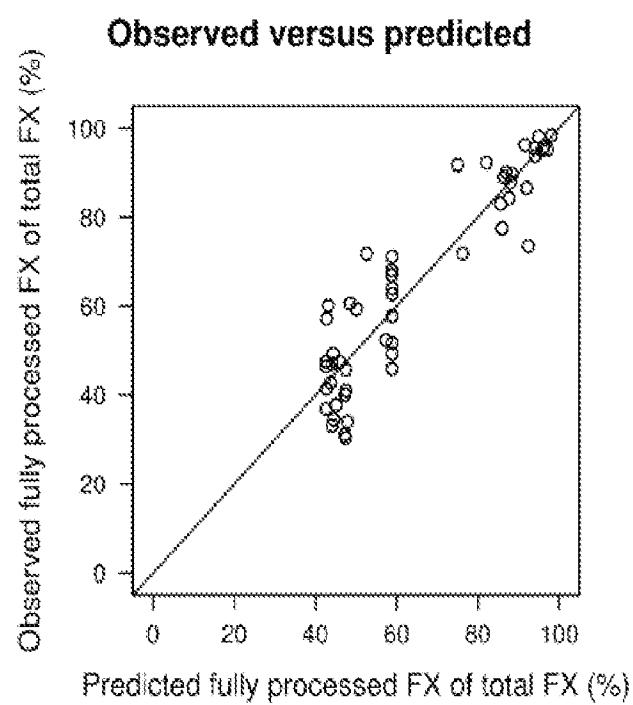
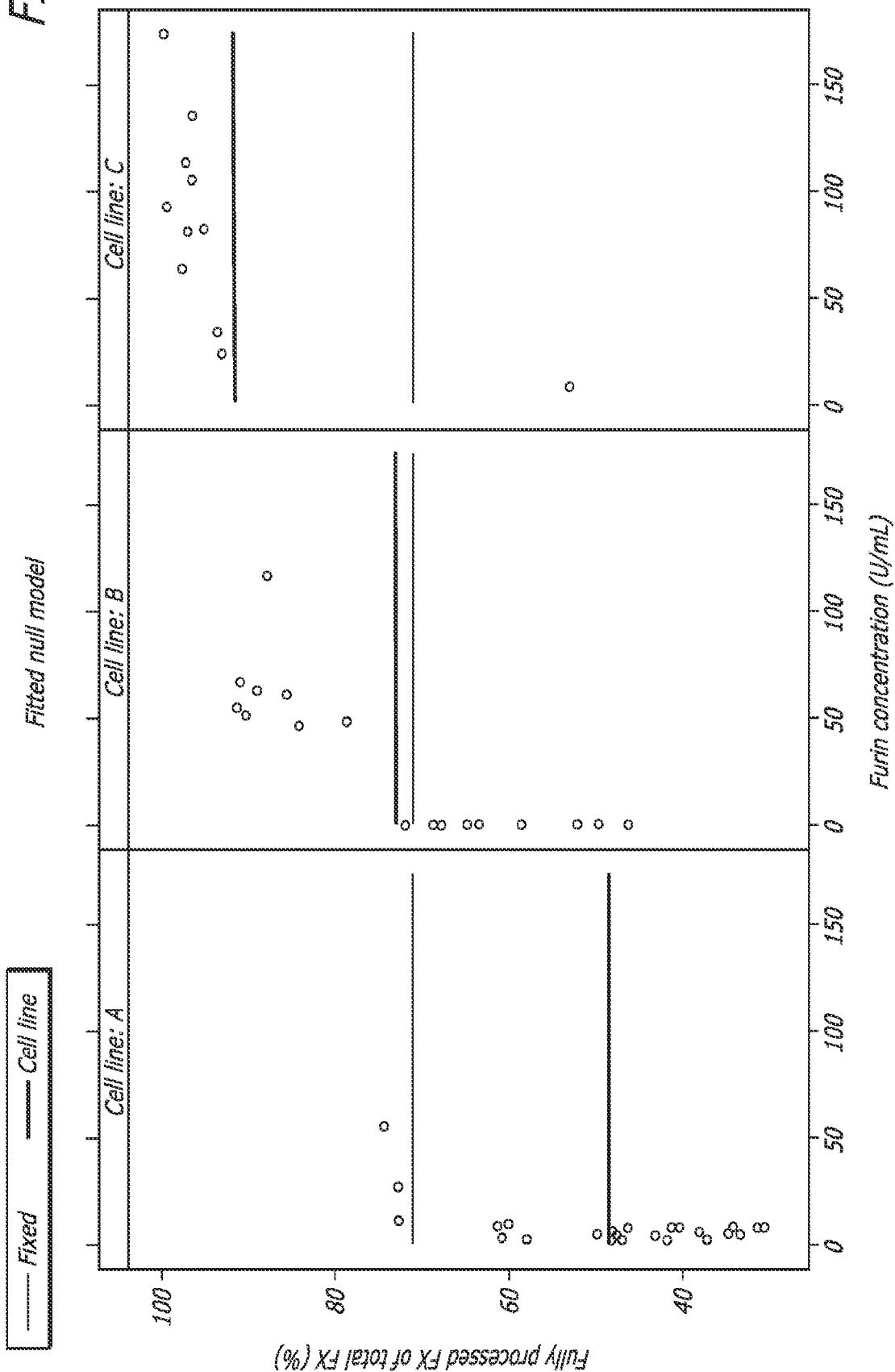



FIG. 7D

13/14

FIG. 8

14/14

092WO_Sequence_Listing_ST25
SEQUENCE LISTING

<110> Baxalta GmbH
Baxalta Incorporated

<120> Production of Fully Processed and Functional Factor X in a
Furin-Secreting Mammalian Expression System

<130> 3724526. 00092WO

<150> US62/036, 438

<151> 2014-08-12

<160> 4

<170> PatentIn version 3.5

<210> 1

<211> 7981

<212> DNA

<213> Artificial Sequence

<220>

<223> RCL. 012-74. pD3H-Furin expression vector

<400> 1	60
gacggatcg gagatctccc gatccctat ggtcgactct cagtacaatc tgctctgatg	120
ccgcata gttt aagccaggat ctgctccctg cttgtgtgtt ggaggcgct gagtagtgcg	180
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc	240
ttagggttag gcgttttgcg ctgcttcgat atgtacgggc cagatatacg cggtgacatt	300
gattattgac tagttat taa tagtaatcaa ttacgggttc attagttcat agccatata	360
tggagttccg cgttacataa cttacggtaa atggccgc tggctgaccg cccaaacgacc	420
ccggccatt gacgtcaata atgacgtatg ttcccatatg aacgccaata gggactttcc	480
attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt	540
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt	600
atgcccagta catgacc tta tggactttc ctacttggca gtacatctac gtattagtca	660
tcgctattac catggatgatg cggttttggc agtacatcaa tggcgtgga tagcggtttgc	720
actcacgggg atttcaagt ctccacccca ttgacgtcaa tggagtttgc tttggcacc	780
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcg	840
gtaggcgtgt acggtggag gtctatataa gcagagctct ctggctaact agagaaccca	900
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctac	960
gtttaaactt aagcttgta ccgagctcg atccactatg ccagtgtggt ggaattctgc	1020
agatatccag cacagtggcg gcccacatgga gctgaggccc tgggtgctat ggggtggtagc	1080
agcaacagga accttggcc tgc tagcagc tgc tgc tgc gggcagaagg tcttccacaa	1140
cacgtggct gtgcgcattcc ctggaggccc agcggtggcc aacagtgtgg cacggaaagca	1200
tgggttcctc aacctggcc agatttcgg ggactattac cacttctggc atcgaggagt	1260
gacgaagcgg tccctgtcgc ctacccgccc gcggcacagc cggtgcaga gggagcccta	

092W0_Sequence_Listing_ST25

agtacagtgg	ctgaaacagc	aggtggcaaa	gcgacggact	aaacgggacg	tgtaccagga	1320
gcccacagac	cccaagttc	ctcagcagt	gtacctgtct	ggtgtcactc	agcgggacct	1380
gaatgtgaag	gcggcctggg	cgcagggcta	cacagggcac	ggcattgtgg	tctccattct	1440
ggacgatggc	atcgagaaga	accacccgga	cttggcaggc	aattatgatc	ctggggccag	1500
ttttgatgtc	aatgaccagg	accctgaccc	ccagcctcg	tacacacaga	tgaatgacaa	1560
caggcacggc	acacggtgt	cggggaaagt	ggctgcgtg	gccaacaacg	gtgtctgtgg	1620
tgttaggtgt	gcctacaacg	cccgcat	agggtgcgc	atgctggatg	gcgaggtgac	1680
agatgcagt	gaggcacgct	cgctggcct	gaaccccaac	cacatccaca	tctacagtgc	1740
cagctgggc	cccgaggatg	acggcaagac	agtggatggg	ccagccgc	tcgcccagga	1800
ggccttcttc	cgtgggtta	gccagggccg	agggggctg	ggctccatct	ttgtctggc	1860
ctcgggaac	gggggcccgg	aacatgacag	ctgcaactgc	gacggctaca	ccaacagtat	1920
ctacacgctg	tccatcagca	gcccacgca	gtttggcaac	gtgccgtggt	acagcgaggc	1980
ctgctcgtcc	acactggcca	cgacctacag	cagtggcaac	cagaatgaga	agcagatcgt	2040
gacgactgac	ttgcggcaga	agtgcacgga	gtctcacacg	ggcacctcag	cctctgccc	2100
cttagcagcc	ggcatcattt	ctctcaccct	ggaggccaa	aagaacctca	catggcggga	2160
catcaacac	ctgggtgtac	agacctcgaa	gccagccac	ctcaatgcca	acgactggc	2220
caccaatgg	gtgggcccga	aagtgagcca	ctcatatggc	tacggcttt	tggacgcagg	2280
cgccatgg	gccctggccc	agaattggac	cacagtggc	ccccagcgga	agtgcatcat	2340
cgacatcctc	accgagccca	aagacatcg	gaaacggctc	gaggtgcgg	agaccgtgac	2400
cgcgtgcctg	ggcgagccca	accacatcac	tcggctggag	cacgctcagg	cgcggctcac	2460
cctgtcctat	aatgcgcgt	gacgcctggc	catccacctg	gtcagcccc	tggcaccc	2520
ctccaccctg	ctggcagcca	ggcacatga	ctactccgca	gatgggttta	atgactggc	2580
cttcatgaca	actcattcct	ggatgagga	tccctctggc	gagtgggtcc	tagagattga	2640
aaacaccagc	gaagccaaca	actatggac	gctgaccaag	ttcacccctcg	tactctatgg	2700
caccgccc	gagggctgc	ccgtacctcc	agaaagcagt	ggctgcaaga	ccctcacgtc	2760
cagtcaaggcc	tgtgtgggt	gcgaggaagg	cttctccctg	caccagaaga	gctgtgtcca	2820
gcactgccc	ccaggcttcg	cccccaagt	cctcgatacg	cactatagca	ccgagaatga	2880
cgtggagacc	atccgggcca	gcgtctgcgc	cccctccac	gcctcatgt	ccacatgcca	2940
ggggccggcc	ctgacagact	gcctcagctg	ccccagccac	gcctccttgg	accctgtgga	3000
gcagacttgc	tcccggcaaa	gccagagcag	ccgagagtcc	ccgcccacagc	agcagccacc	3060
tcggctgccc	ccggagggtgg	aggcgccca	acggctgcgg	gcagggctgc	tgcctcaca	3120
cctgcctgag	gtggtggccg	gcctcagctg	cgccttcatc	gtgctggtct	tcgtactgt	3180
cttcctggc	ctgcagctgc	gctctggctt	tagtttcgg	ggggtaagg	tgtacaccat	3240
ggaccgtggc	ctcatctcct	acaaggggct	gccccctgaa	gcctggcagg	aggagtgc	3300

092W0_Sequence_Listing_ST25

gtctgactca	gaagaggacg	aggccgggg	cgagaggacc	gccttatca	aagaccagag	3360
cgcctctga	tctagagggc	ccgttaaac	ccgctgatca	gcctcgactg	tgccttctag	3420
ttgccagcca	tctgttttt	gccctcccc	cgtgcctcc	ttgaccctgg	aaggtgccac	3480
tcccactgtc	ctttcctaata	aaaatgagga	aattgcatcg	cattgtctga	gtaggtgtca	3540
ttcttattctg	gggggtgggg	tggggcagga	cagcaagggg	gaggattggg	aagacaata	3600
caggcatgct	ggggatgcgg	tggctctat	ggcttctgag	gcggaaagaa	ccagctgggg	3660
ctcttaggggg	tatccccacg	cgcctgtag	cggcgcatta	agcgcggcgg	gtgtggtggt	3720
tacgcgcagc	gtgaccgcta	cacttgcag	cgccttagcg	ccgcctcctt	tcgcttctt	3780
cccttcctt	ctcgccacgt	tcgcggctt	tcccgtaa	gctctaaatc	ggggcatccc	3840
tttagggttc	cgattttagt	cttacggca	cctcgacccc	aaaaaaactt	attagggta	3900
tggttcacgt	agtggccat	cgcctgata	gacggtttt	cgccttta	cgttggagtc	3960
cacgttctt	aatagtggac	tctgttcca	aactgaaaca	acactcaacc	ctatctcggt	4020
ctattcttt	gatttataag	ggattttggg	gatttcggcc	tattggtaa	aaaatgagct	4080
gatttaacaa	aaatttaacg	cgaattaatt	ctgtggaatg	tgtgtcagtt	agggtgtgga	4140
aagtccccag	gctccccagg	caggcagaag	tatgcaaagc	atgcatactca	attagtcagc	4200
aaccaggtgt	ggaaagtccc	caggctcccc	agcaggcaga	agtatgcaaa	gcatgcatt	4260
caattagtca	gcaaccatag	tccgcctt	aactccgccc	atccgcctt	taactccgccc	4320
cagttccgccc	cattctccgc	ccatggctg	actaattttt	tttattttatg	cagaggccga	4380
ggccgcctct	gcctctgagc	tattccagaa	gtagtgagga	ggctttttt	gaggcctagg	4440
cttttgcaaa	aagctcccg	gagcttgtat	atccattttc	ggatctgatc	agcacgtgat	4500
aaaaaaagcct	gaactcacccg	cgacgtctgt	cgagaagttt	ctgatcgaaa	agttcgacag	4560
cgtctccgac	ctgatgcagc	tctcgaggg	cgaagaatct	cgtgccttca	gcttcgatgt	4620
aggagggcgt	ggatatgtcc	tgccggtaaa	tagctgcgcc	gatggttct	acaaagatcg	4680
ttatgtttat	cgccacttt	catcgccgc	gctcccgatt	ccggaagtgc	ttgacattgg	4740
ggaattcagc	gagagcctga	cctattgcat	ctccgcctgt	gcacagggtg	tcacgttgc	4800
agacctgcct	gaaaccgaac	tgcccgtgt	tctgcagccg	gtcgccggagg	ccatggatgc	4860
gatcgctgcg	gccgatctta	gccagacgag	cgggttccgc	ccattcggac	cgcaaggaat	4920
cggtaatac	actacatggc	gtgatttcat	atgcgcgatt	gctgatcccc	atgtgtatca	4980
ctggcaaact	gtgatggacg	acaccgtcag	tgcgtccgtc	gcgcaggctc	tcgatgagct	5040
gatgcttgg	gccgaggact	gccccgaat	ccggcacctc	gtgcacgcgg	atttcgctc	5100
caacaatgtc	ctgacggaca	atggccgcat	aacagcggtc	attgactgga	gcgaggcgat	5160
gttcgggat	tcccaatacg	aggtcgccaa	catcttcttc	tggaggccgt	ggttggctt	5220
tatggagcag	cagacgcgt	acttcgagcg	gaggcatccg	gagcttgcag	gatcgccgcg	5280
gctccggcgc	tatatgctcc	gcattggct	tgaccaactc	tatcagagct	tggttgacgg	5340

092W0_Sequence_Listing_ST25

caatttcgat gatgcagctt gggcgcaggg tcgatgcac gcaatcgcc gatccggagc	5400
cgggactgtc gggcgtacac aaatcgcccg cagaagcgcg gccgtctgga ccgatggctg	5460
tgtagaagta ctcgcccata gtggaaaccg acgccccagc actcgccga gggcaaagga	5520
atagcacgtg ctacgagatt tcgattccac cgccgccttc tatgaaaggt tgggcttcgg	5580
aatcgtttc cgggacgccc gctggatgat cctccagcgc gggatctca tgctggagtt	5640
cttcgcccac cccaacttgt ttattgcagc ttataatggt tacaataaa gcaatagcat	5700
cacaatttc acaaataaaag cattttttc actgcattct agttgtggtt tgtccaaact	5760
catcaatgta tcttatcatg tctgtatacc gtcgacctct agctagagct tggcgtaaatc	5820
atggtcatacg ctgtttcccg tgtgaaattt ttatccgctc acaattccac acaacatacg	5880
agccggaagc ataaagtgt aagcctgggg tgcctaattga gtgagctaac tcacattaaat	5940
tgcgttgcgc tcactgccc cttccagtc gggaaacctg tcgtgccagc tgcattaaatg	6000
aatcgccaa cgccggggaa gaggcggtt gcgtattggg cgctttccg cttcccgct	6060
cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc	6120
gttaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaagg	6180
ccagcaaaag gccaggaacc gtaaaaaggc cgcttgctg gcgttttcc ataggctccg	6240
ccccctgac gagcatcaca aaaatcgacg ctcaagtca ggtggcgaa acccgacagg	6300
actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgtctc ctgttccgac	6360
cctgccgctt accggatacc tgccgcctt tctccctcg ggaagcgtgg cgcttctca	6420
atgctcacgc tgttagtatac tcagttcggt taggtcggt cgctccaagc tgggctgtgt	6480
gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatac gtcttgagtc	6540
caaccggta agacacgact tatgcact ggcagcagcc actggtaaca ggattagcag	6600
agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac	6660
tagaaggaca gtatggta tctgcgtct gctgaagcca gttaccccg gaaaaagagt	6720
tgttagctct tgatccggca aacaaaccac cgctggtagc ggtggtttt ttgtttgcaa	6780
gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg	6840
gtctgacgct cagtggaaacg aaaactcagc ttaaggatt ttggcatga gattatcaa	6900
aaggatctt acctagatcc tttaaattt aaaaatgaagt tttaaatcaa tctaaagtat	6960
atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac ctatctcagc	7020
gatctgtcta tttcggtcat ccatagttgc ctgactcccc gtcgtgtaga taactacgt	7080
acgggagggc ttaccatctg gccccagtgc tgcaatgata ccgcgagacc cacgctcacc	7140
ggctccagat ttatcagcaa taaaccagcc agccggaagg gccgagcgcga gaagtggtcc	7200
tgcaacttta tccgcctcca tccagtctat taattttgc cgggaaagcta gagtaagtag	7260
ttcggccagtt aatagttgc gcaacgttgt tgccattgct acaggcatcg tggtgcacg	7320
ctcgctgttt ggtatggctt cattcagctc cggttcccaa cgatcaaggc gagttacatg	7380

092W0_Sequence_Listing_ST25

atccccatg ttgtcaaaa aagcggttag	ctccttcggt cctccgatcg	ttgtcagaag	7440
taagttggcc gcagtgttat	cactcatggt tatggcagca	ctgcataatt ctcttactgt	7500
catccatcc gtaagatgct	tttctgtgac tggtagtac	tcaaccaagt cattctgaga	7560
atagtgtatg cgccgaccga	gttgcttttgc cccggcgtca	atacggata ataccgcgc	7620
acatagcaga actttaaaag	tgctcatcat tggaaaacgt	tcttcggggc gaaaactctc	7680
aaggatctt ccgctgttga	gatccagttc gatgtAACCC	actcgtgcac ccaactgatc	7740
ttcagcatct ttactttca	ccagcgtttc tgggtgagca	aaaacaggaa ggcaaaatgc	7800
cgcaaaaaag ggaataaggg	cgacacggaa atgttgaata	ctcatactct tccttttca	7860
atattattga agcatttatac	agggttatttgc tctcatgagc	ggatacatat ttgaatgtat	7920
tttagaaaaat aaacaaatag	gggttccgcg cacattccc	cgaaaagtgc cacctgacgt	7980
c			7981

<210> 2
 <211> 2385
 <212> DNA
 <213> Homo sapiens

<400> 2					
atggagctga ggccctggtt	gctatgggtg	gtagcagcaa	caggaacacctt	ggcctgcta	60
gcagctgatg ctcagggcca	gaaggtcttc	accaacacgt	gggctgtgcg	catccctgga	120
ggcccgccg	tggccaacag	tgtggcacgg	aagcatgggt	tcctcaacctt	180
ttcggggact	attaccactt	ctggcatcga	ggagtgacga	agcggccctt	240
cgcccgccgc	acagccggct	gcagagggag	cctcaagtac	agtggctgga	300
gcaaagcgac	ggactaaacg	ggacgtgtac	caggagccca	cagaccccaa	360
cagtggtacc	tgtctggtgt	cactcagcgg	gacctgaatg	tgaaggccgc	420
ggctacacag	ggcacggcat	tgtggctcc	attctggacg	atggcatcga	480
ccggacttgg	caggcaatta	tgatcctggg	gccagtttg	atgtcaatga	540
gaccccccac	ctcggtacac	acagatgaat	gacaacaggc	acggcacacg	600
gaagtggctg	cggtgccaa	caacgggtgc	tgtggtag	gtgtggccta	660
attggagggg	tgcgcacgt	ggatggcgag	gtgacagatg	cagtggaggc	720
ggcctgaacc	ccaaccacat	ccacatctac	agtgccagct	ggggccccga	780
aagacagtgg	atgggccagc	ccgcctcgcc	gaggaggcct	tcttcgtgg	840
ggccgagggg	ggctgggctc	catcttgc	tgggcctcg	ggaacggggg	900
gacagctgca	actgcacgg	ctacaccaac	agtatctaca	cgtgtccat	960
acgcagtttgc	gcaacgtgcc	gtggtagcagc	gaggcctgct	cgtccacact	1020
tacagcagtgc	gcaaccagaa	tgagaagcag	atcgtgacga	ctgacttgcg	1080
acggagtctc	acacgggcac	ctcagctct	gcccccttag	cagccggcat	1140
accctggagg	ccaataagaa	cctcacatgg	cggacatgc	aacacctgg	1200

092W0_Sequence_Listing_ST25

tcgaagccag	cccaccaa	tgccaacgac	tggccacca	atggtgtgg	ccggaaagt	1260
agccactcat	atggctacgg	gctttggac	gcaggcgcca	tggtgccct	ggcccagaat	1320
tggaccacag	tggccccc	gcggaagtgc	atcatcgaca	tcctcaccga	gcccaaagac	1380
atcggaaac	ggctcgaggt	gcggaagacc	gtgaccgcgt	gcctggcga	gcccaaccac	1440
atcactcggc	tggcacgc	tcaggcgcgg	ctcaccctgt	cctataatcg	ccgtggcgcac	1500
ctggccatcc	acctggtcag	cccatgggc	acccgctcca	ccctgctggc	agccaggcca	1560
catgactact	ccgcagatgg	gttaatgac	tggcctca	tgacaactca	ttcctggat	1620
gaggatccct	ctggcgagt	ggtcttagag	attgaaaaca	ccagcgaagc	caacaactat	1680
ggacgctga	ccaagttcac	cctcgactc	tatggcaccg	cccctgaggg	gctgcccgt	1740
cctccagaaa	gcagtggctg	caagaccctc	acgtccagtc	aggcctgtgt	ggtgtgcgag	1800
gaaggcttct	ccctgcacca	gaagagctgt	gtccagcact	gccctccagg	tttcgcccc	1860
caagtccctg	atacgcacta	tagcaccgag	aatgacgtgg	agaccatccg	ggccagcgtc	1920
tgcgccccct	gccacgcctc	atgtgccaca	tgccagggc	cggccctgac	agactgcctc	1980
agctgccccca	gccacgcctc	cttggaccct	gtggagcaga	cttgctcccg	gcaaagccag	2040
agcagccgag	agtccccgccc	acagcagcag	ccacctcgcc	tgcccccgga	ggtggaggcg	2100
ggcaacggc	tgcgggcagg	gctgctgccc	tcacacctgc	ctgaggtggt	ggccggcctc	2160
agctgcgcct	tcatcgtgct	ggtttcgtc	actgtctcc	tggcctgca	gctgcgtct	2220
ggcttagtt	ttcgggggt	gaaggtgtac	accatggacc	gtggcctcat	ctcctacaag	2280
ggctgcccc	ctgaagcctg	gcaggaggag	tgcccgtctg	actcagaaga	ggacgagggc	2340
cggggcgaga	ggaccgcctt	tatcaaagac	cagagcgtccc	tctga		2385

<210> 3
 <211> 794
 <212> PRT
 <213> Homo sapiens

<400> 3

Met	Glu	Leu	Arg	Pro	Trp	Leu	Leu	Trp	Val	Val	Ala	Ala	Thr	Gly	Thr
1				5				10					15		

Leu	Val	Leu	Leu	Ala	Ala	Asp	Ala	Gln	Gly	Gln	Lys	Val	Phe	Thr	Asn
						20		25							

Thr	Trp	Ala	Val	Arg	Ile	Pro	Gly	Gly	Pro	Ala	Val	Ala	Asn	Ser	Val
						35		40			45				

Ala	Arg	Lys	His	Gly	Phe	Leu	Asn	Leu	Gly	Gln	Ile	Phe	Gly	Asp	Tyr
					50				55		60				

Tyr	His	Phe	Trp	His	Arg	Gly	Val	Thr	Lys	Arg	Ser	Leu	Ser	Pro	His
						65		70			75				80

092W0_Sequence_Listing_ST25

Arg Pro Arg His Ser Arg Leu Glu Arg Glu Pro Glu Val Glu Trp Leu
85 90 95

Gl u Gl n Gl n Val Al a Lys Arg Arg Thr Lys Arg Asp Val Tyr Gl n Gl u
100 105 110

Pro Thr Asp Pro Lys Phe Pro Glu Gl n Trp Tyr Leu Ser Gl y Val Thr
115 120 125

Gl n Arg Asp Leu Asn Val Lys Al a Al a Trp Al a Gl n Gl y Tyr Thr Gl y
130 135 140

His Gl y Ile Val Val Ser Ile Leu Asp Asp Gl y Ile Gl u Lys Asn His
145 150 155 160

Pro Asp Leu Al a Gl y Asn Tyr Asp Pro Gl y Al a Ser Phe Asp Val Asn
165 170 175

Asp Gl n Asp Pro Asp Pro Gl n Pro Arg Tyr Thr Gl n Met Asn Asp Asn
180 185 190

Arg His Gl y Thr Arg Cys Al a Gl y Gl u Val Al a Al a Val Al a Asn Asn
195 200 205

Gl y Val Cys Gl y Val Gl y Val Al a Tyr Asn Al a Arg Ile Gl y Gl y Val
210 215 220

Arg Met Leu Asp Gl y Gl u Val Thr Asp Al a Val Gl u Al a Arg Ser Leu
225 230 235 240

Gl y Leu Asn Pro Asn His Ile His Ile Tyr Ser Al a Ser Trp Gl y Pro
245 250 255

Gl u Asp Asp Gl y Lys Thr Val Asp Gl y Pro Al a Arg Leu Al a Gl u Gl u
260 265 270

Al a Phe Phe Arg Gl y Val Ser Gl n Gl y Arg Gl y Gl y Leu Gl y Ser Ile
275 280 285

Phe Val Trp Al a Ser Gl y Asn Gl y Gl y Arg Gl u His Asp Ser Cys Asn
290 295 300

Cys Asp Gl y Tyr Thr Asn Ser Ile Tyr Thr Leu Ser Ile Ser Ser Al a
305 310 315 320

Thr Gl n Phe Gl y Asn Val Pro Trp Tyr Ser Gl u Al a Cys Ser Ser Thr
325 330 335

Leu Al a Thr Thr Tyr Ser Ser Gl y Asn Gl n Asn Gl u Lys Gl n Ile Val
340 345 350

092W0_Sequence_Listing_ST25

Thr Thr Asp Leu Arg Glu Lys Cys Thr Glu Ser His Thr Glu Thr Ser
355 360 365

Ala Ser Ala Pro Leu Ala Ala Gly Ile Ile Ala Leu Thr Leu Glu Ala
370 375 380

Asn Lys Asn Leu Thr Trp Arg Asp Met Glu His Leu Val Val Glu Thr
385 390 395 400

Ser Lys Pro Ala His Leu Asn Ala Asn Asp Trp Ala Thr Asn Gly Val
405 410 415

Gly Arg Lys Val Ser His Ser Tyr Gly Tyr Gly Leu Leu Asp Ala Gly
420 425 430

Ala Met Val Ala Leu Ala Glu Asn Trp Thr Thr Val Ala Pro Glu Arg
435 440 445

Lys Cys Ile Ile Asp Ile Leu Thr Glu Pro Lys Asp Ile Gly Lys Arg
450 455 460

Leu Glu Val Arg Lys Thr Val Thr Ala Cys Leu Gly Glu Pro Asn His
465 470 475 480

Ile Thr Arg Leu Glu His Ala Glu Ala Arg Leu Thr Leu Ser Tyr Asn
485 490 495

Arg Arg Gly Asp Leu Ala Ile His Leu Val Ser Pro Met Gly Thr Arg
500 505 510

Ser Thr Leu Leu Ala Ala Arg Pro His Asp Tyr Ser Ala Asp Gly Phe
515 520 525

Asn Asp Trp Ala Phe Met Thr Thr His Ser Trp Asp Glu Asp Pro Ser
530 535 540

Gly Glu Trp Val Leu Glu Ile Glu Asn Thr Ser Glu Ala Asn Asn Tyr
545 550 555 560

Gly Thr Leu Thr Lys Phe Thr Leu Val Leu Tyr Gly Thr Ala Pro Glu
565 570 575

Gly Leu Pro Val Pro Pro Glu Ser Ser Gly Cys Lys Thr Leu Thr Ser
580 585 590

Ser Glu Ala Cys Val Val Cys Glu Glu Gly Phe Ser Leu His Glu Lys
595 600 605

Ser Cys Val Glu His Cys Pro Pro Gly Phe Ala Pro Glu Val Leu Asp
610 615 620

092W0_Sequence_Listing_ST25

Thr His Tyr Ser Thr Glu Asn Asp Val Glu Thr Ile Arg Ala Ser Val
625 630 635 640

Cys Ala Pro Cys His Ala Ser Cys Ala Thr Cys Glu Gly Pro Ala Leu
645 650 655

Thr Asp Cys Leu Ser Cys Pro Ser His Ala Ser Leu Asp Pro Val Glu
660 665 670

Gln Thr Cys Ser Arg Gln Ser Gln Ser Ser Arg Glu Ser Pro Pro Gln
675 680 685

Gln Gln Pro Pro Arg Leu Pro Pro Glu Val Glu Ala Gly Gln Arg Leu
690 695 700

Arg Ala Gly Leu Leu Pro Ser His Leu Pro Glu Val Val Ala Gly Leu
705 710 715 720

Ser Cys Ala Phe Ile Val Leu Val Phe Val Thr Val Phe Leu Val Leu
725 730 735

Gln Leu Arg Ser Gly Phe Ser Phe Arg Gly Val Lys Val Tyr Thr Met
740 745 750

Asp Arg Gly Leu Ile Ser Tyr Lys Gly Leu Pro Pro Glu Ala Trp Gln
755 760 765

Glu Glu Cys Pro Ser Asp Ser Glu Glu Asp Glu Gly Arg Gly Glu Arg
770 775 780

Thr Ala Phe Ile Lys Asp Gln Ser Ala Leu
785 790

<210> 4

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> Furin consensus recognition site

<220>

<221> VARIANT

<222> (2)..(2)

<223> X is any amino acid, or no amino acid

<220>

<221> VARIANT

<222> (3)..(3)

<223> X is Lysine or Arginine

<400> 4

Arg Xaa Xaa Arg
1

