US 20050172336A1

a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2005/0172336 Al

Gatto et al.

43) Pub. Date: Aug. 4, 2005

(54

(75)

(73)

@D
(22

(62)

(60)

G

DYNAMIC CONFIGURATION OF A GAMING
SYSTEM

Inventors: Jean-Marie Gatto, London (GB);
Thierry Brunet de Courssou, Palo
Alto, CA (US)

Correspondence Address:

YOUNG LAW FIRM

A PROFESSIONAL CORPORATION
4370 ALPINE ROAD SUITE 106
PORTOLA VALLEY, CA 94028

Assignee: Cyberscan Technology, Inc., Palo Alto,

CA (US)
Appl. No.: 11/090,819
Filed: Mar. 25, 2005

Related U.S. Application Data

Division of application No. 10/789,975, filed on Feb.
27, 2004.

Provisional application No. 60/453,627, filed on Mar.
10, 2003.

Publication Classification

Int. CL7 e HO04L 9/00

Start

(52) US.CL oo 726/10; 713/200

(7) ABSTRACT

A method to enable dynamic configuration of gaming ter-
minals installed in one or a plurality of gaming premises
whereby certified games, certified data files and certified
support software components are activated in accordance
with a predetermined schedule or automatically in response
to the observed gaming activity. The method may include
allocating an individual PKI certificate to each executable
software component and each of its versions, binding the
PKI certificate to the executable software, associating a
distinctive policy for each certificate and then enforcing the
software execution policies in accordance with the desired
authorized game configuration and schedule. The PKI cer-
tificate’s “Subject Name” (or “Issued to” field or “Common-
Name” field) may be a concatenation of the software com-
ponent identification, its version number and optionally
other identification characters. The method applies equally
to other network connected gaming subsystems. The method
enables a fine-grained and secure control of the authorized
software components and thus the flexibility to securely
configure the gaming system in accordance with a schedule
or in a close-loop fashion in order to meet business objec-
tives. In addition, a method to enable the certification
authority to bind the certificates to the tested code is
described.

802

806 /\F Develop New Game Application I

810 I
\ Certify Code '

814
812 1
Trusted Party Sign Code j
~ ;

818"]
v

Copy Signed Code on CD j

822 =
824\!__ CD into DEPLOY server l
828 {
- Verify Package Authorisation I
830 (Pass #1 ~ by SRF)

¥
Trust Package ?

Trash Package

/\J, Un-package and Store Signed Code ,

832 834
Deploy Signed Code to GMs
8367 ™ (in accordance with Schedule)

840]
—\L Activate Signed Game Code I
842 1
846 \ Verify Code Authorisation & Config
\ 844 Files (Pass #2 - by Cyber TrustGM)

[}
CFree;s GM): No Trust ? 3

YES

T

YES

850
854 ‘\i\ Verify Code Authorisation l
(Pass #3 - by SRF}
™~ 852 T

L Trust Code ? >

Freeze GM /:

YES

By Game Operator

820

By GDS Server (WAN} or
By Gaming Terminal {LAN)

H 826

el
o
=3

By Gaming Terminal

838

US 2005/0172336 Al

Sheet 1 of 21

Patent Application Publication Aug. 4, 2005

- S
\,ﬂﬁ

00 UORSIA AQUISRY ”

“onEA
r4 A" |\

USIRUDONE UORIIA S0 ”

VD OB ORd N ADOUPS) WRSRGDEN0Z BOEA0)

gLl ARG WG

vwvl\o/_.,.,ﬁ woreaops “TY

onp Vel W

Thsanor [Anoss | AxaRdoon] e, [E5099)|

, wu_,tmao.& %8 AULIBTAY

1437

(0" 1°Q° ta GovezapsYauasey tATQuIsER)
[{au)BE00TOOKLQ@mOTY tARQDO0D)

GOTATRIOZAY BUI ATTPOW 03 €IOTPA FINQTIIAT MFIYD LT *EIINYTRIIT JO 388 //
\gnou s YBNORYR PATTOXITOD 9F ATEIISHE UT ANOQY COTIVERCFUY LEIITID 4/

P

90l

Ajquiassy apo) 324nos

Nc_‘lk

US 2005/0172336 Al

Sheet 2 of 21

Patent Application Publication Aug. 4, 2005

z 515

[{¥80) ¥ ‘03TY OTV3 ORI ABOTeuRsn
(i SD) € ‘037 OYRE ‘vad) X

?,,;,
SOTAoTIoN S TIeaus PATTGRINYD 6F ATUNRSSY UR JNOQV UNTIWIROINT TeXwwsD //|

{ E USTEIRAATLIATSY 1ATCQSISEN)

Alquiassy apo9 a2inog

SN||\.

14174

6077 JUaAT SMOPUIM

Noul\

US 2005/0172336 Al

Sheet 3 of 21

Patent Application Publication Aug. 4, 2005

¢ 'bro

. ooe \omm | \wun \m«n Nm | \NN«. \oun \Sn ., \Sm
Is — NN N — =~ A . \—— = PR aweN uUO\QBW
axa°AulagqAd LLvI0'L0'1L100-10000-9000°9X2°000ELSD ¥SOL 1o
\ _ = p|al4 0 panss]|
=] / ER

_ EREEE sy
(4% f ConRle3rs) 13)
: 1]
DODSLED- ARG VOEGIPUD 3 ﬁ&ﬁﬂ tAg paasst S e
\\\ {1t t¥EN) ¥ ‘03TY OTRG feOuUY ADOTORYIDE ZRILIVAAD £OOZ.) ARUTIALCDATSROY cAYQRasEu)
XD RILIIGAY "

££~§3 tirqasee]
({utesn) v ‘esty otws *-oux AOTORERX FACOMRODATRBIOY ATTIARR])
(e uorananByguonSyQRnoey sATQuasse)

{ {40AUICOMIDY PIACNIZ 20 KICATIALY,) COTIATIOSOQATTRINGY LATQRITHV)

@) STARIAIQERISY &28»8.

~EXPDSET GO QAT PIFVITOSED \
TOFITRIONGT B3 AITROW 02 SINIPA PINATIAVP SLURS SOTNYD ‘SVIANGTIAAV IO 298 //
‘ ggggﬁogooagsg TOTIVEACFAY TRIVTIY /7

Alquiassy apo? 82inos

_/

voe (A1}

US 2005/0172336 Al

Patent Application Publication Aug. 4,2005 Sheet 4 of 21

v BI.

984 ‘AL pug=odd) Pafgng sjuRASueT) DSeg s

[aaopigel | vsensmdosgipd
&4["
*** 4810 0 UOFNALISIY TDIF] suiog uoRngAsIa ROES
§93930% 080 LOTEELSIT T 08 9T S
] (08} uogeqUAIMY B 1SS adAL3 =) AomgoNIEE
*+ap] Aogoadidfod AeyRAO[r] SaPYod QEDYRIR

angs | s.m_.._

2] Ao suosuzx3| oyl

% 04

1114

[MRedMRREBLERD | spejap | BRVRD |
/

US 2005/0172336 Al

Patent Application Publication Aug. 4, 2005 Sheet 5 of 21

({atusn) ¥ ‘oavy oTes ‘ouy ADOTOURSAL UNA
{te (wSD) €3 ‘oaTR OTVA

seouy EBplound ERDRIIAD H AuRdOpS TauRRsy SATARRESY)

KYGmmEnie U 9aA pRavedotEe //
ANGYYIAs SRS 3LTNS CEIANQTIAIE JO 30)/
QUILOY GF ADOY GOTIOUTHIOY TRAIZDD /7

Alquassy apos 82inog

ARG)
T z»:od:&u
3

N sm de wrm Sml_

v-T-DloBIFR - xa_ﬁaam_u ral-as

- 908
_ﬂ\ex -

i aﬁ_aa ng.i@a_baﬂsﬁaﬂg
o Ap o0 e ey vt &% 1 o Bl

WPUALTIRGA) - §IRT [0S0]

AiojuaAuj pajysniy

905
v0S IK

US 2005/0172336 Al

Patent Application Publication Aug. 4, 2005 Sheet 6 of 21

9 ‘51

(luu)oamaynsiegmcoy tATQRRED]

L Lau) AAVRIPIRIATLRVESY 1A TORISEY]
FCu NS %D “03%Y OYRg “-2uy ABOTOUNDD, nwuuuvnao 89?.%3“%“3 1ATRRASEY)
§0-90004) SOTPOIAATATIESY LATATAEEN]

AIUFHEMD PEACY «oa»%?vcosng&aﬁg 1ATIRIRET)
_ 3 F..lau. STIRATamIsey tArqEeece)

+RYCRDEEY U0 GITA pRARTOOSER //
popanGagty RG ATTpon-oS SEnreA BINGEIISE BFINS SUNGD CSIMANGIIIIE JO INE /7).
..:;.A%ognﬂ%gggggﬂggua\\

Alquiessy apoY 92in0g

c09 .|\

A21]0d uonolIsSay aremyos
909 ll\

_/

109

US 2005/0172336 Al

Sheet 7 of 21

Patent Application Publication Aug. 4, 2005

251D

0L
v . _
A V;ﬂ P —— N

(Fogea) ORpRanGye 290 | et SR
; s e 5+ :
| ZARSE T gg@m |
wassococoelste 0TL POgRO 1521 5100 eﬁusﬁ&gg&s >
r4 44 N e ot o) 1 SN
PN Rpmag v i wcw
- AT QL ermmem “anas 5~ gp) |
b 8LL cnyrvonmevsspsgwompiasy axges sapmiar e 0L
i vod e p A p Vs W P
Bares PN Ty o
o — rquaoos . Trage |
L] .TFN nig) L007PREEYINP0 M : :
i i copemtyuoy sy | 1} vpatp SRS RS |
L WS CCRlez wopmpapo ey | | sk oy
o ZLL ——— ARG S | §§3§§§8§ T
. [womsopal s aenq [soog 9&%&&@
4UCY 10164 194 “czcug%z»aﬂﬁa:o.._u

V0. Av0d dnoas F (5

[4174 ’\

Patent Application Publication Aug. 4, 2005 Sheet 8 of 21

802

806 /._ Develop New Game Application
810 1

~ Certify Code

81 2
v
By Trusted Party Sign Code

l

v
Copy Signed Code on CD
/\ioé Deploy a new Game ? >
822 YES y

824

CD into DEPLOY server

!

- Verify Package Authorisation
(Pass #1 - by SRP)

828

Trust Package ?
YES {

>

|~ Un-package and Store Signed Code

Trash Package

gs2 834 '
Deploy Signed Code to GMs
8367 (in accordance with Schedule)
840 v
—\\ Activate Signed Game Code
842 1

Verify Code Authorisation & Config

Files (Pass #2 - by CyberTrustGM)
YES

™
\g Request to excecute code ? >

Trust ?

850 YES y
854 " Verify Code Authorisation
‘ (Pass #3 - by SRP)

YES

Execute Code

By Cyberscan

R 804

'} By Certification Lab

R 808

~\ /

—

> By Game Operator

J 820
By GDS Server (WAN) or
By Gaming Terminal (LAN)
L‘\826
S

(o]
o

> By Gaming Terminal

838

FIG. 8

US 2005/0172336 Al

Aug. 4,2005 Sheet 9 of 21 US 2005/0172336 A1

Patent Application Publication

908 suofjea|ddy

ewen dnueg
:.

006 - 926

iswr,

"LTO0L POITTUINITPNYALRICLSYAGNEIT T WeaBoxgn)

E"B:ucnncoo POYLNSL §O AAOILBAVY Lun

CBSNY BD von1y ofrd “ouy Aboyeuysel uvasasgiy £gpg wSrafdoy
ouv.:cnwonmu IR 13 1)08-In080-9300 9«2 28189 1aushedue)

arate 338N NTT AUFEOQSI(FIO0L PAITNAINGTPIYNURITAIGEYNIOTFS WRaBoagNLD)

AP\ L EWOISAS\GRIOGHIAA D

vZ6 026 ez 4
e b - v Kaoy
- . !. 4 - 9ymN«Qi] s 5 —
¥ O
¢ i
; o
¥ AW
% Illllm~
) Ty |
m. -] . K1 k .

: o - 08
it DO R 2 ¥ Q@82 0]
..v-,ﬁgsl&gigaiﬁ
Y

X S™ e omyay ey,

)

816

3duog uopoy + aimeubls
sjassy eIp3A [leIsul-ay

i

AN

Isw’

sa|ld :mm_n_ leysul-ay

\

i

N

1sw,

sejid Byuog jesul-ay

i

™~

cve

orve

8¢6
1swr,
sofy buissiw
soueulg siedey |
oJSNd
06 /.\I peysni) 9¢6
qed’,
swr, Zl6
\l jeq,
SqA°,
X20°, peisniun
P« w
me.«h Nﬂm
AUpIaqiy
N 806

_J

US 2005/0172336 Al

Aug. 4, 2005 Sheet 10 of 21

Patent Application Publication

éégﬁmwﬁcwwﬂgr e 8204 oI ‘BI.5
BuoB-uo woddns o) Aljjiqeleas ying-u| . . O} [eJljuep! uLoheld eauess ey $6820Y 9JIGON
30— 189012030 :uewoq e~

cecsascesssse, AN — /
4 pdag LN . —
! 1oes MMobénm #0024 % E < PEQI BUY) UO UBLM UeAS Poddns
" e ' = 910} 8piAqid PUB SUCISEIWGNS LOIBILILGO
’ =9w=wmvm - Aoy " ‘ = MU JUGNS O} UBISIEGAD ©1qBeua O e——
$ cowoypieg SUNUBIS @POD 4 J 0001
" 4150 WneA
Ta gl
' L y
; O 0L
Py] 5
s “am , sebopse]
:OO—HIIthllu e’ Juopuon e
I— o P - B} UO USUM UBAG LONESYIILSD
pue Buise} o Aued o)
siseuBue qe) BulweD ojquue o)

LB 5099 [FFs] vLOL 22O SOV

) @ﬁ & b Janieg espdanug e00z
. < (ssecoy jaweju; smopu
Janteg amEEhw €002 “x ou) 40 NAA >0M_m_mn uom ‘o0 .
AO14d3G zoa 190 dx vzolL , -
SMOPUIM
) o @
\\\ 9zoL K= 5.0 0z04
) 1es0}'1L,00Sg949qAD \uewoq \L c . .
: NV
ﬁ ’ [2elel b UBWO
NV /A uﬂoﬁw“ hm_ﬂwo””ﬂ 200w soons 1e20}°,032] ulewoq
LOOWD Ao uto@ siBwoENo edoung 10 ySn
SN 05 pue saweB OOz Jo} .

UDIEIIHBD UBISISGAD
Buiof-uo uoddns

o1 AiGeIBos NNg-u|

US 2005/0172336 Al

Sheet 11 of 21

Aug. 4, 2005

Patent Application Publication

—

80LL

—

IT '5r1d

00FF

J0ysdeus A - Ling AD - 21 dAS B——
Bunbis @ yoysdeus oipras [ensin - 11 NS C——
aseaPy ousse) - wNg 00~ 01 &Is C——
- duse diS- 6 d0s CO——
(e s5ed) UBISRQAD - 8 4NS ——

{22 ssed) sabiexped ISW pIng - £ 618 & ——
(1 # ssed) uBisRqAD - 9 6AS CO——
WRDIBGAD - § dais C——
MILRGAD - & RS T —

{13 ssed) sebeped ISW pIng - £ 815 C——
sejqeInoaoxg ping - 2 s C)———
UDISSIWGNS MBU BZEQM] - T ¢S & ——
pirg-1 QI €

B .= ‘S

wqs 000£1s0 O

~

90L1

voLL NS\

\\\\ oLLL

US 2005/0172336 Al

Aug. 4,2005 Sheet 12 of 21

Patent Application Publication

dsp'000£LSD

=&

$02.n0S gA

110 3xX3
SO2IN0E ++9 #9

FAXAY

saIqBINoexe
J8yj0 pue X20 ‘110

‘IXT §0 Buiubss epod igye
umpBe inq aq im BuiBeyseg

olpms

abexord ISW' W X200 ‘110 ‘3x3

gici

ovel . 81zl
Aoysoday sabexoed IS Ul salt4 Byuod A3d
oses|oy .) ,
e A/ sabexoed ISIN° W yseld 0zzl
/ SSA'000€1SD __uUuW
sebexord |SIW' Ut S19SSY 08PIA
, Aoysoday
osesd|ay _ |
Sjessy 09pIA 3JEG3INOS
4% 558d e
sofeyded QNG saji4 Byuod
$80IN0S A .

SEOINOS ++D #D

N .
LN S Ty
444" e (rouesuj
vzZZL 8cel ruseid | erei0dion)
- Aoysodeay
N 40Ralld] Useld juswidojanag
. 8J8590IN0g
N vody | vesessato
1474} ‘M
19AIOS ‘
oezl ejesodion
r4114?

ciel sa|lj yuod
(1] ¥AY

YARI

ol

L TpLzL

ooclt

(ssadojanep)
opns
03pIA

$}assy 08pPIA

(suedojenep)
olpms
J084Q

Jopaiq f yseld

sald Byuog
-

80¢l
(suedojerep)
opms
|ensiA

580J10S GA

9021

S80IN0S ++J #O

US 2005/0172336 Al

Aug. 4,2005 Sheet 13 of 21

Patent Application Publication

ey 1 Aued paisniy | ()
) 818V ~— MM.
) A O oty

0sel

juawdholda(Jo} Biemyos Aopsoday
. o uing-eud
99¢1 Aoysoday
wing-aid 4o
il .vwn_‘\/ma__um wodxa dus
00¢L
siduog podx3 n__m\./.
opel rA: 14 3
9G¢E1L
sqe’ 09€L
Buiwes

dsA’000£1S0

8zel , A3Q ‘ S :
/ rA %" ‘M - %eBeyoed ISW peudls

o_>n..vmm>ax JeAld yim seBexyoed IS evejday fioysoday
0ZEL T\ _ UBISEPID aseojay
jRIYIHBD “oIpnIg [ensiA
syusuodwod poutbis

JOOY pejsndl (q.d",) sayeayiad

ubigapod Y susuodwog eaejdey

—

sixzuBigiagho
six-{ubigiagho

P,

veeL

[2) oo
G 118D
L4

L

Patent Application Publication Aug. 4,2005 Sheet 14 of 21 US 2005/0172336 A1

#2 Group Policy Management

1404 /ﬁ-@Temﬁrials-ﬂoor

E£? Shmi.1 - SRP Trusted Tools
26 Shm2 - SIP - RNG {GLD)

1406 —

1408 Sbmi.5 - SRP - Reulette (GLT) — 1418

1410 ——

Sbm1.4 - SIP - Infinty (GLI) —_1424

1412 —_ 200F0x
~ P2 20050 1400

US 2005/0172336 Al

Sheet 15 of 21

Patent Application Publication Aug. 4, 2005

SIBrp

© s I 40y SANGUE PEIGRUD N S offiBoy)

x4 313

oLsi

*pauyep sbumes o

| OB

- ggﬁd—é@%ﬁ&uﬂ

{pajgela) vogemnsyuc) Josn

wage surbyuoys6ARUuIL 1" 1110-08000-80001SWOA)

éacn.émm.

Bugepaw Adod

uﬂﬁgm

¥ 805L —— SuoRmiddvpsulEsy |

(PaqeUl) UORRINBIULD AAqNdWo]

WY 22i£0°11 14217 :
oG $002/61/1 U papSIm Rq — 0S5l
: S6™ALINIANI - dIS - §'6Wqs
e | oneBoiaq | stumes stmioq | doos
9051 46 ALININI - IS - £'€was| =
2051

@E x_a

defl wopuRs el ve¥ of 35

Juawabeueiy A31j0d dnoD: -

US 2005/0172336 Al

Sheet 16 of 21

Patent Application Publication Aug. 4, 2005

)) _
wos : sainY thRd
Wd 15:21:01 2002108411 paypous jse{e1eq
uopdisaq
8T S papunsonn [9A01 ALnoos
0zZ9L” —— 1swres ANPUIl6'6'6'6110-E+000-8000 15U AN
Wd ShIZ1:07 S002/0L1T peypow 359] eq
. uopdinsag
8191~ __ popasomn [pa9) Apass
iswriiyuoyse Aupui6'6°6'6310-08000-800UISUFIADN
\1\5«&.@9: +002/6%/0 peupous 0] oieq
9191 : uondinsng
g Pepmsean fosen fumes
fIp-onduseARUYUY Z0AI6'6°6°6]00-0NTO0-ZOUDPIAI*
- 0L9L —_ rmSEame
, H Z19) sy (esOIPPY/SD10d UBHIHISIY Saemijos
L= B00H S amama Lounane e nun AR A MR

Juometerea | soumes swq | 8005
§6 ALINIHNI - WS - £'ewqs

SO} PEISNIL dUS - EWGS

$100] poISNIL dIE - 1'EWqS §

(I'1D) DAY ~ 4YS - 2Wqs
(1'19) ONY - dIS - Zugs

—(SBLDISUT SMOPUIAA ~ OWAE
D00 mesmmssemm—————————————r"
_ &|@ x|

US 2005/0172336 Al

Aug. 4,2005 Sheet 17 of 21

Patent Application Publication

0011 "
9Lll _ vril /_\ (d¥S Jopue diS)
$0]01j04 MON o2Jojul
8EL)— -
w\. | p—— X ebueyd A21/0d AIIA O} I1E3 IdV sueh > = —
: (g Jo/pue Jis) e a A da3n oW 1dY L. N ON
i Somiod oBUelD <4 “. i e ¢ 9bueyd folod
\ " OﬂhF "\ :mm\).VMNF .
ho__ob:co urewoq _ oueDfeid [« ON A) mM__w ww ;“er WMM__:MW“MQQ ovilL
_ 'y
_ N _ , \\ -1t
_ 8zl
_ rAXA % :
_ , uonesauss) nuap olweukq
! Lzl)
_ < /(
m T S pes uopeoyddy Buwen , : avii
||||||||||||| —_— ,. _
: _ $9[91]0d 9210ju3
" " vZLi
/ " _ |/ 1009 wWajsAg Bunessdp
90L} | " zzLl
| _ 8Ll
\ — -
................... Foom
19A1ag pEOJUMOQ BLIESD I ocLt
\
....................... M—.M rl\n./w . jeuiwla] m:.EmO yoegz

US 2005/0172336 Al

Patent Application Publication Aug. 4,2005 Sheet 18 of 21

08l
, 8181
9181 zZi8L 8081 081 w
N S iatiniatil Sy ~. T TN e -~ T T T\ T ~. Aianoy Bujwen
! Yo Yoy Vo ! panIasqo
! ~ Yo < b [< !
_ i siofeld P! ! i
| poday i ' | ojeiqepeae . v se19110d _
m fanpoy le———| epew _— SeBuBHD Aoliod gL | awen :
, awi]-|eay P! sawen ;o 9 33 , " j00]08
y L J03517 o ;o
! . o
| B B .
‘~ - ./.I - \. \.N ST f————— ’ Zz8l
~ Bupoyuowy S [eujua) 2N |0J3u0) 028l
P18l eweo jenuesn Bujwes yoes \ 18jjou0) ufewoq awes jenuan
0181 908l . 208l

US 2005/0172336 Al

Patent Application Publication Aug. 4,2005 Sheet 19 of 21

61 DI
|

nuay memu Aedsia

, T~ o9¢61
I : 1
QomF NUsN wOEm“VG gsodwo) /\.‘ﬂm_‘
. 2e6I~_, |
8c6 _‘l/m\ ¢ seweb ajow oN Vﬂl
f r
— > 0c6l
9Z6l nuetw o} aweb ppy
A A
0Z61—— 8L6l~ 2eBIn_ Upzel

CETY
nusus WOy oweb aAoway .‘I\IA ¢ pajusp uonnoaxy

A

Ww_‘m_.

. W|wom—‘

Zi6l— okel— PG,
NUBW W0 BWES SAOWSY AU«.\EVA & PuNo} Jou 8y 9|qEINOSXT
: [
906l ———~_} swes) Jxau o} Aua |jed
Y
vo61L— ~— SeWED 4O 1511199
206}

¥

cv6l

US 2005/0172336 Al

Patent Application Publication Aug. 4,2005 Sheet 20 of 21

920¢

820¢

0Z ‘Or1.1

0002
. veoe 2zoe 0202 8102
! I AN N T TN
7 . . N N < .
np*Ayuniu) [0°1°0°1100-10000-6600"9X9°SAD A 0'50'L 7@88?88 ~ lipolieH Aiuyu]
\ \ \
p-Anunyg [071°0°1100-1L0000-660079%X3°SAD | 0°L0L°0°L | 00-10000-6600 p-Anuyu)
] _
Qwv.\.\tmo Did ubis-epo) 1oy swieN jo8fgns UOISIaA Joquinn ped awepN ofl4 Em:o\QEoo
/ / / \
9102 " 800z 9002 ¥00Z 2002

US 2005/0172336 Al

Aug. 4,2005 Sheet 21 of 21

Patent Application Publication

12 b1t
RS

nuay sswieo) Ae|dsig
A

nuay saiwes asodwon

A

A

A

0012

]

zebe~_,,
8¢ FN% ¢ seweb aiow oN

A
wwﬂu’\ nusw o} sweb ppy

]

0Zbz— w—._‘NJ et~

A

1
nuaw wouy sweb aroway

S3A
¢ Paluap uopnoexy

A

Zie— Oue P,
nusw woy oweb anoway AlmWw.A ¢ bunoy jou efy sjqeinosxy
\
90L2Z BWED Xau 0} Au3 j[eD

So|lY . /IPOJ|oH %, e 8jeJawnuy

!

zorz "

US 2005/0172336 Al

DYNAMIC CONFIGURATION OF A GAMING
SYSTEM

CROSS-REFERENCE TO RELATED CASES

[0001] The present application claims priority of copend-
ing and commonly assigned U.S. provisional application
Ser. No. 60/453,627 filed on Mar. 10, 2003.

BACKGROUND OF THE INVENTION
[0002] 1. Field of the Invention

[0003] The present inventions relate generally to the field
of network connected pay computer-controlled games,
either games of skills or games of chance, and more par-
ticularly to the field of automated monitoring and control of
a large number of clusters of pay gaming terminals. The
gaming terminals may be slot machines, video lotteries,
bingo systems or lottery terminals in all their forms; that is,
desktop terminals, wall or pedestal mounted kiosks, or full
size consoles, operating either in a local area network (LAN)
or in a wide area network (WAN). The present inventions
also relate to the monitoring, control and payment systems
linked to the gaming terminals.

[0004] 2. Description of the Prior Art and Related Infor-
mation

[0005] Pay entertainment and gaming systems of the prior
art, either of the cash-in or the cash-less type, are seriously
limited due to the technical choices made in order to comply
with gaming regulatory requirements. Regulators are mainly
concerned with funds that may be illegally acquired by
individuals as well as with funds that may not be acquired
by legitimate winners as a result of flaws, cheating and/or
stealing. Game regulators are reluctant to accept state-of-
the-art operating systems, multimedia and Internet technolo-
gies because of security concerns and tend to favor anti-
quated technology based upon secrecy rather that “open”
state-of-the-art technology. A “Request/Authorize” method
for downloadable games has been proposed by another
company (IGT’s Secure Virtual Network in a Gaming Envi-
ronment—Publication US2002/0116615 A1) but the method
disclosed therein does not cover how to ensure that only
certified authorized components may execute.

[0006] Although downloadable games are undeniably
going to flourish, they have yet to create confidence within
the regulatory arena.

SUMMARY OF THE INVENTION

[0007] Embodiments of the present invention overcome
the security limitations of the prior art and allow game
operators the flexibility to dynamically configure their estate
of gaming terminals. It is to be noted that although the
gaming industry has coined the term “downloadable game”
and that gaming standard GLI-21 entitled “Game Download
System” has been published by Game Laboratory Interna-
tional (GLI), the term downloadable game is rather restric-
tive, as the downloading of software components to com-
puter terminals and computer servers is by itself pervasive in
any network distributed computer system. However, down-
loading certified game components in a secure manner is a
problem that has yet to find a satisfactory solution.

[0008] Embodiments of the present invention may allocate
an individual PKI certificate to each executable software

Aug. 4, 2005

component and each of its versions, binding the PKI cer-
tificate to the executable software and associating a distinc-
tive policy for each PKI certificate. The PKI certificate’s
“Subject Name” (or “Issued to” field, or “CommonName”
field) may be a concatenation of the software component
identification, its version number and optionally other iden-
tification characters, for example.

[0009] According to other embodiments, the present
invention offers a method to enable dynamic configuration
of gaming terminals installed in one or a plurality of gaming
premises whereby certified games, certified data files and
certified support software components may be activated in
accordance with a predetermined schedule or automatically
in response to the observed gaming activity. This may be
accomplished by configuring and then enforcing the soft-
ware execution policies for selected PKI certificates in
accordance with the desired authorized game configuration
and schedule.

[0010] Further embodiments of the present invention offer
a method to ensure the trust of non-executable files such as
initialization or configuration files, video files, sound files,
multimedia files, file containing list of hashes, CRCs, and/or
signatures. This method relies on the certificate Software
Restriction Policy as described herein.

[0011] Still further embodiments of the invention enable
the certification authority to bind the certificates to the tested
software components.

[0012] The present invention, according to still further
embodiments thereof enables a dynamic generation of the
list of games made available to the players without trans-
ferring a configuration file or files from the central server to
the gaming machines. For example, a method according to
an embodiment of the present invention relies on attempting
to execute a game component on which a certificate Soft-
ware Restriction Policy is enforced.

[0013] Embodiments of the present invention leverage the
technology described in commonly assigned U.S. patent
application filing 60/393,892 entitled—*“Secure Game
Download” in which code signing and Software Restriction
Policy enable executing authorized game software. Code
signing and Software Restriction Policy (SRP) technologies
are available in Microsoft Windows XP, Windows 2000 and
Windows 2003, Embedded Windows XP as well as in future
Windows versions (as of this writing, the next version is
code-named “Longhorn™) to ensure that only executable
software components from a trusted publisher, let’s say
“Microsoft”, are allowed to run. Code signing and Software
Restriction Policy technology are applied to executable
components such as *.exe, *.dll, *.ocx, *.vbs, *.msi, *.cab,
etc. In addition, Software Installation Policy (SIP) ensures
that software components are installed in a controlled fash-
ion. Embodiments of the present invention extend the use of
code signing, Software Restriction Policy and Software
Installation Policy to individual software components that
are allowed to execute in a network connected gaming
system by associating a distinctive code-signing certificate
to each executable software component. Each executable
software component version (usually comprising major ver-
sion, minor version, revision and build) may have a unique
certificate. A distinctive certificate may be created for each
software component version and the two entities (the com-
piled code and the certificate) may be bound together by a
code signing operation, herein called “signcode.exe”.

US 2005/0172336 Al

[0014] Code signed software components may be pack-
aged together with non-signed software components (if any)
into a MSI Microsoft installation package (MSI=Microsoft
Software Installation). An MSI package is an executable
component that in turn receives a distinctive certificate
bound to its content by a code signing operation. Only the
software component version that has successfully passed the
regulatory certification process may be allowed to run by
enforcing an unrestricted policy to the associated certificate.

[0015] Moreover, embodiments of the present invention
extend the use of code signing and Software Restriction
Policy to ensure that only authorized non-executable com-
ponents are used by the authorized executable components.
This is of particular value for configuration files or media
files that may affect the game outcome such as fixing the
return to player at, for example, 95% between 5:00 PM and
11:00 PM, or at 98% during other time periods. For this,
non-executable components may be placed in code signed
MSI (Microsoft Software Installation) installation packages.
Each individual MSI package is an executable component
whose execution can be controlled by Software Restriction
Policy (SRP). A distinctive certificate may be created for
each package version (a part number is created for a prese-
lected aggregate of non-executable components) and the two
entities may be bound together by the code signing operation
“signcode.exe”. Within the network connected gaming sys-
tem, trust for non-executable components may be estab-
lished by executing the associated authorized code signed
packages using SRP upon computer startup or alternatively
on demand, resulting in the re-installation of the original
non-corrupted non-executable components. The non-execut-
able components may be: initialization or configuration files,
video files, sound files, multimedia files, file containing list
of hashes, CRCs, and/or signatures, for example.

[0016] For example, DRM (Digital Rights Management)
technology offered by Microsoft Windows Media Player
may be used to ensure that only authorized multimedia files
may be played or viewed.

[0017] Also, RM (Rights Management) technology
offered with Microsoft Office 2003, with the associated RM
services and SDK (Software Development Kit) may be used
to ensure that only authorized data files may be accessed,
viewed, copied or modified.

[0018] Software Installation Policy (SIP) and Software
Restriction Policy (SRP) configured with an individual PKI
certificate associated to each authorized software component
offer a “Policy/Enforce” model, or in other words a “Con-
figure the Policy and then Enforce the Policy” model to
enable network installation (or “game download”) and acti-
vation at predetermined times (or “game scheduling”) of
selected authorized software components, in order to control
the software of the network connected gaming system and
offer selected games to players. This “Policy/Enforce”
method may be constructed on a demonstrable trusted base;
it offers transparent security and fine-grained auditing, con-
trasting with conventional “Request/Authorize” methods
that do not demonstrate reliance on a trusted base to enforce
the use of only trusted software components.

[0019] A network-connected gaming system comprises
hundreds of authorized certified software components that
may be selectively downloaded and scheduled. Considering
on-going support for 50 customers and for 200 distinctive

Aug. 4, 2005

games over a period of 5 years, tens of thousands of software
components will each need to receive individual certificates
and be certified. Accordingly, embodiments of the present
invention include an automated certification platform.
Herein, such a certification platform is denoted “Integrated
Certification Environment” or ICE. Embodiments of such a
certification platform according to the present invention are
designed to automate the stepping through the procedure
that must be done by the regulatory certification authority to
produce only authorized software components that may be
dynamically installed in a gaming system, and to prevent
generation of erroneous software components. In addition,
the ICE offers support to selectively enable the download of
approved system software components using Microsoft
Software Update Services (SUS), for example.

[0020] Embodiments of the present methods rely on estab-
lished security standards and a demonstrable trusted base (as
opposed to relying on security by secrecy) in order to offer
transparent security and allow fine-grained auditing.
Embodiments of the present inventions are also applicable to
any of the subsystems available in a network connected
gaming system that require preventing non-authorized soft-
ware components from executing or affecting the game
outcome, such as the gaming terminals, the game manage-
ment system (CMS or MCS) that monitor and control whole
or part of the estate of gaming machines, the progressive
jackpot systems, the bonussing systems as well as game
payment verification systems such as IGT’s EasyPay and
Cyberview’s PVU (Payment Verification Unit) and PVS
(Payment Verification System). Gaming subsystems may be
tested against gaming standards such as those produced by
GLI; the game standards are mandated by game regulators
in accordance with local regulation and laws. The network-
connected subsystems may be located within the premises
accommodating the estate of gaming machine (connection
via a LAN) or outside of the premises (connection via a

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1 illustrates the intrinsic information that
uniquely identifies each executable software component,
according to an embodiment of the present invention.

[0022] FIG. 2 illustrates the information uniquely identi-
fying each executable software component being made
available into the Windows Event Log upon execution of the
software component, according to an embodiment of the
present invention.

[0023] FIG. 3 illustrates the information (test certificate
indicator, project/product code, type of executable code, part
number, major/minor/build/version, certification lab identi-
fier, friendly name) uniquely identifying each executable
software component being used to generate the “Subject
Name” (or “Issued to” field, or “CommonName” field) of
the individual PKI certificate associated to each executable
software component, according to an embodiment of the
present invention.

[0024] FIG. 4 illustrates the information that may be
entered in the Extended Attributes of a PKI certificate,
according to an embodiment of the present invention.

[0025] FIG. 5 illustrates the information that may be
obtained using the Trusted Inventory tool, according to an
embodiment of the present invention.

US 2005/0172336 Al

[0026] FIG. 6 illustrates the information that may be
entered to configure a type-certificate Software Restriction
Policy rule, according to an embodiment of the present
invention. A Software Restriction Policy (SRP) is configured
using the Group Policy Object Editor.

[0027] FIG. 7 illustrates the policies that are associated to
the active directory container used to configure the gaming
machines, according to an embodiment of the present inven-
tion.

[0028] FIG. 8 illustrates an exemplary cycle from the
moment a game is being created until it is first executed on
a gaming terminal, according to an embodiment of the
present invention.

[0029] FIG. 9 illustrates the global verification process
performed by the terminal in order to check that no unau-
thorized file may execute or may affect game outcome,
according to an embodiment of the present invention.

[0030] FIG. 10 illustrates the configuration of the three
parties involved in a new game cycle detailed at FIG. 8,
according to an embodiment of the present invention.

[0031] FIG. 11 illustrates the 12 folders created on the
disk repository of the development environment, according
to an embodiment of the present invention.

[0032] FIG. 12 illustrates the dataflow for step 1 to step 3
for producing the certified authorized software components,
according to an embodiment of the present invention.

[0033] FIG. 13 illustrates the dataflow for step 4 to step 12
for producing the certified authorized software components,
according to an embodiment of the present invention.

[0034] FIG. 14 illustrates the grouping of gaming termi-
nals and the associated enforced policies, according to an
embodiment of the present invention.

[0035] FIG. 15 illustrates a method for enforcing a Soft-
ware Installation Policy by “linking” the policy, according to
an embodiment of the present invention.

[0036] FIG. 16 illustrates a method for enforcing a Soft-
ware Restriction Policy by “linking” the policy, according to
an embodiment of the present invention.

[0037] FIG. 17 illustrates the method to enforce a policy
at a predetermined time, according to an embodiment of the
present invention.

[0038] FIG. 18 illustrates the method to enforce a selected
policy as the result of observing the gaming activity, accord-
ing to an embodiment of the present invention.

[0039] FIG. 19 illustrates the method to generate dynami-
cally the menu list of authorized game made available to the
player on each gaming terminal, according to an embodi-
ment of the present invention.

[0040] FIG. 20 illustrates the method to generate a code
signed companion software component, according to an
embodiment of the present invention.

[0041] FIG. 21 illustrates the method to quickly generate
dynamically the list of game installed on each gaming
terminal using the companion software component, accord-
ing to an embodiment of the present invention.

Aug. 4, 2005

DETAILED DESCRIPTION

[0042] Reference will now be made in detail to the con-
struction and operation of preferred implementations of the
present invention illustrated in the accompanying drawings.
The following description of the preferred implementations
of the present invention is only exemplary of the invention.
The present invention is not limited to these implementa-
tions, but may be realized by other implementations.

[0043] FIG. 1 illustrates Software Component Identifica-
tion and Traceability via File Properties, according to an
embodiment of the present invention. Shown at 100 in FIG.
1 is the intrinsic information that uniquely identifies each
executable software component. The executable component
source code comprises executable code lines (e.g. X=X+1;
not shown here) and associated source code assembly infor-
mation 102, 104 that comprises comment lines 106 and
assembly information. Herein, AssemblyTitle 108, Assem-
blyProduct 110 and AssemblyVersion 112 are configured.
The AssemblyTitle 108 is set to CyberInv.exe that is the
friendly name of the executable software component;
AssemblyProduct 110 is set to 0006-00001-00 that is the
part number of the executable software component and
AssemblyVersion 112 is set to 1.0.1.0, which is the version
number of the executable software component. Once the
source code is compiled and the executable is built (Cyber-
Inv.exe in this case), the configured assembly information is
available via the File Property of Windows 114 when right
clicking on the file Cyberlnv.exe and selecting “Properties”
and “Version”, as shown at 116. The friendly name is shown
in the Description field 118, the part number is shown in the
Product Name field 120, 122 and the version is shown in the
File Version field 124.

[0044] 1t will be apparent to those of skill in the art of
software development that intrinsic information that
uniquely identifies each executable software component
may be obtained in various combinations of assembly direc-
tives and file property fields. Additional information may be
configured such as, for example, the software component
part number, major version number, minor version number,
build number, revision number, project name, type of soft-
ware component, language variant, game regulation variant,
friendly name, identification of the certification laboratory,
identification of the client, and other predetermined identi-
fication identifiers. The identifiers associated with the
executable software component using source code assembly
directives may, therefore, be traceable via the File Property
features of the Windows operating system.

[0045] An example of such a configuration is CST3000-
0006-00001-00 [1.0.1.01{21}"11~9% S Cyberlnv.exe that
comprises a concatenation of identifiers that may be used in
a file name or a PKI certificate subject name. According to
this example, CST3000 is the marketing system product
identification or the project name; 0006-00001-00 is the
software component part number; [1.0.1.0] details the soft-
ware component major version number, minor version num-
ber, build number, revision number; {21} is the software
component variant identifier; “11 identifies the certification
lab that certifies the software component; ~9 identifies the
customer for which this software component is certified; %
S is the software component language variant (“S” for
Spanish in this example); Cyberlnv.exe is the software
component friendly name for quick identification. Spaces

US 2005/0172336 Al

may be used freely and the identifier fields may be written
in any order so as to facilitate reading. Identifier fields may
be omitted whenever the context already provides such
information. The framing or delimiter characters such as [],
{},~, ", % which are allowable characters to be used in file
names and certificate subject names facilitate human recog-
nition as well as string searches for particular attributes
(global search for all Spanish variants for example).

[0046] In the same manner, a selected set of identification
information making up the certificate subject name may be
used for making up the file name of PKI certificate related
files such as *.CER, *.P7B and *.PVK such as to facilitate
human identification, string searches and file searches.

[0047] FIG. 2 illustrates traceability via the Windows
Event Log. Reference numeral 200 in FIG. 2 illustrates the
information uniquely identifying each executable software
component being made available to the Windows Event Log
upon execution of the software component. The Windows
Event Log 202 is a repository for logging important events;
it is viewed via the Event Viewer 204. Windows default
event log bins (or containers) are Application, Security and
System. In the illustrated example, an Event Log bin 206
denominated “Cyberscan” has been added. The Cyberscan
bin 206 contains traceability information in its “Source”
field that is being logged by each of the executable software
components. The software executable software component
makes use of the Event Log API to “splash” its identification
information into the source field of a predetermined bin in
the Windows Event Log each time it starts execution, or at
any other time should the occurrence of an event be traced,
in order to provide an audit trail to be examined by auditors.
The part number 214, version 216 and friendly name 212
identifiers associated to the executable software component
using source code assembly directives 201 are therefore
traceable via the Event Log features of the Windows oper-
ating system. Other information associated with the execut-
able software component may be splashed into the event log
for additional traceability. The “Type” field 208 may flag an
important audit condition such as here “Failure Audit” to
alert the auditor.

[0048] FIG. 3 illustrates the Certificate “Issued to” Field.
Reference numeral 300 illustrates the information 308 (test
certificate indicator 318, project/product code 320, type of
executable code 322, part number 324, major/minor/build/
version 326, certification lab identifier 328, friendly name
330) uniquely identifying each executable software compo-
nent being used to generate the “Subject Name”316 (or
“Issued to” field 306, 314, or also known as the “Common-
Name” field) of the individual PKI certificate 304 associated
with each executable software component, according to an
embodiment of the present invention. The friendly name,
part number and version of the executable software compo-
nents may be substantially identical to those entered in the
source code assembly 302. “Subject Name”316 and “Issued
to” field 306, 314 refer to the same information; Subject
Name is preferably used hereafter. The certificate authority
312 responsible for generating the PKI certificate is shown
in the “Issued by” field 310.

[0049] FIG. 4 at 400 illustrates the information that may
be entered in the Extended Attributes 408 of a PKI certificate
402, according to an embodiment of the present invention.
This information may be viewed by selecting, for example,

Aug. 4, 2005

the “Details” tab 404 of the certificate 402 and selecting
“Extensions Only”, as shown at 406. Intrinsic information
that uniquely identifies each executable software component
may be entered in the extended attributes of a PKI certificate
in order to attain the same purpose as described for FIG. 3
as an alternative to entering the information in the certificate
Subject Name. In the same manner, additional identification
information to those entered in the Subject Name may be
entered in the extended attributes.

[0050] FIG. 5 illustrates traceability via the Trusted
Inventory Tool 504, according to an embodiment of the
present invention. Reference numeral 500 in FIG. 5 illus-
trates the information that may be obtained using the Trusted
Inventory tool 504. The trusted inventory tool 504 is a
simple application that searches for executable files through
the branches of a given tree directory and determines
whether the executable software component may be trusted
by, for example, calling the Microsoft ChkTrust.exe tool. If
the executable software component is signed by a valid PKI
certificate and its executable binary data is uncorrupted (its
recalculated hash matches the code signature), the ChkTrus-
t.exe tool returns the authenticode “Trusted” attribute; an
“Untrusted” attribute is returned otherwise. The Trusted
attributes are automatically tabulated in a spreadsheet such
as, for example, Microsoft Excel as depicted at 506. Each
line 508 in the table provides details on the executable
software component that is being examined, such as pro-
gram path location 510, friendly name 512, executable type
514, authenticode trusted attribute 516, part number 518 and
version 520. According to an embodiment of the present
invention, therefore, the part number 518, version 520 and
friendly name 512514 identifiers associated with the execut-
able software component using source code assembly direc-
tives 502 are traceable via the Trusted Inventory tool.

[0051] Reference numeral 600 in FIG. 6 illustrates the
information that may be entered to configure a type-certifi-
cate Software Restriction Policy rule. A Software Restriction
Policy (SRP) 604 may be configured using the Group Policy
Object Editor 606. The type-certificate Software Restriction
Policy rule 610 may be entered in the “Additional Rules”
node 608 of the Software Restriction Policy object 614. In
FIG. 6, the part number, version and friendly name config-
ured in the source code assembly 602 are recognizable in the
certificate subject name 612.

[0052] FIG. 7 illustrates SRP Certificate Rules Policies
via the Group Policy Management Console, according to an
embodiment of the present invention. Reference numeral
700 in FIG. 7 illustrates the policies that are associated to
the active directory container used to configure the gaming
machines referenced at 706. Policies are managed using the
Group Policy Management Console 702, 704. In this illus-
tration, a policy named “SRP_Cyberlnv”708, 710, 712 is
selected, for the purpose of viewing a detailed report of the
rules that are configured. The report shows details in a
hierarchical order. This exemplary policy defines only one
certificate rule 716 in the Software Restriction Policy node
714. The certificate subject name 718 is set with a security
level 720 of “Unrestricted”, as shown at 722, thus ensuring
that only the executable software component identified in
the certificate subject name is authorized to execute when
the policy 714 is enforced. The SRP path rules 724 must be
configured such as to prevent non-authorized software from

US 2005/0172336 Al

executing. The policy 708 is enforced when it is linked to its
container object 706 herein named “Gaming Machines”.

[0053] Reference numeral 800 in FIG. 8 illustrates an
exemplary cycle from the moment a game is being created
until it is first executed on a gaming terminal, according to
an embodiment of the present invention. The flowchart 800
starts at 802 when the decision to initiate a project to develop
and release a new game is made. The game developer
(Cyberscan here, for illustrative purposes only) 804 devel-
ops a new game application 806 whose code must be
certified at 810 by a recognized certification lab 808. The
certified code must then be signed as shown at 812 using
PKI certificates produced by a certificate issuing authority
(CA) 814 controlled by a trusted party 816. The trusted party
816 may be the certification lab 808. The signed executable
software components may be packaged in code-signed MSI
installation packages signed in a manner substantially iden-
tical to the executable software components, that is, with a
unique PKI certificate whose subject name contains part
number, version and friendly name identifiers for the MSI
package. The MSI packages together with scripts may then
be copied to a removable media, such as a CD-ROM 818 for
example.

[0054] The game operator 820 receives the CD-ROM and
when it decides to deploy the new game 822, it copies the
packages and associated scripts from the removable media
into a library repository on a server 824 (the DEPLOY
server in this case). The scripts contain automation tasks
such as copying to the repository and configuring the
policies.

[0055] In the case of gaming terminals connected in a
LAN, each gaming terminal 826 is controlled by the policies
as soon as they are enforced. The Software Installation
Policies (SIPs) controlling the installation of the new game
automatically execute the MSI installation packages upon
policy enforcement, provided the corresponding Software
Restriction Policies have been configured to authorize the
execution of the MSI installation packages. This process is
performed at 828, 830. If no SRP authorizes the execution
of the MSI installation packages, the installation is ignored,
as shown at 832. When the MSI installation package is
authorized to execute, the software components and other
files contained in the package may be copied to the gaming
terminals, as suggested at reference numeral 834836. Other
configuration tasks may also be carried out during the
Microsoft installer installation process such as, for example,
setting the Windows registry, setting shortcuts and installing
software patches.

[0056] Download of the game software components from
the game repository to the gaming terminals may occur as
soon as the associated Software Installation Policies are
enforced (and the SRPs for the MSI installation package is
permitted accordingly). Therefore, scheduling of the down-
load may be achieved by simply enforcing the associated
software installation policies at a given time; this may be
accomplished by having an operator manually enforcing the
SIP at a predetermined time via the group policy manage-
ment console, or having a process automatically enforcing
the SIP at a predetermined time via the API to the group
policy management console. Enforcing a policy may be
achieved by linking the selected policy to the selected policy
object in the domain controller active directory.

Aug. 4, 2005

[0057] Game activation 840 that authorizes execution of
the game may be achieved by enforcing the associated
Software Restriction Policies. In the same manner, sched-
uled game activation and deactivation in order to offer
selected authorized games to the players at predetermined
authorized times may be achieved by simply enforcing the
associated Software Restriction Policies at a given time; this
may be accomplished by having an operator manually
enforce the SRP at a predetermined time via the group policy
management console, or having a process automatically
enforce the SRP at a predetermined time via the API to the
group policy management console. Enforcing a policy may
be achieved by linking the selected policy to the selected
policy object in the domain controller active directory.
Alternatively, a selected executable software component
may be prevented from executing by configuring its asso-
ciated SRP security level to “disallowed”.

[0058] At this stage, a global verification process 842, 844
as described relative to FIG. 9 may advantageously be
executed to verify the trust of every software component
installed on the gaming terminal. Should the global verifi-
cation fail, the gaming terminal may be locked at 846
pending servicing by an attendant.

[0059] When a player selects a game from a gaming
terminal 838 from a selection menu and requests execution
thereof, as shown at 848, the authenticodes of the game’s
executable software components are verified by the associ-
ated enforced Software Restriction Policy as shown at 850
before beginning execution 858. Should the authenticode
verification fail at 852, the gaming terminal may be locked
at 854 pending servicing by an attendant. If the code is
trusted, as verified by the associated enforced SRP, the game
is allowed to execute, as shown at 858.

[0060] Policy changes are automatically distributed by the
Windows server operating system throughout the network
connected gaming system at periodic intervals; this auto-
matic process may be disabled if required. Alternatively, the
RegisterGPNotification function may be used by the game
application software executing on each gaming terminal to
check if an applicable group policy has changed. The
gaming terminal may then decide on enforcing the policies
locally immediately. The gpupdate.exe service, the Refresh-
Policy function or the RefreshPolicyEx function may be
used by the game application software executing on each
gaming terminal to enforce the configured policies. A reboot
may optionally be performed in order to recheck the gaming
terminal trusted base and ensure the policies have been
completely enforced (long game installation for example).

[0061] The RegisterGPNotification function enables an
application to receive notification when there is a change in
policy. When a policy change occurs, the specified event
object is set to the signaled state. Further information on the
RegisterGPNotification function may be found at: http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/
policy/policy/registergpnotification.asp. The RefreshPolicy
function causes policy to be applied immediately on the
client computer. Further information on the RefreshPolicy
function may be found at: http://msdn.microsoft.com/li-
brary/default.asp?url=/library/en-us/policy/policy/refresh-

policy.asp. The RefreshPolicyEx function causes policy to
be applied immediately on the computer. The extended
function allows specifying the type of policy refresh to apply

US 2005/0172336 Al

to be specified. Further information on the RefreshPolicyEx
may be found at http://msdn.microsoft.com/library/defaul-
t.asp?url=/library/en-us/policy/policy/refreshpolicyex.asp.

[0062] The menu of authorized games offered to the player
may be dynamically generated by each terminal without
requiring the central system to dispatch the list of authorized
games or having each terminal fetch the list of authorized
games from the central system; this may be done by having
each terminal check the policies enforced on the games. This
may be accomplished by having a process in each terminal
attempt to execute each of the entry point for each game (the
parent module which is first called upon selecting a game to
play). If the execution succeeds, then the game is authorized
and may be added to the games menu offered to the player.
If the execution is denied (SRP is unlinked or the security
level is disallowed), then the game is not authorized and it
is removed from the games menu offered to the player.
Similarly, if a game entry software component file is not
found, then the software is not installed or has been removed
and is removed from the games menu offered to the player.
The process of dynamically generating the game selection
menu may be optimized in many ways in order to reduce the
game time to start overhead to check if it is authorized.

[0063] In a casino, although new games may be scheduled
to be downloaded to gaming terminals and activated at
predetermined times, it is a requirement that games may not
be changed while a player is playing. In practical terms, a
player is considered to have terminated his or her game play
when the player’s credit balance remains at zero for a
predetermined period of time. The predetermined period
time is sufficient for allowing the player to enter a new bill
or other form of credit instrument to continue playing.
Therefore, the game application software on each game
terminal may, according to embodiments of the present
invention, continually test for this condition (credit=0 for a
predetermined time) before checking for change in policy,
enforcing the policy changes and then updating the menu of
games to be made available to the next player.

[0064] FIG. 9 at 900 illustrates the global verification
process performed by a terminal to check that no unautho-
rized files are allowed to execute or affect the game outcome.
This process may be performed by any of the subsystems
connected in the gaming systems.

[0065] The process may start with a computer cold or hot
reboot 902 such that the operating system trusted base may
be thoroughly verified before the game software components
are verified. The trusted base is detailed in commonly
assigned and copending US application serial number PCT/
US2002/029927, entitled “Secure Game Download”, attor-
ney docket—CYBS5819, the specification of which is incor-
porated herein by reference, and also in Microsoft Next
Generation Secure Computing Base (NGSCB), also incor-
porated herein by reference. Details of Microsoft’s NGSCB
are located at www.microsoft.com/ngscb. During the trusted
base verification, the integrity of the Driver Signing frame-
work, the Windows File Protection framework and Software
Restriction Policies framework are verified. With NGSCB
operating system such as forthcoming “Longhorn”, a frame-
work called Nexus deeply integrated directly within the
hardware components (in each major chipsets) and the BIOS
which constitutes a mechanism for authenticating the trust-
worthiness of the software and hardware configuration, is

Aug. 4, 2005

booted prior to checking the integrity of the Driver Signing
framework, the Windows File Protection framework and
Software Restriction Policies framework.

[0066] On completion of the operating system boot-up
902 or at another time, the global verification process 904
may be executed. The Cyberlnv process 910, 914 is also
shown and described at FIG. 5. The CyberlInv process 910,
914 verifies all the executable files in given folder trees such
as 912 (*.exe, *.dll, *.ocx, *.vbs, *.bat, *.msi, *.cab, for
example) for trustworthiness. If any file is found to be
untrusted as shown at 932, then the gaming terminal may be
frozen as shown at 934 pending examination by security
personnel. A spreadsheet file 916 may be produced that list
the verification status of each executable file. If the authen-
ticode of all the files is trusted as shown at 918 then the
Cyberlnv process 908, 910, 914, 924 returns at 920 a trusted
status, as shown at 926930. Consequently, all of the execut-
able software components may be considered to be trusted,
as shown at 930.

[0067] However, it is to be noted that the fact that an
executable software component is trusted does not imply
that the software component is authorized to execute; it
merely indicates that the software executable software com-
ponent has a valid authorized authenticode certificate and
that the software component binary data is not corrupted.
Checking whether an executable software component hav-
ing a valid authorized authenticode certificate is authorized
to execute requires that the applicable Software Restriction
Policy be checked. This may be performed automatically
when the software component is loaded by the operating
system to start its execution, either when dynamically build-
ing the menu of authorized games, or each time upon
starting execution of the game when the player has selected
a game to play—or using an appropriate service that may be
called by an application.

[0068] Although RM (Rights Management) and DRM
(Digital Rights Management) technology from Microsoft is
readily available for authenticating the trustworthiness of
non-executable files such as media files, Word files and
emails, for example, it adds management complexity on top
of the Software Restriction Policy framework when used in
a network-connected gaming system. Addressing this,
embodiments of the present invention offer a method for a
network connected gaming system to trust non-executable
files such as initialization or configuration files, video files,
sound files, multimedia files, file containing list of hashes,
CRCs, and/or signatures. The present method relies on
packaging the non-executable files in a MSI installation
package, the MSI package being subsequently code-signed
with a unique certificate and the appropriate Software
Restriction Policy is configured to enable installation
(execution in fact) of this MSI package. Executable files and
non-executable files may be packaged together for conve-
nience. The selected aggregate of executable files and non-
executable receives at least a part number (and preferably a
version number as well) that is used in the subject name of
the associated certificate. Consequently, according to
embodiments of the present invention, when the MSI pack-
age is installed, the installed non-executable files are
obtained from a trusted and authorized source.

[0069] As the CyberInv process 908 has authenticated the
trustworthiness of all the *.msi files 911, therefore whenever

US 2005/0172336 Al

there is a need to ensure that the non-executable files are
trusted, the associated MSI package is re-installed. It is to be
noted that the service that performs the installation of the
MSI packages (msiexec.exe in the current versions of Win-
dows) may be executed with a variety of execution modi-
fiers, such as shown at http://www.microsoft.com/technet/
treeview/default.asp?url=/technet/prodtechnol/winxppro/
proddocs/msiexec.asp. Of particular interest is the ¢ option
that reinstalls a file if it is missing or if the stored checksum
of the installed file does not match the new file’s value (the
log file will contain the anomalies detected for subsequent
forensic analysis), as shown at 936. In the global verification
process 904, the ¢ option of the msiexec.exec command may
be used for re-installing every package containing configu-
ration files 938 (such as initialization or configuration files,
files containing list of hashes, CRCs, and/or signatures),
Flash files 940 (Macromedia Flash and Director), and other
media assets files 942 in order to ensure the trustworthiness
of these files.

[0070] Subsequent to completion of process 908, all the
MSI packages for the executable software components may
be re-installed with for example, the msiexec.exe command
using the p option in order to re-install missing authorized
executable software components (the log file will contain the
anomalies detected for subsequent forensic analysis).

[0071] Subsequent to the successful completion of the
global verification process 904, the trustworthiness of the
game application framework is established and may be
started, as shown at 906.

[0072] TItis to be noted that when a player wins an amount
equal to or greater than $25,000 in a casino, there is a
requirement to check the integrity of the gaming application.
With legacy gaming terminals, the gaming terminal is pow-
ered-down and the ROMs are extracted in order to be
verified in a trusted verifier named a “Kobetron”. The
Kobetron produces a signature for each of the ROMs that is
compared with the corresponding signature produced by the
certification lab. In this manner, the integrity of the all the
software components of the legacy gaming terminal, includ-
ing the operating system, the game application and the
configuration data may be verified. According to embodi-
ments of the invention, when executing the global verifica-
tion process 904 subsequent to the gaming terminal bootup
at 902, a verification equivalent to a “Kobetron verification”
may be performed. This metaphor helps greatly in the
acceptability of downloadable game technology by game
regulators who are reluctant to accept state-of-the-art oper-
ating systems, multimedia and network technologies.

[0073] FIG. 10 at 1000 illustrates the configuration of the
three parties involved in a new game cycle detailed at FIG.
8, according to an embodiment of the present invention. The
three parties involved in a game cycle, according to embodi-
ments of the present invention, are the game developer 1002
whose facilities are located in a given city 1004, the certi-
fication laboratory 1006 whose facilities are located in a
given city 1008 and the gaming operator 1010 located in a
given city 1012. The game developer 1002 and the certifi-
cation lab 1006 may have a network 1020 of connected
gaming system(s) representative of the network connected
gaming system in place at the location (e.g., the casino) of
the gaming operator 1010. In addition, the game developer
1010 and the certification lab 1006 each may have an

Aug. 4, 2005

integrated software development environment for compiling
the game applications source code, each capable of manag-
ing at least 200 games for 50 distinct game operators as
shown at 1044, (resulting in thousands of source code
variants due to local regulation variances). The development
environments may be kept synchronized via the secure
network link 1016, 1018, 1014, 1022, 1020. A certification
authority (CA) 1040 may be located at the game developer’s
site or may be controlled by an authorized trusted party such
as VeriSign. The game developer site and the certification
lab site may be accessible from the outside by authorized
mobile users 1034, 1028 via secure links 1022, 1018, 1030,
1036. Logon authentication may be carried out using, for
example, smartcards as shown at 1038, 1032 or by other
secure means.

[0074] The game developer 1002 supplies the certification
lab 1006 with a CD-ROM (or other media) containing the
software components to be tested, as shown at 1048. The
certification lab then certifies the software components sup-
plied on the CD-ROM and provides the game developer
1002 with a CD-ROM containing the certified software
components for deployment, as shown at 1046. The CD-
ROM 1046 containing the authorized software components
that were tested and certified by the certification lab 1006
may then be provided to the game operator (e.g., the casino)
for installation and deployment on one or more of the
gaming machines GM001, GM002, GM2995 coupled to the
network 1024. The certified authorized software compo-
nents are code-signed using a certificate produced in accor-
dance with an embodiment of the present invention, as
described hereinabove. The network 1024 is preferably not
coupled to any external network, as suggested at 1026.

[0075] FIG. 11 shows a 12-Step Integrated Certification
Environment Process, according to an embodiment of the
present invention. Shown at 1100 are the 12 folders 1110
created on the disk repository 1102 of the development
environment. The 12 folders 1110 are mapped to the 12-step
procedure 1104 to 1106 involved in producing the CD-ROM
1050 containing the certified authorized software compo-
nents. Each folder contains the computer resources and
instructions to carry out each step. The folders are clearly
named with the step number and the title description of the
procedure step at 1108.

[0076] FIG. 12 shows a dataflow diagram of Step #1 to
Step #3 of the Integrated Certification Environment Proces-
sor for producing certified authorized software components,
according to an embodiment of the present invention. Step
1 at 1220 may include obtaining a snapshot 1212 of the
repository 1204 containing the game developer’s source
code 1206, data files 1208 and media assets 1210 in order to
configure the building environment of the reference platform
with all the source code, data files, media asset files and
resources files required to initiate the certification process.
The snapshoot files 1212 may be stored in a repository 1218
controlled by a version configuration and control system
(SCCS) such as Microsoft Visual Source Safe 1214 (VSS)
on the DEV development computer 1216. The files may be
grouped in project directories as “Projects” such that the
source files, control files and resource files are stored in
convenient systematic fashion in the Visual Studio reposi-
tory 1240 on the development computer 1238. An inventory
of the files submitted for certification may be produced. Step
1 may be qualified as “SETUP Projects”1222.

US 2005/0172336 Al

[0077] Step 2 at 1232 may include compiling the source
code and producing binary executable code. Microsoft
Visual Studio 1224 is constructed so as to manage source
code as projects (a project can be a given game) regrouping
all of the dependent source code, and data files. Step 2 is also
referenced as building the projects or “BUILD Projects”, as
shown at 1234. Media assets may require a different com-
piling environment on the DEV computer 1230 such as the
Macromedia Director 1228.

[0078] Step 3, shown at 1242 may include producing the
projects MSI packages 1244 for the source code compiled in
Step 2. Relevant non-executable file such as configuration
files and media assets may be packaged in MSI packages
with the compiled source code. It is to be noted 1246 that
packages will be built again (step 8 hereafter) after code
signing of EXE, DLL, OCX and other executables (step 6
hereafter). Step 3 may be referenced as “BUILD Packages
Pass #171244.

[0079] FIG. 13 shows, at 1300, the dataflow for step 4 to
step 12 for producing the certified authorized software
components, according to an embodiment of the present
invention. Step 4 at 1308 calls for the Cyberlnv.exe process
1306, for a selected project (a Visual Studio project may
typically regroup all the software components for an entire
game), perform an inventory 1304 of the compiled software
components produced by Visual Studio 1302 on completion
of the Build Project process 1234 (FIG. 12) as well as the
MSI install packages produced by the Build MSI Packages
Pass #11244 process (FIG. 12). The Cyberlnv.exe 1306
process may also include any other executable software
components not directly managed under Visual Studio such
as, for example, ocx, *.vbs, *.bat, *.cab, *js. (in fact, any
executable component that is supported by the Software
Restriction Policy technology).

[0080] The Cyberlnv.exe process 1306 produces the
Cyberlnv.exe 1307 Excel spreadsheet file 916 shown at
FIG. 9, which is examined by an authorized user in the MS
Excel program 1310. The Cyberlnv.xls 1307 file is copied to
the folder “Step 4—Cyberlnv” folder in 1110 in FIG. 11.
The binary files having just been compiled are not code-
signed; consequently the authenticode field shows an
“Untrusted” status for each of the binary components. The
friendly name, file type, part number and version (including
build number) are extracted directly from the assembly
information contained in the source code, therefore truly
reflecting the identity of the source code component.

[0081] Because the build number is incremented each time
the code is recompiled in a Build operation, it is to be noted
that the version number will change accordingly. The autho-
rized user eliminates the rows that are irrelevant to the game
to be certified and saves the file under the CyberCert.xls
1311 file name which contains the necessary friendly name
512, executable type 514, part number 518 and version 520
information to compose the PKI certificate subject name in
accordance with method detailed at FIG. 3 for subsequent
code signing. The program path location 510 of the unsigned
software components is also available for later retrieval of
the unsigned binary file. The CyberCert.xls 1311 file is
copied to the folder “Step 5—CyberCert” folder in 1110 in
FIG. 11.

[0082] The CyberCert.xls 1311 file may be securely cop-
ied in encrypted form to a removable media such as a floppy

Aug. 4, 2005

disk, a CD-ROM or a USB disk 1312, or alternatively
transferred to another location by secure communication
means.

[0083] The CyberCert.xls 1311 file is split into 2 files
CyberSignl.xls 1317 and CyberSign2.xls 1319.
CyberSign2.xls contains only the rows associated to the MSI
packages and CyberSignl.xls contains the rows correspond-
ing to the other executable file. CyberSignl.xls is copied to
the “Step 6—CyberSign (Pass #1)” folder in 1110 in FIG.
11, and CyberSign2.xls is copied to the “Step 8—CyberSign
(Pass #2)” folder.

[0084] Step 5 at 1316 includes having a certification
authority (CA) 1315 located at the game developers’ site or
controlled by an authorized trusted party such as VeriSign
generating certificates in accordance with the details pro-
vided in the CyberCert.xls 1311 file, that is, with a subject
name created in accordance with the method detailed rela-
tive to FIG. 3. An automated process CyberCert.exe 1318
executing on the off-line CA computer Windows server
named CS111314 may automate the generation of the PKI
public certificates 1326 and the associated private keys 1328
using the CyberCert.xls 1311 file.

[0085] The trusted root certificate for the authorized CA
1320 is supplied to the certification lab, the game regulators
or other parties for reference and for importing as a trusted
root into the ICE computer system and the gaming system
certificates store.

[0086] The public certificates 1326 and their associated
private keys 1328 are forwarded to the DEV computer 1332
of the ICE system in encrypted form on a removable media
such as a floppy disk, a CD-ROM or a USB disk 1324, or
alternatively transferred by secure communication means.
Public certificates 1326 and their associated private keys
1328 that are associated with the MSI packages are copied
into the “Step 6—CyberSign (Pass #1)” folder in 1110, and
the other public certificates 1326 and their associated private
keys 1328 that are associated with other software compo-
nents are copied to the “Step 8—CyberSign (Pass #2)”
folder.

[0087] Step 61336 includes steps of code signing the
non-MSI executable components listed in the
CyberSignl.xls 1317 file using the corresponding public
certificates 1326 and their private keys 1328. The code
signing may be performed using the SignCode.exe utility
provided by Microsoft, or equivalent. A password may be
required for the private key depending on the security option
selected when generating the certificate at the CA. The
CyberSign.exe process 1330 may automate the code-signing
of all the non-MSI executable components listed in the
CyberSignl.xls 1317 file using the friendly name, file type,
part number and version (including build number) given in
each row. The CyberSign.exe process may call the Sign-
Code.exe utility or the equivalent API. During the code
signing process, the compiled executable software compo-
nents may be replaced at 1339 by their code-signed form.
Step 6 is designated as “CodeSign Pass#171338.

[0088] Step 7 at 1344 includes re-building all the MSI
install packages 1345 performed during step 3 at 1242. This
time, the MSI packages contain the non-MSI code-signed
executable components.

[0089] Step 8 at 1340 includes code signing the MSI
executable components listed in the CyberSign2.xls 1319

US 2005/0172336 Al

file using the corresponding public certificates 1326 and
their private keys 1328. The code signing may be performed
using the SignCode.exe utility provided by Microsoft, or
equivalent. A password may be required for the private key
depending on the security option selected when generating
the certificate at the CA. The CyberSign.exe process 1330
may automate the code-signing of all the MSI executable
components listed in the CyberSign2.xls 1319 file using the
friendly name, file type, part number and version (including
build number) given in each row. The CyberSign.exe pro-
cess may call the SignCode.exe utility or the equivalent API.
During the code signing process, the executable MSI soft-
ware components may be replaced 1341 by their code-
signed form. Step 8 is designated as “CodeSign Pass#2” at
1342. The executable MSI software components are copied
as shown at 1371 to the CD Pre-Burn repository 1372.

[0090] Because of the necessity of performing step 7, the
CyberSign 1330 code-signing process to be used for the ICE
(Integrated Certification Environment) is designated a
“2-Pass code-sign”, as indicated at 1334.

[0091] Step 91366 includes (a) configuring the software
restriction policy (SRP) 1360 for the ICE system test gaming
terminals (via the active directory 1350 in the domain
controller DC) with the certificate rules corresponding to the
certificate produced at step 5 (the *.p7b certificate at refer-
ence numeral 1326 may be converted to *.cert certificates
for compatibility reasons when configuring the SRP); (b)
configuring the Software Installation Policy (SIP) 1368 for
the ICE system test gaming terminals with the MSI packages
produced at step 7, then (c) using the GPMC (Group Policy
Management Console) or equivalent service, exporting the
SIP via SIP export scripts 1362 and the SRP via SRP export
scripts 1364 (the policy export facility is available in the
Group Policy Management Console GPMC 702, 704).
These SIP and SRP export scripts may be copied into the
folder “Step 9—SIP & SRP” folder in 1110. These SIP and
SRP export scripts may be later imported in the gaming
operator’s 1010 gaming system for enforcing the policies on
the game components. SIP export scripts 1362 and SRP
export scripts 1364 are stored in the CD Pre-Burn repository
1372 (or into the folder “Step 10—CD Burn-Casino
Release” folder in 1110).

[0092] Step 10 at 1374 includes steps of burning at 1384
to a CD-ROM 1376 or other removable media the content of
the CD Pre-burn repository 1372 comprising (a) the execut-
able MSI software components 1371; (b) the SIP export
scripts 51362 and SRP export scripts 1364 and (c) other
automation scripts in order to automate the installation of (a)
and (b). A copy of CD-ROM 1376 may be forwarded (a) to
the gaming operator’s 1010 gaming system for game
deployment (such as a casino 1379), (b) to the certification
lab 1378, and (c) a trusted party 1377 such as a lawyer or in
escrow for impartial reference in case of later dispute. The
CD-ROM 1376 may later be inserted at 1050 in the gaming
operator’s 1010 gaming system for game deployment.

[0093] Step 11 at 1370 includes steps of (a) taking a
snap-shot 1387 of the entire development environment for a
selected certified game (Visual Studio repository 1302 and
Visual Source Safe repository 12141218 that contains all the
source file, the compiled code-signed executable files and
dependant executable files, the non-executable files, project
solution, automation scripts, the source and compiled signed

Aug. 4, 2005

code from other development platforms, the media assets
from media development platforms such as MacroMedia
Director 1228); in (b) taking a snap-shot 1387 of the
code-signed MSI installation packages; in (c) optionally
encrypting them; and then in (d) copying them into a CD
pre-burn repository 1388 (or into the folder “Step 12—CD
Burn-VS Snapshot” folder in 1110).

[0094] Step 12 at 1386 includes steps of burning at 1382
to a CD-ROM 1380 or other removable media the content of
the CD Pre-burn repository 1388 comprising the software
components of step 11. A copy of CD-ROM 1380 may be
forwarded to the certification lab 1378 and to a trusted party
1377 such as a lawyer or in escrow for impartial reference
in case of later dispute.

[0095] Steps 4 to step 12 should be carried out each time
a source code is being recompiled subsequent to a modifi-
cation because a unique certificate must be associated to
each build. Deviating form this order may jeopardize cer-
tificate integrity because of the risk of a human error that
may result in the wrong certificate being used during the
code signing process.

[0096] FIG. 14 illustrates assignment of policies by banks
of gaming machines. Reference numeral 1400 in FIG. 14
shows the grouping of gaming terminal and the associated
enforced policies. In this illustration, the Group Policy
Management console 1402 may be configured such that the
active directory Organization Unit (OU) named “Gaming
Terminals Floor” at 1404 is architectured to regroup the
gaming terminals in “banks” or sub-Organization Units
(sub-OUs) identified by 200A0x 1406, 200BOx 1408,
200C0x 1410, and 200D0x to 200K0x at reference numeral
1412. Each bank contains a predetermined number of gam-
ing terminals, in multiples of 8 units, for example.

[0097] Noting the hierarchical tree composed of the OUs
and sub-OUs illustrated at 1400, all the policies 1414 apply
to the OU “Gaming Terminals-Floor”1414 which contains
all the sub-OUs 140614081410 and 1412. Using this tech-
nique, all the policies 1414 may apply to all the 3000 gaming
terminals of a large casino. In the same manner, the policies
1416, 1418 apply to the bank 1406; the policies 1420, 1422
apply to the bank 1408; and the policies 1424, 1426 apply
to the bank 1410.

[0098] In the illustration, the exemplary game named
“Roulette” is assigned a policy named “Sbm1.5-SIP-Rou-
lette (GLI)”1416 which configures the Software Installation
Policy (SIP) and a policy named “Sbm1.5-SRP-Roulette
(GLI)’1418 which configures the Software Restriction
Policy (SRP) for that game.

[0099] In the same manner, the exemplary game named
“Infinity” is assigned a policy named “Sbm1.4-SRP-Infinity
(GLI)”’1424 which configures the Software Installation
Policy (SIP) and a policy named “Sbm1.4-SRP-Infinity
(GLI)’1426 which configures the Software Restriction
Policy (SRP) for that game.

[0100] The keyword “Sbm1.4”, in this example, denotes
the certification submission number 1.4, and the keyword
“GLI” denotes the certification lab GLI (Game Laboratories
International) approving the Infinity game software.

[0101] In the illustration, all of the game terminals
regrouped in the bank 200A0x shown at 1406 are, therefore,

US 2005/0172336 Al

configured to execute the Roulette game, all the game
terminals in the bank 200B0x shown at 1408 are configured
to execute the Roulette game and the Infinity game, and all
the game terminals in the bank 200C0Ox shown at 1410 are
configured to execute the Infinity game.

[0102] FIG. 15 shows the enforcement of a Software
Installation Policy (SIP). In FIG. 14, banks of gaming
terminals are configured to execute authorized games using
SIPs and SRPs policies. However, in order for the gaming
terminals to be able to install a game, the associated Soft-
ware Installation Policy must be enforced. At 1500, FIG. 15
illustrates a method for enforcing a Software Installation
Policy by “linking” the policy, according to an embodiment
of the present invention. This is accomplished in the Group
Policy Management console 1502 by, e.g., right-clicking the
selected policy 1504, 1506“Sbm3.3-SIP-INFINITY 95~
associated to the Infinity game with a Return To Players
(RTP) percentage of 95% and selecting the “link Enabled”
attribute 1514. The software components for the Infinity_ 95
game contained in the two MSI installation packages 1510
and 1512 will subsequently be installed, provided the asso-
ciated SRPs are configured to authorize execution of these
two MSI packages (refer to description for FIG. 16). Alter-
natively, the same procedure may be automated via an API
called from an appropriate application. It is to be noted that
the linking of the policy will in fact enable the enforcement
of the policy, but the policy will only be enforced on the
gaming terminal when a gpupdate command or equivalent
command is performed at the terminal; a terminal reboot
may also be required for the policy to be enforced. Also to
be noted is that policy changes are automatically distributed
by the Windows server operating system throughout the
network connected gaming system at periodic intervals; this
automatic process may preferably be disabled such as to
obtain more predictable policy enforcement changes by
issuing explicit commands instead.

[0103] Package 1512 (friendly name: Infinity95.msi) con-
tains the executable software components for the Infinity
game and package 1510 (friendly name:
Infinity95.Config.msi) contains the configuration files (the
non-executable files) for the Infinity game. Package
Infinity95.Config.msi 1510 is re-installed in the process 938.

[0104] FIG. 16 illustrates the enforcement of a Software
Restriction Policy (SRP). In FIG. 14, banks of gaming
terminals are configured to execute authorized games using
SIPs and SRPs policies. However, in order for the gaming
terminals to be able to execute the games, the policies must
be enforced. FIG. 16 at 1600 illustrates a method for
enforcing a Software Restriction Policy 1608 by “linking”
the policy. This is accomplished in the Group Policy Man-
agement console 1602 by, e.g., right-clicking the selected
policy 1604, 1606“Sbm3.3-SRP-INFINITY_95” associated
to the Infinity game with a Return To Players percentage
(RTP) of 95% and selecting the “link Enabled” attribute
1624.

[0105] The certificate rules 1610, 1616 and 1620 that are
configured with the “Unrestricted” attribute 1618, 1622
authorize the installation of the software components for the
Infinity_ 95 game contained in the two MSI installation
packages 1510 and 1512 by authorizing the unique PKI
certificate associated to those MSI produced in accordance
with the present method. The “.dll” executable software

Aug. 4, 2005

component 1612 is authorized, has its security level attribute
set to “Unrestricted” and is, therefore, authorized to execute
once it is installed.

[0106] The two MSI installation packages 1510 and 1512
for installing the software components for the Infinity_ 95
game have their associated unique PKI certificate 1616 and
1620 (produced in accordance with the method described
herein) configured with the “Unrestricted” security level
attribute 1618, 1622 via the certificate rules 1610, thus
enabling (or authorizing) execution and installation of the
software components for the Infinity_ 95 game.

[0107] The “.dll” executable software component con-
tained in the 1512 package has its security level attribute set
to “Unrestricted” thus it is authorized to execute once it is
installed.

[0108] Alternatively, the same procedure may be auto-
mated via an API called from an appropriate application. It
is to be noted that the linking of the policy will in fact enable
the enforcement of the policy, but the policy will only be
enforced on the gaming terminal when a gpupdate command
or equivalent command is performed at the terminal; a
terminal reboot may also be required for the policy to be
enforced. Also to be noted is that policy changes are
automatically distributed by the Windows server operating
system throughout the network connected gaming system at
periodic intervals; this automatic process may preferably be
disabled such as to obtain more predictable policy enforce-
ment changes by issuing explicit commands instead.

[0109] FIG. 17 illustrates a method at 1700 to enforce a
policy at a predetermined time, according to an embodiment
of the present invention.

[0110] Enabling enforcement of policies as described rela-
tive to FIG. 15 and FIG. 16 may be carried out interactively
by an authorized user at predetermined authorized times, or
alternatively may be controlled by a process at predeter-
mined .authorized times via the appropriate API. At the
central system 1702 (the game download server in this
illustration) at a given time 1704, a user or a process may
verify a change 1706 in the list of games to be made
available to players on a selected set of gaming terminal
banks. In case of a schedule change as shown at 1710 (or
other reasons such as introducing a new game or revoking an
existing game), policies on the domain controller 1714 are
being changed accordingly either interactively by a user in
the Group Policy Management console as described for
FIG. 15 and FIG. 16, or by a process via the equivalent APIs
1712. The changed policies are being enabled for enforce-
ment at 1716 in the domain controller.

[0111] In a casino, although new games may be scheduled
to be downloaded to gaming terminals and activated at
predetermined times, it is a requirement that games are not
to be changed while a player is playing. In practical terms,
it is considered that a player terminates playing when his or
her credit balance remains at zero for a predetermined period
of time. The predetermined period time should be sufficient
to allow the player to enter a new bill or other form of credit
or payment instrument to continue playing. Therefore, the
game application software on each game terminal continu-
ally tests for this condition (credit=0 for a predetermined
period of time) before checking for change in policy, enforc-
ing the policy changes and then updating the menu of games
to be made available to the next player.

US 2005/0172336 Al

[0112] Upon power-up, ecach gaming terminal 1718
executes a boot 1720, loads its operating system 1722 and
enforces the policies 1724 that are configured at the time of
the start-up process. When the game application starts at
1726, it displays a menu of authorized activated games as
shown at 1727 to the player using for example the dynamic
method described relative to FIG. 19. Whenever the player
balance is non-zero 1728, 1730, the player may play as
shown at 1732 the games listed on the menu in accordance
with the enforced policies. When the player’s balance
reaches zero at 1734 and remains zero for a predetermined
period of time, it is considered that the player is no longer
playing. The gaming application of the gaming terminal may
then verify at 1736 if a policy has changed 1738. This may
be done via the RegisterGPNotification. The RegisterGP-
Notification function enables an application to receive noti-
fication when there is a change in policy. When a policy
change occurs, the specified event object is set to the
signaled state. Additional details regarding the RegisterGP-
Notification function may be found at http://msdn.microsoft-
.com/library/default.asp?url=/library/en-us/policy/policy/
registergpnotification.asp.

[0113] At 1740, if there is no change in policy, the games
listed on the menu will be unchanged for the next player. If
there is a change in policy at 1742, the gaming terminal may
enter into a process whereby the policies are enforced as
shown at 1744, using for example the gpupdate.com service,
the RefreshPolicy function or the RefreshPolicyEx function,
or equivalent services or API. It is to be noted that the
verification of change in policy and the enforcement of the
changed policies may be carried out by each terminal
independently.

[0114] The RefreshPolicy function causes policy to be
applied immediately on the client computer. Additional
details regarding the RefreshPolicy function may be found at
http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/policy/policy/refreshpolicy.asp

[0115] The RefreshPolicyEx function causes policy to be
applied immediately on the computer. The extended func-
tion allows specifying the type of policy refresh to apply.
Additional details regarding the RefreshPolicyEx function
may be found at http://msdn.microsoft.com/library/defaul-
t.asp?url=/library/en-us/policy/policy/refreshpolicyex.asp

[0116] Once the change in policy is enforced at 1744, the
gaming terminal may reboot as shown at 1748 or exit and
re-enter the gaming application, which would dynamically
recreate the menu list of games 1727 to be made available
to the next player, as detailed at FIG. 19.

[0117] Asimilar method relying on explicit WMI calls and
administrative templates (*.adm) may be applied to obtain
the same result in gaming environments whereby the domain
controller active directory is not available such is the case
with gaming terminals connected in WAN (Wide Area
Network) whereby the network bandwidth is limited or the
network availability is poor.

[0118] An alternative method relying on SMS (System
Management Server) code download instead of SIPs (Soft-
ware Installation Policy) for installing software components
and software MSI packages may be used. However, the
executable software components remains under SRP (Soft-
ware Restriction Policy) in accordance with the unique PKI
certificate generated for each component as described in the
invention.

Aug. 4, 2005

[0119] FIG. 18 shows a close-loop enforcement of a
policy, according to an embodiment of the present invention.
FIG. 18 at 1800 illustrates a method to enforce a selected
policy as the result of observing the gaming activity. The
method is directly derived from FIG. 17 whereby the policy
change 1716 takes place at 1804 and is selected from a
choice of pre-configured policies, for example in a look-up
manner, whereby a policy would result in making available
to the players a menu of games 1812 (1727 in FIG. 17) to
provoke a given gaming activity change which may be
monitored in real-time at 1816. The observed activity 1818
may then be compared 1820 to predetermined businesses
objectives 1822 and a correction or modification may be
applied by selecting a new policy that would change the list
of games available on a selected aggregate of gaming
terminals 1810. For example, due to a long queue of people
who want to play the Infinity game, a greater number of
banks of gaming terminals may be configured to make the
Infinity game available to players on these terminals.
Another reason for applying a new policy might be if a
particular area of the casino floor is heavily populated with
players while another area is empty. Suppressing some
popular games in a highly frequented area and adding them
to the less frequently area may help spread the player
distribution within the casino or gaming area more evenly.
Yet another reason for applying a new policy could be if the
gaming activity is low, then games with a higher RTP (return
to player), let us say 98% instead of 95%, may be activated
in some areas to boost activity.

[0120] The process may involve several subsystems as
illustrated in FIG. 18: the central game control 1802
wherein policies are selected, the domain controller 1806
that enables enforcement of the policies 1808, a selection set
of gaming terminals 1810 wherein each gaming terminal
enforces the policies and make the selected games available
to the player 1812, a central game monitoring system 1814
that produces activity reports in real time 1816.

[0121] The process shown at 1820 of comparing the
observed activity 1818 and the targeted activity 1822 and
then selecting a change in game policies 1804 may be
carried out by the floor manager or the floor director, or
alternatively by a knowledge base process. In both cases, a
close-loop enforcement of policies (relying on the unique
PKI certificate SRP associated to each executable authorized
and certified software component) is achieved resulting in
the dynamic configuration of the gaming system, either for
LAN configurations (such as casino floors) or WAN con-
figuration (such as video lottery terminals distributed across
a large geographic area).

[0122] FIG. 19 at 1900 illustrates a method to generate
dynamically the menu list of authorized games made avail-
able to the player on each gaming terminal, according to an
embodiment of the present invention. The dynamic configu-
ration of a large gaming system whereby authorized games
made available to players on selected group of gaming
terminals using software restrictions policies at the central
system may result is hundreds of different game menus.
Reliance on SRPs for preventing non-authorized software
components to execute is entirely based on a sound and
demonstrable trusted base; therefore the gaming system is
trusted. Getting the list of authorized games to each gaming
terminal would require configurations files to be sent from
the central system to each of the gaming terminal; however,

US 2005/0172336 Al

this would be illegal because the change in the list of games
may affect the game outcome. This is clearly understandable
when considering changing a game; let us say Infinity_ 95
with a RTP or 95% with Infinity 98 with a RTP of 98% at
10:00 PM, then back at 8:00 AM, and this each day except
during the weekend, or at other times as a result of the closed
loop process described at FIG. 18. Game regulators mandate
that the process to manage this type of change be certified
with secure means of the same order as when installing/
downloading software components using a unique PKI
method.

[0123] Embodiments of the present invention, therefore,
provide secure means to update a list of authorized games to
be offered to the player. The menu of authorized games
offered to the player may be dynamically generated by each
terminal without requiring the central system to dispatch the
list of authorized games or having each terminal fetch the list
of authorized games from the central system (both are illegal
without extreme precaution of the same order as the install-
ing/downloading of software components using a unique
PKI method because they may affect the game outcome);
this is achieved by having each terminal checking the
certificate Software Restriction Policies enforced on the
games (a unique PKI certificate being generated for each of
the executable game components in accordance with the
methods detailed in this document).

[0124] As illustrated in FIG. 19 at 1900, cach terminal
when executing the gaming application 1902 gets a list of
the file names for the games available at 1904 from a trusted
configuration file (an updated trusted configuration file may
have been downloaded in a certified code signed MSI
package with the last game download) and a menu is initially
compiled for this list. Attempts to execute each of the game
entry module of the games contained in the list 1906 are
made. If the game entry module is not found at 1910, the
software components do not exist on the gaming terminal
and the game is removed from the menu 1912, whereupon
the process iterates to next game, as suggested at 19261928.
If the execution of the game entry module is denied at 1916,
1918 because the Software Restriction Policy is preventing
this game to execute, the game is removed from the menu as
shown at 1920 and the process iterates to next game, as
shown at 19261928. If the execution of the game entry
module is successful at 1922, then the game is authorized
and may be added to the games menu offered to the player.
The process iterates through other games in the list, as
shown at 1928, 1930, 1942, 1906, if any. Once the iteration
is completed at 1932, the games menu may be composed at
1934 and the menu is displayed to the player at 1936.

[0125] FIG. 20 shows a companion Hello component,
according to another aspect of the present invention. Ref-
erence numeral 2000 in FIG. 20 illustrates a method to
generate a code signed companion software component.
Each game comprises an aggregate of executable and non-
executable software components, usually comprising files
such as *.exe, *.dll, *.dat, *.xml. In general, all the software
components are dependent of one component named the
main program or the game entry. Starting the execution of
the main game component is a lengthy process, as a large
number of dependent executable components and graphics
need to be verified (SRP verification) and started. Currently,
there is no API available in the Windows operating system
client computer for verifying the status of a Software

Aug. 4, 2005

Restriction Policy enforcement on a given software compo-
nent applicable to that client computer.

[0126] Another embodiment of the present invention,
therefore, provides a method to quickly verify the policy
enforcement on a game without starting the entire game, in
order to generate the list of available games to be made
available to the player in a menu. For each game, a very
short companion .dll file may be created having, for
example, only one line of code <<Return “HELLO”>>which
would return the exemplary “HELLO” string when called.
Assuming “Infinity.d11”’2010 is the main game component
file name 2002 (or friendly name), then the companion file
may be named “Infinity.Hello.d11”2018. Preferably, the com-
panion’s 2018 source code would have in its assembly
information a part number 2004 as shown at 2020 and a
version number 2006 as shown at 2022 that is identical to the
main component 2010 part number 2012 and a version
number 2014, but this is not mandatory. In addition, assum-
ing the PKI certificate’s subject name 2008 associated to the
Infinity.dll is “GDS.exe.0099-0001-00[1.0.101.0] Infinity-
.d11”2016, which is used for the code signing of the Infini-
ty.dll, we may proceed with the code signing of Infinity-
.Hello.dll with the same 2026, 2028“GDS.exe.0099-0001-
00[1.0.101.0] Infinity.dll” certificate, as shown at 2024.

[0127] 1t is to be noted that code signing two distinct
software executables with the same certificate is a deviation
from the method taught earlier in this document. However,
the fact that the role of the companion file is very well
defined, as having for example only one line of code
<<Return “HELLO” >>which would return the “HELLO”
string when called, this does not present an issue with the
regulators or the certification lab.

[0128] FIG. 21 shows steps that may be carried out to
search for games on each gaming terminal, according to yet
another embodiment of the present invention. Reference
numeral 2100 in FIG. 21 illustrates a method to quickly
generate dynamically the list of games installed on each
gaming terminal using the companion software component
described above. The process of dynamically generating the
game selection menu may be optimized in many ways in
order to reduce the overhead of starting the execution of a
game to check if it is authorized. However, if the aim is to
sense for the enforced SRP or SIP applied to the game or
detect local availability of the game software components,
then such optimizations (among other possible variations)
should be considered to be within the scope of the invention
as defined by the claims hereunder. According to an embodi-
ment of the present invention, a method is presented here-
with to quickly generate the list of available games to be
made available to the player in a menu without transfer of a
file from the server. Reference 2100 is identical to reference
1900 in FIG. 19 except for the first process 2104 whereby
a file search process is performed for finding (or enumerat-
ing) file names with the “*Hello.dll” string, the “*” symbol
being the standard wild character used in string searches. A
list of the games installed on each gaming terminal may be
quickly and dynamically generated by calling the compan-
ion software component of the game main component
instead of calling the main component itself. The companion
component may be as detailed at FIG. 20 or may be a similar
construct.

[0129] The embodiments of the present invention
described herein are also applicable to any of the subsystems

US 2005/0172336 Al

available in a network connected gaming system that require
preventing non-authorized software components to execute
or affect game outcome, such as the gaming terminals, the
game management system (CMS or MCS) that monitor and
control whole or part of the estate of gaming machines, the
progressive jackpot systems, the bonussing systems as well
as game payment verification systems such as IGT EasyPay
and Cyberview PVU (Payment Verification Unit) and PVS
(Payment Verification System). Gaming subsystems are
tested against gaming standards such as those produced by
GLI (Game Laboratory International); the game standards
are mandated by game regulators in accordance with local
regulation and laws. The network-connected subsystems
may be located within the premises accommodating the
estate of gaming machines (connection via a LAN) or
outside of the premises (connection via a WAN).

[0130] The methods described in the document rely on
software installation policies and Software Restriction Poli-
cies which may be configured (a) via the domain controller
active directory, as this is advantageously the case whenever
the network connection is a LAN, and which may also be
configured (b) to each of the local computers via WMI
services (Windows Management Instrumentation) or admin-
istrative templates (.adm files) in order to configure and
enforce local group policies when a domain controller is not
available as this is the case whenever the network connec-
tion is a WAN. Microsoft SMS (Systems Management
Server) may be used as an alternative to using software
installation policies.

[0131] The methods described in the document leverage
on software installation policies and/or software restriction
policies technology implemented in Microsoft Windows
operating system. Whenever similar technology is imple-
mented in other operating systems such as Linux, Unix,
Windows CE and QNX, it is considered as part of the
invention herein.

[0132] In an other embodiment of the invention, it order to
make game regulators more at ease with the huge shift in
paradigm from prehensile physically secured ROM based
gaming machines (whereby access to the ROM is via
multiple layers of keys locks and tamper detectors), to a
totally virtual or volatile fashion of downloading game code
via a network, it may be advantageous to perform download
of the game code when the gaming machine is not opera-
tional. Consequently, the network downloading of game
code from a central repository may not interfere with the
games. This is accomplish by terminating all gaming soft-
ware in order to transform the gaming machine into a
generic PC, then transferring the game software under the
control of the operating system using pervasive network
code download available in most information technology
networked environments. An “Out-of-service” message may
be displayed on the screen to indicate that the machine is no
longer playable, thus is no longer a gaming machine. Once
the game code is downloaded by the generic PC, the game
code is verified for trustworthiness and is executed, thus
transforming the generic PC back into a gaming machine.

1-25. (canceled)

26. A method for a network connected gaming system to
enable selective execution of at least one authorized soft-
ware component, comprising the steps of:

Aug. 4, 2005

configuring Software Restriction Policies for the at least
one authorized software component at a predetermined
time;

unrestricting the Software Restriction Policies for the at
least one authorized software component at a predeter-
mined time;

enabling a link for the Software Restriction Policies for
the at least one authorized software component at a
predetermined time;

checking for a change of the Software Restriction Policies
and if there is no policy change then looping to the
beginning of this step, and

enforcing the change of the Software Restriction Policies

at a predetermined time.

27. A method for a network connected gaming system
according to claim 26, wherein the checking step includes
checking for the change of the Software Restriction Policies
whenever a predetermined timeout has expired subsequent
to the player balance reaching zero and if there is no policy
change then looping to the beginning of this step.

28. A method for a network connected gaming system
according to claim 26, further comprising the step of dis-
playing a list of authorized software to the player for
selection.

29. A method for a network connected gaming system
according to claim 26, wherein a rule for the Software
Restriction Policies is at least one of certificate rule, path
rule, hash rule, Internet zone rule and registry path rule.

30. A method for a network connected gaming system
according to claim 26, wherein the network connected
gaming system is connected in at least one of a local area
system and a wide area network.

31. A method for a network connected gaming system
according to claim 26, wherein the network connected
gaming system comprises at least one of gaming terminals
and gaming servers.

32. A method for a network connected gaming system
according to claim 26, wherein the checking step includes
executing the RegisterGPNotification function.

33. A method for a network connected gaming system
according to claim 26, wherein the checking step is
bypassed.

34. A method for a network connected gaming system
according to claim 26, wherein the enforcing step includes
executing the gpupdate function.

35. A method for a network connected gaming system
according to claim 26, wherein the enforcing step includes
executing the gpupdate function followed by a reboot.

36. A method for a network connected gaming system
according to claim 26, wherein the enforcing step includes
executing the RefreshPolicy or RefreshPolicyEx function.

37. A method for a network connected gaming system
according to claim 26, wherein the enforcing step includes
executing the RefreshPolicy or RefreshPolicyEx function
followed by a reboot.

38. A method for a network connected gaming system
according to claim 26, further comprising the steps of:

configuring Software Installation Policies for the at least
one authorized software component at a predetermined
time;

US 2005/0172336 Al

enabling a link for the software installation policies for
the at least one authorized software component at a
predetermined time;

checking for a change of the Software Installation Policies
and if there is no policy change then looping to the
beginning of this step, and enforcing the change of the
software installation policies.

39. A method for a network connected gaming system
according to claim 38, wherein the checking step includes
checking for the change of the software installation policies
whenever a predetermined timeout has expired subsequent
to the player balance reaching zero and if there is no policy
change then looping to the beginning of this step.

40. A method for a network connected gaming system
according to claim 38, wherein the checking step includes
executing the RegisterGPNotification function.

41. A method for a network connected gaming system
according to claim 38, wherein the checking step is
bypassed.

42. A method for a network connected gaming system
according to claim 38, wherein the enforcing step includes
executing the gpupdate function.

43. A method for a network connected gaming system
according to claim 38, wherein the enforcing step includes
executing the gpupdate function followed by a reboot.

44. A method for a network connected gaming system
according to claim 38, wherein the enforcing step includes
executing the RefreshPolicy or RefreshPolicyEx function.

45. A method for a network connected gaming system
according to claim 38, wherein the enforcing step includes
executing the RefreshPolicy or RefreshPolicyEx function
followed by a reboot.

46. A method for a network connected gaming system
according to claim 38, further comprising the step of dis-
playing a list of authorized software to the player for
selection.

47. A method for a network connected gaming system
according to claim 26, further comprising the initial steps of:

monitoring the game activity of players, and

choosing the at least one authorized software components
in order to adapt game offering on the gaming termi-
nals.

48. A method for a network connected gaming system
according to claim 47, wherein the monitoring and choosing
steps are carried out in a close-loop fashion such as to
optimize player game activity in real-time.

49. A method for a network connected gaming system to
enable selective availability of games on gaming terminals,
comprising the steps of:

installing a plurality of game software on a selected set of
gaming terminals;

choosing a selected set of installed game software to offer
to players of the gaming terminals;

a first activating the chosen selected set of installed game
software on a selected set of gaming terminals;

monitoring the game activity of the players on a selected
set of gaming terminals;

modifying the selected set of installed game software to
offer to players;

14

Aug. 4, 2005

a second activating the modified selected set of installed

game software on a selected set of gaming terminals;

50. A method for a network connected gaming system
according to claim 49, wherein the monitoring, modifying
and activating steps are executed in a close-loop fashion
such as to optimize player game activity in real-time.

51. A method for a network connected gaming system
according to claim 49, further comprising the step of dis-
playing a list of authorized software to the player for
selection.

52. A method for a network connected gaming system
according to claim 49, further comprising a step of down-
loading at least one authorized game software to a selected
set of the of gaming terminals;

53. A method for a network connected gaming system to
enable selective availability of games on PC based gaming
terminals, comprising the steps of:

selecting game software to be made available to players
on a selected set of gaming terminals;

terminating all gaming software on a selected set of
gaming terminals to transform each gaming terminals
into a generic PC communicating in the network con-
nected gaming system;

downloading via the network the selected game software
to the generic PCs, and

starting the game software to transform the generic PCs

into gaming terminals.

54. A method for a network connected gaming system
according to claim 53, further comprising the step of dis-
playing an “out-of-service” message or equivalent message
to the player while the gaming terminal is transformed into
a generic PC.

55. A method for a network connected gaming system
according to claim 53, further comprising the step of dis-
playing a list of software to the player for selection.

56. A method for a network connected gaming system
according to claim 53, wherein the game software is autho-
rized by a regulatory authority.

57. A method for a network connected gaming system
according to claim 53, wherein booting is at least one of
cold-booting, hot-booting and power-on booting.

58. A method for a network connected gaming system
according to claim 53, wherein the PC based gaming ter-
minals run a version of the Microsoft Windows operating
system

59. A method for a network connected gaming system
according to claim 53, wherein the step of downloading
game software uses the Software Installation Policy (SIP)
feature of the Windows operating system.

60. A method for a network connected gaming system
according to claim 53, wherein the step of downloading
game software uses the Microsoft SMS Systems Manage-
ment Server.

61. A method for a network connected gaming system
according to claim 53, further comprising the step of pre-
venting unauthorized software from executing using the
Software Restriction Policy feature.

62. A method for a network connected gaming system to
enable selective availability of games on PC based gaming
terminals, comprising the steps of:

selecting game software to be made available to players
on a selected set of gaming terminals;

US 2005/0172336 Al

terminating all gaming software on a selected set of
gaming terminals to transform each gaming terminal
into a generic PC communicating in the network con-
nected gaming system;

booting the generic PCs;
starting an operating system on the generic PCs;

downloading via the network the selected game software
to the generic PCs, and

starting the game software to transform the generic PCs

into gaming terminals.

63. A method for a network connected gaming system
according to claim 62, further comprising the step of dis-
playing an “out-of-service” message or equivalent message
to the player while the gaming terminal is transformed into
a generic PC.

64. A method for a network connected gaming system
according to claim 62, further comprising the step of dis-
playing a list of software to the player for selection.

65. A method for a network connected gaming system
according to claim 62, wherein the game software is autho-
rized by a regulatory authority.

66. A method for a network connected gaming system
according to claim 62, wherein booting is at least one of
cold-booting, hot-booting and power-on booting.

67. A method for a network connected gaming system
according to claim 62, wherein PC based gaming terminals
run a version of the Microsoft Windows operating system.

68. A method for a network connected gaming system
according to claim 62, wherein the step of downloading
game software uses the Software Installation Policy feature
of the Windows operating system.

15

Aug. 4, 2005

69. A method for a network connected gaming system
according to claim 62, further comprising the step of pre-
venting unauthorized software from executing using the
Software Restriction Policy feature.

70. A method for a network connected gaming system
according to claim 62, wherein the step of downloading
game software uses the Microsoft SMS Systems Manage-
ment Server.

71-90. (canceled)

91. A method for a gaming terminal in a network con-
nected gaming system to generate a list of authorized games
available to the players comprising the steps of:

enforcing Software Restriction Policy for preventing non-
authorized software components from executing;

enforcing Software Restriction Policy for enabling execu-
tion of a selected set of authorized games;

attempting to execute each game, and

adding games that have not been denied execution to a

menu list.

92. A method for a network connected gaming system
according to claim 91, further comprising the step of remov-
ing games from the menu list for games that have been
denied execution.

93. A method for a network connected gaming system
according to claim 91, further comprising the step of remov-
ing games from the menu list for games whose executable
file are not found.

94-96. (canceled)

