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COMPUTER SYSTEM INITIALIZATION VIA BOOT CODE STORED
IN SEQUENTIAL ACCESS MEMORY

TECHNICAL FIELD
The present invention generally relates to the art of electronic digital computers, and more
specifically to a computer system in which boot code is stored in a sequential access memory.
BACKGROUND ART
A conventional digital computer system includes a non-volatile Read Only Memory (ROM)

which contains boot code instructions. This boot program code is used to set up the low level hardware
functions of the system prior to the operating system or application programs being given control of the
system.

The Central Processing Unit (CPU) of the system, which is typically a micro-controller or
microprocessor, is configured to jump to a predetermined memory address in the ROM and begin
executing the boot code upon initialization (including powering up or resetting) of the system. The boot
code causes an operating system or startup application progfam to be loaded and executed.

A boot code ROM is typically a random access memory in which an instruction or data at any
address can be accessed directly and independently. This supports the branching behavior of most
programs in which an instruction following a branch can be read from any arbitrary location in the
memory. These memories are also ready to read very shortly after power is supplied.

Sequential access memories have been developed which have advantages and disadvantages
relative to random access memories. In a sequential access memory, individual addresses are not
accessible directly. The memory is organized in pages of, for example, 512 bytes each, and it is necessary
to read out an entire page or half page in order to obtain the code stored at any particular address on the
page.

A sequential access memory that can be advantageously utilized to practice the present
invention is the Am30LV0064D UltraNAND™, which is commercially available from Advanced Micro
Devices, 'Inc. (AMD) of Sunnyvale, CA. This memory is a Flash ROM device based on NAND
architecture.

Compared to sequential access non-volatile memories, random access ROMs require more
physical pins and connections, mainly for address lines, cost significantly more for the same bit density,
and are not available in as high a density as sequential access memories.

Sequential access memories, on the other hand, generally require a command sequence to be
written to the device in order to select and make a set of information readable, and thus are not ready to

read immediately following power being supplied. They can only read information from sequential
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locations in the memory until a new command sequence is written, and thus only support straight line
program execution.

In computer systems where the higher density and lower cost benefits of non-volatile
sequential memory are desired, it has been previously necessary to also provide a non-volatile random
access memory to, at a minimum, support initial program execution, also known as booting up the system.

Initial program execution must occur in the non-volatile ROM at least until the sequential access memory
has been set up for reading and programs in the sequential access memory can be transferred to volatile
Random Access Memory (RAM) for execution.

As described above, a sequential access memory is lower in cost and higher in storage density
than a random access memory. For a system in which a sequential access memory is the preferred type of
memory to be used, it is desirable to eliminate the need for a separate non-volatile random access memory
for support of initial program execution in order to lower the system cost and size. However, the ability
to provide this functionality has not been achieved in the past.

DISCLOSURE OF THE INVENTION

In view of the above, the present invention provides a computer system in which initial
program execution is performed using only a sequential access memory, thereby eliminating the need for
a separate non-volatile random access memory.

This is achieved in a computer system according to the present invention, which includes a
processor, a sequential access memory having a boot program stored therein, and a boot loader. The boot
loader includes a state machine, which in response to initialization of the computer system controls the
sequential access memory to read the first page of sequential memory containing a first portion of the
boot program. The first portion of the boot code is created with the understanding that the sequential
memory can only deliver sequential words of memory to the processor. The first portion of the boot code
instructs the processor to copy a second portion of the boot code into volatile RAM. Once the second
portion of the boot code is copied into RAM, the first portion of the boot code executes a branch (jump)
instruction that transfers control to the second portion of the boot code that is in RAM. The second
portion of the boot code is then able to take advantage of the random access nature of the RAM memory
that allows for normal code execution, including jumps within the boot code in RAM. The second portion
of the boot code is able to cause the appropriate commands to be sent to the sequential memory in order to
transfer into RAM any other code that is needed.

These and other features and advantages of the present invention will be apparent to those
skilled in the art from the following detailed description, taken together with the accompanying drawings,

in which like reference numerals refer to like parts.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram illustrating a computer system according to the present
invention;

FIG. 2 is an electrical schematic diagram illustrating a boot loader and sequential access
memory of the computer system of FIG. 1;

FIG. 3 is a pin diagram of the boot loader;

FIG. 4 is a flowchart illustrating a method of the present invention;

FIG. 5 is a state diagram of a state machine of the boot loader;

FIG. 6 is a timing diagram of the present system;

FIG. 7 is a more detailed electrical schematic diagram of the boot loader and sequential access
memory; and

FIG. 8 is a simplified block diagram illustrating a boot loader and sequential access memory
implemented in a single integrated circuit.
MODES FOR CARRYING OUT THE INVENTION

FIG. 1 illustrates a computer system 10 according to the present invention, which includes a
motherboard 12. A processor or Central Processing Unit (CPU) 14, also known as a micro-controller or
microprocessor, a volatile Random Access Memory 16 and a power supply 18 are operatively provided
on the motherboard 12 in a conventional manner. An Input/Output (I/O) unit 20 provides interconnection
of the motherboard 12 to typical I/O devices such as a display monitor 22, keyboard 24 and one or more
disk drives 26. These components are interconnected by signal busses, power lines, connectors, etc. as
collectively indicated at 28.

In accordance with the present invention, the system 10 further includes a power-good or reset
Sigﬁal generator 30, which produces a PWRGOOD (or RESET) signal after the power supply 18 has been
turned on and the operating voltages have reached their proper levels. The system 10 further includes a
sequential access memory 32 and a boot loader 34.

The memory 32 is preferably an UltraNAND™ memory, which is commercially available
from Advanced Micro Devices (AMD) of Sunnyvale, CA. The memory 32 shown in this example is a
Am30LV0064D UltraNAND™ Flash Electrically FErasable Programmable Read Only Memory
(EEPROM) device based on NAND architecture, and is capable of storing 64 megabits of data. The data
is stored in 16,384 memory pages, with each page containing 512 bytes of regular data and 16 bytes of
spare data. In accordance with the invention, the memory 32 stores boot code instructions beginning in its
lowest memory page which are initially executed upon initialization (power up or reset) of the computer

system 10. No non-volatile RAM is provided for this purpose.
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The boot loader 34 and memory 32 are illustrated in FIG. 2, with a pinout diagram of the boot
loader 34 being shown in FIG. 3. The boot loader 34 is preferably an AmPALLV16V8-10SC
Programmable Logic Device (PLD) which is commercially available from the Vantis Corporation of
Sunnyvale, CA. The detailed configuration and operation of the memory 32 and boot loader 34 will be
presented below.

FIG. 4 is a flowchart illustrating a bootstrap loading method according to the present
invention, which is performed by the system 10. Upon initialization, the boot loader 34 inhibits the
processor 14 and thereby prevents it from attempting to execute instructions. The boot loader 34 senses
the status of the PWRGOOD signal and becomes enabled when the PWRGOOD signal indicates that the
power supply 18 is generating the proper operating voltages.

The boot loader 34 has an internal state machine implemented therein by programmed logic.
The memory 32 requires setup commands to be written to it before it is able to read data. The state
machine in the boot loader 34 generates these setup commands and writes them to the memory 32. First,
the unit 34 writes a read command into a command latch of the memory 32. The boot loader 34 then
writes an address into an address latch of the memory 32.

For this example a Gapless-read command is used. The Gapless-read command is a superset
command of the UltraNAND memory 32, which enables it to output multiple memory pages sequentially.
A normal read command is also available which reads a single page at a time and has a 7 Ts latency
period associated as each page is loaded into a 528 bit output data register. The Gapless-read command
eliminates the inter-page latency and there is only a single 7 Ts latency period as the first page is loaded.
This allows the boot code to span multiple memory pages without the need for any further read
commands to the memory. The address, which the boot loader 34 loads into the address latch of the
memory 32, is the address of the first page in the memory 32. However, the normal read command can
alternatively be used within the scope of the invention.

In the next step, the UltraNAND memory 32 reads the first page of boot code from its internal
structure into its output data register and indicates the completion of the page read operation by setting its
Ready/Busy (RY/BY#) signal to the Ready state. The boot loader 34 state machine then enables the
processor 14 to proceed with instruction execution by making the INIT# inactive. A conventional state
machine or hard microcode is provided in the processor 14 which causes it to jump to a predetermined
address where the processor expects to find boot code in the system. The system will decode this address
so as to select the memory 32. The processor will begin reading and executing boot code instructions
from the memory page in the output data register of the memory 32. Note that the processor will accept

whatever data is provided by the memory as boot code instructions. The boot code address presented by
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the processor is ignored by the memory. This means that the same first memory page is used for any
processor, independent of whether the processor uses a low or high value address to select boot code.
However, the boot code must be aware of the address used by the processor to select boot code. In the
case of a processor that uses a high memory address for the first words of boot code, the code must
include a jump instruction that will change the processor address to a lower address. That address must
still be within the address range that is decoded by the system to select the memory 32. Without the jump
instruction such a processor could increment its address to the point that it would wrap around to a low
memory address that would no longer select the boot memory 32. The actual address used is not critical,
since the UltraNAND device will simply deliver a sequential stream of instructions that is independent of
the address bus. However, the jump destination address must be far enough below the top of memory to
keep the address within the memory 32 address space until this first portion of boot code jumps to the
second portion of boot code that is copied to RAM memory.

The boot code must also be aware of how the processor fetches instructions. Many processors
have an instruction fetch state machine that reads instructions into a buffer ahead of the actual use of
instructions by the instruction execution state machine of the processor. This is often referred to as the
prefetching of instructions. When a jump instruction is executed, prefetched instructions will be ignored.
Any instructions that have been prefetched, and placed in the prefetch buffer, are not executed when the
jump instruction changes the address from which the next instruction is to be executed. This is important
because the sequential access memory is ignoring the processor address. The sequential address memory
simply delivers the next word from memory, each time a read of memory is done. Since an instruction
prefetch state machine could take several words from the memory before a jump instruction executes and
clears the prefetch buffer, the boot code must be aware of how many words of memory could be discarded
by the jump instruction. The next instruction that must execute after the jump must not be in the range of
locations following the jump instruction which could be cleared from the prefetch buffer. If the precise
number of words that must be skipped can not be predicted, the code will need to include enough No-
operation (NOP) instructions following the jump instruction so as to ensure that the instruction to follow
the jump can not be discarded. Any portion of NOP instructions following the jump can be safely
executed until the next valid instruction is reached in the code. The exact number of NOP instructions
fetched and later cleared from the prefetch buffer will not matter or interfere with the remaining code
execution.

After dealing with any adjustments to the instruction fetch address as just described, the next
task is to copy the second portion of the boot code to RAM. The next instructions of boot code preferably

cause a "string copy" operation which results in a sequential group of the immediately following words in
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the memory 32 being copied into an Execute in Place (XIP) volatile random access memory. This group
of words is the second portion of boot code that is embedded within the first portion of boot code. The
XIP memory can be the RAM 16 or can alternatively be a cache or other memory in the processor 14.

Again, because some processors perform instruction prefetching, it may necessary to insert
NOP instructions between the string read instruction and the beginning of the second portion of boot
code. This is to ensure that none of the second portion of boot code can be taken into the prefetch buffer
before the string copy begins reading words from the memory. It may not be possible to predict the
beginning boundary between words already in the prefetch buffer and words first copied by the string
copy instruction. Therefore, the end of the string to be copied must be followed by additional NOP
instructions and the length of the copy must ensure that all of the second portion of boot code will be
copied. The string copied may thus include some of the beginning or ending NOP instructions. The NOP
instructions will not affect the operations performed by either the first or second portions of the boot
code. But, they make the boundary flexible between the instructions executed and the string copied.

Since the exact alignment of the code within the string copy may not be known, it is necessary
to use relative branches within the portion of the bootstrap program that is loaded into XIP memory.

It is also possible to use a series of move immediate instructions in order to assemble the
second portion of boot code in the XIP memory. This would give more control over code alignment.
However, it makes the boot code larger and more difficult to create since the second portion of the boot
code must be converted from a stream of instructions into a stream of move immediate instructions where
the data being moved is the image of the second portion of boot code.

After the second portion of boot code has been stored in the XIP memory, the last instruction
of the first portion of boot code, which is executed from the memory 32, causes the processor 14 to jump
to an address in the XIP memory. The processor then starts executing the second portion of boot code that
has been copied from the memory 32. This is a bootstrap process, which can be continued in several
stages. The first stage is the boot code that is executed from the sequential access memory 32. The next
and any subsequent stages involve additional blocks of initialization code that are copied from the
memory 32 into the XIP memory and then jumped into for execution. Although not explicitly illustrated,
the bootstrap process will typically also proceed to load and launch an operating system from a hard
drive, and possibly one or more application programs.

Preferably, the state machine and associated functionality of the boot loader 34 can be
implemented together with the sequential access memory within a single integrated circuit 40 as indicated
at 32’and 34’in FIG. 8. This can be accomplished, for example, by adding sufficient logic circuitry to the

sequential access memory to perform the required boot loader function. This embodiment is simpler and
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requires less device modification than integrating some small portion of random access memory with the
sequential memory. This is because the state machine does not require any additional process steps or
additional address pins. The UltraNAND or other sequential access memory can remain pin compatible
with other memories of similar type.

The following description sets forth the detailed functionality of the present invention.

OVERVIEW

The UltraNAND product line has been developed by Advanced Micro Devices, Inc. (AMD)
to address high-density non-volatile memory needs. Target applications include code and data storage in
embedded or removable media systems. The following detailed description presents a Boot Loader PLD
for use with an UltraNAND memory.

Micro-controller based systems generally have Programmable Input/Output (PIO) pins
available which can be used to directly provide the UltraNAND control signals. Where these PIO pins
are not available some additional interface logic may be required for an appropriate connection between
the processor, boot loader and sequential memory. The boot loader PLD can be designed into a single
AmPALLV16V8-10SC chip and is intended to support code storage applications that need to boot
directly from the UltraNAND device following power-up.

CODE STORAGE RELATED BENEFITS OF ULTRANAND

UltraNAND has been designed to be fully hardware and software compatible with NAND
architecture flash memories already available on the market. However, UltraNAND has been designed as
an improved product, providing 100,000 program/erase cycle endurance without requiring Error
Correction Circuits (ECC). UltraNAND is also available with 100% good blocks, which eliminates the
need for bad block mapping.

The lower cost per bit (than NOR Flash), increased program/erase cycle endurance without
ECC, and availability of 100% good devices, makes UltraNAND ideally suited for code storage
applications. Especially, where system code is stored in UltraNAND flash memory and is transferred, or
shadowed, to a high-speed memory resource, like synchronous DRAM, for fast random access or
execution.

THE BOOT LOADER PLD
For code storage applications that need to boot directly from UltraNAND, a boot loader of

some type is required for UltraNAND initialization. This is because, following power-up, the
UltraNAND data registers do not contain valid information. The present boot loader PLD 34 holds the
processor off the bus and provides the control signal sequences needed to initialize up to two UltraNAND

flash devices.
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The initialization process issues the AMD superset Gapless Read command (02h) to each of the
UltraNAND devices to pre-load the first flash memory page, containing boot code, into the internal
UltraNAND data registers. This allows the system micro-controller or processor 14 to read and execute
sequential system boot code from the memory 32 following power-up. For code storage applications, the
system micro-controller can boot out of the UltraNAND device 32, and then transfers the remainder of the
code stored in UltraNAND to RAM for code execution. Since code may be executed from the RAM
memory it is also referred to as Execute-in-Place (XIP) memory.

ULTRANAND INTERFACE REQUIREMENTS FOR BOOT ACCESS
The UltraNAND memory 32 utilizes a multiplexed address/data bus. All command, address,

and data information is passed to and from the device through I/O[0..7] (the eight bit /O port). Control
signals are provided on the device for CE# (Chip Enable), CLE (Command Latch Enable), ALE (Address
Latch Enable), WE# (Write Enable), SE# (Spare Area Enable), and WP# (Write Protect). There is also
an open drain RY/BY# (Ready/Busy) output pin used to indicate when the device is busy with an internal
operation.

System applications using UltraNAND must generate the proper control signals for the device
which, in many cases, are not used by any other system resource. The boot loader PLD 34, described
here, provides all of the unique signals required by UltraNAND memory 32 for device initialization.

In order to transfer a page of information contained in the UltraNAND device to the internal
data registers, a command and address sequence must be performed. Following the command and address
input, the UltraNAND device will transfer information from the appropriate flash page to the data
registers within a 7TS (worst case) read latency period, during which the device will appear busy. Once
the non-volatile page of information has been successfully transferred to the data registers, the
UltraNAND device will go ready and the system can read valid information, sequentially, from the flash
device 32 at a maximum rate of 50nS per byte.

SYSTEM INTERFACE DESCRIPTION
The boot loader PLD unit 34 supports a single UltraNAND device 32 in this example. The

boot loader PLD temporarily becomes the source of the usual system control signals required by the
UltraNAND flash during the boot loading process. The boot loader PLD is then able to generate the
signal sequence required for UltraNAND initialization.

The power-good signal generator 30 provides a PWRGOOD input signal to the boot loader
PLD 34, which remains low until Vec is valid. When PWRGOOD transitions from an invalid (low) state
to a valid (high) state, the boot loader PLD 34 detects that transition and initializes the UltraNAND device
32.
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In some applications where a PWRGOOD signal is not available, a system RESET# signal
may be used instead. The INIT# (initializing) signal genera’éed by the boot loader PLD is used to indicate
that the boot loader 34 is busy initializing the UliraNAND device 32. The system 10 must monitor the
INIT# signal and hold the system micro-controller 14 off the bus until INIT# becomes invalid (high).
Once INIT# indicates that the UltraNAND boot process is complete, the system 10 can allow the micro-
controller 14 to read information from the UltraNAND device.

In many cases the INIT# signal can be used as the Reset signal to the rest of the system 10.
The usual system RESET# signal goes only to the boot loader 34 and the boot loader uses the INIT#
signal to hold the rest of the system 10 in the Reset state until the UltraNAND device 32 is ready to be
read. n

During the address phase of the boot loader process, address bytes will be written to
UltraNAND until the device goes busy. This allows the boot loader 34 to support devices that require
three or more address pulses. Following the boot loader initialization process, the boot loader tri-states
WE#, CLE, ALE, and I/O1 and passes CEO# and CE1# from the system bus 28 to the UltraNAND
device(s).

BOOT LOADER SIGNAL DESCRIPTION
The UltraNAND boot loader 34 generates all of the signals required to initialize one or two

UltraNAND devices with a Gapless Read command sequence. A simple state machine in the PLD 34
controls INIT#, WE#, CLE, ALE, and I/O1 to control the UltraNAND initialization. In order to start the
boot loader PLD, the system needs to provide SYSCLK (System Clock) and PWRGOOD (a Power Good
indicator). The definition of all pertinent signals and the source required to generate the signals are listed

in the table below. A timing diagram of the boot loader initialization sequence is shown in FIG. 6.

SIGNAL SOURCE DEFINITION

ALE Boot Loader/System Tri-state Address Latch Enable for
UltraNAND address cycles

CLE Boot Loader/System Tri-state Command Latch Enable for
UltraNAND command cycles

WE# - | Boot Loader/System Tri-state write signal used to initialize
UltraNAND during boot

INIT# Boot Loader Indicates that the boot loader PLD is
initializing UltraNAND
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SIGNAL SOURCE DEFINITION

I/0[0..7] Boot Loader/System The T/O lines used to transfer command and
addresses to UltraNAND

ST3 Boot Loader The unused most significant state machine
output from the PLD

OE# Boot Loader Must be tied to INIT# to enable PLD
registered outputs

OUTCEJ0..1]# Boot Loader The Chip Enable outputs from the PLD to
the UltraNAND devices

CE[0..1}# System The Chip Enable decode signals from the
system for UltraNAND

PWRGOOD System Power Good signal which remains low until
VCCis valid

SYSCLK System System clock required by the boot loader
state machine

READY UltraNAND Connects to the RY/BY# signal to indicate
the UltraNAND?s state

BOOT LOADER PLD THEORY OF OPERATION
In this section, the boot loader PLD 34 design and operation will be described. The boot

loader PLD 34 uses flip-flops for the state machine and I_O1. Combinatorial logic is used to generate all
other signals required to control up to two UltraNAND 32 devices. The device reference designators used
in this section can be found in FIG. 7, an example schematic of a "Typical Boot Loader Application
Supporting Two UltraNAND Devices".
Output Signal Generation

INIT# is a combinatorial output that is used to inform the system that the boot loader PLD 34
is in the process of initializing the UltraNAND 32 array. While INIT# is active, the system 10 must hold
tri-stated the system signals (such as address lines or PIO pins) which are used during normal system
operation to drive the UltraNAND CLE, ALE, WE#, and I/O[0..7] signals. In many cases the INIT#
signal can be used as the reset signal to the other system components since the reset state will often hold
processor outputs in a tri-state condition.

During the INIT# period the PLD 34 drives the command and address information onto the
UltraNAND 32 data bus, and controls CLE, ALE, and WE# as needed for UltraNAND initialization.
During the command phase, with CLE active, I_O1 is used to drive a 02h value onto the UltraNAND 32

10
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data bus to write the Gapless Read command to UltraNAND 32. During the address phase while CLE is
inactive and ALE is active, a 00h value is driven onto the UltraNAND 32 data bus.

This allows the boot loader PLD 34 to load the address for block 0, page 0, byte O into the
UltraNAND 32 device to allow the system to read from the first byte following initialization. During
INIT#, the PLD 34 activates the output chip enables regardless of the state of the chip enable inputs. This
allows the boot loader PLD 34 to initialize up to two UltraNAND 32 devices in parallel during the boot
loader operation.

1_O1 is a tri-state registered output, which is used to write the Gapless Read command (02h)
to the UltraNAND 32 devices during the boot loader PLD 34 initialization phase. While INIT# is active
the system is required to hold the UltraNAND 32 data bus, I/O[0..7] tri-stated. With the pull-down
resister pack, R4, holding all other data bits low, I_O1 can then drive high during the command phase to
write a 02h op-code to UltraNAND 32. During the address phase, I_O1 is driven low so all of the address
cycles write a 00h value into the UltraNAND 32 address registers.

OUTCE]JO..1}# are the two chip enable outputs required to enable the UltraNAND 32 devices.

The chip enables are forced active during the INIT# period for boot loader activity. Once
INIT# goes inactive (high), the chip enable outputs are determined by the chip enable inputs.

ST[0..3] are four tri-state registered state bits used to define up to sixteen states of the state machine, of
which 9 states are actually used. These bits are actively driven during the period that INIT# is active, and
are tri-stated when INIT# goes inactive.

Three of the state bits are used to define WE# (ST0), CLE (ST1), and ALE (ST2). The state
machine in the boot loader PLD 34 is a typical Mealy machine with the PLD outputs dependent on the
current state and input conditions. The AmPALLV16V8-10SC device 34 powers up with all regi‘stered
outputs in the high state. Therefore, the state machine defines the IDLE state as an all ones output
condition.

State01 through State09 are gray coded variations to eliminate noise pulses in combinatorial
outputs, and avoid race conditions due to asynchronous inputs. The state machine flow chart is shown in
FIG. 5.

STO, as WE#, is used to write information to the UltraNAND 32 Flash during initialization.
The system is required to hold the system WE# input to UltraNAND 32 tri-stated during the initialization
period. Once initialization is complete, the boot loader PLD 34 will tri-state its WE# output and the
system 10 can then drive WE# as required.

ST1, as CLE, is used to enable command writes to the UltraNAND Flash 32 during
initialization. The system is required to hold the system CLE input to UltraNAND 32 tri-stated during the

11
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initialization period. Once initialization is complete, the boot loader PLD 34 will tri-state its CLE output
and the system 10 can then drive CLE as required.

ST2, as ALE, is used to enable address writes to the UltraNAND Flash 32 during
initialization. The system is required to hold the system ALE input to UltraNAND tri-stated during the
initialization period. Once initialization is complete, the boot loader PLD 34 will tri-state it’s ALE output
and the system 10 can then drive ALE as required.

Other Signals

CE[0..1}# are the two chip enable input signals generated by the system 10 to select the
UltraNAND 32 devices. During the initialization process, the CE[0..1]# inputs are ignored by the boot
loader PLD 34, and OUTCEJ0..1]# are driven active to select the UltraNAND 32 devices used. Once
initialization has been completed, the boot loader PLD 34 simply passes the system 10 CE[0..1]# signals
on to the UltraNAND 32 devices via the OUTCEJO..1]# outputs.

PWRGOOD is a system generated signal that is used to indicate when the boot loader PLD 34
should initialize the UltraNAND 32 flash devices. PWRGOOD is held de-asserted (low) during power up
until Ve is valid. When power is applied to the boot loader PLD 34, the state machine comes up in the
IDLE state, where it will remain until PWRGOOD goes active (high). Once a low to high transition is
detected on PWRGOOD, by the boot loader PLD 34, the PLD 34 will proceed to initialize the
UltraNAND flash memory 32.

For systems that do not have a PWRGOOD signal available, the system RESET# signal will
generally perform the same function. When RESET# goes active (low) to reset the system, the boot
loader state machine will enter the IDLE state. When RESET# becomes inactive (high) the béot loader
will then initialize the UltraNAND 32 devices.

RY/BY# is generated by the UltraNAND 32 device to indicate when the device is busy with
an internal operation. The system 10 may use the RY/BY# hardware signal, or poll the RY/BY# status bit
in the status register, to determine when an operation is in process, or has completed. The boot loader
PLD 34 monitors the RY/BY# signal, via the READY input, to determine when the UltraNAND flash 32
has completed the transfer of information from the internal flash array to the internal data registers. At
that time the memory 32 is initialized and control can be turned over to the system 10.

SYSCLK is required by the boot loader PLD 34 to drive the device state machine. Since the
UltraNAND 32 has a minimum write pulse width specification of 25nS, the maximum frequency for
SYSCLK is 40MHz.

Boot Loader State Machine

In the boot loader PLD 34, a simple state machine is used to perform the UltraNAND
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initialization. The boot loader state machine drives the boot loader PLD 34 outputs, to provide the
appropriate signals needed to initialize one or two UltraNAND devices 32. A flow chart of the boot
loader PLD state machine is shown in FIG. 5.
IMPLEMENTATION DETAILS
With the boot loader PLD described herein, the PLD has the ability to initialize up to two

UltraNAND devices upon power-up. There are a few basic system interface considerations that must be
taken into account when using the boot loader PLD.

Tri-State Control of CLE, ALE, WE#, and 1/O[0..7]

During the period following power-up while the boot loader PLD is initializing the
UltraNAND Flash, the boot loader process must take control of I/O[0..7], CLE, ALE, and the system
WE# signal. It is necessary, therefore, for the system to hold these signals in a tri-state condition while
INIT# is asserted (low). Once INIT# goes high, indicating that the boot loader initialization is complete,
the system may then drive these signals as appropriate.

SEQUENTIAL BOOT CODE EXAMPLE
Since the system address bus does not directly determine the UltraNAND Flash read address,

there is no need for different PLD solutions for top boot vs. bottom boot micro-controllers. The system
address decoder logic simply needs to guarantee that the UltraNAND is enabled for micro-controller code
fetch following power-up and flash initialization. Included below is an example of how the system boot
code could be stored in the UltraNAND Flash boot area for an x86 class micro-controller.

Once UltraNAND is initialized, the system micro-controller can begin fetching code directly
out of the UltraNAND data registers, sequentially. ‘

If the processor in the system uses a low memory address for the beginning of boot code, the
boot code stored in the flash device will not cause the micro-controller to attempt to branch, or jump,
either forward or backward. This ensures that there is no discontinuity between instructions read from the
UltraNAND by any processor instruction prefetching logic and the actual instruction execution sequence.

If the processor uses a high memory address for the first words of boot code, the code must
include a jump instruction that will change the processor address to a lower address that is still within the
address range decoded by the system to select the memory 32. Without the jump instruction such a
processor could increment its address to the point that it would wrap around to a low memory address that
would no longer select the boot memory 32.

A jump will cause some number of bytes, from an instruction stream that is prefetched, to be
discarded when the prefetch buffer is cleared by the jump. Since it may be difficult to know the exact
number of bytes in the prefetch buffer that will be discarded by the jump, there should be enough NOP
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instructions following the jump to fill the entire prefetch buffer.

The boot code first executed directly from the UltraNAND device simply loads a more
comprehensive bootstrap program from the UltraNAND device to an XIP memory resource, like SRAM
or DRAM. This loading of bootstrap code can be done via a string move or through consecutive move
immediate commands.

If a string move is used, the instruction stream following the string instruction must begin and
end with enough NOP instructions to fill the instruction prefetch buffer of the processor used. This will
ensure the code stream picked up by the string move read operation starts beyond the point at which the
prefetch buffer filled. Because the exact point at which the prefetch buffer stops reading bytes from the
UltraNAND, and string move operation begins reading bytes, cannot be predicted, the code loaded into
the XIP memory resource may begin with some of the left over NOP instructions.

Since the exact alignment of the code may not be controlled it is important to use relative
branches within the portion of the bootstrap program that is loaded into XIP memory. For processors that
require tight control over the byte alignment of code, a stream of move immediate instructions may be a
better approach to loading the bootstrap code into XIP memory.

Once the boot code is assembled in the XIP memory, the last instruction canses the micro-
controller to jump into the boot code for execution. The example below includes an x86 boot code

sequence in assembly code format which would execute sequentially out of UltraNAND, after

initialization.
Definitions:

SOURCE + Memory mapped base address for the UltraNAND
device. This address must cause the UltraNAND device
to be selected when read.

DESTINATION + The destination address for the XJP memory resource to
hold the system code that was stored in UltraNAND.
Once the UltraNAND memory contents are transferred
to shadow memory, the last line in the boot code
example jumps into the XIP area for system code
execution.

XIP + Segment address for the XIP memory.

ULTRA - Segment address for sequential memory.

COUNT + The number of bytes to transfer from the UltraNAND
device to the XIP memory. This count must include the
maximum number of bytes that can be prefetched. In this
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case 32 bytes is the prefetch buffer size of a 486
Processor.

START -

An address for the beginning of boot code. x86
processors start execution at FAFFOh, i.e. within 16
bytes of the top of memory. So, it is necessary to first
jump to a lower code address within the address space
that still selects the UltraNAND device. This prevents
the address from wrapping around to an address space
that would no longer select the UltraNAND. The actual
address is not that important, since the UltraNAND
device will simply deliver a sequential stream of
instructions, independent of the address bus. However,
the jump destination address must be far enough below
the top of memory to keep the address within the
UltraNAND address space until this initial bootstrap
code jumps to the remaining bootstrap code that is
copied to XIP memory.

NOP -

Fill the remaining bytes up to what would be address
FZFFFh in a normally executing system with NOP
instructions. This prevents any unexpected code
execution or boundary problems that might be caused by
an instruction prefetch unit reading in locations beyond
the branch instruction. Some or all of these NOP
instructions may be read from the UltraNAND by the
prefetch unit and some will be discarded when the
branch flushes the prefetch buffer. However the exact
number of instructions that will be discarded from the
byte stream read from the UltraNAND is unknown. By
using NOP instructions the processor will just keep
reading until the remaining instructions in the stream are
encountered.
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5 Code Example:

JMP START ;Jump from the reset address to the boot code address
range so that the instruction address counter will not
wrap and go outside of the sequential memory address
range.

NOP ;Fill the next 32 bytes with NOPs to ensure the prefetch
buffer will not be able to fetch any of the following
instructions before the jump executes and clears the

prefetch buffer
START:
STD ;Set direction flag to increment destination address
during string move
MOV DS, ULTRA ;Load the segment address for the UltraNAND memory
MOV ES, XIP ;:Load the Extra Segment register with the segment
address for the XIP memory.
MOV ESI, SOURCE :Load the beginning UltraNAND address
MOV EDI, ;Load the destination address to prepare for the string
DESTINATION move
MOV ECX, COUNT ;Load the number of bytes to transfer during the string
move
REP MOVSB ;Move bytes from UltraNAND to shadow memory
NOP £E ;32 bytes of NOP to fill the processor prefetch buffer
{XIP code stream} ;The code stream to be moved into XIP memory
NOP £ ;64 more NOP instructions are needed since the exact

stopping point of the string move has to over shoot the
end of code by as many NOP instructions as may have
preceded the code in order to ensure that all of the code
does get moved.

JMP DESTINATION ;Once the transfer is done, jump to the bootstrap code
in XIP memory.

10 In summary, the present invention provides a computer system in which initial program execution
is performed using only a sequential access memory, thereby eliminating the need for a separate non-
volatile random access memory.

Various modifications will become possible for those skilled in the art after receiving the

teachings of the present disclosure without departing from the scope thereof.
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WHAT IS CLAIMED 1S:
1. A computer system comprising:
a processor;

a sequential access memory for storing a boot program; and
a boot loader for controlling the sequential access memory to read the boot program and
controlling the processor so as to execute the boot program in the sequential access memory in response

to initialization of the computer system.

2. A computer system as in claim 1, in which the boot loader is configured to enter a read
command and an address into the sequential access memory and then control the sequential access

memory to execute the read command.

3. A computer system as in claim 2, in which:
the sequential access memory is configured to store the boot program in at least one
memory page; and

the read command causes a first memory page to be read.
4, A computer system as in claim 3, in which the read command is a gapless read command.
5. A computer system as in claim 1, in which:
the boot loader is configured to inhibit the processor until the sequential access memory
has made at least part of the boot program available for reading, and then enable the processor; and
the processor is configured to read and execute the boot program from the sequential

access memory upon being enabled.

6. A computer system as in claim 1, in which the boot loader is configured to be activated

upon initialization of the computer system.

7. A computer system as in claim 1, in which the boot loader comprises a programmable

logic device.

8. A computer system as in claim 1, in which the boot loader comprises a state machine.
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’
9. A computer system as in claim 8, in which the boot loader comprises a programmable
logic device in which the state machine is implemented.
10. A computer system as in claim 8, in which the state machine is configured to enter a read

command and an address into the sequential access memory and then control the sequential access

memory to execute the read command.

11. A computer system as in claim 1, in which the boot program is configured to control the
processor to transfer boot code from the sequential access memory to a volatile Random Memory (RAM)

and then jump to the boot code in the RAM.

12. A computer system as in claim 11, in which the RAM comprises a cache memory in the
processor.
13. A computer system as in claim 11, in which the RAM comprises an Execute-in-Place

(XIP) memory which is separate from the processor.

14. A computer system as in claim 1, in which the sequential access memory and the boot

loader are implemented in a single integrated circuit.

15. A computer system as in claim 1, in which the boot program is configured to anticipate
the processor’s program address logic behavior so as to keep the processor address within a range of

addresses that select the sequential access memory.

16. A computer system as in claim 1, in which the boot program is configured to anticipate
the behavior of any code prefetching logic and ensure that necessary instructions are never prefetched and

discarded by the prefetch logic.
17. A computer system as in claim 1, in which the boot program is configured to include

NOP instructions as padding between sections of the code where there may be discontinuities in the code

stream caused by prefetch buffer logic.
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18. A computer system as in claim 1, in which:
the boot program is configured to control the processor to transfer boot code from the
sequential access memory to a volatile Random Memory (RAM) and then jump to the boot code in the
RAM; and
the boot program is further configured such that branches within the boot code in the
RAM are relative.

19. A computer system as in claim 1, in which the boot program is configured to control the
processor to transfer boot code from the sequential access memory to a volatile Random Memory (RAM)

using move immediate instructions and then jump to the boot code in the RAM.

20. A method for initial program execution of a computer system which includes a processor
and a sequential access memory, comprising the steps of:
(a) storing a boot program in the sequential access memory;
(b) providing a boot loader for controlling the sequential access memory to read the boot
program and control the processor to jump to the boot program in the sequential access memory in
response to initialization of the computer system; and

(¢) initializing the computer system.

21. A method as in claim 20, in which step (b) comprises configuring the boot loader to enter
a read command and an address into the sequential access memory and then control the sequential access

memory to execute the read command.

22. A method as in claim 21, in which:
step (@) comprises configuring the sequential access memory to store the boot program in
at least one memory page; and

step (b) comprises configuring the boot loader such that the read command causes a first

memory page to be read.
23. A method as in claim 22, in which the read command is a gapless read command.
24. A method as in claim 20, in which:

step (b) comprises configuring the boot loader to inhibit the processor until the sequential
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access memory has read at least part of the boot program, and then enable the processor; and
the processor is configured to execute the boot program in the sequential access memory

upon being enabled.

25. A method as in claim 20, in which step (b) comprises configuring the boot loader to be

activated upon initialization of the computer system.

26. A method as in claim 20, in which step (b) comprises configuring the boot loader to

include a programmable logic device.

27. A method as in claim 20, in which step (b) comprises configuring the boot loader to

include a state machine.

28. A method as in claim 27, in which step (b) comprises configuring the boot loader to

include a programmable logic device in which the state machine is implemented.

20. A method as in claim 27, in which the state machine is configured to enter a read
command and an address into the sequential access memory and then control the sequential access

memory to execute the read command.

30. A method as in claim 20, further comprising the step of:
(d) providing a volatile Random Access memory (RAM), in which:
step (a) comprises configuring the boot program to control the processor to transfer boot

code from the sequential access memory to the RAM and then jump to the boot code in the RAM.

31. A method as in claim 30, in which step (d) comprises providing the RAM to include a

cache memory in the processor.

32. A method as in claim 30, in which step (d) comprises providing the RAM to include an

Execute-in-Place (XIP) memory which is separate from the processor.

33. A method as in claim 20, in which step (b) comprises implementing the boot loader and

the sequential access memory in a single integrated circuit.
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34. A method as in claim 20, in which step (a) comprises configuring the boot program to
anticipate the processor’s program address logic behavior so as to keep the processor address within a

range of addresses that select the sequential access memory.

35. A method as in claim 20, in which step (a) comprises configuring the boot program to
anticipate the behavior of any code prefetching logic and ensure that necessary instructions are never

prefetched and discarded by the prefetch logic.

36. A method as in claim 20, in which step (a) comprises configuring the boot program to
include NOP instructions used as padding between sections of the code where there may be

discontinuities in the code stream caused by prefetch buffer logic.

37. A method as in claim 20, in which:
step (a) comprises configuring the boot program to control the processor to transfer boot
code from the sequential access memory to a volatile Random Memory (RAM) and then jump to the boot
code in the RAM; and
step (a) further comprises configuring the boot program such that branches within the
boot code in the RAM are relative.

38. A method as in claim 20, in which step (a) comprises configuring the boot program to

control the processor to transfer boot code from the sequential access memory to a volatile Random

Memory (RAM) using move immediate instructions and then jump to the boot code in the RAM.
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