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(57)【特許請求の範囲】
【請求項１】
　コンピュータプロセッサによって実行される医用画像の処理方法であって、
（ａ）一つ以上の解剖学的特徴がラベルデータを用いてラベル付けされている一つ以上の
画像を含む、一つ以上のアトラスを取得するステップと、
（ｂ）複数のラベル付けされていない画像を取得するステップと、
（ｃ）ラベル付けされた画像とラベル付けされていない画像とを比較し、一つまたは複数
の前記ラベル付けされた画像と最も類似する一つ以上のラベル付けされていない画像を選
択するステップと、
（ｄ）選択された画像のそれぞれに対して、前記最も近い一つ以上のラベル付けされてい
る画像からのラベルデータを伝播し、これによって、前記選択された画像の対応する解剖
学的特徴にラベル付けし、前記選択された画像をラベル付けされた画像にするステップと
、
（ｅ）ステップ（ｃ）以降を繰り返すことによって、他のラベル付けされていない画像に
ラベル付けするステップと、
　を含む方法。
【請求項２】
　ラベル付けされた画像とラベル付けされていない画像とを比較する前記ステップが、低
次元の座標系内に前記画像を埋め込むことを含む、請求項１に記載の方法。
【請求項３】
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　前記低次元座標系が二次元座標空間であることを特徴とする、請求項２に記載の方法。
【請求項４】
　ラベル付けされた画像とラベル付けされていない画像とを比較する前記ステップが、画
像セット内の各画像ペアについて一つ以上の解剖学的特徴を比較することによって、ペア
間類似度測定（pairwise measures of similarity）のセットを定義することを含む、請
求項１ないし３のいずれかに記載の方法。
【請求項５】
　ラベル付けされた画像とラベル付けされていない画像とを比較する前記ステップが、前
記ペア間類似度測定でスペクトル解析操作を実行することをさらに含む、請求項４に記載
の方法。
【請求項６】
　前記ペア間類似度測定が画像ペア間での強度の類似度を表すことを特徴とする、請求項
４または５に記載の方法。
【請求項７】
　前記ペア間類似度測定が画像ペア間での変形量を表すことを特徴とする、請求項４ない
し６のいずれかに記載の方法。
【請求項８】
　ラベルデータを伝播する前記ステップが、分類装置融合（classifier fusion）技術に
基づき、前記最も近い複数のラベル付けされていない画像からラベルデータを伝播するこ
とを含む、請求項１ないし７のいずれかに記載の方法。
【請求項９】
　ステップ（ｄ）の後かつステップ（ｅ）の前に、新たに伝播されたラベルデータに強度
ベースの精密化操作を実行するステップをさらに含む、請求項１ないし８のいずれかに記
載の方法。
【請求項１０】
　前記画像が異なる被験者のものであることを特徴とする、請求項１ないし９のいずれか
に記載の方法。
【請求項１１】
　前記画像の少なくとも一部が同一被験者の異なる時点で取得されたものであることを特
徴とする、請求項１ないし９のいずれかに記載の方法。
【請求項１２】
　前記画像が磁気共鳴画像であることを特徴とする、請求項１ないし１１のいずれかに記
載の方法。
【請求項１３】
　ある条件の有無を表す解剖学的特徴をラベル付けし、その特徴を使用してその条件のバ
イオマーカーを導出することをさらに含む、請求項１ないし１２のいずれかに記載の方法
。
【請求項１４】
　請求項１ないし１３のいずれかに記載の方法を実施するように構成された画像装置。
【請求項１５】
　医療用スキャナであることを特徴とする、請求項１４に記載の画像装置。
【請求項１６】
　ＭＲＩスキャナであることを特徴とする、請求項１５に記載の画像装置。
【請求項１７】
　請求項１ないし１３のいずれかに記載の方法を実施するように構成された画像処理装置
。
【請求項１８】
　請求項１ないし１３のいずれかに記載の方法を実施するように構成されたコンピュータ
システム。
【請求項１９】
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　コンピュータプロセッサでの実行時に、請求項１ないし１３のいずれかに記載の方法を
実行するコード化された命令を含むコンピュータプログラム。
【請求項２０】
　請求項１９に記載のコンピュータプログラムをエンコードするコンピュータ可読媒体。
【請求項２１】
　前記バイオマーカーに基づいて治療に対する被験者の反応を数値化することをさらに含
む、請求項１３に記載の方法。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、医用画像を処理する方法および対応する装置に関する。本発明は、例えば人
間の脳の磁気共鳴画像の処理に特に適しているが、これに限定されない。
【背景技術】
【０００２】
　脳の磁気共鳴画像（ＭＲＩ）からの特徴（フィーチャ）の自動抽出は、神経画像検査に
おいてますます重要なプロセスとなっている。脳構造は被験者間で大きく異なる上、老化
または疾患の進行のいずれかによって顕著に変化するので、特徴抽出中に解剖学的差異を
処理する適切な方法を発見することが、近年ますます注目を集めている。
【０００３】
　この多様性を処理する最も一般的な方法は、アトラスベースの手法である。本研究の文
脈では、「アトラス（atlas）」とは、画像内の点、領域または構造を特定するための注
釈またはラベルを有するデータセット（３Ｄ画像、２Ｄ画像、任意の次元の画像、または
一連の画像）のことである。
【０００４】
　アトラスベースの手法は、確率的または統計的な方法のいずれかで、解剖学的多様性を
アトラスが符号化することができると仮定する。代表アトラスを構築するとき、母集団の
任意の特定のサブグループに対して不偏であるテンプレートに対して全画像を位置合わせ
することが重要である。形状平均化およびアトラス構築のために大変形微分同相写像（la
rge deformation diffeomorphic）を用いる二つの手法がAvants and Gee (2004)およびJo
shi et al. (2004)によって提案されている。画像を位置合わせする（co-registering）
テンプレートフリーの方法は、空間画像正規化のために確立されたフレームワークを形成
する。単一の代表平均アトラスを探す手法から発展して、より最近の二つの方法は、画像
データセット内の異なる母集団のモードを特定する方法について述べている（Blezek and
 Miller, 2007；Sabuncu et al., 2008）。
【０００５】
　被験者情報に左右される様々なアトラスを設計するために、近年、経時的な疾患進行中
の脳形状の解剖学的変化の特性を明らかにするという問題に対して様々なアプローチが適
用されてきた。Davis et al. (2007)は、微分同相写像の多様体に対してカーネル回帰が
適用される母集団形状回帰方法について記載する。Ericsson et al. (2008)は、性別、年
齢または臨床学的因子などのメタ情報にしたがって、小さな変形セッティングに異なる平
均脳アトラスが構築される、患者固有アトラスの構築方法を提案している。
【０００６】
　磁気共鳴（ＭＲ）脳画像データから特徴またはバイオマーカーを抽出する方法は、関心
領域の自動セグメンテーション（セグメント化）で始まることが多い。非常に一般的なセ
グメンテーション法は、ラベル伝播を使用する。これは、アトラス画像から不可視の（un
seen）ターゲット画像へと、両方の画像の位置合わせによってラベルを変換する。アトラ
スは典型的にマニュアルでラベル付けされるが、これは必ずしも必要ではない。このアプ
ローチを用いた初期の研究は、Bajcsy et al. (1983)により提案されており、より最近で
はGee et al. (1993)およびCollins et al. (1995)によって提案されている。ラベル伝播
の精度は、基礎となる画像の位置合わせ精度に強く依存している。単一のセグメンテーシ
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ョンへの依存を解決するために、Warfield et al. (2004)はＳＴＡＰＬＥ、セグメンテー
ションの収集のために、真のセグメンテーションの確率論的推定を計算する方法を提案し
た。Rohlfing et al. (2004)は、複数のアトラスから伝播したラベルを分類装置融合（cl
assifier fusion）ステップで組み合わせてターゲット画像の最終セグメンテーションを
取得する、複数分類装置（multi-classifier）フレームワークのロバスト性および精度の
改善を実証した。分類装置融合と組み合わせるラベル伝播は、Heckemann et al. (2006)
による脳ＭＲ画像内での多数の構造のセグメント化でうまく活用された。
【０００７】
　解剖学的多様性が広範囲であるため、アトラスの選択は、マルチアトラスセグメンテー
ションにおける重要な問題となっている。所与のターゲットに対する適切なアトラスの選
択は、アトラスターゲットの位置合わせおよびその後のセグメンテーションが可能な限り
正確であることを保証する助けとなる。Wu et al. (2007)は、アトラス選択を組み込むこ
とによって、単一アトラスの場合のセグメンテーション結果を改善する別の方法について
述べている。Aljabar et al. (2009)は、マルチアトラスセグメンテーション中に最適な
アトラスを選択する別の類似手段を研究している。Van Rikxoort et al. (2008)は、収束
基準が満足するまで画像の異なるサブウインドウ内でアトラスの組み合わせを実行する方
法を提案する。これらの手法は、各ターゲット画像に対して個別に適切なアトラスを選択
することに意味があることを示している。利用できるＭＲ脳画像の数は増加しているが、
高品質のマニュアルアトラスの作成は労働集約的であり費用のかかる仕事である（例えば
Hammers et al. (2003)を参照）。これは、アトラスの数が比較的限られていることが多
く、ほとんどの場合、特定の母集団（例えば、若く健康な被験者）に制限されることを意
味する。これは、たとえ選択アプローチを使用したとしても、アトラスデータベースの適
用性を制限しうる。これを解決するべく、Tang et al. (2009)は、単一のテンプレート画
像と訓練画像との間での変換から学習したＰＣＡ変形モデルを利用することによって、多
様なアトラス画像を生成しようとしている。モデルからサンプリングされた複数の変換を
用いて初期テンプレートを変換することによって、潜在的なアトラスが作成される。この
前提は、不可視画像に対する適切なアトラスを見つけることによって、このテンプレート
への高速かつ正確な位置合わせを容易に実現できるというものである。しかしながら、訓
練データよりも大きな変動レベルを有するテストデータは、この手法に対して重要な課題
を突きつける。加えて、かなりばらつきがある訓練データセットを使用すると、様々な画
像と単一テンプレートとの間での位置合わせ誤差の可能性が増大するため、代表的でない
ＰＣＡモデルにつながることがある。この制約により、この手法は、全てのトレーニング
画像から単一の初期テンプレートへの良好な位置合わせを容易に実現することができる場
合にのみ適用できるに過ぎない。
【０００８】
　アトラスベースのセグメンテーションは、ターゲット画像と類似するアトラスの選択か
ら利益を受ける（Wu et al., 2007；Aljabar et al., 2009）。しかしながら、実際問題
として、初期アトラスはターゲット画像母集団の特定のサブグループを代表しているに過
ぎないことがある。
【発明の概要】
【発明が解決しようとする課題】
【０００９】
　したがって、相当量の解剖学的多様性を示すＭＲ脳画像の大きく多様なセットにまで比
較的少数のアトラスを伝播できるようにすることが望ましい。
【００１０】
　自動でラベル付けされた脳画像を用いて不可視画像にラベル付けする従来の研究は、直
接マルチアトラス伝播におけるセグメンテーション精度を改善するには至らなかった。He
ckemann et al., 2006では、複数の比較的同質のアトラスを、不可視画像のセグメンテー
ションのための単一アトラスとして使用される、ランダムに選択された中間画像に伝播さ
せたとき、得られた平均ダイス（Dice）とマニュアルデリニエーション（manual delinea
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tion）との重なりは、直接マルチアトラス伝播および融合の場合の０．８４と比較して、
０．８０であった。第２の実験では、ランダムに選択された中間被験者に単一アトラスが
伝播され、続いてこれをマルチアトラスセグメンテーション法でさらに使用した結果、マ
ニュアルデリニエーションとのＤｉｃｅ係数のオーバーラップはせいぜい０．７８であっ
た。
【００１１】
　さらなる背景技術は、米国特許出願公開US 2007/0053589 A1、US 2008/0154118 A1およ
びWO 2009/093146 A1によって提供される。これらの全てが画像データのセグメンテーシ
ョン法を開示する。
【課題を解決するための手段】
【００１２】
　本発明の第１の態様によると、特許請求の範囲の請求項１で規定される方法が提供され
る。したがって、コンピュータプロセッサによって実行される医用画像の処理方法が提供
される。この方法は、（ａ）一つ以上の解剖学的特徴がラベルデータを用いてラベル付け
された一つ以上の画像を含む、一つ以上のアトラスを取得するステップと、（ｂ）複数の
ラベル付けされていない画像を取得するステップと、（ｃ）ラベル付けされた画像とラベ
ル付けされていない画像とを比較し、一つまたは複数のラベル付けされた画像と最も類似
する一つ以上のラベル付けされていない画像を選択するステップと、（ｄ）選択された画
像のそれぞれに対して、最も近い一つ以上のラベル付けされていない画像からのラベルデ
ータを伝播し、これによって、選択された画像それぞれの対応する解剖学的特徴にラベル
付けし、選択された画像をラベル付けされた画像にするステップと、（ｅ）ステップ（ｃ
）以降を繰り返すことによって、他のラベル付けされていない画像にラベル付けするステ
ップと、を含む。
【００１３】
　「ラベル付けされた」という用語は、解剖学的特徴のデリニエーション（delineation
）、セグメンテーション（segmentation）、またはアノテーション（annotation）のあら
ゆる種類を包含するように、広く解釈されるべきである。同様に、「ラベルデータ」とい
う用語は、医用画像上で解剖学的特徴に描写（delineated）、セグメント化（segmented
）、または注釈を付す（annotated）ことができるあらゆる種類の符号化を包含するよう
に、広く解釈されるべきである。
【００１４】
　最も近いラベル付き画像からラベルなし画像へとラベルデータを繰り返し伝播するおか
げで、構造的に類似のアトラスを用いてそれぞれのラベルなし画像をセグメント化するこ
とができる。結果として、ラベル付き画像とラベルなし画像の間での比較的大きな差異を
、ラベルデータが伝搬される比較的類似する最初にラベル付けされない画像間での多数の
小さな差異へと分解することができ、位置合わせ誤差を削減することが可能になる。
【００１５】
　好適ではあるが選択的な特徴は、従属項で規定される。
【００１６】
　したがって、ラベル付けされた画像とラベル付けされていない画像とを比較するステッ
プは、低次元の座標系内に画像を埋め込むことを好ましくは含む。これにより、ラベル付
き画像とラベルなし画像とを比較して、計算的に効率的な方法でその差異を定量的に評価
することが可能になる。特定の実施形態では、低次元座標系が二次元座標系であってもよ
い。こうすると、画像間の差異の解析と処理がさらに単純化される。
【００１７】
　ラベル付けされた画像とラベル付けされていない画像とを比較するステップは、画像セ
ット内の各画像ペアについて一つ以上の解剖学的特徴を比較することによって、ペア間類
似度測定（pairwise measures of similarity）のセットを定義することを好ましくは含
む。特に好ましくは、このステップは、ペア間類似度測定でスペクトル解析操作を実行す
ることをさらに含む。しかしながら、当業者であれば、これを実現可能である他の方法が
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存在することを理解するだろう。
【００１８】
　ペア間類似度測定は、画像ペア間での強度の類似度を表してもよいし、および／または
画像ペア間での変形量を表してもよい。
【００１９】
　ラベルデータを伝播するステップは、分類装置融合（classifier fusion）技術に基づ
き、最も近い複数のラベル付けされていない画像からラベルデータを伝播することを好ま
しくは含む。これにより、選択された画像（単数または複数）により高い精度でラベルを
付けることが可能になる。
【００２０】
　ラベル付けプロセス中の位置合わせ誤差の集積をさらに最小化するために、ステップ（
ｄ）の後かつステップ（ｅ）の前に、新たに伝播されたラベルデータに強度ベースの精密
化（inteisity-based refinement）操作を実行するステップをさらに含むことが好ましい
。
【００２１】
　画像は異なる被験者のものであってもよい。代替的に、画像の少なくとも一部が同一被
験者の異なる時点で取得されたものであってもよい。これにより、被験者内変動（intra-
subject variance）を特定し研究することが可能になる。
【００２２】
　画像は磁気共鳴画像であってもよいし、当業者に周知の他の医用画像であってもよい。
【００２３】
　ある条件の有無を表す解剖学的特徴をラベル付けし、その特徴を使用してその条件のバ
イオマーカーを導出することをさらに含んでもよい。バイオマーカーに基づいて、被験者
を診断区分に割り振り、治療に対する被験者の反応を数値化し、および／または被験者の
治療法を選択することをさらに含んでもよい。
【００２４】
　本発明の第２の態様によると、本発明の第１実施形態に係る方法を実施するように構成
された画像装置が提供される。画像装置は、ＭＲＩスキャナなどの医療用スキャナ、また
は他のタイプであってもよい。
【００２５】
　本発明の第３の態様によると、本発明の第１実施形態に係る方法を実施するように構成
された画像処理装置が提供される。
【００２６】
　本発明の第４の態様によると、本発明の第１実施形態に係る方法を実施するように構成
されたコンピュータシステムが提供される。
【００２７】
　本発明の第５の態様によると、本発明の第１実施形態に係る方法を実施するコード化さ
れた命令を含むコンピュータプログラムが提供される。
【００２８】
　本発明の第６の態様によると、本発明の第５実施形態に係るコンピュータプログラムを
エンコードするコンピュータ可読媒体または物理的搬送波信号が提供される。
【００２９】
　以下、図面を参照して、例示のみを目的として本発明の実施形態を説明する。
【図面の簡単な説明】
【００３０】
【図１】新規な方法を用いたアトラス伝播の過程を示す図である。
【図２】四つの被験者グループ（健康な若年者、高齢の対照群、ＭＣＩ、ＡＤ）間で異な
る選択がされた特徴次元を区別する能力を示す結果の図である。
【図３】ペア間画像類似度の評価に用いられた海馬の周囲の関心領域を示すＭＮＩ１５２
脳アトラスの図である。
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【図４】健康な被験者に基づく３０枚のアトラスと、高齢の認知症患者および年齢適合対
照被験者からの７９６枚の画像の、座標埋め込みを示す図である。
【図５】横断面スライス上での右海馬に対するセグメンテーション結果を比較した図であ
る。
【図６】評価に用いられた画像の各サブセットが一本の棒グラフで表されている、アトラ
スの原セットからの距離の増加に伴うセグメンテーション精度の発展を示す図である。
【図７】マニュアルセグメンテーションおよび自動セグメンテーションでの平均海馬体積
を示す図である。
【図８】海馬のマニュアルセグメンテーションおよび自動セグメンテーションに基づく体
積測定の一致を示すBland-Altmanプロットである。
【発明を実施するための形態】
【００３１】
　本実施形態は、出願人が既知の、本発明を実施する最適な方法を説明する。しかしなが
ら、これを実現可能である唯一の方法ではない。
【００３２】
　最初に、本実施形態は、医用（または他の）画像を処理する方法またはアルゴリズムの
形態をとる。この方法またはアルゴリズムはコンピュータプログラムで具現化されてもよ
いし、またはコンピュータプロセッサによって実行可能である命令コードのセットで具現
化されてもよい。コンピュータプロセッサは、従来の（十分に高性能な）コンピュータの
ものであってもよいし、または他の画像処理装置やコンピュータシステムのものであって
もよい。代替的に、ＭＲＩスキャナなどの医用画像装置の一部にコンピュータプロセッサ
が組み込まれてもよいし、これらと通信してもよい。　
【００３３】
　コンピュータプログラムまたは命令コードのセットは、ＣＤ－ＲＯＭ、ＤＶＤまたは固
体メモリデバイスなどのコンピュータ可読媒体またはデータキャリアで提供されてもよい
。代替的に、接続されたコンピュータから、またはローカルエリアネットワークあるいは
インターネットなどの広域ネットワークを介して、デジタル信号としてダウンロード可能
であってもよい。さらなる代替として、コンピュータプログラムまたは命令コードのセッ
トが、それを実行するように構成されたコンピュータプロセッサ（または関連するメモリ
）にハードコーディングされていてもよい。
【００３４】
概要
　我々の方法は、一連のデジタル画像に既にラベルまたは注釈が付けられている、一つ以
上の既存のアトラスを取得することから始まる。伝播すべきラベルまたは注釈が載ってい
る一連の画像が、例えばＭＲＩスキャナまたは医用画像装置の別の部分から取得される。
問題になっている画像は脳画像であってもよい。代替的に、例えば変形性関節症を診断す
るために、膝などの人間（または動物）の体の他の部分の画像であってもよい。
【００３５】
　我々の新規な方法を用いるアトラス伝播およびセグメンテーションプロセスが、五つの
ステップからなる図１に描かれている。最初にステップ（１）で、全てのラベル付き画像
（すなわちアトラス）およびラベルなし画像が低次元多様体に埋め込まれる。ステップ（
２）で、ラベル付き画像に最も近いＮ個のラベルなし画像がセグメンテーションのために
選択される。続いてステップ（３）で、Ｍ個の最も近いラベル付き画像が、選択された画
像（一つの選択された画像の例が図示されている）のそれぞれに対して位置合わせされる
。ステップ（４）で、強度精密化（intensity refinement）を使用して、選択された画像
のそれぞれのラベルマップを取得する。ステップ（５）で、さらなる画像（および好まし
くは全ての画像）にラベルが付けられるまでステップ（２）－（４）が繰り返される。
【００３６】
　上述したように、アトラスベースのセグメンテーションは、ターゲット画像と類似する
アトラスの選択から利益を受ける。我々の方法は、画像間の距離メトリックを提供し近隣
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の画像を識別可能にする、低次元座標系内の全ての画像を最初に埋め込むことによって、
これが保証されるフレームワークを提供する。座標系埋め込みから学習された多様体内で
、伝播フレームワークを特定可能であり、初期アトラスから始まり全母集団がセグメント
化されるまでラベル付きアトラスを段階的に伝播させることができる。各画像は、その近
隣範囲にあるアトラスを用いてセグメント化される。これは、類似しない画像間の変形が
、比較的類似する画像間のいくつかの小さな変形にまで分解され、位置合わせ誤差が減少
することを意味する。位置合わせ誤差の集積をさらに最小化するために、各ラベル伝播ス
テップの後で、強度ベースのセグメンテーションの精密化が行われる。一端セグメント化
されると、後続のセグメンテーションステップにおけるアトラスとして画像を使用するこ
とができる。母集団内の全画像がセグメント化された後、画像は、不可視画像のセグメン
テーションのためにそこから適切なサブセットを選択することができる大きなアトラスデ
ータベースとなる。画像がその中に埋め込まれる座標系は、ペア間類似度にスペクトル解
析ステップを適用することで取得される。ラベル付きアトラスが伝播され、特定のターゲ
ット画像について融合されると、それらが提供する情報が、ターゲット画像の強度に基づ
くモデルと組み合わされて、最終的なセグメンテーションを生成する。
【００３７】
　高レベルの被験者間（inter-subject）変動がある画像のデータセットを通じてアトラ
スの初期セットを伝播させるために、局所的な近隣範囲内で画像が互いに類似している、
データセットの多様体表現が学習される。多様体は、全画像の座標埋め込みによって表現
される。この埋め込みは、スペクトル解析ステップを完全グラフに適用することによって
求められる。完全グラフ内では、各頂点が一つの画像を表し、画像間の全てのペア間類似
度を用いてグラフ内のエッジ重みを定義する。ペア間類似度は、画像間の強度の類似度、
または画像間の変形量、またはこの二つの組み合わせとして測定することができる。
【００３８】
　次のステップでは、新たに定義された座標系内でアトラスが伝播される。第１ステップ
では、アトラスの初期セットが局所的な近隣にある多数の画像に伝播され、画像のラベル
付けに使用される。こうしてラベル付けされた画像は自身がアトラスとなり、後続のステ
ップで、データセットの全体にさらに伝播される。こうして、すぐそばにある複数のアト
ラスを用いて各画像がラベル付けされ、位置合わせ誤差が減少するという利点がある。
【００３９】
　この技術の拡張として、同一の被験者からではあるが異なる時点で取得された一つまた
は複数のスキャン（いわゆる「長期的な」スキャン）にラベル付けしてもよい。複数のア
トラスをベースラインスキャンのそれぞれに伝播した後、複数のアトラスから取得された
空間プライア（spatial prior）を用いて、（最初に行う）ベースラインスキャンだけで
なく、長期的スキャンもセグメンテーションすることができる。したがって、この拡張技
術により、異なる時点（例えば、第０日、第３日、第１５日など）を同時にセグメンテー
ションすることができ、複数時点間での差異の測定が可能になる。
【００４０】
　ベースライン画像よりも後の時点で取得された被験者画像を同時にセグメント化し、被
験者内変動（すなわち、単一の被験者内での異なる時点での解剖学的構造の変動）の特定
に用いることができる。
【００４１】
グラフ構築および多様体埋め込み
　中間アトラス伝播ステップを決定するために、空間解析ステップの適用によって取得さ
れる座標系で表される多様体内に全画像が埋め込まれる。スペクトル解析技術は、画像な
どのデータ項目間のペア間類似度の測定に基づき、特徴座標を作成するという利点を有し
ている。これは、多次元スケーリング（ＭＤＳ）などのデータ項目間の距離メトリックを
必要とする方法とは対照的である。スペクトル解析ステップの後、学習した座標系内での
二つの画像間の距離は、画像間の元のペア間類似度だけでなく、各画像が母集団の残りに
対して有している全てのペア間類似度にも依存する。これは、ノイズの影響を受け易い個
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別のペア間類似尺度よりもロバスト性が高い類似尺度を、座標系内の距離が埋め込む。ス
ペクトル解析法の良好な紹介は、von Luxburg (2007) に見つけることができる。さらな
る詳細はChung (1997)から入手できる。
【００４２】
　スペクトル解析ステップは、データセット内の各画像が一つの頂点ｖｉによって代表さ
れる、完全重み付き無向グラフＧ＝（Ｖ，Ｅ）に適用される。二つの頂点ｖｉとｖｊの間
の非負の重みｗｉｊは、それぞれの画像間の類似度ｓｉｊによって定義される。本研究で
は、強度ベースの類似度が使用される。各画像ペアに対してのエッジ重みｗｉｊ＝ｓｉｊ

を集めることによって、Ｇに対する重み行列Ｗが取得される。対角行列Ｔは、各頂点に対
する次数和
【数１】

を含む。
【００４３】
　スペクトル解析ステップから導かれる特徴データの次元は、ユーザが選択することがで
きる。本研究では、特徴データの各次元を順に試験し、四つの被験者群（若年者、ＡＤ、
ＭＣＩ、高齢の対照被験者）を判別する能力を評価した。各特徴次元に対する各クラスタ
ーの重心に基づく平均クラスター間距離を使用して、判別能力を測定した。研究された群
については、二次元特徴を用いたときが最大であり、その後減少した（図２を参照）。し
たがって、データを埋め込む座標空間として、二次元のスペクトル特徴を用いることにし
た。
【００４４】
画像類似度
　我々の方法の好適な実施形態では、画像のペアＩｉ、Ｉｊ間の強度ベースの類似度を使
用する。この類似度は、画像ＩのエントロピーＨ（Ｉ）と、二つの画像の結合エントロピ
ーＨ（Ｉｉ；Ｉｊ）とを用いる正規化相互情報量（ＮＭＩ）に基づいており（Studholme 
et al., 1999）、次式で定義される。
【数２】

【００４５】
　例えば、海馬をセグメント化するとき、海馬の周りの関心領域（ＲＯＩ）に対するＮＭ
Ｉとして、画像ペア間の類似尺度を計算する。しかしながら、フレームワークは一般的で
あり、ユーザは、セグメント化する領域または構造に適した類似尺度および関心領域を選
択することができる。ＲＯＩを定義するために、標準的なマルチアトラスセグメンテーシ
ョン（Heckemann et al., 2006）を使用して、全ての訓練画像が自動的にセグメント化さ
れる。得られた海馬ラベルが、対応する画像とアトラスとの間に１０ｍｍのＢ－スプライ
ン制御点間隔を有する、ＦＦＤ法（free-form deformation）によってモデル化された粗
い非リジッドの位置合わせを用いて（Rueckert et al., 1999）、既知の脳アトラス（例
えば、MNI152-brain T1アトラス（Mazziotta et al., 1995））と位置合わせされる。続
いて、少なくとも２％のセグメンテーションによって海馬としてラベル付けされた全ての
頂点によって定義される領域の膨張（dilation）を通して、海馬のＲＯＩが定義される。
ペア間類似度を評価するために、マスク形成に用いられるのと同一の位置合わせを使用し
て、全ての画像が既知のアトラスと位置合わせされる。図３は、画像正規化に使用した脳
アトラスに重畳された、海馬周りのＲＯＩを示す。
【００４６】



(10) JP 5695648 B2 2015.4.8

10

20

30

学習した多様体におけるセグメンテーション伝播
　学習した多様体を用いてデータセットを通してアトラスセグメンテーションを伝播する
ために、全画像

が、ラベル付き画像とラベルなし画像とを含む二つの群に分割される。これらの群には、
それぞれセットＬ、セットＵと添え字が付けられる。最初に、Ｌは初期アトラス画像を表
し、Ｕは他の全ての画像を表す。ｄ（Ｉｉ；Ｉｊ）が、多様体内の画像ＩｉおよびＩｊ間
のユークリッド距離を表すものとする。ラベルなしの画像Ｉｕから全てのラベル付き画像
への平均距離は、次式となる。

【数３】

【００４７】
　各イテレーションにおいて、Ｎ個の最小平均距離

を持つ画像

が伝播ターゲットとして選択される。これらの画像のそれぞれに対して、

から取り出されるＭ個の最近接画像が、伝播すべきアトラスとして選択される。続いて、
インデックスセットＵおよびＬが更新され、現在のイテレーションでターゲット画像にラ
ベル付けがなされたことを示す。データセット内の全画像にラベル付けされるまで、この
ように段階的な伝播が実行される。
【００４８】
　Ｎは、各イテレーション中にラベル付けされる画像の数を決定するので、重要なパラメ
ータである。したがって、Ｎは、ターゲット画像がセグメント化される前に行われる中間
ステップの期待数に強い影響を与える。Ｍは、マルチアトラスセグメンテーションの各適
用に使用されるアトラス画像の数を定める。自然な選択は、Ｍを初期アトラスの数に設定
することである。Ｎの選択とは無関係に、Ｋ枚の画像をセグメント化するのに必要な位置
合わせの数は、Ｍ×Ｋである。学習された多様体内でのセグメンテーション伝播プロセス
は、アルゴリズム１で要約される。
【００４９】
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【００５０】
マルチアトラス伝播およびセグメンテーション精密化
　各ラベル伝播は、van der Lijn et al. (2008)に記載された、海馬セグメンテーション
方法の修正版の適用によって実行される。この方法では、Ｍ個のアトラスの位置合わせか
ら得られるセグメンテーションｆｊ，ｊ＝１，．．．，Ｍは、Heckemann et al. (2006)
のようにハードセグメンテーションに融合されない。しかし、その代わりに、ターゲット
画像Ｉの座標系内での確率的アトラスを形成するのにセグメンテーションが使用される。
これが、「分類装置融合」技術の一例である。
【００５１】
　元の研究では、この被験者特有アトラスを、前景および背景用の既に学習された強度モ
デルと組み合わせて、グラフカットにより最適化されたエネルギー関数を与えている。我
々は、不可視画像から強度モデルを直接推定し、二つ以上の構造に対するアプローチ（Wo
lz et al., 2009）を一般化するやり方で、この方法を既に拡張している。アトラスの少
なくとも９５％が特定の構造に割り当てられている特定の構造に対するガウス分布が、全
ての頂点から推定される。ラベルｆｉを持つ特定の構造ｉの背景分布が、ラベルｆｊ，ｊ
≠ｉを持つ全ての他の構造のガウス強度分布、および特定の構造が定義されないエリアに
おける組織クラスＴｋ，ｋ＝１，．．．，３のガウス分布から推定される。
【００５２】
　不可視画像から得た強度情報をセグメンテーションプロセスに組み込むことによって、
従来のマルチアトラスセグメンテーションに伴う誤差を取り除くことができる。
【００５３】
　被験者特有の確率的アトラスを構成するのに使用される各位置合わせを、三つのステッ
プで実行してもよい。すなわち、リジッド、アフィン、非リジッドである。リジッドおよ
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びアフィン位置合わせを実行して、画像間のグローバル差を訂正する。三番目のステップ
で、制御点ベクトルの正則格子がＢ－スプライン基底関数を用いて重み付けされる自由形
式変形モデルを使用して、二つの画像が非リジッドに整列され、画像内の各位置における
変位が与えられる（Rueckert et al., 1999）。この変形は、画像ペアの正規化相互情報
量によって導出される（Studholme et al., 1999）。Ｂ－スプライン制御点の間隔は、非
リジッド位置合わせの局所的な柔軟性を定める。一連の制御点間隔を、多解像度形式（２
０ｍｍ、１０ｍｍ、５ｍｍ、２．５ｍｍ）で使用してもよい
【００５４】
　我々の方法では、マルチアトラスセグメンテーションを使用して中間アトラスを体系的
にラベリングし、続いて、既にラベル付けされたアトラス画像との類似度にしたがって選
択されるターゲット画像のマルチアトラスセグメンテーションのために、中間アトラスが
使用されることが理解されるだろう。従来の研究と比較して、我々は、非常に多様な画像
セットを扱っている。このようなシナリオでは、類似画像の位置合わせのみから得られる
利益が、位置合わせ誤差の蓄積を上回りそうである。
【００５５】
実験検証
　以下に述べるように、我々の新規な方法を実験的に検証した。若年の健康な被験者（年
齢範囲２０－５４歳、年齢の中央値３０．５歳）から得た３０枚のＭＲ画像からなる、マ
ニュアルでラベリングされたアトラスの初期セットを、８３箇所の関心解剖学的構造を定
義するマニュアルラベルマップとともに取得することから始めた。このセットでは、ＧＥ
製のＭＲスキャナを用いて、以下のパラメータ（TE/TR 4.2 ms (fat and water in phase
)/15.5 ms, time of inversion (TI) 450 ms, flip angle 20°）を用いたＩＲ　ＦＳＰ
ＧＲ（inversion recovery prepared fast spoiled gradient recall）シーケンスを使用
して、Ｔ１強調されたＭＲ画像を入手し、１９２×２５６の画像行列を持つ、１８×２４
ｃｍの視野を有する１．５ｍｍ厚のスライスを１２４枚取得した。
【００５６】
　続いて、我々の方法を使用して、ＡＤＮＩ（Alzheimer's Disease Neuroimaging Initi
ative）のデータベース（www.loni.ucla.edu/ADNI）から得た、アルツハイマー病（ＡＤ
）および軽度認知機能障害（ＭＣＩ）の患者、並びに年齢適合対照群からの７９６枚のＭ
Ｒ画像のデータセットに、このアトラスの初期セットを伝播させた。ＡＤＮＩの研究では
、約２００人の認知が正常な高齢被験者、ＭＣＩである４００人の被験者、および初期Ａ
Ｄの２００人の被験者から、ベースラインおよび一定の間隔で脳ＭＲ画像が取得されてい
る。
【００５７】
　後述する結果から、被験者間の位置合わせ誤差における関連した減少に少なくとも部分
的に起因して、この手法がより正確なセグメンテーションを提供することが分かるだろう
。
【００５８】
座標系埋め込み
　我々は、上述した座標埋め込み法を、３０個の初期アトラスおよび７９６枚のＡＮＤＩ
画像を含む画像セットに適用した。スペクトルグラフ解析からの最初の二つの特徴を用い
て、二次元座標系内に全ての画像を埋め込んだ。座標系埋め込みの結果を図４に示す。元
のアトラスは、第１の特徴が低い値でグラフの左側に明確なクラスターを形成している。
さらに、対照被験者は主に低い方の値に位置する一方、ＡＤ被験者の大多数が高い方の値
に位置していることが分かる。選択された被験者例の海馬範囲が図４に示されている。座
標系埋め込み内での近くにあるものが、海馬外観の観点で類似する画像を表しているとい
う印象を、これらのタイプの観察が支持する。
【００５９】
　五つの異なるアプローチを用いて、全７９６枚の画像がセグメント化された。
Ｉ．標準的なマルチアトラスセグメンテーションを用いた直接セグメンテーション
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ＩＩ．グラフカットに基づく強度精密化と組み合わせたマルチアトラスセグメンテーショ
ンを用いた直接セグメンテーション
ＩＩＩ．Ｍ＝３０、Ｎ＝１００とし、マルチアトラスセグメンテーション後に強度精密化
を行わない、我々の新規な方法
ＩＶ．Ｍ＝３０、Ｎ＝１とした我々の新規な方法
Ｖ．Ｍ＝３０、Ｎ＝３００とした我々の新規な方法
【００６０】
セグメンテーションの評価
　評価のために、ＡＤＮＩ画像の自動セグメンテーションとマニュアルの海馬セグメンテ
ーションとを比較した。ＡＮＤＩがマニュアルセグメンテーションを提供する全ての画像
（７９６枚のうち１８２枚）に対して、この比較を実行した。これらの１８２人の被験者
（テーブル１）と７９６人の被験者の母集団全体（テーブル２）との比較は、年齢、性別
、ＭＭＳＥおよび病理学の観点で、サブグループが全母集団の特徴を表すことを示してい
る。
【００６１】

テーブル１：マニュアルセグメンテーションと自動セグメンテーションとの比較に使用し
た被験者の特徴

テーブル２：本研究で画像を使用した被験者に関する情報
【００６２】
　ＡＤ被験者の右海馬のセグメンテーションの一例を図５に示す。画像（ｂ）、（ｃ）、
（ｄ）、（ｅ）は、方法Ｉ、ＩＩ、ＩＩＩ、Ｖにそれぞれ対応する。強度ベースの精密化
を用いた場合および用いない場合のマルチアトラスセグメンテーション（方法ＩおよびＩ
Ｉ）の両方において、ＣＳＦ空間への明らかなオーバーセグメンテーションと、海馬前部
でのアンダーセグメンテーションとを観察することができる。強度ベースの精密化がこの
誤差を補償できないという事実は、この領域内のアトラスの大部分の顕著な位置ずれによ
って生じる、この領域での高い空間プライアによるものである。得られた高い空間プライ
アは、強度ベースの訂正スキームでは解消することができない。強度精密化を用いない提
案されたフレームワーク（方法ＩＩＩ）を使用すると、位相的な誤差を避けることができ
るが、ＣＳＦ空間へのオーバーセグメンテーションは依然として存在している。図は、提
案されたフレームワークを使用することで、全ての観察された問題を回避できることも示
している。図５（および図６、以下のテーブル３）において、我々の新規な方法を用いて
観察された結果は、「ＬＥＡＰ（Learning Embeddings for Atlas Propagation）」とい
う用語で識別される。
【００６３】
　評価のために使用された１８２枚の画像の左右海馬のセグメンテーションに対する、Ｄ
ｉｃｅ係数または類似度指数（ＳＩ）（Dice, 1945）により測定された平均オーバーラッ
プをテーブル３に示す。五つの方法の全てのペア間での差は、スチューデントの対応のあ
る（paired）両側ｔ検定で統計学的に有意であった（ｐ＜０．００１）。
【００６４】
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テーブル３：海馬セグメンテーションのＤｉｃｅオーバーラップ
【００６５】
　これらの結果は、提案された方法でセグメンテーション精度およびロバスト性が改善さ
れていることを明らかに示している。我々の仮説は、埋め込み空間内での距離が大きすぎ
る画像同士の直接位置合わせを回避し、代わりに複数の中間画像を介した画像の位置合わ
せをすることによって、マルチアトラスセグメンテーションのセグメンテーション精度よ
びロバスト性が顕著に改善されるというものである。この仮説を検証するために、座標系
埋め込みにおける距離および中間ステップの数の関数として、セグメンテーション精度の
発展を調査した。図６は、五つのセグメンテーション法に対する結果を１０個の棒グラフ
形式で示す。各棒グラフは、１８枚（最後のグラフでは２０枚）の画像の平均ＳＩオーバ
ーラップに対応している。最初の図は、元のアトラスに最も近い１８の画像を表し、次の
図は元のアトラスからわずかに離れた画像を表し、以下同様である。これらの結果は、元
のアトラスセットとは異なる画像のセグメント化において、直接マルチアトラスセグメン
テーション手法よりも、提案された方法が優れていることを示している。
【００６６】
　学習した多様体内での元のアトラスからの距離が増加するにつれて、直接マルチアトラ
スセグメンテーション（方法Ｉ）および強度ベースの精密化を用いるマルチアトラスセグ
メンテーション（方法ＩＩ）の精度は徐々に減少する。それに反して、両方のパラメータ
設定を伴う我々の新規な方法は、一定レベルのセグメンテーション精度を示している。ス
テップ幅がＮ＝１である我々の方法（方法ＩＶ）が、元のアトラスから特定の距離に至る
まで、直接マルチアトラス法よりも悪い結果になる点が興味深い。これは、多数の位置合
わせステップを経て蓄積される位置合わせ誤差によって説明することができる。しかしな
がら、アトラスからの距離が増加するにつれて、中間テンプレートの使用から得られる利
益がこの位置合わせ誤差を上回る。さらに、蓄積された位置合わせ誤差は、特定回数の位
置合わせ後には劇的には増加しないように見える。これは、部分的には、小さな位置合わ
せ誤差を補正する、あらゆるマルチアトラスセグメンテーションステップにおける強度ベ
ースの補正によるものである。次の中間ステップを行う前に、３００枚の最も近い画像を
我々の新規な方法を用いてセグメント化する（Ｎ＝３００、方法Ｖ）と、初期アトラスか
らの全ての距離において、直接の方法によって得られる結果と少なくとも同等であり、し
ばしばそれより良い結果となる。マルチアトラスセグメンテーション後の強度ベースの精
密化ステップの重要度は、方法ＩＩＩの結果によっても強調される。このステップなしの
我々の新規な方法を適用すると、方法Ｉと比べて利益はより大きくなり、中間ステップが
多くなるほど顕著になる。しかし、精度は大きく低下する。これは、伝播されたアトラス
の劣化によって説明することができる（最初の３００枚の画像に対して、方法ＩＩと方法
Ｖが同一であり、方法Ｉと方法ＩＩＩが同一であることに注意する）。セグメンテーショ
ン精度に対するＮの影響は、ターゲット画像に対しできるだけ近いアトラスを用いること
（小さいＮ）と、位置合わせ誤差の蓄積を避けるために最少数の中間ステップを使用する
設計を用いること（大きいＮ）の間のトレードオフによって支配される。フレームワーク
の評価計算の複雑さのために、二つの値を評価することに限定した。
【００６７】
体積測定
　海馬体積の減少は、認知障害に関連する周知の要因である（例えば、Jack et al. (199
9)；Reiman et al. (1998)）。海馬体積によって臨床群を区別する、我々の方法の能力を
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測定するために、１８２枚のマニュアルでラベリングされた画像上で測定された体積と、
我々の自動方法（方法Ｖ、Ｍ＝３０、Ｎ＝３００であるＬＥＡＰ）から得られた体積とを
比較した。左右海馬の体積を表すボックスプロットが図７に示されている。図７は、マニ
ュアルセグメンテーションと、方法ＩＶを用いた自動セグメンテーションの平均海馬体積
を示す。臨床群の全てのペア間で左右海馬の体積を区別する能力は、スチューデントのｔ
検定で統計学的に有意である（ｐ＜０．０５）が、マニュアルの区別よりもわずかに有意
性が小さい。
【００６８】
　図８は、海馬のマニュアルセグメンテーションと自動セグメンテーション（方法ＩＶ）
に基づく体積測定間の一致を示すBland-Altmanプロットである。実線は平均を表し、点線
は±１．９６の標準偏差を表している。このプロットは、自動化された方法が海馬体積を
わずかに過大評価する傾向にあるという図７の体積測定の印象を支持する。このオーバー
セグメンテーションは、小さな海馬に対してより顕著である。自動セグメンテーション法
に対する同様の現象が以前にHammers et al. (2007)によって述べられている。マニュア
ルセグメンテーションおよび自動セグメンテーションに基づく体積測定間の級内相関係数
（ＩＣＣ）は、０：８９８である（ICC (3,1) Shrout-Fleiss reliability (Shrout and 
Fleiss, 1979)）。この値は、評価者間信頼性（inter-rater reliability）についてNiem
ann et al. (2000)で報告された０：９２９という値と比べても遜色ない。
【００６９】
考察および結論
　この研究で、マルチアトラスセグメンテーションによって不可視画像の多様な母集団に
脳アトラスの初期セットを伝播する、我々の新規な方法について説明してきた。選択され
た測定にしたがって類似の画像が近接している座標系内に、全てのアトラスとターゲット
画像とを埋め込むことから始めた。続いて、この座標系により表される多様体を通して、
アトラスの初期セットが数回のステップで伝播される。これにより、構造が顕著に異なる
画像間での大きな変形を評価する必要性がなくなり、画像間の対応が比較的小さな一連の
変形にまで分解される。フレームワークの構成は一般的であり、特定の類似尺度、座標埋
め込みまたは位置合わせアルゴリズムに束縛されない。
【００７０】
　健康な若年の被験者の３０枚一組のアトラスを使用して、高齢の認知症患者および年齢
適合対照から取得した７９６枚の画像からなるターゲットデータセットに、我々の新規方
法を適用した。この方法の最初に適用するとき、提案されたフレームワークを他の解剖学
的構造にも同様に適用可能であるにもかかわらず、この方法を海馬セグメンテーションの
タスクに適用した。提案された方法は、標準的なマルチアトラスセグメンテーションと比
較して、一貫して改善されたセグメンテーション結果を示している。また、アトラスの初
期セットからの距離が増加し、したがって中間位置合わせステップ数も増加した提案手法
の精度も一貫したレベルにあることを立証してきた。他方、標準的なマルチアトラスセグ
メンテーションの精度は徐々に低下する。この観察から、三つの主要な結論が示唆される
。
【００７１】
（１）標準的なマルチアトラスセグメンテーションの精度の低下は、使用される座標系埋
め込みが重要であることを示唆している。距離が増加するほど、初期アトラスはセグメン
テーションにますます適さなくなる。
【００７２】
（２）提案された方法の精度がほぼ一定であることは、いくつかの小さな変形を用いるこ
とで、使用されるマルチアトラスセグメンテーションフレームワーク内での直接変形と一
致しない方法で、ターゲットに向けてアトラスを間接的に適切に変形できることを示唆し
ている。
【００７３】
（３）類似の画像への位置合わせを制限することから得られる利益は、連続的な小さな変
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形を用いるときの誤差の蓄積を無効にする。
【００７４】
　我々の結果は、多数の中間位置合わせを使用する場合、セグメンテーション精度が最初
は急速に低下するが、その後は初期アトラスからの距離が増加しても比較的一定となるこ
とを示している。初期の低下は、多数の中間位置合わせステップで生じる位置合わせ誤差
の蓄積によって説明することができる。精度が単調に減少しない理由は、各マルチアトラ
スセグメンテーションステップ中の強度モデルの組み込みが原因のようである。伝播した
セグメンテーションを画像強度に基づき自動的に訂正することによって、アトラスの品質
を一定水準に維持することができる。
【００７５】
　部分母集団に基づく一組のアトラスを用いた、多様な画像からなるデータセットのセグ
メント化の明確な適用は別として、提案された方法は、アトラス選択を用いた後続のマル
チアトラスセグメンテーション用のアトラスの巨大なレポジトリを自動的に作成する方法
として理解することができる（Aljabar et al., 2009）。巨大なアトラスデータベースを
マニュアルで作成するには費用がかかり、時間がかかり、多くの場合実現不可能であるの
で、このようなデータベースを自動的に作成するために、提案された方法を使用できる可
能性がある。
【００７６】
　画像収集プロトコルに起因する変動、およびＡＤＮＩの研究におけるものと同等に大き
く多様なデータセット内での被験者間変動に代表される課題にも関わらず、我々の方法を
用いて達成された結果は、精度およびロバスト性の観点で、より限定的なデータセットに
対して適用された従来方法（van der Lijn et al., 2008；Morra et al., 2008；Chupin 
et al., 2009；Hammers et al., 2007）の状態と匹敵するものである。
【００７７】
要約
　一組のマニュアルでラベリングされた脳アトラスを、被験者の母集団の画像の多様なセ
ットに自動的に伝播する新規なフレームワークを提示してきた。選択された基準に基づき
類似する画像を含む近隣間の識別を可能にする座標系の埋め込みから多様体が学習される
。新たな座標系内で、一連のマルチアトラスセグメンテーションステップを通して、アト
ラスの初期セットが全画像に伝播される。これは、非常に「似ていない」画像を位置合わ
せするという問題を、「似ている」一連の画像を位置合わせするという問題に分解する。
同時に、一連の複数のより小さな変形としてモデル化される画像間の潜在的に大きな変形
を可能にする。
【００７８】
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