发明名称
医疗设备及其控制方法

摘要
本发明提供一种医疗设备及其控制方法。医疗设备包含：超声波换能器单元，换能器单元包括多个超声波换能器元件，超声波换能器元件被配置为接收信号转换为超声波并输出所转换的超声波，分组单元，被配置为将超声波换能器元件分成多个组，信号产生单元，被配置为产生要被转换成超声波的信号并由分别与所述多个组对应的多个输出通道将所产生的信号输出到组。
1. 一种医疗设备，所述医疗设备包括：
超声波换能器单元，超声波换能器单元包括多个超声波换能器元件，所述超声波换能器元件包括多个信号转换为超声波并输出所转换的超声波；
分组单元，将所述多个超声波换能器元件分成多个组；
信号产生单元，被配置为产生将要被转换成超声波的信号并经由分别与所述多个组对应的多个输出通道将所转换的信号输出到所述多个组。
2. 根据权利要求1所述的医疗设备，其中，信号产生单元还被配置为将信号转换成超声波的信号中的一个或多个信号经由所述多个输出通道分别输出到所述多个组中的包括两个或多个超声波换能器元件的相应组。
3. 根据权利要求1所述的医疗设备，所述医疗设备还包括：
通道选择单元，被配置为选择将要被转换成超声波的信号将被输入到所述多个组所经的两个输出通道；
4. 根据权利要求3所述的医疗设备，所述医疗设备还包括：
用户界面，被配置为接收分组信息，所述分组信息说明超声波换能器元件将要被分组的组的数量。
其中，通道选择单元还被配置为根据所接收的分组信息选择两个或多个输出通道。
5. 根据权利要求1所述的医疗设备，其中，分组单元还被配置为根据超声波换能器元件分组成启用的超声波换能器元件和停用的超声波换能器元件，以及将启用的超声波换能器元件分组成两个或多个和两个的组。
6. 根据权利要求5所述的医疗设备，所述医疗设备还包括：
用户界面，被配置为接收分组信息，所述分组信息说明将要被输入的启用的超声波换能器元件的数量。
其中，分组单元还被配置为根据所接收的分组信息将超声波换能器元件分组成启用的超声波换能器元件和停用的超声波换能器元件。
7. 根据权利要求5所述的医疗设备，其中，
分组单元还被配置成由随机抽取的超声波换能器元件和停用的超声波换能器元件。
8. 根据权利要求1所述的医疗设备，其中，分组单元还被配置成将所述多个超声波换能器元件中的相邻的超声波换能器元件分入一个组。
9. 根据权利要求1所述的医疗设备，所述医疗设备还包括：
相位调节器，被配置成调节将要被输出到所述多个组的信号的相位，以在超声波将要辐射的目标区域中形成超声波换能器单元的焦点；
信号放大器，被配置为放大经相位调节的信号的振幅。
10. 根据权利要求9所述的医疗设备，所述医疗设备还包括：
处理器，被配置为计算将要被输出到所述多个组的信号的相位和放大增益，以控制相位调节器和信号放大器，根据所述分组单元发送的分组信息来控制所述相位和所述放大增益。
11. 根据权利要求10所述的医疗设备，其中，处理器还被配置为控制相位调节器和信
号放大器，以响应于输出到所述多个组的信号由通过超声波换能器单元辐射的超声波形成多个焦点。

12. 一种控制医疗设备的方法，所述方法包括下述步骤：
 将超声波换能器单元的多个超声波换能器元件分成多个组；
 产生将要被转换成超声波的信号；
 将将要被转换成超声波的信号经由分别与所述多个组对应的多个输出通道输出到所述多个组。

13. 根据权利要求12所述的方法，所述方法还包括下述步骤：
 将将要被转换成超声波的信号中的一个或多个公共信号经由一个或多个输出通道分别输出到所述多个组中的包括两个或多个于两个超声波换能器元件的相应组。

14. 根据权利要求12所述的方法，其中，产生将要被转换成超声波的信号的步骤和输出将要被转换成超声波的信号的步骤包括选择将要被转换成超声波的信号将被输出到所述多个组相应的两个或多个于两个输出通道。

15. 根据权利要求14所述的方法，其中，选择输出通道的步骤包括接收分组信息并选择所述两个或多个输出通道的输出信号，接收的分组信息说明超声波换能器元件将要被选为所述组的数量，根据连接的分组信息选择所述两个或多个于两个的输出通道。

16. 根据权利要求12所述的方法，其中，将所述多个超声波换能器元件分成多个组的步骤包括将所述多个超声波换能器元件分组为启用的超声波换能器元件和停用的超声波换能器元件，并将启用的超声波换能器元件分成两个或多个于两个的组。

17. 根据权利要求16所述的方法，所述方法还包括下述步骤：
 经由随机选取来选取启用的超声波换能器元件和停用的超声波换能器元件。

18. 根据权利要求12所述的方法，其中，将所述多个超声波换能器元件分成多个组的步骤包括将所述多个超声波换能器元件中的邻近的超声波换能器元件分入一个组。

19. 根据权利要求12所述的方法，所述方法还包括下述步骤：
 控制将要被输出到所述多个组的信号，在超声波将要辐射的目标区域中形成超声波换能器单元的焦点。

20. 根据权利要求19所述的方法，其中，控制信号的步骤包括计算将要被输出到所述多个组的信号的相位和放大增益并控制将要被输出到所述多个组的所述信号的相位和放大增益，以在超声波将要辐射的目标区域中形成超声波换能器单元的焦点，根据说明超声波换能器元件将要被分组的组的数量的分组信息来计算所述相位和所述放大增益。

21. 根据权利要求19所述的方法，所述方法还包括下述步骤：
 控制将要被输出到超声波换能器单元的所述多个组的信号，以响应于输出到所述多个组的信号由通过超声波换能器单元辐射的超声波形成多焦点。
医疗设备及其控制方法

韩国专利申请的权利，出于各种目的，所述韩国专利申请的全部公开内容通过引用被包含
于此。

技术领域
[0002] 下面的描述涉及一种医疗设备及一种控制医疗设备的方法。

背景技术
[0003] 随着医学科学的发展，兴起了在不使用手术刀或者针头的情况下治疗人体的诸
如以肿瘤为例的病变组织的无创形式的手术。例如，高强度聚焦超声 (HIFU) 治疗是使用超
声波的无创手术的一种形式。在 HIFU 治疗中使用的超声波对人体无害。HIFU 治疗已经变
得广泛地用于在不使用手术刀或者针头的情况下治疗病变组织。
[0004] 在 HIFU 治疗中使用的超声波的强度是用于诊断的超声波的强度的大约十万倍。
HIFU 治疗的超声波聚焦在被辐射到将要被治疗的病变组织上，从而产生病变组织的病灶破
坏或坏死。即，超声波的能量聚焦在被辐射到人体的病变组织的一部分上且被转换为热能，
从而导致被辐射的部分的温度升高，并导致病变组织的凝固性坏死。在这种情况下，由于被
辐射的部分的温度瞬时升高，所以可防止热散发到被辐射的部分的周围。结果，仅仅病变组
织的被辐射的部分可被有效地去除。
[0005] 利用 HIFU 治疗的设备使用响应信号产生并辐射用于治疗的超声波的换能器。
例如，可使用多元件超声波换能器来实现 HIFU 治疗的效果。为了将多个输入信号中的
每个输入信号施加到超声波设备的多个元件超声波换能器的多个元件，产生输入信号的
单元应当具有数与元件超声波换能器的元件的数量相等的输出通道。因此，由于超声
波换能器元件被添加到 HIFU 治疗系统，所以可以控制每个换能器元件的信号的方法受制
于增加的复杂度。

发明内容
[0006] 在一个总体方面中，一种医疗设备包括；超声波换能器单元，超声波换能器单元包
括多个超声波换能器元件，超声波换能器元件被配置成将信号转换为超声波并输出所转换
的超声波；分组单元，被配置为将所述多个超声波换能器元件分成多个组；信号产生单元，
被配置为产生将要被转换成超声波的信号并经由分别与所述多个组对应的多个输出通道
将所生的信号输出到所述多个组。
[0007] 医疗设备还包括这样的信号产生单元，该信号产生单元还被配置为将将要被转换
成超声波的信号中的一个或多个公共信号经由一个或多个输出通道分别输出到包括两个
或更多个超声波换能器元件的所述多个组的相应组。
[0008] 医疗设备可包括通道选择单元，通道选择单元被配置为选择将要被转换成超声波
的信号将被输出到所述多个组所经的两个或更多个输出通道。
[0009] 医疗设备可包括用户界面，用户界面被配置为接收分组信息，所述分组信息指定超声波换能器元件将要被分组的组的数量。通道选择单元还被配置为根据所接收的分组信息选择两个或更多个输出通道。

[0010] 医疗设备可包括这样的分组单元，该分组单元还被配置为将超声波换能器元件分组成启动的超声波换能器元件和停用的超声波换能器元件，以及将启动的超声波换能器元件分为两个或更多个组。

[0011] 医疗设备可包括用户界面，用户界面被配置为接收分组信息，所述分组信息指示将要被输入的启动的超声波换能器元件的数量。分组单元还被配置为根据所接收的分组信息分组成启动的超声波换能器元件和停用的超声波换能器元件。

[0012] 医疗设备可包括这样的分组单元，该分组单元还被配置成经由随机提取来抽取启动的超声波换能器元件和停用的超声波换能器元件。

[0013] 医疗设备可包括这样的分组单元，该分组单元还被配置成将超声波换能器元件中的相邻的超声波换能器元件分入一个组。

[0014] 医疗设备可包括相位调节器，相位调节器被配置为调节将要被输出到所述多个组的信号的相位，以在超声波将要辐射的目标区域内形成超声波换能器单元的焦点；信号放大器，被配置为放大经相位调节的信号的振幅。

[0015] 医疗设备可包括处理器，处理器被配置为计算将要被输出到所述多个组的信号的相位和放大倍数，以控制相位调节器和信号放大器，根据从分组单元发送的分组信息来计算所述相位和所述放大倍数。

[0016] 医疗设备可包括这样的处理器，该处理器还被配置为控制相位调节器和信号放大器，以响应于输出到所述多个组的信号通过超声波换能器单元的辐射的超声波的形成多个焦点。

[0017] 在另一个方面的中，一种控制医疗设备的方法，所述方法包括：将超声波换能器单元的超声波换能器元件分组成多个组；产生将要被转换成超声波的信号；将将要被转换成超声波的信号经由分别与所述多个组对应的多个输出通道输出到所述多个组。

[0018] 所述方法可包括：将将要被转换成超声波信号的其中一个或多个公共信号经由一个或多个输出通道分别输出到所述多个组中的包括两个或更多个超声波换能器元件的相应组。

[0019] 所述方法可这样的产生和输出将要被转换成超声波的信号的步骤，所述步骤包括选择将要被转换成超声波的信号将要被输出到所述多个组中的两个或更多个输出通道。

[0020] 所述方法可包括这样的选择输出通道的步骤，该步骤包括接收分组信息并选择所述两个或更多个输出通道，所述通道的分组信息指定超声波换能器元件将要被分组的组的数量，根据所接收的分组信息选择所述两个或更多个输出通道。

[0021] 所述方法可包括这样的将多个超声波换能器元件分组成多个组的步骤，该步骤包括：将所述多个超声波换能器元件分组为启动的超声波换能器元件和停用的超声波换能器元件，并将启动的超声波换能器元件分成两组或者更多的组。

[0022] 所述方法可包括：经由随机提取来抽取启动的激活的超声波换能器元件和停用的超声波换能器元件。

[0023] 所述方法可包括这样的将多个超声波换能器元件分成多个组的步骤，该步骤包括：将所述多个超声波换能器元件中的相邻的超声波换能器元件分入一个组。
所述方法包括：控制将要被输出到所述多个组的信号，以在超声波将要辐射的目标区域中形成超声波换能器单元的焦点。

所述方法可包括这样的控制信号的步骤，该步骤包括计算将要被输出到所述多个组的信号的相位和放大增益并调制将要被输出到所述多个组的所述信号的相位和放大增益，以在超声波将要辐射的目标区域中形成超声波换能器单元的焦点，根据指定超声波换能器单元将要被分组的组的信号来计算所述相位和所述放大增益。

所述方法可包括：控制将要被输出到超声波换能器单元的组的信号，以在响应于输出到所述多个组的信号通过超声波换能器单元辐射的超声波形成多焦点。

在又一个总体方面中，提供一种非即时性计算机可读记录介质，所述介质具有记录在其上的用于控制医疗设备的方法的程序。

通过下面的具体实施方式、附图和权利要求，其他特点和方面可以是明显的。

附图说明
图 1 是示出在使用中的医疗设备的示例的示图。
图 2 是示出医疗设备的超声波换能器单元的示例的示图。
图 3 是示出医疗设备的示例的框图。
图 4 是示出医疗设备的另一示例的框图。
图 5 是示出医疗设备的分组单元的示例的框图。
图 6A 和图 6B 是示出在具有以环的形式布置的超声波换能器元件的阵列的超声波换能器单元中进行了分组的相邻的超声波换能器元件的示例的框图。
图 7 是示出医疗设备的又一示例的框图。
图 8 是示出在人体的病变组织的诊断中使用的诊断装置中的医疗设备的再一示例的框图。
图 9 是示出控制医疗设备的方法的示例的流程图。
图 10 是示出在控制医疗设备的方法中的多个超声波换能器元件的分组步骤的示例的流程图。
图 11 是示出在控制医疗设备的方法中根据组产生将要输入的信号的步骤的示例的流程图。

具体实施方式
提供下面的详细描述，以帮助读者对这里描述的方法、设备和 / 或系统获得全面的理解。因此，这里描述的系统、设备和 / 或方法的各种改变、修改和等同物将被提供给本领域普通技术人员。另外，为了增强清晰性和简明性，可省略对公知的功能和构造的描述。

图 1 是示出在使用中的医疗设备 100 的示例的示图。参照图 1 的示例，医疗设备 100 包括信号产生单元 110、超声波换能器单元 120 和分组单元 140。本领域普通技术人员将理解，在医疗设备 100 中还可包括除了图 1 中示出的元件之外的其他普通元件。

在该示例中，超声波换能器单元 120 安装在床 102 中，将要被检查的人 101 躺在床
102 上。当信号产生单元 110 将信号输出到超声波换能器 120 时，超声波换能器 120 从输出的信号产生超声波并将超声波辐射到人 101 的需要治疗或诊断的特定部位上。输出的信号的示例是电信号。然而，这仅仅是一个示例，可以使用本领域普通技术人员已知的任意其他信号。

[0044] 图 2 是示出医疗设备 100 的超声波换能器单元 120 的示例的示图。图 2 中示出的超声波换能器单元 120 的示例是凹进类型的聚焦的超声波换能器单元。在一个操作示例中，超声波换能器单元 120 的超声波换能器元件 122 的焦点与上将要被辐射超声波的区域对应地产生。其上将要被辐射超声波的区域的示例是胸、肝、腹或者任意其他器官的部位或者本领域普通技术人员已知的人体的部位。另外，在图 2 的示例中的超声波换能器单元 120 仅仅是示例。可以使用本领域普通技术人员已知的用于将信号转换为超声波的其他单元。

[0045] 参照图 2 的示例，超声波换能器单元 120 包括设置在具有凹进的中间部分的盘形的支撑板 121 上的多个超声波换能器元件 122。在该示例中的每个超声波换能器元件 122 将从信号产生单元 110 输出并且具有预定的振幅和相位的电信号调制为具有预定的强度和相位的超声波。可将该示例中的超声波换能器元件 122 制造为压电换能器或者任意其他的本领域普通技术人员已知的元件，以将电信号调制成超声波。

[0046] 该示例的每个超声波换能器元件 122 将产生的超声波聚焦在将要被检查的人 101 的身体的需要治疗或者诊断的特定部位上。在该示例中，聚焦在将被辐射的部位上的超声波被转换成热能，从而使得被辐射的部位的温度上升，并使病变组织的病变破坏或损坏。在随后参照图 8 描述的示例中，利用探针将聚焦在将要被辐射的部位上且从组织层部分地反射的超声波被转换成脉冲，从而捕获人体的内部组织的图像。

[0047] 图 3 是示出医疗设备 300 的示例的框图。参照图 3 的示例，医疗设备 300 包括信号产生单元 310、超声波换能器单元 320 和分组单元 340。本领域普通技术人员将理解，与图 3 中示出的元件不同的其他的普通元件可进一步被包括在医疗设备 300 中。例如，可将被配置为与超声波换能器单元 320 的超声波换能器元件 322 的阻抗匹配的装置设置在信号产生单元 310 与超声波换能器单元 320 之间。

[0048] 在图 3 的示例中，信号产生单元 310 经由输出通道 CH1 到 CHN 将电信号输出到超声波换能器单元 320。在该示例中，信号产生单元 310 的一个或多个输出通道 CH1 到 CHN 分别将公共信号 (common signal) 输出到两个或更多个超声波换能器元件 322。

[0049] 该示例中的超声波换能器元件 322 被分组为超声波换能器单元 320 的多个组 GR1 到 GRN。根据多个组 GR1 到 GRN，信号产生单元 310 的输出通道 CH1 到 CHN 中的每个输出通道分别输出电信号。在图 3 的示例中，输出通道 CH1 将公共信号输出到超声波换能器元件 322a 的组 GR1，输出通道 CH2 将公共信号输出到超声波换能器元件 322b 的组 GR2，输出通道 CH3 将公共信号输出到含有超声波换能器元件 322c 的组 GR3，输出通道 CHN 将公共信号输出到超声波换能器元件 322d 的组 GRN。

[0050] 在该示例中，分组单元 340 将超声波换能器元件 322 分组成两个或者更多个组 GR1 到 GRN。此外，组 GR1 到 GRN 中的一个组或者多个组包括两个或者更多个超声波换能器元件 322。

[0051] 图 4 是示出医疗设备 400 的示例的框图。参照图 4 中示出的示例，医疗设备 400 包
括信号产生单元 410、超声波换能器单元 420 以及包括通道选择单元 412、用户界面 430 和分组单元 440 的控制单元 411。对将与图 3 所示的信号产生单元 310 和超声波换能器单元 320 重复的图 4 的信号产生单元 410 和超声波换能器单元 420 的描述将被省略。

【0052】 医疗设备 400 的用户界面 430 允许用户在用户界面 430 中输入与超声波治疗有关的信息或指令。在该示例中，用户是医学专家或者本领域普通技术人员已知的需要在医疗设备中输入与超声波治疗相关的指令或信息的任意其他单位。用户可将包括超声波换能器元件的组的数量 N 的分组信息输入到用户界面 430。用户界面 430 可以利用诸如键盘、鼠标或者本领域普通技术人员知晓的任意其他输入装置的输入装置来实现，或者可利用图形用户界面 (GUI) 来实现。

【0053】 在图 4 中示出的示例中，信号产生单元 410 产生信号并经过多个 (M 个) 通道 SN_CH1 到 SN_CHM 输出信号。通道选择单元 412 选择多个输出通道 CH1 到 CHN，以从信号产生单元 410 的多个 (M 个) 通道 SN_CH1 到 SN_CHM 中根据超声波换能器单元 420 的组输出电信号。

【0054】 根据分组单元 440 产生的组，通道选择单元 412 经由输出通道 CH1 到 CHN 道输出电信号。在该示例中，通道选择单元 412 的输出通道的数量等于超声波换能器单元 420 的组的数量 N。分组的结构 N 小于超声波换能器元件的数量。

【0055】 另外，在图 4 的示例中，用户将包括启用的超声波换能器元件的数量以及超声波换能器元件的组的数量 N 的分组信息输入到用户界面 430。在这种情况下，考虑到用户输入的启用的超声波换能器元件的组，分组单元 440 将超声波换能器元件分组成启用的超声波换能器元件 EON 和停用的超声波换能器元件 EOFF。分组单元 440 将启用的超声波换能器元件 EON 分组成组 GR1 到 GRN。根据组 GR1 到 GRN，启用的超声波换能器元件 EON 响应于电信号而产生超声波。停用的超声波换能器元件 EOFF 不连接到通道选择单元 412 的输出通道 CH1 到 CHN，这样，停用的超声波换能器元件 EOFF 不产生超声波。

【0056】 当用户将超声波换能器单元 420 的组的数量 N 输入到用户界面 430 时，有关输入的组的数量 N 的分组信息输出到通道选择单元 412。然后，通道选择单元 412 从多个 (M 个) 通道 SN_CH1 到 SN_CHM 中选择与输入的组的数量 N 有关的信息对应的输出通道 CH1 到 CHN。该示例中的通道选择单元 412 可被实现为切换电路，以从由信号产生单元 410 输出的 M 个通道中选择 N 个输出通道。

【0057】 图 5 是示出医疗设备的分组单元 540 的示例的框图。该示例的分组单元 540 根据从用户界面发送的超声波换能器元件 522 的分组信息使得多个超声波换能器元件 522 彼此连接。为此，分组单元 540 包括基底 541、在基底 541 上实现的开关 SR 和 SB 以及分组处理器 542。

【0058】 这里，每个超声波换能器元件 522 包括进行切换以使超声波换能器元件 522 与右边相邻的超声波换能器元件 522 短路或者绝缘的开关 SR。另外，图 5 中的每个超声波换能器元件 522 包括开关 SB，开关 SB 进行切换以使超声波换能器元件 522 与下面相邻的超声波换能器元件 522 电短路或者绝缘。

【0059】 分组处理器 542 将超声波换能器元件 522 分组成为启用的超声波换能器元件 EON 和停用的超声波换能器元件 EOFF。另外，分组处理器 542 控制超声波换能器元件 522 的开关 SR 和开关 SB，以将超声波换能器元件 522 分组成组 GR1 至组 GR4。
图 7 是示出医疗设备 700 的示例的框图。参照图 7 中示出的示例，医疗设备 700 包括控制单元 711，控制单元 711 包括相位调制器 713，信号放大器 714，用户界面 730，分组单元 740 和处理器 760。这里，可将不同的振幅和相位应用于将要被输入到多个超声波换能器元件的组 GR1 到组 GRN 的电信号，以将由多个超声波换能器元件辐射的超声波聚焦在焦点 FC 上。省略了将与图 3 和图 4 的元件的描述重复的对图 7 的信号产生单元 710，超声波换能器单元 720，用户界面 730 和分组单元 740 的描述。

在该示例中，信号产生单元 710 产生电信号。将产生的电信号输入到相位调制器 713 的相位调制器元件 PT1 到 PTN。相位调制器元件 PT1 到 PTN 调制由信号产生单元 710 输入的电信号并将具有调制的相位的电信号输出到信号放大器 714 的放大器元件 AMP1 到 AMPN。

为了补偿属于不同的组 GR1 到 GRN 的超声波换能器元件之间的距离的差异以及焦点 FC 的差异，相位调制器 713 的相位调制器元件 PT1 到 PTN 输出具有不同的相位的电信号，从而从属于不同的组 GR1 到 GRN 的超声波换能器元件产生的超声波信号具有不同的传输延迟。为此，分组单元 740 将分组信息发送到处理器 760，以通过对发送的分组信息进行分析并对要被相位调制器元件 PT1 到 PTN 调制的电信号的相位进行计算来控制相位调制器 713。

信号放大器 714 的放大器元件 AMP1 到 AMPN 以合适的增益放大从相位调制器元件 PT1 到 PTN 输入的电信号，以经由输出通道 CH1 到 CHN 输出放大的电信号。为此，分组单元 740 将分组信息发送到处理器 760，以通过对发送的分组信息和计算要被放大器元件 AMP1 到 AMPN 放大的电信号的增益来控制信号放大器 714。

因此，响应于经由通道 CH1 到 CHN 的具有不同的相位和振幅的电信号，根据组 GR1 到 GRN，控制单元 711 控制超声波换能器元件产生具有不同的相位和强度的超声波。控制单元 711 控制超声波在根据组 GR1 到 GRN 辐射的超声波到达其上聚焦超声波的焦点 FC 时具有不同的相位和强度。另外，控制单元 711 控制被输入到超声波换能器单元 720 的组 GR1 到 GRN 的电信号的相位和振幅，以改变其上聚焦超声波的焦点 FC 在需要治疗或诊断的预定目标区域（即，其上将要辐射超声波的区域）内的位置。

此外，控制单元 711 控制超声波换能器单元 720，以利用从超声波换能器单元 720 产生的超声波产生多焦点。例如，为了产生双焦点（第一焦点和第二焦点），处理器 760 将超声波换能器单元 720 的组 GR1 到 GRN 分组为第一组和第二组。在这种情况下，处理器 760 控制与经由输出通道施加到第一组的电信号有关的信号放大器 714 的放大器元件 AMP1 到 AMPN 以及相位调制器 713 的相位调制器元件 PT1 到 PTN，以利用第一组的超声波换能器元件将来自第一组的超声波换能器元件的超声波辐射到第一焦点位置上。处理器 760 控制与经由输出通道施加到第二组的电信号有关的信号放大器 714 的放大器元件 AMP1 到 AMPN 以及相位调制器 713 的相位调制器元件 PT1 到 PTN，以利用第二组的超声波换能器元件将来自第二组的超声波换能器元件的超声波辐射到第二焦点位置上。

图 8 是示出在人体的病变组织的诊断中使用的诊断装置 200 中的医疗设备 800 的示例的框图。参照图 8 中示出的示例，诊断装置 200 包括医疗设备 800，接收探针 851，图像处理器 852，图像生成单元 853 和显示单元 854。医疗设备 800 包括信号产生单元 810，超声波换能器单元 820，用户界面 830 和分组单元 840。省略了将与对图 1，图 3，图 4 和图 7 的元件的描述重复的对图 8 的医疗设备 800，信号产生单元 810，超声波换能器单元 820，用户
界面 830 和分组单元 840 的描述。

[0067] 可将该示例中的接收探针 851 制造为压电换能器或者本领域普通技术人员已知的任意其他元件，以将超声波调制成电信号。当通过医疗设备 800 将超声波传输到人体的特定部位时，超声波在不同组织之间的层被部分地反射或者衍射。例如，超声波从人体的血液中的血细胞的密度、器官的结构或者本领域普通技术人员知晓的任意其他器官或组织改变的地方反射或者在所述结构之间的空间处衍射。当使用 HIFU 换能器单元时，根据组 GR1 到 GRN，超声波换能器单元 820 产生超声波信号 US1 到 USN，由超声波换能器单元 120 辐射的超声波信号 US1 到 USN 集中地从焦点 FC 反射或者在焦点 FC 处衍射。这样，由多个超声波换能器元件辐射的超声波被发送到焦点 FC 并集中地从焦点 FC 反射或者在焦点处 FC 衍射。

[0068] 从身体反射的超声波信号 US1 到 USN 使接收探针 851 振动。接收探针 851 根据振动输出具有预定振幅和相位的电脉冲。图像处理器 852 对从接收探针 851 输出的电脉冲执行图像处理，以产生图像数据。图像生成单元 853 基于所述图像数据生成超声波图像。例如，图像生成单元 853 根据显示单元 854 的获利来转换图像数据，以生成超声波图像。另外，图像生成单元 853 将生成的超声波图像发送到显示单元 854。图像生成单元 853 生成的超声波图像以图像显示在显示单元 854 上。显示单元 854 的示例可以是液晶显示器 (LCD) 屏幕或者本领域普通技术人员已知的用于在屏幕、纸，或者空间上显示超声波图像的任意装置。

[0069] 接收探针 851 可包括一个或多个换能器元件。接收探针 851 的所述一个或多个换能器元件可以是与超声波换能器单元 820 分开的压电换能器或者本领域普通技术人员已知的与超声波换能器单元 820 分离的用于将超声波调制成电信号的任意其他元件。接收探针 851 可包括超声波换能器单元 820 的一个或多个超声波换能器元件。

[0070] 当超声波换能器单元 820 的一个或多个超声波换能器元件用作接收探针 851 时，构成接收探针 851 的超声波换能器元件不限于执行接收从身体反射的超声波信号的功能，而是可以同时执行将超声波信号辐射到身体上的功能、或者本领域普通技术人员已知的能够被超声波换能器元件执行的任意其他功能。

[0071] 超声波图像装置生成的超声波图像可以是 B 型、多普勒型或者本领域普通技术人员已知的可以以此生成超声波图像的任意其他型的各种图像。另外，超声波图像可具有二维形状或三维形状。三维超声波图像适于通过使用 x 轴、y 轴和 z 轴提供立体超声波图像。通过使用多个二维图像数据的组合或者被输入到多个换能器的三维接收信号可以生成三维超声波图像。

[0072] 图 9 是示出控制医疗设备的方法的示例的流程图。该示例中，可以分别通过图 1、图 3、图 4、图 7 和图 8 的医疗设备 100、300、400、700 和 800 来实现图 9 中示出的控制医疗设备的方法。除非另外指明，否则下面省略的分别对图 1、图 3、图 4、图 7 和图 8 的医疗设备 100、300、400、700 和 800 的描述也可应用于图 9 中示出的控制医疗设备的方法。

[0073] 参照图 9 中示出的示例，超声波换能器单元的多个超声波换能器元件被分组为多个组 (10)。

[0074] 图 10 是示出在控制医疗设备的方法中的多个超声波换能器元件的分组步骤的示例的流程图。参照图 10 中示出的示例，用户将分组信息输入到用户界面 (11)。在该示例
中，用户是医学专家或者本领域普通技术人员已知的需要在医疗设备中输入与超声波治疗相关的指令或信息的任意其他单位。在该示例中，分组信息可包括多个超声波换能器元
件的组的数量，包括的超声波换能器元的数量或者本领域普通技术人员已知的有助于对超
声波换能器元进行分组的任意其他信息。这里，当多个超声波换能器元的数量是n时，
组数N大于等于2且小于等于(n−1)，启用的超声波换能器元的数量k大于等于(N+1)且
小于等于n。这是因为一个组中可包括两个或更多的超声波换能器元。
[0075] 从超声波换能器元中抽取启用的超声波换能器元和停用的超声波换能器元
件(12)。当输入分组信息k=n时，所有的超声波换能器元被抽取为启用的超声波换能
器元，并可省略对启用的超声波换能器元和停用的超声波换能器元的抽取。如果仅仅
与组数N和启用的超声波换能器元的数量k有关的信息被输入，则从n个超声波换能
器元中随机提取k个启用的超声波换能器元。
[0076] 启用的超声波换能器元根据输入的分组信息的组数N来分组。如果输入与所有
的超声波换能器元有关的分组信息，则组数N是基于输入的分组信息组数的。如果仅仅
输入与组数N和启用的超声波换能器元的数量k有关的信息，则k个启用的超声波换能
器元被随机分组为N(组数)个组。
[0077] 图6A和图6B是示出在具有环的形式布置的超声波换能器元的阵列的超声波
换能器单元120中进行分组的相邻的超声波换能器元122的示例的框图。即，图2中示
出的超声波换能器单元120的示例具有其中具有不同尺寸的多个环沿垂直方向彼此组合
的结构，在环中，超声波换能器元122被布置为形成横向方向的圆。图6A和图6B分别
示出以沿垂直方向的三个环的形式布置的超声波换能器元122的阵列。
[0078] 图6A和图6B的超声波换能器元122具有稀疏阵列结构。稀疏阵列结构表示一
些未被抽取的一些超声波换能器元停用且被抽取的超声波换能器元被选择以执行信号
处理的布置。按单个环中的相邻的启用的超声波换能器元122的组来执行将超声波换
能器元122分组的步骤，如图6A中的示例所示，或者按相邻环中的相邻的超声波换能器
元122的组来执行将超声波换能器元122分组的步骤，如图6B中的示例所示。
[0079] 在相邻的启用的超声波换能器元之间的距离与相邻的启用的超声波换能器元
件到焦点的距离小得多。因此，即便超声波信号的相位和振幅相同，具有相同相位的超声波
信号也可被发送到其上将要辐射超声波的目标区域的焦点上。结果，相邻的启用的超声波
换能器元被分到同一组。
[0080] 启用的超声波换能器元和停用的超声波换能器元的分布的图案可以是不规
则地且随机地选择的。这是因为，当启用的超声波换能器元具有规则的阵列分布时，超声
波信号可能聚焦在除了其上要被辐射超声波的目标区域内的焦点之外的其他区域上。
[0081] 另外，该示例的分组单元使用遗传算法作为优化技术来抽取启用的超声波换能器
元或者对启用的超声波换能器元进行分组。遗传算法表示通过使用在演化进程中获得
的遗传操作和性能来获得优化方案的方法。
[0082] 根据遗传算法，该示例的分组单元产生组成组(set)的个体。个体是启用的超声波
换能器元的抽样方式和分组方式。分组单元评价个体的性能，以将个体中的一个个体选
择为是被认真评价的(meticulously evaluated)。这里，分组单元通过分组对每个个体执行操
作（例如，交联(cross-linking)、变异或者本领域普通技术人员已知的任意其他操作）来
产生下一代的组。随着这些操作的重复执行，如果通过叠加（overlay）多个代而使具有高性能的个体的数量增加，则可能产生最靠近优化方案的个体的可能性增加。

[0083] 例如，个体的性能评价可包括栅格区域的目标（object）功能。这里，栅格表示在一个将要被辐射超声波的目标区域内的焦点之外的其他区域内聚焦的超声波信号的测量。当使用遗传算法时，可以得到可使栅格最小化的个体为优化方案。

[0084] 再次参照图 9 中示出的示例，对超声波换能器元件进行分组之后或同时，根据组产生将要输入的信号 (20)。

[0085] 图 11 是示出在控制医疗设备的方法中根据组产生将要输入的信号的示例的流程图。参照图 11 中示出的示例，信号产生单元产生源信号 (21)。

[0086] 源信号产生并经由多个输入通道输入到通道选择单元 412。例如，在图 4 中，源信号产生并经由多个（M个）通道 SN_CH1 到 SN_CHM 输入到通道选择单元 412。

[0087] 根据多个超声波换能器元件的组，通道选择单元从输入通道中选择数量等于组数的输出通道，以输出电信号 (22)。例如，在图 4 中，根据多个超声波换能器元件的组，通道选择单元 412 从输入通道 SN_CH1 到 SN_CHM 中选择数量等于组数 N 的输出通道 CH1 到 CHN。

[0088] 参照图 4 和图 10 和图 11 中示出的示例，如果用户将超声波换能器单元 420 的组数 N 输入到用户界面 430，则与组数 N 有关的输入信息被输入到通道选择单元 412。然后，通道选择单元 412 根据与组数 N 有关的输入信息选择 N 个通道 CH1 到 CHN。如果用户不将超声波换能器单元 420 的组数 N 输入到用户界面 430，则通道选择单元 412 被设计成根据预定的设置选择预定数量的通道。

[0089] 举例来说，对经由诸如以图 4 的多个（M个）通道 SN_CH1 到 SN_CHM 为例的输入通道输入的源信号的振幅和相位进行调节 (23)。参照图 7 中示出的示例，由信号产生单元 710 产生的电信号被输入到相位调节器 713，通过相位调节器元件 PT1 到 PTN 来调节电信号的相位。另外，信号放大器 714 的放大器元件 AMP1 到 AMPN 以合适的增益放大从相位调节器元件 PT1 到 PTN 输入的信号，从而经由输出通道 CH1 到 CHN 输出电信号。

[0090] 为此，进一步参照图 7 中示出的示例，分组单元 740 将分组信息发送到处理器 760，处理器 760 通过对发送的分组信息进行分析，对要被相位调节器元件 PT1 到 PTN 调制的电信号的相位进行计算以及对要被放大器元件 AMP1 到 AMPN 放大的电信号的增益进行计算，来分别控制相位调节器 713 和信号放大器 714。在这种方式下，将不同的振幅和相位应用于被输入到超声波换能器元件的组 GP1 到 GPN 的电信号。因此，从属于不同的组的超声波换能器元件生的超声波信号具有不同的传输延迟，以补偿超声波换能器元件之间的距离的差异以及焦点 FC 的差异。因此，在该示例中，通过多个超声波换能器元件辐射的超声波聚焦在焦点 FC 上。

[0091] 另外，将输入到超声波换能器单元 720 的电信号的相位和振幅控制成使得其上聚焦超声波的焦点 FC 的位置可在需要治疗或诊断的目标区域（即，其上要被辐射超声波的区域）内改变。另外，将输入到超声波换能器单元 720 的电信号的相位和振幅控制成使得从超声波换能器单元 720 产生的超声波可产生多个焦点。

[0092] 再次参照图 9 的示例，信号产生单元根据超声波换能器单元的组将电信号输入到多个输出通道 (30)。就此而言，信号产生单元的一个或多个输出通道将公共信号输出到两个或者更多的超声波换能器元件。根据组，超声波换能器单元从输入的电信号产生超声波
信号（40）。将超声波辐射到要被检查的人体的需要治疗或诊断病变的特定部位上（50）。因此，生成要被去除的疾病的诊断或者病变的超声波图像是。

【0093】当在超声波图像的生成步骤中使用超声波信号时，超声波需要的强度远小于用于去除病变的超声波需要的强度。聚焦在辐射部分上并部分地从组织层反射或在组织层处衍射的超声波可利用探针被转换成电磁脉冲并在身体的组织的图像的捕获中使用。即，参照图 8 中示出的示例，从身体反射或在身体处衍射的超声波信号可使接收探针 851 的压电变换器振动，根据所述振动，压电变换器可输出具有预定振幅和相位的电磁脉冲。从接收探针 851 输出的电磁脉冲被输入到图像处理器 852 并被处理，从而生成图像数据。图像生成单元 853 基于所述图像数据生成超声波图像。另外，图像生成单元 853 将生成的超声波图像发送到显示单元 854，超声波图像以图案显示在显示单元 854 上。

【0094】可利用硬件组件和软件组件（例如，麦克风、放大器、带通滤波器、模数转换器、处理装置，以及本领域普通技术人员认为可适用的任意其他的硬件组件或软件组件）来实现这里描述的单元。可利用诸如示例为处理器、控制器和算术逻辑单元、数字信号处理器、微型计算机、现场可编程逻辑阵列、可编程逻辑单元、微处理器或者能够以限定的方式响应指令并执行指令的任意其他装置的一个或者多个通用计算机或者专用计算机来实现处理装置。处理装置可运行操作系统 (OS) 以及在 OS 上运行的一个或多个软件应用程序。处理装置还可响应于软件的执行而访问、存储、操纵、处理和创建数据。为了简单起见，使用了单数形式来描述处理装置，然而，本领域技术人员将认识到，处理装置可包括多处理单元和多类型的处理单元。例如，处理装置可包括多处理器或者一个处理器和一个控制器。另外，不同的处理构造是可能的，例如，单行处理器。如这里所使用的，被配置为执行功能 A 的处理装置包括被编码为运行特定的软件的计算机。另外，被配置为实现功能 A、功能 B 和功能 C 的处理装置可包括诸如下的例子：被配置为实现所有功能 A、B 和 C 的处理装置；被配置为实现功能 A 的第一处理单元以及被配置为实现功能 B 和 C 的第二处理单元；用于实现功能 A 的第一处理单元、被配置为实现功能 B 的第二处理单元以及被配置为实现功能 C 的第三处理单元；被配置为实现功能 A 的第一处理单元、被配置为实现功能 B 和 C 的第二处理单元；被配置为实现功能 A、B、C 的第一处理单元以及被配置为实现功能 A、B 和 C 的第二处理单元；等等。

【0095】为了独立地或总体地构建或配置成如所期望地那样操作的处理装置，软件可包括计算机程序的代码，指令或者其一些组合。软件和数据可以是以机器、组件、物理设备的或虚拟设备、计算机存储介质或装置的任意形式，或者可以是以以能够将指令或数据提供到处理装置或被处理装置编译的传播的信号波而永久性或暂时性地实现的。软件还可能分布在网络式结合的计算机系统中，从而软件以分布式的方式被执行和存储。具体地说，可通过一个或多个计算机可读记录介质来存储数据和软件。计算机可读记录介质可包括能够存储在之后可被计算机系统或处理装置读取的数据的任意数据存储装置。计算机可读记录介质的示例可包括：只读存储器 (ROM)、随机存取存储器 (RAM)、CD-ROM、磁带、软盘、光学数据存储装置。

【0096】用于执行这里描述的方法的程序指令，或者其一个或多个指令，可在一个或多个计算机可读存储介质中记录，存储或者固定。可通过计算机实现程序指令。例如，计算机可使处理器执行程序指令。介质可单独地包括以组合的形式包括程序指令、数据文件和数据结构等。计算机可读存储介质包括：磁性介质，例如，硬盘、软盘和磁带；光学介质，例如，
如CD-ROM盘和DVD；磁光介质，例如，光学盘；硬件装置，被特定地配置以存储和执行程序指令，例如，只读存储器（ROM）、随机存取存储器和闪速存储器等。程序指令的示例包括例如编译器产生的机器代码和含有可利用编译器通过计算机执行的高级代码。程序指令（即，软件）可以分布在网络式结合的计算机系统中，从而以分布式方式存储并执行软件。例如，可通过一个或多个计算机可读存储介质来存储软件和数据。

[0097] 另外，用于实现这里公开的示例实施例的功能程序、代码和代码段可以由所述实施例所属技术领域的程序员基于以及利用如这里所提供的附图中的流程图、框图及其相应描述进行容易地解释。此外，所描述的用于执行操作或方法的单元可以是硬件、软件或者硬件与软件的某种结合。例如，所述单元可以是在计算机上运行的软件包或者是软件可以在其上运行的计算机。上面已经描述了一些示例。然而，应该理解的是，可以做出各种修改。例如，如果所描述的技术以不同的顺序执行，和/或如果所描述的系统、架构、装置或电路中的组件以不同方式被组合和/或被另外的组件或其等同物替代或补充，则可以实现合适的结果。相应地，其他实施方式也在权利要求的范围内。
图 3
图 4

图 5
图7
图9

10. 对多个超声波换能器元件进行分组
20. 根据组产生将要被输入的信号
30. 根据组输入产生的信号
40. 根据组产生超声波信号
50. 超声波治疗或诊断

图10

11. 输入分组信息
12. 抽取启用的/停用的超声波换能器元件
13. 对启用的超声波换能器元件进行分组

图11

21. 产生源信号
22. 根据组数选择通道
23. 调制每个通道的源信号的相位/振幅