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DESCRIPTION

CARBON DIOXIDE SEQUESTRATION INVOLVING TWO-SALT-BASED
THERMOLYTIC PROCESSES

BACKGROUND OF THE INVENTION

This application claims the benefit of priority to U.S. Provisional Patent Application Serial

No. 61/585,597, filed January 11, 2012, hereby incorporated by reference in its entirety.

1. Field of the Invention

The present invention generally relates to the field of removing carbon dioxide from a
source, such as the waste stream (e.g. flue gas) of a power plant, whereby Group 2 silicate
minerals are converted into Group 2 chloride salts and SiO;, Group 2 chloride salts are
converted into Group 2 hydroxide and/or Group 2 hydroxychloride salts. These in turn may
be reacted with carbon dioxide to form Group 2 carbonate salts, optionally in the presence of
catalysts. These steps may be combined to form a cycle in which carbon dioxide is
sequestered in the form of carbonate salts and byproducts from one or more steps, such as

heat and chemicals, are re-used or recycled in one or more other steps.

1. Description of Related Art

Considerable domestic and international concern has been increasingly focused on the
emission of CO» into the air. In particular, attention has been focused on the effect of this gas
on the retention of solar heat in the atmosphere, producing the “greenhouse effect.” Despite
some debate regarding the magnitude of the effect, all would agree there is a benefit to
removing CO, (and other chemicals) from point-emission sources, especially if the cost for
doing so were sufficiently small.

Greenhouse gases are predominately made up of carbon dioxide and are produced by
municipal power plants and large-scale industry in site-power-plants, though they are also
produéed in any normal carbon combustion (such as automobiles, rain-forest clearing, simple
burning, efc.). Though their most concentrated point-emissions occur at power-plants across
the planet, making reduction or removal from those fixed sites an attractive point to effect a
removal-technology. Because energy production is a primary cause of greenhouse gas

emissions, methods such as reducing carbon intensity, improving efficiency, and sequestering
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carbon from power-plant flue-gas by various means has been researched and studied
intensively over the last thirty years.

Attempts at sequestration of carbon (in the initial form of gaseous CO,) have
produced many varied techniques, which can be generally classified as geologic, terrestrial,
or ocean systems. An overview of such techniques is provided in the Proceedings of First
National Conference on Carbon Sequestration, (2001). To date, many if not all of these
techniques are too energy intensive and therefore not economically feasible, in many cases
consuming more energy than the energy obtained by generating the carbon dioxide.
Alternative processes that overcome one or more of these disadvantages would be
advantageous.

The referenced shortcomings are not intended to be exhaustive, but rather are among
many that tend to impair the effectiveness of previously known techniques for removing
carbon dioxide from waste streams; however, those mentioned here are sufficient to
demonstrate that the methodologies appearing in the art have not been altogether satisfactory
and that a significant need exists for the techniques described and claimed in this disclosure.

SUMMARY OF THE INVENTION

Disclosed herein are methods and apparatuses for carbon dioxide sequestration,
including removing carbon dioxide from waste streams.
In one aspect there are provided methods of sequestering carbon dioxide produced by

a source, comprising:

(a) reacting MgCl, or a hydrate thereof with water in a first admixture under conditions
suitable to form a first product mixture comprising a first step (a) product comprising
Mg(OH)Cl and a second step (a) product comprising HCI;

(b) reacting some or all of the Mg(OH)CI from step (a) with a quantity of water and a
quantity of MgCl, in a second admixture under conditions suitable to form a second
product mixture comprising a first step (b) product comprising Mg(OH), and a second
step (b) product comprising MgCl,, wherein the quantity of water is sufficient to
provide a molar ratio of water to MgCl, of greater than or equal to 6 to 1 in the second
product mixture;

(©) admixing some or all of the Mg(OH), from the first step (b) product with CaCl, or a
hydrate thereof and carbon dioxide produced by the source in a third admixture under

conditions suitable to form a third product mixture comprising a first step (c¢) product
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comprising MgCl, or a hydrate thereof, a second step (c¢) product comprising CaCO;3,
and a third step (c) product comprising water; and
(d) separating some or all of the CaCO3 from the third product mixture,

whereby some or all of the carbon dioxide is sequestered as CaCOs.

In certain embodiments, the MgCl, of step (a) is a MgCl, hydrate (e.g,
MgCl,-6(H,0)). In some embodiments, the MgCl, of step (a) is greater than 90% by weight
MgCly-6(H,0). In still further embodiments, some or all of the MgCl, formed in step (b)
and/or step (c) is the MgCl, used in step (a). Thus, in certain embodiments, some or all of the
water in step (a) is present in the form of a hydrate of the MgCl, or is obtained from the water
of step (¢) or step (b). In certain embodiments, some or all of the water in step (a) is present
in the form of steam or supercritical water. In some embodiments some or all of the
hydrogen chloride of step (a) is admixed with water to form hydrochloric acid. In a further
embodiment the first step (a) product comprises greater than 90% by weight Mg(OH)CL. In

certain embodiments step (a) occurs in one, two or three reactors.

In some embodiments, a defined quantity of water is maintained in the second product
mixture of step (b). For example, in some embodiments, the molar ratio of water to MgCl, in
the second product mixture is between about 6 and about 10, between about 6 and 9, between
about 6 and 8 , between about 6 and 7 or is about 6. In certain embodiments, a method
comprises monitoring the concentration of MgCl, in the second product mixture, the quantity
of water in the second product mixture or both. In still further embodiments, the amount
MgCl, and/or water in step (b) (or the flow rates of MgCl, and/or water into the second

admixture) is adjusted based on such monitoring.

In a further embodiment, a method comprises separating the step (b) products. For
example, the Mg(OH), product of step (b) can be a solid and separating the step (b) products
can comprise separating some or all of the solid Mg(OH), from the water and MgCl,

solution. Thus, in some embodiments, the MgCl, product of step (b) is ageous MgCl,.

In yet a further embodiment step (b) comprises reacting some or all of the Mg(OH)Cl
from step (a) with MgCl, and a quantity of water in a second admixture under conditions
suitable to form a second product mixture comprising a first step (b) product comprising
Mg(OH), and a second step (b) product comprising MgCl,, wherein the quantity of water is

sufficient to provide a molar ratio of water to Mg of greater than or equal to 6 to 1 in said
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second admixture. In some embodiments, the some or all of the MgCl, for the reaction of

step (b) is the MgCl, product of step (c).

In a further embodiment, step (c) further comprises admixing sodium hydroxide salt
in the third admixture.

In still yet a further embodiment, a method comprises:
(e) admixing a calcium silicate mineral with HCI under conditions suitable to form a third

product mixture comprising CaCl,, water, and silicon dioxide.

For example, in some cases, some or all of the HCI in step (e) is obtained from
step (a). In certain embodiments, step (e) further comprises agitating the calcium silicate
mineral with HCI. In some embodiments, some or all of the heat generated in step (e) is
recovered. In certain embodiments, some or all of the CaCl, of step (c¢) is the CaCl, of
step (¢). In further embodiments, a method comprises a separation step, wherein the silicon
dioxide is removed from the CaCl, formed in step (e). In yet further embodiments, some or

all of the water of step (a) and/or (b) is obtained from the water of step (e).

Certain aspects of the embodiments comprise use of a calcium silicate mineral, such
as a calcium inosilicate. In some embodiments, the calcium silicate mineral comprises
diopside (CaMg[Si,Og¢]), tremolite Ca;Mgs{[OH]Si40;;}, or CaSiO;. In some embodiments,
the calcium silicate further comprises iron (e.g., fayalite (Fe;[SiO4])) and or manganese
silicates.

In some embodiments, the carbon dioxide is in the form of flue gas, wherein the flue
gas further comprises N, and H,O.

In some embodiments, suitable reacting conditions of step (a) comprise a temperature
from about 200 °C to about 500 °C. In some embodiments, the temperature is from about
230 °C to about 260 °C. In some embodiments, the temperature is about 250 °C. In some
embodiments, the temperature is from about 200 °C to about 250 °C. In some embodiments,
the temperature is about 240 °C.

In some embodiments, suitable reacting conditions of step (b) comprise a temperature
from about 140 °C to about 240 °C.

In some embodiments, suitable reacting conditions of step (¢) comprise a temperature
from about 20 °C to about 100 °C. In some embodiments, the temperature is from about

25 °C to about 95 °C.
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In some embodiments, suitable reacting conditions of step (e) comprise a temperature
from about 50 °C to about 200 °C. In some embodiments, the temperature is from about

90 °C to about 150 °C.

In further aspect there are provided methods of sequestering carbon dioxide produced
by a source, comprising:

(a) reacting a first cation-based halide, sulfate or nitrate salt or hydrate thereof with water
in a first admixture under conditions suitable to form a first product mixture
comprising a first step (a) product comprising a first cation-based hydroxide salt, a
first cation-based oxide salt and/or a first cation-based hydroxychloride salt and a
second step (a) product comprising HCL, H,SO4 or HNOs3;

(b) admixing some or all of the first step (a) product with a second cation-based halide,
sulfate or nitrate salt or hydrate thereof and carbon dioxide produced by the source in
a second admixture under conditions suitable to form a second product mixture
comprising a first step (b) product comprising a first cation-based halide, sulfate
and/or nitrate salt or hydrate thereof, a second step (b) product comprising a second
cation-based carbonate salt, and a third step (b) product comprising water; and

() separating some or all of the second cation-based carbonate salt from the second
product mixture,

whereby the carbon dioxide is sequestered into a mineral product form.

In some embodiments, the first cation-based halide sulfate or nitrate salt or hydrate
thereof of step (a) is a first cation-based chloride salt or hydrate thereof, and the second step
(a) product is HCI. In some embodiments, the first cation-based halide, sulfate, or nitrate salt
or hydrate thereof of step (b) is a first cation-based chloride salt or hydrate thereof.

In some embodiments, the first cation-based chloride salt or hydrate thereof of step
(a) is MgCl,. In some embodiments, the first cation-based chloride salt or hydrate thereof of
step (a) is a hydrated form of MgCl,. In some embodiments, the first cation-based chloride
salt or hydrate thereof of step (a) is MgCl,-6H,0. In some embodiments, the first cation-
based hydroxide salt of step (a) is Mg(OH),. In some embodiments, the first cation-based
hydroxychloride salt of step (a) is Mg(OH)Cl. In some embodiments, the first step (a)
product comprises predominantly Mg(OH)Cl. In some embodiments, the first step (a)
product comprises greater than 90% by weight Mg(OH)Cl. In some embodiments, the first
step (a) product is Mg(OH)CL. In some embodiments, the first cation-based oxide salt of
step (a) is MgO.



10

15

20

25

30

WO 2013/106730 PCT/US2013/021264

In some embodiments, the second cation-based halide, sulfate or nitrate salt or hydrate
thereof of step (b) is a second cation-based chloride salt or hydrate thereof, for example,
CaCl,. In some embodiments, the first cation-based chloride salt of step (b) is MgCl,. In
some embodiments, the first cation-based chloride salt of step (b) is a hydrated form of
MgCl,. In some embodiments, the first cation-based chloride salt of step (b) is MgCl,-6H,0.

In some embodiments, some or all of the water in step (a) is present in the form of
steam or supercritical water. In some embodiments, some or all of the water of step (a) is
obtained from the water of step (b). In some embodiments, step (b) further comprises
admixing sodium hydroxide salt in the second admixture.

In some embodiments, the methods further comprise:

(d) admixing a Group 2 silicate mineral with HCI under conditions
suitable to form a third product mixture comprising a Group 2 chloride
salt, water, and silicon dioxide.

In some embodiments, some or all of the HCl in step (d) is obtained from step (a). In
some embodiments, the methods of step (d) further comprises agitating the Group 2 silicate
mineral with HCl. In some embodiments, some or all of the heat generated in step (d) is
recovered. In some embodiments, some or all of the second cation-based chloride salt of step
(b) is the Group 2 chloride salt of step (d). In some embodiments, the methods further
comprise a separation step, wherein the silicon dioxide is removed from the Group 2 chloride
salt formed in step (d). In some embodiments, some or all of the water of step (a) is obtained
from the water of step (d).

In some embodiments, the Group 2 silicate mineral of step (d) comprises a Group 2
inosilicate. In some embodiments, the Group 2 silicate mineral of step (d) comprises CaSiOs.
In some embodiments, the Group 2 silicate mineral of step (d) comprises MgSiOs. In some
embodiments, the Group 2 silicate mineral of step (d) comprises olivine (Mgy[SiO4]). In
some embodiments, the Group 2 silicate mineral of step (d) comprises serpentine
(Mge[OH]3[Si4010]). In some embodiments, the Group 2 silicate mineral of step (d)
comprises  sepiolite  (Mgq[(OH),S150;5]-6H,0),  enstatite  (Mgy[Si20¢]),  diopside
(CaMg[Si,04]), and/or tremolite Ca,Mgs{[OH]Si4O1;},. In some embodiments, the Group 2
silicate further comprises iron and or manganese silicates. In some embodiments, the iron
silicate is fayalite (Fe,[Si0O4]).

In some embodiments, some or all of the first cation-based chloride salt formed in

step (b) is the first cation-based chloride salt used in step (a).
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In some embodiments, the carbon dioxide is in the form of flue gas, wherein the flue
gas further comprises N and H,0.

In some embodiments, suitable reacting conditions of step (a) comprise a temperature
from about 200 °C to about 500 °C. In some embodiments, the temperature is from about
230 °C to about 260 °C. In some embodiments, the temperature is about 250 °C. In some
embodiments, the temperature is from about 200 °C to about 250 °C. In some embodiments,
the temperature is about 240 °C.

In some embodiments, suitable reacting conditions of step (a) comprise a temperature
from about 50 °C to about 200 °C. In some embodiments, the temperature is from about 90
°C to about 260 °C. In some embodiments, the temperature is from about 90 °C to about
230 °C. In some embodiments, the temperature is about 130 °C.

In some embodiments, suitable reacting conditions of step (a) comprise a temperature
from about 400 °C to about 550 °C. In some embodiments, the temperature is from about
450 °C to about 500 °C.

In some embodiments, suitable reacting conditions of step (a) comprise a temperature
from about 20 °C to about 100 °C. In some embodiments, the temperature is from about
25 °C to about 95 °C.

In some embodiments, suitable reacting conditions of step (a) comprise a temperature
from about 50 °C to about 200 °C. In some embodiments, the temperature is from about
90 °C to about 150 °C.

In another aspect, the present invention provides methods of sequestering carbon
dioxide produced by a source, comprising:

(a) admixing a magnesium chloride salt and water in a first admixture under

" conditions suitable to form (i) magnesium hydroxide, magnesium oxide and/or
Mg(OH)CI and (ii) hydrogen chloride;

(b) admixing (i) magnesium hydroxide, magnesium oxide and/or Mg(OH)CI, (i1)
CaCl, and (iii) carbon dioxide produced by the source in a second admixture
under conditions suitable to form (iv) calcium carbonate, (v) a magnesium
chloride salt, and (vi) water; and

(c) separating the calcium carbonate from the second admixture, whereby the carbon

dioxide is sequestered into a mineral product form.

In some embodiments, some or all of the hydrogen chloride of step (a) is admixed
with water to form hydrochloric acid. In some embodiments, some or all of the magnesium

hydroxide, magnesium oxide and/or Mg(OH)CI of step (b)(i) is obtained from step (a)(i). In
7
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some embodiments, some of all the water in step (a) is present in the form of a hydrate of the
magnesium chloride salt. In some embodiments, step (a) occurs in one, two or three reactors.
In some embodiments, step (a) occurs in one reactor. In some embodiments, the magnesium
hydroxide, magnesium oxide and/or Mg(OH)CI of step (a)(i) is greater than 90% by weight
Mg(OH)Cl. In some embodiments, the magnesium chloride salt is greater than 90% by

weight MgCly-6(H,0). '

In some embodiments, the methods further comprise:

(d) admixing a Group 2 silicate mineral with hydrogen chloride under
conditions suitable to form a Group 2 chloride salt, water, and silicon
dioxide.

In some embodiments, some or all of the hydrogen chloride in step (d) is obtained
from step (a). In some embodiments, step (d) further comprises agitating the Group 2 silicate
mineral with the hydrochloric acid. In some embodiments, some or all of the magnesium
chloride salt in step (a) is obtained from step (d). In some embodiments, the methods further
comprise a separation step, wherein the silicon dioxide is removed from the Group 2 chloride
salt formed in step (d). In some embodiments, some or all of the water of step (a) is obtained
from the water of step (d). In some embodiments, the Group 2 silicate mineral of step (d)
comprises a Group 2 inosilicate.

In some embodiments, the Group 2 silicate mineral of step (d) comprises CaSiOs. In
some embodiments, the Group 2 silicate mineral of step (d) comprises MgSiO3. In some
embodiments, the Group 2 silicate mineral of step (d) comprises olivine. In some
embodiments, the Group 2 silicate mineral of step (d) comprises serpentine. In some
embodiments, the Group 2 silicate mineral of step (d) comprises sepiolite, enstatite, diopside,
and/or tremolite. In some embodiments, the Group 2 silicate further comprises mineralized
iron and or manganese.

In some embodiments, step (b) further comprises admixing CaCl, and water to the
second admixture.

Other objects, features and advantages of the present disclosure will become apparent
from the following detailed description. It should be understood, however, that the detailed
description and the specific examples, while indicating specific embodiments of the
invention, are given by way of illustration only, since various changes and modifications
within the spirit and scope of the invention will become apparent to those skilled in the art

from this detailed description.
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BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to
further demonstrate certain aspects of the present disclosure. The invention may be better
understood by reference to one of these drawings in combination with the detailed description
of specific embodiments presented herein.

FIG. 1 is block diagram of a system for a Group 2 hydroxide-based process to
sequester CO, as Group 2 carbonates according to some embodiments of the present
invention.

FIG. 2 is block diagram of a system in which Mg*" functions as a catalyst for the
sequestration of CO; as calcium carbonate according to some embodiments of the present
invention.

FIG. 3 is a simplified process flow diagram according to some embodiments of the
processes provided herein. Shown is a Group-II hydroxide-based process, which sequesters
CO, as limestone (composed largely of the mineral calcite, CaCO3). The term “road salt” in
this figure refers to a Group II chloride, such as CaCl, and/or MgCl,, either or both of which
are optionally hydrated. In embodiments comprising MgCl,, heat may be used to drive the
reaction between road salt and water (including water of hydration) to form HCl and
magnesium hydroxide, Mg(OH),, and/or magnesium hydroxychloride, Mg(OH)Cl. In
embodiments comprising CaCl,, heat may be used to drive the reaction between road salt and
water to form calcium hydroxide and HCl. The HCI is reacted with, for example, calcium
inosilicate rocks (optionally ground), to form additional road salt, e.g., CaCl,, and sand
(S10y).

FIG. 4 is a simplified process-flow diagram corresponding to some embodiments of
the present invention. Silicate rocks may be used in some embodiments of the present
invention to sequester CO, as CaCO;. The term “road salt” in this figure refers to a Group II
chloride, such as CaCl, and/or MgCl,, either or both of which are optionally hydrated. In the
road salt boiler, heat may be used to drive the reaction between road salt, e.g., MgCl,-6H,0,
and water (including water of hydration) to form HCIl and Group II hydroxides, oxides,
and/or mixed hydroxide-chlorides, including, for example, magnesium hydroxide, Mg(OH),
and/or magnesium hydroxychloride, Mg(OH)CIl. In embodiments comprising CaCl,, heat
may be used to drive the reaction between road salt and water to form calcium hydroxide and

HCI1. The HCI may be sold or reacted with silicate rocks, e.g., inosilicates, to form additional
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road salt, e.g., CaCl,, and sand (Si0,). lon exchange reaction between Mng and Ca*" may
used, in some of these embodiments, to allow, for example, the cycling of Mg ions.

FIG. 5 is a process flow diagram showing parameters and results from a process
simulation using Aspen Plus process software. In this embodiment, a 35% MgCl,, 65% H,O
solution is heated to 536 °F (280 °C), then the stream leaves in the stream labeled “H,0O-
MgOH,” which comprises a solution of MgCl, and solid Mg(OH),. Typically, when
Mg(OH)CI dissolves in water it forms Mg(OH), (solid) and MgCl, (dissolved). Here the
MgCl, is not used to absorb CO, directly, rather it is recycled. The net reaction is the capture
of CO, from flue gas using inexpensive raw materials, CaCl, and water, to form CaCO;.
Results from the simulation suggest that it is efficient to recirculate a MgCl, stream and then
to react it with H,O and heat to form Mg(OH),. One or more of the aforementioned
compounds then reacts with a CaCly/H,O solution and CO, from the flue gas to ultimately
form CaCOj3, which is filtered out of the stream. The resulting MgCl, formed is recycled to
the first reactor to repeat the process.

FIG. 6 is a process flow diagram showing parameters and results from a process
simulation using Aspen Plus process software. The net reaction is the capture of CO; from
flue gas using inexpensive raw materials, CaCl, and water, to form CaCO;. In this
embodiment, the hexahydrate is dehydrated in three separate chambers and decomposed in
the fourth chamber where the HCI that is formed from the decomposition is recirculated back
to the third chamber to prevent any side reactions. Reactions occurring in these chambers

include the following:

1% Chamber: MgCly-6H,0 — MgCly4H,0 + 2H,0 100 °C
2" Chamber: MgCly-4H,0 — MgCl-2H,0 + 2H,0 125 °C
3" Chamber: MgCly,-2H,0 — MgCly-H,0 + H,O 160 °C
(HCI1 vapor present)
4" Chamber: MgCly-H,O — Mg(OH)CI + HCl 130 °C
HCl recirculates to the 3™ chamber.
Chamber Reaction Model Preferred Notes
Temp. Temp. Range
1 MgCly-6H,0—MgCly-4H,0+ 2H,0 100°C 90°C-120°C
e MgCly-4H,0—->MgCl-2H,0 + 1950C 160°C-185°C
2H,0
3 MgCl2H,0 — MgCly'H,O + Hy,O 160°C 190°C- 230°C *

10
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4" MgCly'H>O — Mg(OH)Cl + HCl 130°C 230°C- 260°C .

* HCI Vapor Present

** HCI Vapor Recirculates to the 3™ Chamber
The first three reactions above may be characterized as dehydrations, while the fourth may be
characterized as a decomposition. Results from this simulation, which is explained in greater
detail in Example 2, indicate that at lower temperatures (130-250 °C) the décomposition of
MgCly-6H,0 results in the formation of Mg(OH)CI instead of MgO. The Mg(OH)CI then
reacts with H,O to form MgCl, and Mg(OH),, which then reacts with a saturated CaCly/H,O
solution and CO; from the flue gas to form CaCOs, which is filtered out of the stream. The
resulting MgCl, formed is recycled to the first reactor to begin the process again.

FIG. 7 is a process flow diagram showing parameters and results from a process
simulation using Aspen Plus process software. The net reaction is the capture of CO, from
flue gas using inexpensive raw materials, CaCl, and water, to form CaCOs;. In this
embodiment, the magnesium hexahydrate is dehydrated in two separate chambers and
decomposed in a third chamber. Both dehydration and decomposition reactions occur in the
third chamber. There is no recirculating HCI. Reactions occurring in these chambers include

the following:

1* Chamber: MgCl:6H,0 — MgCly-4H,0 + 2H,0 100 °C
2™ Chamber: MgCly-4H,0 — MgCly2H,0 + 2H,0 125 °C
3™ Chamber: MgClL-2H,0 — Mg(OH)Cl +HCI + H,0 130 °C
3 Chamber: MgClL2H,0 — MgCly-H,0 + H,O 130 °C
Chamber Reaction ye(:]i:: T::::elzr::ge Notes
1% MgCly-6H,0->MgCly-4H,0+ 2H,0 100°C 90°C-120°C
N MgCly-4H,0->MgCl-2H,0 + 2H,0 125°C 160°C-185°C
31 MgCl,2H,0—>Mg(OH)CI+HCI+ 130°C 190°C- 230°C *
H,0
MgCl,2H,0 = MgCly-Hy0 + Hy,0

* No recirculating HCI

The first, second and fourth reactions above may be characterized as dehydrations, while the
third may be characterized as a decomposition. As in the embodiment of FIG. 6, the
temperatures used in this embodiment result in the formation of Mg(OH)Cl from the
MgCly-6H,0 rather than MgO. The Mg(OH)CI then reacts with H,O to form MgCl, and
Mg(OH),, which reacts with a saturated CaCl,/H,0O solution and CO, from the flue gas to
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form CaCQOs;, which is filtered out of the stream. The resulting MgCl, formed is recycled to
the first reactor to begin the process again. Additional details regarding this simulation are
provided in Example 3 below.

FIG. 8 is a process flow diagram showing parameters and results from a process
simulation using Aspen Plus process software. The net reaction is the capture of CO, from
flue gas using inexpensive raw materials, CaCl, and water, to form CaCO;. Results from this
simulation indicate that it is efficient to heat MgCl,"6H,0 to form MgO. The MgO then
reacts with H,O to form Mg(OH),, which then reacts with a saturated CaCl,/H,O solution
and CO; from the flue gas to form CaCOs, which is filtered out of the stream. The resulting
MgCl, formed is recycled to the first reactor to begin the process again. In this embodiment,
the magnesium hexahydrate is simultaneously dehydrated and decomposed in one chamber at
450 °C. This is the model termperature range. The preferred range in some emobodiments,
is 450 °C — 500 °C. Thus the decomposition goes completely to MgO. The main reaction
occurring in this chamber can be represented as follows:

MgCly'6H,0 — MgO + SH,0 + 2HCl 450 °C
Additional details regarding this simulation are provided in Example 4 below.

FIG. 9 is a process flow diagram showing parameters and results from a process
simulation using Aspen Plus process software similar to the embodiment of FIG. 8 except
that the MgCl,-6H,0 is decomposed into an intermediate compound, Mg(OH)CI at a lower
temperature of 250 °C in one chamber. The Mg(OH)CI is then dissolved in water to form
MgCl, and Mg(OH),, which follows through with the same reaction with CaCl, and CO; to
form CaCOj; and MgCl,. The main reaction occurring in this chamber can be represented as
follows:

MgCl,-6H,0 — Mg(OH)Cl + HC1 + 5H,0 250 °C
The reaction was modeled at 250 °C. In some embodiments, the preferred range is from
230 °C to 260 °C. Additional details regarding this simulation are provided in Example 5
below.

FIG. 10 shows a graph of the mass percentage of a heated sample of MgCl,-6H,0.
The sample’s initial mass was approximately 70 mg and set at 100%. During the experiment,
the sample’s mass was measured while it was being thermally decomposed. The temperature
was quickly ramped up to 150 °C, and then slowly increased by 0.5 °C per minute. At
approximately 220 °C, the weight became constant, consistent with the formation of

Mg(OH)CL.
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F1G. 11 shows X-ray diffraction data corresponding to the product of Example 7.

F1G. 12 shows X-ray diffraction data corresponding to the product from the reaction
using Mg(OH), of Example 8.

F1G. 13 shows X-ray diffraction data corresponding to the product from the reaction
using Mg(OH)CI of Example 8.

FIG. 14 shows the effect of temperature and pressure on the decomposition of
MgCl,(H,0).

FIG. 15 is a process flow diagram of an embodiment of the Ca/Mg process described
herein.

FIG. 16 is a process flow diagram of a variant of the process, whereby only
magnesium compounds are used. In this embodiment the Ca®" — Mg”" switching reaction
does not occur.

FIG. 17 is a process flow diagram of a different variant of the process which is in
between the previous two embodiments. Half of the Mg** is replaced by Ca®*, thereby
making the resulting mineralized carbonate MgCa(COs3), or dolomite. '

FIG. 18 — CaSiO;3;-Mg(OH)CI Process, Cases 10 & 11. This figure shows a process
flow diagram providing parameters and results from a process simulation using Aspen Plus
process software. The net reaction is the capture of CO, from flue gas using inexpensive raw
materials, CaSiO3, CO, and water, to form SiO; and CaCOs;. Results from this simulation
indicate that it is efficient to use heat from the HCI reacting with CaSiOs; and heat from the
flue gas emitted by a natural gas or coal fired power plant to carry out the decomposition of
MgCly-6H,0 to form Mg(OH)Cl. The Mg(OH)CI then reacts with H,O to form MgCl, and
Mg(OH),, which then reacts with a saturated CaCly/H,0O solution and CO; from the flue gas
to form CaCQOs, which is filtered out of the stream. The resulting MgCl, formed is recycled
to the first reactor to begin the process again. In this embodiment, the magnesium chloride
hexahydrate is dehydrated to magnesium chloride dihydrate MgCl,-2H,0 in the first chamber
using heat from the HCI and CaSiOs reaction and decomposed in a second chamber at 250°C
using heat from the flue gas. Thus the decomposition goes partially to Mg(OH)Cl. The main

reactions occurring in this chamber can be represented as follows:
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Reaction AH** Reaction
actio kJ/mole Temp. Range
230 °C —
MgCly'6H,0 — Mg(OH)CI + 5H,0 + HCl 433 260 °C
2HCl(g) + CaSiO; — CaCly(aq) + H,0 + SiO,] —-259 90 °C-150°C
2Mg(OH)Cl + CO, + CaCly — 2MgCl, + CaCO3) + H,O . ~266 25°C—-95°C

*#* Enthalpies are based on reaction temperatures, and temperatures of incoming reactant and
outgoing product streams. Additional details regarding this simulation are provided in
Examples 10 and 11 below.

FIG. 19 — CaSiO;-MgO Process, Cases 12 & 13. This figure shows a process flow
diagram providing parameters and results from a process simulation using Aspen Plus
process software. The net reaction is the capture of CO, from flue gas using inexpensive raw
materials, CaSiO3;, CO, and water, to form SiO, and CaCOj. Results from this simulation
indicate that it is efficient to use heat from the HCI reacting with CaSiO3 and heat from flue
gas emitted by a natural gas or coal fired power plant to carry out the decomposition of
MgCl,-6H,0 to form MgO. The MgO then reacts with H,O to form Mg(OH),, which then
reacts with a saturated CaCl,/H,0 solution and CO; from the flue gas to form CaCOs;, which
is filtered out of the stream. The resulting MgCl, formed is recycled to the first reactor to
begin the process again. In this embodiment, the magnesium chloride hexahydrate is
dehydrated to magnesium chloride dihydrate MgCl,-2H,0 in the first chamber using heat
from the HCI and CaSiO; reaction and decomposed in a second chamber at 450°C using heat
from the flue gas. Thus the decomposition goes completely to MgO. The main reactions

occurring in this chamber can be represented as follows:

Reaction AH kJ/mole** Reacggr;;emp.
MgCly-6H,0 — MgO + SH,0 + 2HCI 560 450 °C - 500 °C
2HCl(g) + CaSiO3 — CaCly(aq) + H,O + S10,| —264 90 °C—-150°C
MgO + CO, + CaCly(ag) - MgCly(aq) + CaCOs3) —-133 25°C-95°C

** Enthalpies are based on reaction temperatures, and temperatures of incoming reactant and
outgoing product streams. Additional details regarding this simulation are provided in
Examples 12 and 13 below.

FIG. 20 - MgSi0O3;-Mg(OH)CI Process, Cases 14 & 15. This figure shows a process
flow diagram providing parameters and results from a process simulation using Aspen Plus

process software. The net reaction is the capture of CO, from flue gas using inexpensive raw

14




10

15

20

25

WO 2013/106730 PCT/US2013/021264

materials, MgSiO;, CO, and water, to form SiO; and MgCOs. Results from this simulation
indicate that it is efficient to use heat from the HCI reacting with MgSiO; and heat from the
flue gas emitted by a natural gas or coal fired power plant to carry out the decomposition of
MgCl,-2H,0 to form Mg(OH)CI. The Mg(OH)CI then reacts with H,O to form MgCl, and
Mg(OH),, which then reacts with CO, from the flue gas to form MgCOs, which is filtered
out of the stream. The resulting MgCl, formed is recycled to the first reactor to begin the
process again. In this embodiment, the magnesium chloride remains in the dihydrate form
MgCly-2H,0 due to the heat from the HCl and MgSiO; prior to decomposition at 250°C
using heat from the flue gas. Thus the decomposition goes partially to Mg(OH)Cl. The main

reactions occurring in this chamber can be represented as follows:

. AH kJ/mole | Reaction Temp.
Reaction i
o Ranges
MgCl,-2H,0 —» Mg(OH)Cl1 + H,O(g) + HCl(g) 139.8 230 °C —260°C
2HCI(g) + MgSiO3; — MgCl, + H,O + SiO;) —282.8 90 °C-150°C
2Mg(OH)Cl + CO, — MgCl, + MgCO3| + H,O —193.1 25°C—-95°C

** Enthalpies are based on reaction temperatures, and temperatures of incoming reactant and
outgoing product streams. Additional details regarding this simulation are provided in
Examples 14 and 15 below.

FIG. 21 — MgSi0O;3;-MgO Process, Cases 16 & 17. This figure shows a process flow
diagram providing parameters and results from a process simulation using Aspen Plus
process software. The net reaction is the capture of CO, from flue gas using inexpensive raw
materials, MgSiOs;, CO, and water, to form SiO; and MgCOs3. Results from this simulation
indicate that it is efficient to use heat from the HCl reacting with MgSiO3 and heat from the
flue gas emitted by a natural gas or coal fired power plant to carry out the decomposition of
MgCl,-2H,0 to form MgO. The MgO then reacts with H,O to form Mg(OH),, which then
reacts with CO, from the flue gas to form MgCOj3, which is filtered out of the stream. In this
embodiment, the magnesium chloride remains in the dihydrate form MgCl,-2H,O due to the
heat from the HCI and MgSiOs3 prior to decomposition at 450°C using heat from the flue gas.
Thus the decomposition goes completely to MgO. The main reactions occurring in this

chamber can be represented as follows:
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Reaction AH kJ/mole Reaction Temp.
ok Range
MgCl,-2H,0 — MgO + H,0(g) + 2HCl(g) 232.9 450 °C —500°C
2HCl(g) + MgSiO3; — MgCly(ag) + HO(g) + Si0,] —293.5 90 °C—-150°C
MgO + CO; - MgCOs3| —100 25°C-95°C

** Enthalpies are based on reaction temperatures, and temperatures of incoming reactant and
outgoing product streams. Additional details regarding this simulation are provided in
Examples 16 and 17 below.

FIG. 22 — Diopside-Mg(OH)CI Process, Cases 18 & 19. This figure shows a
process flow diagram providing parameters and results from a process simulation using
Aspen Plus process software. The net reaction is the capture of CO, from flue gas using
inexpensive raw materials, diopside MgCa(SiOs),, CO, and water, to form SiO; and dolomite
MgCa(CO;3),. Results from this simulation indicate that it is efficient to use heat from the
HCI reacting with MgCa(SiO3), and heat from the flue gas emitted by a natural gas or coal
fired power plant to carry out the decomposition of MgCl,-6H,O to form Mg(OH)Cl. The
Mg(OH)CI then reacts with H,O to form MgCl, and Mg(OH),, which then reacts with a
saturated CaCly/H,O solution and CO, from the flue gas to form -MgCa(COs), which is
filtered out of the stream. The resulting MgCl, formed is recycled to the first reactor to begin
the process again. In this embodiment, the magnesium chloride hexahydrate is dehydrated to
magnesium chloride dihydrate MgCl,-2H,0 in the first chamber using heat from the HCI and
CaSiO; reaction and decomposed to Mg(OH)Cl in a second chamber at 250°C using heat

from the flue gas. The main reactions occurring in this chamber can be represented as

follows:
Reacti AH Reaction
caction kJ/mole** | Temp. Range
230 °C —
MgCly-6H,0 — Mg(OH)Cl1 + 5H,0(g) + HCl(g) 433 260 °C
2HCl(g) + MgCa(Si03), — Eaglz(aq) +MgSiO;] + Si0,] + 735 90 °C — 150 °C
2
2HCl(g) + MgSiO3; — MgCly(ag) + SiO,| + H,O -282.8 90 °C - 150 °C
4Mg(OH)CI + 2CO; + CaCly(ag) - MgCa(CO3)2| + B o 0c o
3MeCla(ag) + 21,0 442 25°C-95°C
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** Enthalpies are based on reaction temperatures, and temperatures of incoming reactant and
outgoing product streams. Additional details regarding this simulation are provided in
Examples 18 and 19 below.

FIG. 23 — Diopside-MgO Process, Cases 20 & 21. This figure shows a process flow
diagram providing parameters and results from a process simulation using Aspen Plus
process software. The net reaction is the capture of CO, from flue gas using inexpensive raw
materials, diopside MgCa(SiOs),, CO, and water, to form SiO, and dolomite MgCa(COz3),.
Results from this simulation indicate that it is efficient to use heat from the HCI reacting with
MgCa(SiO;), and heat from the flue gas emitted by a natural gas or coal fired power plant
and/or other heat source to carry out the decomposition of MgCl,-6H,0 to form MgO. The
MgO then reacts with H,O to form Mg(OH),, which then reacts with a saturated CaCl,/H,O
solution and CO, from the flue gas to form MgCa(CO3), which is filtered out of the stream.
The resulting MgCl, formed is recycled to the first reactor to begin the process again. In this
embodiment, the magnesium chloride hexahydrate is dehydrated to magnesium chloride
dihydrate MgCl,-2H,O in the first chamber using heat from the HCI and CaSiOs reaction and
decomposed to MgO in a second chamber at 450°C using heat from the flue gas. The main

reactions occurring in this chamber can be represented as follows:

Reaction AH R;:ICI?OH
kJ/mole** p-
Range
450 °C —
MgCly6H,0 —> MgO -+ SH,O + 2HCI 560 200°C
2HCI(g) + MgCa(SiOs); — CaCly(g) + MgSiOs| + SiO,| + 40 90 °C —
H,0 150 °C
. . 90 °C —
2HCl(aq) + MgSi03 — MgCly(ag) + S105] + H,O —288 150 °C
IMgO +2C0, + CaCly(aq) — MgCa(CO3),} + MeCly(ag) 258 2955 Sc_

*#* Enthalpies are based on reaction temperatures, and temperatures of incoming reactant and
outgoing product streams. Additional details regarding this simulation are provided in
Examples 20 and 21 below.

FIG. 24 illustrates the percent CO; captured for varying CO, flue gas concentrations,
varying temperatures, whether the flue gas was originated from coal or natural gas, and also
whether the process relied on full or partial decomposition. See Examples 10 through 13 of

the CaSiO3;-Mg(OH)Cl and CaSi03-MgO processes.
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FIG. 25 illustrates the percent CO, captured for varying CO, flue gas concentrations,
varying temperatures, whether the flue gas was originated from coal or natural gas, and also
whether the process relied on full or partial decomposition. See Examples 14 through 17 of
the MgSiO3-Mg(OH)CI and MgSiO3-MgO processes.

FIG. 26 illustrates the percent CO, captured for varying CO, flue gas concentrations,
varying temperatures, whether the flue gas was originated from coal or natural gas, and also
whether the process relied on full or partial decomposition. See Examples 18 through 21 of
the Diopside - Mg(OH)ClI and Diopside - MgO processes.

FIG. 27 is a simplified process-flow diagram corresponding to some embodiments of
the present invention in which two different salts, e.g., Ca®" and Mg®', are used for
decomposition and carbonation.

FIGS. 28-29 show graphs of the mass percentages of heated samples of MgCly-6H,0.
The initial masses of the samples were approximately 70 mg each and were each set at 100%.
During the experiment, the masses of the samples were measured while they was being
thermally decomposed. The temperature was ramped up to 200 °C then further increased
over the course of a 12 hour run. The identities of the decomposed materials can be
confirmed by comparing against the theoretical plateaus provided. FIG. 28 is a superposition
of two plots, the first one being the solid line, which is a plot of time (minutes) versus
temperature (°C). The line illustrates the ramping of temperature over time; the second plot,
being the dashed line is a plot of weight % (100% = original weight of sample) versus time,
which illustrates the reduction of the sample’s weight over time whether by dehydration or
decomposition. FIG. 29 is also a superposition of two plots, the first (the solid line) is a plot
of weight% versus temperature (°C), illustrating the sample’s weight decreasing as the
temperature increases; the second plot (the dashed line) is a plot of the derivative of the
weight% with respect to temperature (wt.%/°C) versus temperature °C. When this value is
high it indicates a higher rate of weight loss for each change per degree. If this value is zero,
the sample’s weight remains the same although the temperature is increasing, indicating an
absence of dehydration or decomposition. Note Figure 28 and 29 are of the same sample.

FIG. 30 — MgClL-6H,O Decomposition at 500°C after One Hour. This graph
shows the normalized final and initial weights of four test runs of MgCl,-6H,0 after heating
at 500 °C for one hour. The consistent final weight confirms that MgO is made by
decomposition at this temperature.

FIG. 31 — Three-Chamber Decomposition. This figure shows a process flow

diagram providing parameters and results from a process simulation using Aspen Plus
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process software. In this embodiment, heat from cold flue gas (chamber 1), heat from
mineral dissolution reactor (chamber 2), and external natural gas (chamber 3) are used as heat
sources. This process flow diagram illustrates a three chamber process for the decomposition
to Mg(OH)CL. The first chamber is heated by 200 °C flue gas to provide some initial heat
about ~8.2% of the total required heat, the second chamber which relies on heat recovered
from the mineral dissolution reactor to provide 83% of the needed heat for the decomposition
of which 28% is from the hydrochloric acid/mineral silicate reaction and 55% is from the
condensation and formation of hydrochloric acid, and finally the third chamber, which uses
natural gas as an external source of the remaining heat which is 8.5% of the total heat. The
CO, is from a combined cycle power natural gas plant, so very little heat is available from the
power plant to power the decomposition reaction.

FIG. 32 — Four-Chamber Decomposition. This figure shows a process flow
diagram providing parameters and results from a process simulation using Aspen Plus
process software. In this embodiment, heat from cold flue gas (chamber 1), heat from
additional steam (chamber 2), heat from mineral dissolution reactor (chamber 3), and external
natural gas (chamber 4) are used as heat sources. This process flow diagram illustrates a four
chamber process for the decomposition to Mg(OH)CI, the first chamber provides 200 °C flue
gas to provide some initial heat about ~8.2% of the total required heat, the second chamber
provides heat in the form of extra steam which is 0.8% of the total heat needed, the third
chamber which relies on heat recovered from the mineral dissolution reactor to provide 83%
of the needed heat for the decomposition of which 28% is from the hydrochloric acid/mineral
silicate reaction and 55% is from the condensation and formation of hydrochloric acid, and
finally the fourth chamber, which uses natural gas as an external source of the remaining heat
which is 8.0% of the total heat. The CO; is from a combined cycle natural gas power plant,
so very little heat is available from the power plant to power the decomposition reaction.

FIG. 33 — Two-Chamber Decomposition. This figure shows a process flow diagram
providing parameters and results from a process simulation using Aspen Plus process
software. In this embodiment, heat from mineral dissolution reactor (chamber 1), and
external natural gas (chamber 2) are used as heat sources. This process flow diagram
illustrates a two chamber process for the decomposition to Mg(OH)CI, the first chamber
which relies on heat recovered from the mineral dissolution reactor to provide 87% of the
needed heat for the decomposition of which 28% is from the hydrochloric acid/mineral
silicate reaction and 59% is from the condensation and formation of hydrochloric acid, and

the second chamber, which uses natural gas as an external source of the remaining heat which
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is 13% of the total heat. The CO, is from a combined cycle natural gas power plant, so very
little heat is available from the power plant to power the decomposition reaction.

FIG. 34 — Two-Chamber Decomposition. This figure shows a process flow diagram
providing parameters and results from a process simulation using Aspen Plus process
software. In this embodiment, heat from mineral dissolution reactor (chamber 1), and hot
flue gas from open cycle natural gas plant (chamber 2) are used as heat sources. This process
flow diagram illustrates a two chamber process for the decomposition to Mg(OH)CI, the first
chamber which relies on heat recovered from the mineral dissolution reactor to provide 87%
of the needed heat for the decomposition of which 28% is from the hydrochloric acid/mineral
silicate reaction and 59% is from the condensation and formation of hydrochloric acid, and
the second chamber, which uses hot flue gas as an external source of the remaining heat
which is 13% of the total heat. The CO, is from an open cycle natural gas power plant,
therefore substantial heat is available from the power plant in the form of 600 °C flue gas to
power the decomposition reaction.

FIG. 35 shows a schematic diagram of a Auger reactor which may be used for the salt
decomposition reaction, including the decomposition of MgCl,-6H,0 to M(OH)CI or MgO.
Such reactors may comprises internal heating for efficient heat utilization, external insulation
for efficient heat utilization, a screw mechanism for adequate solid transport (when solid is
present), adequate venting for HCI removal. Such a reactors has been used to prepare ~1.8kg
of ~90% Mg(OH)CL.

FIG. 36 shows the optimization index for two separate runs of making Mg(OH)Cl
using an Auger reactor. The optimization index = % conversion x % efficiency.

FIG. 37 shows a process flow diagram of an Aspen model that simulates an CaSiO3-
Mg(OH)CI Process.

FIG. 38A-I shows a process flow diagram providing parameters and results from a
process simulation using Aspen Plus process software. The net reaction is the capture of CO;
from flue gas using inexpensive raw materials, CaSiO3;, CO, and water, to form SiO; and
CaCOj. Heat is used to carry out the decomposition of MgCl,:6H,0 to form Mg(OH)ClL.
The Mg(OH)CI then reacts with H,O to form MgCl, and Mg(OH),. The quantity of H>O is
regulated to favor formation of solid Mg(OH), and aqueous MgCl, (which is recycled to the
first reactor to begin the process again) The Mg(OH), then reacts with a saturated
CaCly/H,0 solution and CO, from the flue gas to form CaCOs, which is filtered out of the

stream. The resulting MgCl, formed is recycled to the first reactor to begin the process again.
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A, is an overview diagram of the process. B-I, are overlapping enlargements of the overview
diagram shown in A.

FIG. 39A-I shows a process flow diagram providing parameters and results from a
process simulation using Aspen Plus process software. The net reaction is the capture of CO,
from flue gas using inexpensive raw materials, CaSiO3, CO, and water, to form SiO; and
CaCO;. Heat is used to carry out the decomposition of MgCly-6H,0 to form Mg(OH)CL
The Mg(OH)CI then reacts with HyO to form MgCl, and Mg(OH),. The quantity of HyO is
regulated to favor formation of solid Mg(OH), and aqueous MgCl, (which is recycled to the
first reactor to begin the process again) The Mg(OH), then reacts with a saturated
CaCly/H,0 solution and CO, from the flue gas to form CaCOs, which is filtered out of the
stream. The resulting MgCl, formed is recycled to the first reactor to begin the process again.
A, is an overview diagram of the process. B-I, are overlapping enlargements of the overview

diagram shown in A.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention relates to carbon dioxide sequestration, including energy-
efficient processes in which Group 2 chlorides are converted to Group 2 hydroxides and
hydrogen chloride, which are then used to remove carbon dioxide from waste streams. In
some embodiments, hydrogen chloride may be further reacted with Group 2 silicates to
produce additional Group 2 chloride starting materials and silica.

In some embodiments, the methods and apparatuses of the invention comprise one or
more of the following general components: (1) the conversion of Group 2 silicate minerals
with hydrogen chloride into Group 2 chlorides and silicon dioxide, (2) conversion of Group 2
chlorides into Group 2 hydroxides and hydrogen chloride, (3) an aqueous decarbonation
whereby gaseous CO; is absorbed into an aqueous caustic mixture comprising Group 2
hydroxides to form Group 2 carbonate and/or bicarbonate products and water, (4) a
separation process whereby the carbonate and/or bicarbonate products are separated from the
liquid mixture, (5) the reuse or cycling of by-products, including energy, from one or more of
the steps or process streams into another one or more steps or process streams. Each of these
general components is explained in further detail below.

While many embodiments of the present invention consume some energy to
accomplish the absorption of CO; and other chemicals from flue-gas streams and to

accomplish the other objectives of embodiments of the present invention as described herein,
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one advantage of certain embodiments of the present invention is that they provide ecological
efficiencies that are superior to those of the prior art, while absorbing most or all of the
emitted CO, from a given source, such as a power plant.

Another additional benefit of certain embodiments of the present invention that
distinguishes them from other CO,-removal processes is that in some market conditions, the
products are worth considerably more than the reactants required or the net-power or plant-
depreciation costs. In other words, certain embodiments are industrial methods of producing
chloro-hydro-carbonate products at a profit, while accomplishing considerable removal of

CO; and incidental pollutants of concern.
I Definitions

As used herein, the terms “carbonates™ or “carbonate products” are generally defined
as mineral components containing the carbonate group, [COg]z_. Thus, the terms encompass
both carbonate/bicarbonate mixtures and species containing solely the carbonate ion. The
terms “bicarbonates” and “bicarbonate products” are generally defined as mineral
components containing the bicarbonate group, [HCO;]'". Thus, the terms encompass both
carbonate/bicarbonate mixtures and species containing solely the bicarbonate ion.

As used herein “Ca/Mg” signifies either Ca alone, Mg alone or a mixture of both Ca
and Mg. The ratio of Ca to Mg may range from 0:100 to 100:0, including, e.g., 1:99, 5:95,
10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10, 95:5, and 99:1. The symbols
“Ca/Mg”, “MgxCa(l-x)” and CaxMg(1—x)” are synonymous. In contrast, “CaMg” or
“MgCa” refers to a 1:1 ratio of these two ions.

As used herein, the term “ecological efficiency” is used synonymously with the term
“thermodynamic efficiency” and is defined as the amount of CO, sequestered by certain
embodiments of the present invention per energy consumed (represented by the equation
“0CO,/0E”), appropriate units for this value are kWh/ton CO,. CO, sequestration is
denominated in terms of percent of total plant CO,; energy consumption is similarly
denominated in terms of total plant power consumption.

The terms “Group II” and “Group 2” are used interchangeably.

“Hexahydrate” refers to MgCl,-6H,0.

In the formation of bicarbonates and carbonates using some embodiments of the
present invention, the term “ion ratio” refers to the ratio of cations in the product divided by
the number of carbons present in that product. Hence, a product stream formed of calcium

bicarbonate (Ca(HCOs);) may be said to have an “ion ratio” of 0.5 (Ca/C), whereas a product
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stream formed of pure calcium carbonate (CaCO3) may be said to have an “ion ratio” of 1.0
(Ca/C). By extension, an infinite number of continuous mixtures of carbonate and
bicarbonate of mono-, di- and trivalent cations may be said to have ion ratios varying
between 0.5 and 3.0.

Based on the context, the abbreviation “MW?” either means molecular weight or
megawaﬁs.

The abbreviation “PFD” is process flow diagram.

The abbreviation “Q” is heat (or heat duty), and heat is a type of energy. This does
not include any other types of energy.

As used herein, the term “sequestration” is used to refer generally to techniques or
practices whose partial or whole effect is to remove CO, from point emissions sources and to
store that CO, in some form so as to prevent its return to the atmosphere. Use of this term
does not exclude any form of the described embodiments from being considered
“sequestration” techniques.

In the context of a chemical formula, the abbreviation “W” refers to H,O.

The pyroxenes are a group of silicate minerals found in many igneous and
metamorphic rocks. They share a common structure consisting of single chains of silica
tetrahedra and they crystallize in the monoclinic and orthorhombic systems. Pyroxenes have
the general formula XY(Si,Al),Os, where X represents calcium, sodium, iron (II) and
magnesium and more rarely zinc, manganese and lithium and Y represents ions of smaller
size, such as chromium, aluminium, iron(IIl), magnesium, manganese, scandium, titanium,
vanadium and even iron (II).

In addition, atoms making up the compounds of the present invention are intended to
include all isotopic forms of such atoms. Isotopes, as used herein, include those atoms
having the same atomic number but different mass numbers. By way of general example and
without limitation, isotopes of hydrogen include tritium and deuterium, and isotopes of
carbon include *C and "C.

The use of the word “a” or “an,” when used in conjunction with the term
“comprising” in the claims and/or the specification may mean “one,” but it is also consistent

% 4C

with the meaning of “one or more,” “at least one,” and “one or more than one.”
Throughout this application, the term “about” is used to indicate that a value includes
the inherent variation of error for the device, the method being employed to determine the

value, or the variation that exists among the study subjects.
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The terms “comprise,” “have” and “include” are open-ended linking verbs. Any

2% <6

forms or tenses of one or more of these verbs, such as “comprises,” “comprising,” “has,”

“having,” “includes” and “including,” are also open-ended. For example, any method that
“comprises,” “has” or “includes” one or more steps is not limited to possessing only those
one or more steps and also covers other unlisted steps.

The term “effective,” as that term is used in the specification and/or claims, means
adequate to accomplish a desired, expected, or intended result.

The above definitions supersede any conflicting definition in any of the reference that
is incorporated by reference herein. The fact that certain terms are defined, however, should
not be considered as indicative that any term that is undefined is indefinite. Rather, all terms

used are believed to describe the invention in terms such that one of ordinary skill can

appreciate the scope and practice the present invention.
I1. Sequestration of Carbon Dioxide Using Salts of Group II Metals

FIG. 1 depicts a simplified process-flow diagram illustrating general, exemplary
embodiments of the apparatuses and methods of the present disclosure. This diagram is
offered for illustrative purposes only, and thus it merely depicts specific embodiments of the
present invention and is not intended to limit the scope of the claims in any way.

In the embodiment shown in FIG. 1, reactor 10 (e.g., a road salt boiler) uses power,
such as external power and/or recaptured power (e.g., heat from hot flue gas or an external
source of heat such as solar concentration or combustion), to drive a reaction represented by
equation 1.

(Ca/Mg)Cl, + 2 H,O — (Ca/Mg)(OH), + 2 HCI (1
The water used in this reaction may be in the form of liquid, steam, a crystalline hydrate, e.g.,
MgCly-6H,0, CaCl,2H,0, or it may be supercritical. In some embodiments, the reaction
uses MgCl, to form Mg(OH), and/or Mg(OH)CI (see, e.g., FIG. 2). In some embodiments,
the reaction uses CaCl, to form Ca(OH),. Some or all of the Group 2 hydroxide or
hydroxychloride (not shown) from equation 1 may be delivered to reactor 20. In some
embodiments, some or all of the Group 2 hydroxide and/or Group 2 hydroxychloride is
delivered to reactor 20 as an aqueous solution. In some embodiments, some or all of the
Group 2 hydroxide is delivered to reactor 20 in an aqueous suspension. In some
embodiments, some or all of the Group 2 hydroxide is delivered to reactor 20 as a solid. In
some embodiments, some or all of the hydrogen chloride (e.g., in the form of vapor or in the

form of hydrochloric acid) may be delivered to reactor 30 (e.g., a rock melter). In some
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embodiments, the resulting Group 2 hydroxides are further heated to remove water and form
corresponding Group 2 oxides. In some variants, some or all of these Group 2 oxides may
then be delivered to reactor 20.

Carbon dioxide from a source, e.g., flue-gas, enters the process at reactor 20 (e.g., a
fluidized bed reactor, a spray-tower decarbonator or a decarbonation bubbler), potentially
after initially exchanging waste-heat with a waste-heat/DC generation system. In some |
embodiments the temperature of the flue gas is at least 125 °C. The Group 2 hydroxide,
some or all of which may be obtained from reactor 10, reacts with carbon dioxide in reactor
20 according to the reaction represented by equation 2.

(Ca/Mg)(OH), + CO, — (Ca/Mg)COs + H,O (2)

The water produced from this reaction may be delivered back to reactor 10. The Group 2
carbonate is typically separated from the reaction mixture. Group 2 carbonates have a very
low Kj, (solubility product constant). So they be separated as solids from other, more soluble
compounds that can be kept in solution. In some embodiments, the reaction proceeds through
Group 2 bicarbonate salts. In some embodiments, Group 2 bicarbonate salts are generated
and optionally then separated from the reaction mixture. In some embodiments, Group 2
oxides, optionally together with or separately from the Group 2 hydroxides, are reacted with
carbon dioxide to also form Group 2 carbonate salts. In some embodiments, the flue gas,
from which CO, and/or other pollutants have been removed, is released to the air.

Group 2 silicates (e.g., CaSiO3, MgSiO3;, MgO-FeO-Si0O,, etc.) enter the process at
reactor 30 (e.g., a rock melter or a mineral dissociation reactor). In some embodiments, these
Group 2 silicates are ground in a prior step. In some embodiments, the Group 2 silicates are
inosilicates. These minerals may be reacted with hydrochloric acid, either as a gas or in the
form of hydrochloric acid, some or all of which may be obtained from reactor 10, to form the
corresponding Group 2 metal chlorides (CaCl, and/or MgCly), water and sand (Si0O;). The

reaction can be represented by equation 3.

2 HCI + (Ca/Mg)Si03 — (Ca/Mg)Cl, + H,O + Si0, (3)
Some or all of the water produced from this reaction may be delivered to reactor 10. Some or
all of the Group 2 chlorides from equation 3 may be delivered to reactor 20. In some
embodiments, some or all of the Group 2 chloride is delivered to reactor 20 as an aqueous
solution. In some embodiments, some or all of the Groﬁp 2 chloride is delivered to reactor 20
in an aqueous suspension. In some embodiments, some or all of the Group 2 chloride is

delivered to reactor 20 as a solid.
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The net reaction capturing the summation of equations 1-3 is shown here as equation

CO, + (Ca/Mg)SiO; — (Ca/Mg)COs + Si0, (4)

In another embodiment, the resulting MgyCa;—CO3 sequestrant is reacted with HCI
in a manner to regenerate and concentrate the CO,. The Ca/MgCl, thus formed is returned to
the decomposition reactor to produce CO, absorbing hydroxides or hydroxyhalides.

Through the process shown in FIG. 1 and described herein, Group 2 carbonates are
generated as end-sequestrant material from the captured CO,. Some or all of the water,
hydrogen chloride and/or reaction energy may be cycled. In some embodiments, only some
or none of these are cycled. In some embodiments, the water, hydrogen chloride and reaction
energy made be used for other purposes.

In some embodiments, and depending on the concentration of CO, in the flue gas
stream of a given plant, the methods disclosed herein may be used to capture 33-66% of the
plant’s CO; using heat-only as the driver (no electrical penalty). In some embodiments, the
efficiencies of the methods disclosed herein improve with lower CO;-concentrations, and
increase with higher (unscrubbed) flue-gas temperatures. For example, at 320 °C and 7%
CO, concentration, 33% of flue-gas CO; can be mineralized from waste-heat alone. In other
embodiments, e.g., at the exit temperatures of natural gas turbines approximately 100%
mineralization can be achieved.

These methods and devices can be further modified, e.g., with modular components,
optimized and scaled up using the principles and techniques of chemistry, chemical
engineering, and/or materials science as applied by a person skilled in the art. Such
principles and techniques are taught, for example, in U.S. Patent 7,727,374, U.S. Patent
Application Publications 2006/0185985 and 2009/0127127, U.S. Patent Application No.
11/233,509, filed September 22, 2005, U.S. Provisional Patent Application No. 60/718,906,
filed September 20, 2005; U.S. Provisional Patent Application No. 60/642,698, filed January
10, 2005; U.S. Provisional Patent Application No. 60/612,355, filed September 23, 2004,
U.S. Patent Application No. 12/235,482, filed September 22, 2008, U.S. Provisional
Application No. 60/973,948, filed September 20, 2007, U.S. Provisional Application No.
61/032,802, filed February 29, 2008, U.S. Provisional Application No. 61/033,298, filed
March 3, 2008, U.S. Provisional Application No. 61/288,242, filed January 20, 2010, U.S.
Provisional Application No. 61/362,607, filed July 8, 2010, and International Application No.
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PCT/US08/77122, filed September 19, 2008. The entire text of each of the above-referenced
disclosures (including any appendices) is specifically incorporated by reference herein.

The above examples were included to demonstrate particular embodiments of the
invention. However, those of skill in the art should, in light of the present disclosure,
appreciate that many changes can be made in the specific embodiments which are disclosed
and still obtain a like or similar result without departing from the spirit and scope of the

invention.
III.  Sequestration of Carbon Dioxide Using Mg** as Catalyst

FIG. 2 depicts a simplified process-flow diagram illustrating general, exemplary
embodiments of the apparatuses and methods of the present disclosure. This diagram is
offered for illustrative purposes only, and thus it merely depicts specific embodiments of the
present invention and is not intended to limit the scope of the claims in any way.

In the embodiment shown in FIG. 2, reactor 100 uses power, such as external power
and/or recaptured power (e.g., heat from hot flue gas), to drive a decomposition —type
reaction represented by equation 5.

MgCly'x(H,0) + yH,O —
z'[Mg(OH),] + z"[MgO] + z"'[MgCI(OH)] + (2z' + 2z" + z"")[HCl] (5)

The water used in this reaction may be in the form of a hydrate of magnesium chloride,
liquid, steam and/or it may be supercritical. In some embodiments, the reaction may occur in
one, two, three or more reactors. In some embodiments, the reaction may occur as a batch,
semi-batch of continuous process. In some embodiments, some or all of the magnesium salt
product may be delivered to reactor 200. In some embodiments, some or all of the
magnesium salt product is delivered to reactor 200 as an aqueous solution. In some
embodiments, some or all of the magnesium salt product is delivered to reactor 200 in an
aqueous suspension. In some embodiments, some or all of the magnesium salt product is
delivered to reactor 200 as a solid. In some embodiments, some or all of the hydrogen
chloride (e.g., in the form of vapor or in the form of hydrochloric acid) may be delivered to
reactor 300 (e.g., a rock melter). In some embodiments, the Mg(OH), is further heated to
remove water and form MgO. In some embodiments, the MgCI(OH) is further heated to
remove HCI and form MgO. In some variants, one or more of Mg(OH),, MgCl(OH) and
MgO may then be delivered to reactor 200.

Carbon dioxide from a source, e.g., flue-gas, enters the process at reactor 200 (e.g., a

fluidized bed reactor, a spray-tower decarbonator or a decarbonation bubbler), potentially
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after initially exchanging waste-heat with a waste-heat/DC generation system. In some
embodiments the temperature of the flue gas is at least 125 °C. Admixed with the carbon
dioxide is the magnesium salt product from reactor 100 and CaCl, (e.g., rock salt). The
carbon dioxide reacts with the magnesium salt product and CaCl, in reactor 200 according to
the reaction represented by equation 6.

CO, + CaCl, + z'[Mg(OH),] + 2"[MgO] + z"'[MgCI(OH)] —

(z'+z" + 2" MgCl, + (z' + %z"")H,0 + CaCO;s (6)

In some embodiments, the water produced from this reaction may be delivered back to
reactor 100. The calcium carbonate product (e.g., limestone, calcite) is typically separated
(e.g., through precipitation) from the reaction mixture. In some embodiments, the reaction
proceeds through magnesium carbonate and bicarbonate salts. In some embodiments, the
reaction proceeds through calcium bicarbonate salts. In some embodiments, various Group 2
bicarbonate salts are generated and optionally then separated from the reaction mixture. In
some embodiments, the flue gas, from which CO, and/or other pollutants have been removed,
is released to the air, optionally after one or more further purification and/or treatment steps.
In some embodiments, the MgCl, product, optionally hydrated, is returned to reactor 100. In
some embodiments, the MgCl, product is subjected to one or more isolation, purification
and/or hydration steps before being returned to reactor 100.

Calcium silicate (e.g., 3Ca0-SiO;, Ca3SiOs; 2Ca0-Si0,, CaySiOs; 3Ca0-2810;,
Ca3Si,07 and CaO-Si0,, CaSiO; enters the process at reactor 300 (e.g., a rock melter). In
some embodiments, these Group 2 silicates are ground in a prior step. In some embodiments,
the Group 2 silicates are inosilicates. In the embodiment of FIG. 2, the inosilicate is CaSiOs
(e.g., wollastonite, which may itself, in some embodiments, contain small amounts of iron,
magnesium and/or manganese substituting for iron). The CaSiOs is reacted with hydrogen
chloride, either gas or in the form of hydrochloric acid, some or all of which may be obtained

from reactor 100, to form CaCl,, water and sand (SiOy). The reaction can be represented by

equation 7.
2 HCI + (Ca/Mg)Si0; — (Ca/Mg)Cl, + H,0 + Si10; (7)
Reaction AH kJ/mole** Reaction
Temp. Range
2 HCl(g) + CaSi0O3 — CaCl; + H,0O + S10, —254 90 °C—150°C
2 HCl(g) + MgSiO; — MgCly(ag) + H,O + Si0; —288 90 °C~150°C
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** Enthalpies are based on reaction temperatures, and temperatures of incoming reactant and
outgoing product streams. Some or all of the water produced from this reaction may be
delivered to reactor 100. Some or all of the CaCl, from equation 7 may be delivered to
reactor 200. In some embodiments, some or all of the CaCl, is delivered to reactor 200 as an
aqueous solution. In some embodiments, some or all of the CaCl, is delivered to reactor 200
in an aqueous suspension. In some embodiments, some or all of the CaCl, is delivered to
reactor 200 as a solid.

The net reaction capturing the summation of equations 5-7 is shown here as equation

8:

CO, + CaSiO; — CaCOs + Si0, (8)
Reaction AH kJ/mole** AG kJ/mole**
CO, + CaSi0; — CaCOs + Si0, -89 -39

** Measured at standard temperature and pressure (STP). Through the process shown in
FIG. 2 and described herein, calcium carbonates are generated as end-sequestrant material
from CO; and calcium inosilicate. Some or all of the various magnesium salts, water,
hydrogen chloride and reaction energy may be cycled. In some embodiments, only some or
none of these are cycled. In some embodiments, the water, hydrogen chloride and/or reaction
energy made be used for other purposes.

These methods and devices can be further modified, optimized and scaled up using
the principles and techniques of chemistry, chemical engineering, and/or materials science as
applied by a person skilled in the art. Such principles and techniques are taught, for example,
in U.S. Patent 7,727,374, U.S. Patent Application Publications 2006/0185985 and
2009/0127127, U.S. Patent Application No. 11/233,509, filed September 22, 2005, U.S.
Provisional Patent Application No. 60/718,906, filed September 20, 2005; U.S. Provisional
Patent Application No. 60/642,698, filed January 10, 2005; U.S. Provisional Patent
Application No. 60/612,355, filed September 23, 2004, U.S. Patent Application No.
12/235,482, filed September 22, 2008, U.S. Provisional Application No. 60/973,948, filed
September 20, 2007, U.S. Provisional Application No. 61/032,802, filed February 29, 2008,
U.S. Provisional Application No. 61/033,298, filed March 3, 2008, U.S. Provisional
Application No. 61/288,242, filed January 20, 2010, U.S. Provisional Application No.
61/362,607, filed July 8, 2010, and International Application No. PCT/US08/77122, filed
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September 19, 2008. The entire text of each of the above-referenced disclosures (including
any appendices) is specifically incorporated by reference herein.

The above examples were included to demonstrate particular embodiments of the
invention. However, those of skill in the art should, in light of the present disclosure,
appreciate that many changes can be made in the specific embodiments which are disclosed
and still obtain a like or similar result without departing from the spirit and scope of the

invention.

IV.  Conversion of Group 2 Chlorides into Group 2 Hydroxides or Group II Hydroxy
Chlorides

Disclosed herein are processes that react a Group 2 chloride, e.g., CaCl, or MgCls,
with water to form a Group 2 hydroxide, a Group 2 oxide, and/or a mixed salt such as a
Group 2 hydroxide chloride. Such reactions are typically referred to as decompositions. In
some embodiments, the water may be in the form of liquid, steam, from a hydrate of the
Group 2 chloride, and/or it may be supercritical. The steam may come from a heat exchanger
whereby heat from an immensely combustible reaction, i.e. natural gas and oxygen or
hydrogen and chlorine heats a stream of water. In some embodiments, steam may also be
generated through the use of plant or factory waste heat. In some embodiments, the chloride
salt, anhydrous or hydrated, is also heated.

In the case of Mg”" and Ca®’, the reactions may be represented by equations 9 and 10,

respectively:
MgCl, + 2 H,O — Mg(OH), + 2 HCl(g) AH =263 kJ/mole** ©)
CaCl, + 2 H,O — Ca(OH), + 2 HCl(g) AH = 284 kJ/mole** (10)

**Measured at 100 °C. The reactions are endothermic meaning energy, e.g., heat has to be
applied to make these reactions occur. Such energy may be obtained from the waste-heat
generated from one or more of the exothermic process steps disclosed herein. The above

reactions may occur according to one of more of the following steps:

CaCl, + (x + y + z) H,O — Ca®"xH,0 + CI"-yH,0 + CI -zH,0 (11)

Ca*"?xH,0 + CI"-yH,0 + CI"zH,0 —
[Ca?"(x—1)(H,0)OH]" + CI"(yH,0) + CI™(z—1)H,0 + H;0" (12)
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[Ca®* (= 1)(H,0)OH]" + CI™(yH,0) + CI(z= 1)H,0 + H;0" —
[Ca®"(x~1)(H,0)OH |" + CI™(yH,0)” + zH,0 + HCl(g)] (13)

[CaZ*(x—1)(H,0)0H ]" + CI -(yH,0) —

[Ca®"(x~2)(H,0) (OH )] + CI™+(y=1)H,0 + H30" (14)
5 [Ca?*(x—2)(H,0) (OH ),] + CI™-(y—1)H,0 + H;0" —
Ca(OH),} + (x—2)H,0 + yH,0 + HCI1 (15)

The reaction enthalpy (AH) for CaCl; + 2 H,O — Ca(OH), + 2 HCI(g) is 284 kJ/mole at
100 °C. In some variants, the salt MgCly,-6H,O, magnesium hexahydrate, is used. Since
water is incorporated into the molecular structure of the salt, direct heating without any
10 additional steam or water may be used to initiate the decomposition. Typical reactions

temperatures for the following reactions are shown here:

From 95-110 °C:

MgCly-6H,0 — MgCly-4H,0 + 2 H,0 (16)

MgC12-4H20 — MgC12-2H20 +2 H,O a7
15  From 135-180 °C:

MgCly-4H,0 — Mg(OH)Cl + HCl + 3 H,0 (18)

Mgc12‘2H20 — MgClz-HgO +H,0 (19)

From 185-230 °C:

MgCly2Hy,0 — Mg(OH)Cl + HCl +H,O (20)
20 From >230 °C:
MgCly-H,O — MgCl, + Hy,O (21)
MgCly-H,O — Mg(OH)CI + HCI (22)
Mg(OH)Cl - MgO + HCl (23)
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Reaction Re;eerenced AH Temp.
! mp- kJ/mole** Reaction
Range
95 °C - o
MgCl,-6H,0 — MgCly-4H,0 + 2 H,O(g) 110 °C 115.7 100°C
95 °C — R
MgCly-4H,0 — MgCly-2H,0 + 2 H,O(g) 110 °C 134.4 100°C
MgCly-4H,0 — Mg(OH)CI + HCl(g) + 3 135 °C - o
HL0(g) 180 °C 275 160°C
135°C — o
MgCly-2H,0 — MgCly'H,0 + HyO(g) 180 °C 70.1 160°C
MgCly-2H,0 — Mg(OH)C1 + HCl(g) 185 OC — 141 210°C
+H,0(g) 230 °C
MgCl,-H,O — MgCl, + H,O(g) >230 °C 76.6 240°C
MgCly,-H,0 — Mg(OH)Cl + HCl(g) >230 °C 70.9 240°C
Mg(OH)Cl — MgO + HCl(g) >230 °C 99.2 450°C

** AH values were calculated at the temperature of reaction (column “Temp. Reaction”). See
the chemical reference Kirk Othmer 4™ ed. Vol. 15 p. 343 1998 John Wiley and Sons, which
is incorporated herein by reference. See example 1, below, providing results from a
simulation that demonstrating the ability to capture CO, from flue gas using an inexpensive
raw material, CaCl,, to form CaCQO;. See also Energy Requirements and Equilibrium in the
dehydration, hydrolysis and decomposition of Magnesium Chloride — K.K. Kelley, Bureau of
Mines 1941 and Kinetic Analysis of Thermal Dehydration and Hydrolysis of MgCl,.6H,O by
DTA and TG — Y. Kirsh, S. Yariv and S. Shoval — Journal of Thermal Analysis, Vol. 32

(1987), both of which are incorporated herein by reference in their entireties.

In certain aspects, Mg(OH), can be more efficiently generated from MgCl, (via

" Mg(OH)CI) by adjusting the proportion of MgCl, and water in the presence of Mg(OH)Cl.

In order to optimize production of Mg(OH),, the amount of water in the chamber is adjusted
to favor Mg(OH), precipitation, while preventing formation of MgCl,-6(H,O) hydrates.
Specifically, the amount of water in a Mg(OH)CI solution is maintained at a water to MgCl,
molar ratio of greater than or equal to 6, such as a ratio of of between about 6 and 7. Under
these conditions Mg(OH),, which is virtually insoluble, whereas the magnesium chloride
remains in an aqueous solution. See, for example page 52 of de Bakker 2011, the entire

disclosure of which is incorporated herein by reference.
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Thus, to reach a product mixture of MgCly-6H,0O and Mg(OH), Mg(OH)Cl is reacted
with an aqueous MgCl, solution, such as that from the bubble column. That reaction would
be:

CaCly(aq) + CO; + Mg(OH), => MgCly(aq) + CaCO3 |+ H,O

MgCly(aq) ~ MgCl,-13-16H,0(liquid)

Boiling the mixture MgCly-13-16H,0(liquid) + AH => MgCl,-6H,0(solid) + 7-
9H,0(gas)] would require significant energy usage. Thus, a solution more dilute than
MgCly,-6H,O shall cause the disproportionation of Mg(OH)CI, a solution of
MgClp.xH,O(liquid) where x > 12 should also be able to cause the disproportionation of
Mg(OH)CI. The equation is written as follows:

Mg(OH)CI + Y2 MgCly-13-16H,0(liquid) => %2 Mg(OH), + MgCl,-6.5-8H,0

Such as: Mg(OH)CI + %2 MgCl,-12H,0(liquid) => %> Mg(OH), + MgCl,-6H,0

The MgCly(aq) is being reconstituted to half of the original MgCl,-6H,O by water
removal and the remaining half of the MgCl,-6H,0 forms from the disproportionation of
Mg(OH)CI by addition of water.

An example of a system that utilizes Mg(OH), generated as detailed above is shown
in FIG. 38A-1. The Aspen diagram is below, and has a red rectangle around the defined
“water disproportionator”. At the top of the red rectangle, Mg(OH)CI, stream SOLIDS-1, is
leaving the decomposition reactor labeled “DECOMP”. Then in the module labeled MGOH2,
the Mg(OH)Cl is mixed the aqueous MgCIl2 from the absorption column, stream
RECYCLE2. They leave as a slurry from the unit as stream “4”, pass through a heat
exchanger and send heat to the decomposition chamber. The stream is then named *“13”
which passes through a separation unit which separates the stream into stream MGCLSLRY
(MgCl,.6H,O almost) and stream SOLIDS-2, which is the Mg(OH), heading to the

absorption column.

V. Reaction of Group 2 Hydroxides and CO; to Form Group 2 Carbonates

In another aspect of the present disclosure, there are provided apparatuses and
methods for the decarbonation of carbon dioxide sources using Group 2 hydroxides, Group 2
oxides, and/or Group 2 hydroxide chlorides as CO, adsorbents. In some embodiments, CO;
is absorbed into an aqueous caustic mixture and/or solution where it reacts with the hydroxide
and/or oxide salts to form carbonate and bicarbonate products. Sodium hydroxide, calcium

hydroxide and magnesium hydroxide, in various concentrations, are known to readily absorb
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CO,. Thus, in embodiments of the present invention, Group 2 hydroxides, Group 2 oxides
(such as CaO and/or MgO) and/or other hydroxides and oxides, e.g., sodium hydroxide may
be used as the absorbing reagent.

For example, a Group 2 hydroxide, e.g., obtained from a Group 2 chloride, may be
used in an adsorption tower to react with and thereby capture CO, based on one or both of the

following reactions:

Ca(OH), + CO, — CaCOs + Hy0 (24)
AH = —117.92 kJ/mol**
AG =-79.91 kJ/mol**

Mg(OH), + CO, — MgCO; + H,0 (25)

AH = —58.85 kJ/mol**
AG =—-16.57 kJ/mol**

** Calculated at STP.

In some embodiments of the present invention, most or nearly all of the carbon
dioxide is reacted in this manner. In some embodiments, the reaction may be driven to
completion, for example, through the removal of water, whether through continuous or
discontinous processes, and/or by means of the precipitation of bicarbonate, carbonate, or a
mixture of both types of salts. See example 1, below, providing a simulation demonstrating
the ability to capture CO, from flue gas using an inexpensive raw material, Ca(CO), derived
from CaCl,, to form CaCOs.

In some embodiments, an initially formed Group 2 may undergo an salt exchange
reaction with a second Group 2 hydroxide to transfer the carbonate anion. For example:

CaCl, + MgCO3 +— MgCl, + CaCOs (25a)

These methods and devices can be further modified, optimized and scaled up using
the principles and techniques of chemistry, chemical engineering, and/or materials science as
applied by a person skilled in the art. Such principles and techniques are taught, for example,
in U.S. Patent 7,727,374, U.S. Patent Application No. 11/233,509, filed September 22, 2005,
U.S. Provisional Patent Application No. 60/718,906, filed September 20, 2005; U.S.
Provisional Patent Application No. 60/642,698, filed January 10, 2005; U.S. Provisional
Patent Application No. 60/612,355, filed September 23, 2004, U.S. Patent Application No.
12/235,482, filed September 22, 2008, U.S. Provisional Application No. 60/973,948, filed
September 20, 2007, U.S. Provisional Application No. 61/032,802, filed February 29, 2008,
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U.S. Provisional Application No. 61/033,298, filed March 3, 2008, U.S. Provisional
Application No. 61/288,242, filed January 20, 2010, U.S. Provisional Application No.
61/362,607, filed July 8, 2010, and International Application No. PCT/US08/77122, filed
September 19, 2008. The entire text of each of the above-referenced disclosures (including

any appendices) is specifically incorporated by reference herein.

VI.  Silicate Minerals for the Sequestration of Carbon Dioxide

In aspects of the present invention there are provided methods of sequestering carbon
dioxide using silicate minerals. The silicate minerals make up one of the largest and most
important classes of rock-forming minerals, constituting approximately 90 percent of the
crust of the Earth. They are classified based on the structure of their silicate group. Silicate
minerals all contain silicon and oxygen. In some aspects of the present invention, Group 2
silicates may be used to accomplish the energy efficient sequestration of carbon dioxide.

In some embodiments, compositions comprising Group 2 inosilicates may be used.
Inosilicates, or chain silicates, have interlocking chains of silicate tetrahedra with either SiOs,
1:3 ratio, for single chains or Si;Oy;, 4:11 ratio, for double chains.

In some embodiments, the methods disclosed herein use compositions comprising
Group 2 inosilicates from the pyroxene group. For example, enstatite (MgSiO3) may be used.

In some embodiments, compositions comprising Group 2 inosilicates from the
pyroxenoid group are used. For example, wollastonite (CaSiO;) may be used. In some
embodiments, compositions comprising mixtures of Group 2 inosilicates may be employed,
for example, mixtures of enstatite and wollastonite. In some embodiments, compositions
comprising mixed-metal Group 2 inosilicates may be used, for example, diopside
(CaMgSiy0g).

Wollastonite usually occurs as a common constituent of a thermally metamorphosed
impure limestone. Typically wollastonite results from the following reaction (equation 26)
between calcite and silica with the loss of carbon dioxide:

CaCOs + Si0; — CaSiOs + CO, (26)
In some embodiments, the present invention has the result of effectively reversing this natural
process. Wollastonite may also be produced in a diffusion reaction in skarn. It develops
when limestone within a sandstone is metamorphosed by a dyke, which results in the

formation of wollastonite in the sandstone as a result of outward migration of calcium ions.
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In some embodiments, the purity of the Group 2 inosilicate compositions may vary.
For example, it is contemplated that the Group 2 inosilicate compositions used in the
disclosed processes may contain varying amounts of other compounds or minerals, including
non-Group 2 metal ions. For example, wollastonite may itself contain small amounts of iron,
magnesium, and manganese substituting for calcium.

In some embodiments, compositions comprising olivine and/or serpentine may be
used. CO, mineral sequestration processes utilizing these minerals have been attempted. The
techniques of Goldberg ef al. (2001) are incorporated herein by reference.

The mineral olivine is a magnesium iron silicate with the formula (Mg,Fe),SiO;.
When in gem-quality, it is called peridot. Olivine occurs in both mafic and ultramafic
igneous rocks and as a primary mineral in certain metamorphic rocks. Mg-rich olivine is
known to crystallize from magma that is rich in magnesium and low in silica. Upon
crystallization, the magna forms mafic rocks such as gabbro and basalt. Ultramafic rocks,
such as peridotite and dunite, can be residues left after extraction of magmas and typically are
more enriched in olivine after extraction of partial melts. Olivine and high pressure structural
variants constitute over 50% of the Earth’s upper mantle, and olivine is one of the Earth's
most common minerals by volume. The metamorphism of impure dolomite or other
sedimentary rocks with high magnesium and low silica content also produces Mg-rich

olivine, or forsterite.

VII. Generation of Group 2 Chlorides from Group 2 Silicates

Group 2 silicates, e.g., CaSi0O3, MgSiOs;, and/or other silicates disclosed herein, may
be reacted with hydrochloric acid, either as a gas or in the form of aqueous hydrochloric acid,
to form the corresponding Group 2 metal chlorides (CaCl, and/or MgCly), water and sand. In
some embodiments the HCI produced in equation 1 is used to regenerate the MgCl, and/or
CaCl, in equation 3. A process loop is thereby created. Table 1 below depicts some of the
common calcium/magnesium containing silicate minerals that may be used, either alone or in
combination. Initial tests by reacting olivine and serpentine with HCI have been successful.

S10, was observed to precipitate out and MgCl, and CaCl, were collected.
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VI1I. Further Embodiments

In some embodiments, the conversion of carbon dioxide to mineral carbonates may be
defined by two salts. The first salt is one that may be heated to decomposition until it
becomes converted to a base (hydroxide and/or oxide) and emits an acid, for example, as a
gas. This same base reacts with carbon dioxide to form a carbonate, bicarbonate or basic
carbonate salt.

For example, in some embodiments, the present disclosure provides processes that
react one or more salts from Tables A-C below with water to form a hydroxides, oxides,
and/or a mixed hydroxide halides. Such reactions are typically referred to as decompositions.
In some embodiments, the water may be in the form of liquid, steam, and/or from a hydrate
of the selected salt. The steam may come from a heat exchanger whereby heat from an
immensely combustible reaction, i.e. natural gas and oxygen or hydrogen and chlorine heats a

stream of water. In some embodiments, steam may also be generated through the use of plant

or factory waste heat. In some embodiments, the halide salt, anhydrous or hydrated, is also

heated.
Table A. Decomposition Salts
Li* Na* K Rb* Cs'
F NC N 4747 N NC N 10906 N 7490 N
cr 3876 | N 19497 N 8295 N 13616 N 7785 N
Br 3006 | N 4336 N 9428 N 13814 N 8196 N
I 6110 | N 6044 N 11859 N 9806 N 8196 N
Table B. Decomposition Salts (cont.)
Mg+2 Ca+2 Sr+2 Ba+2
F 4698 N 3433 N 10346 N 6143 N
cr 4500* 6W* 5847 2w 9855 6W 8098 2W
Br 5010 6w 2743 N 10346 6w 8114 2W
I 2020 N 4960 N 9855 6w 10890 2W

*Subsequent tests have proven the heat of reaction within 1.5-4% of the thermodynamically
derived value using TGA (thermogravinometric analysis) of heated samples and temperature

ramp settings.
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Table C. Decomposition Salts (cont.)

Mn*? Fe'? Co™? Ni? Zn+>

F 3318 | N 2101 N 5847 N 5847 N 3285 N

cr 5043 | 6W | 3860 | 4w | 3860 | 6W | 4550 | 6W | 8098 | 4w

Br 5256 | 6W | 11925 | 4w | 9855 | 6W | 5010 | 6w | 4418 | 4W

15043 | 6W | 3055 | 4W | 4123 | 6W | 5831 | 6W | 4271 4W

SO,2 | NC | 4w | 13485 | 4W | 3351 | 4W | 8985 | 6W | 8344 | 7W

5
Table D. Decomposition Salts (cont.)
Ag+ La+3
F 2168 N 13255 7W
cr 5486 N 7490 7W
Br’ 6242 N 5029 7W
I 6110 N 4813 7W
SO, 6159 N 10561 6W

For Tables A-D, the numerical data corresponds to the energy per amount of CO, captured in
kWh/tonne, NC = did not converge, and NA = data not available.

This same carbonate, bicarbonate or basic carbonate of the first salt reacts with a
second salt to do a carbonate/bicarbonate exchange, such that the anion of second salt
combines with the cation of the first salt and the cation of the second salt combines with the
carbonate/bicarbonate ion of the first salt, which forms the final carbonate/bicarbonate.

In some cases the hydroxide derived from the first salt is reacted with carbon dioxide
and the second salt directly to form a carbonate/bicarbonate derived from (combined with the
cation of) the second salt. In other cases the carbonate/bicarbonate/basic carbonate derived
from (combined with the cation of) the first salt is removed from the reactor chamber and
placed in a second chamber to react with the second salt. FIG. 27 shows an embodiment of
this 2-salt process.

This reaction may be beneficial when making a carbonate/bicarbonate when a salt of
the second metal is desired, and this second metal is not as capable of decomposing to form a
CO, absorbing hydroxide, and if the carbonate/bicarbonate compound of the second salt is
insoluble, i.e. it precipitates from solution. Below is a non-exhaustive list of examples of
such reactions that may be used either alone or in combination, including in combination with

one or more either reactions discussed herein.
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Examples for a Decomposition of a Salt-1:

2Nal + H,O — Na,O + 2HI and/or Na,O + H,O — 2NaOH

MgCl,y-6H,0 — MgO + SH,0 + 2HCl and/or  MgO + H,0O — Mg(OH),
Examples of a Decarbonation:

2NaOH + CO; — Na,COs+ H;O and/or  Nap,COs + CO, + HyO — 2NaHCO;

Mg(OH), + CO, - MgCO; + H,0  and/or Mg(OH), +2C0O; — Mg(HCOs),
Examples of a Carbonate exchange with a Salt-2:

Na,CO; + CaCl, — CaCO3| + 2NaCl

Na,CO; + 2AgNO3; — AgyCO3]+ 2NaNO;

Ca(OH) ; + Na,CO;3; — CaCO3] + 2NaOH*

* In this instance the carbonate, Na,CO;3 is Salt-2, and the salt decomposed to form
Ca(OH),, i.e. CaCl, is the Salt-1. This is the reverse of some of the previous examples in that
the carbonate ion remains with Salt-1.

Known carbonate compounds include H,COs, Li,CO3, NayCO3, K,CO;3, RbyCOs,
Cs,CO3, BeCO3, MgCO;, CaCO3, MgCO;, SrCO3, BaCO3, MnCOs3, FeCO3, CoCO3, CuCOs,
ZnCOs, AgyCO3, CdCO3, AL(CO3)3, TLCO;, PbCO3, and Lay(CO3)3. Group IA elements are
known to be stable bicarbonates, e.g., LiHCO;, NaHCO3, RbHCO3, and CsHCO3. Group IIA
and some other elements can also form bicarbonates, but in some cases, they may only be
stable in solution. Typically rock-forming elements are H, C, O, F, Na, Mg, Al, Si, P, S, Cl,
K, Ca, Ti, Mg and Fe. Salts of these that can be thermally decomposed into corresponding
hydroxides by the least amount of energy per mole of CO, absorbing hydroxide may
therefore be considered potential Salt-1 candidates.

Based on the energies calculated in Tables A-D, several salts have lower energies than
MgCl,-6H,0. Table E below, summarizes these salts and the percent penalty reduction

through their use relative to MgCl,.6H,0.

Table E: Section Lower Energy Alternative Salts

Compound kw-hr/tonne % reduction
MgCl,.6H20 4500 0%
LiCl 3876 16%
LiBr 3006 50%
NaBr 4336 4%
Mgl, x 2020 123%
CaF; 3433 31%
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CaBr, 2743 64%
MnF, 3318 36%
FeF, 2102 114%
FeCl,.4H,0 3860 17%
Fel,.4H,0 3055 47%
CoCl,.6H,0 3860 17%
Col,.6H,0 4123 9%
C0S04.4H,0 3351 34%
ZnF,.2H,0 3285 37%
ZnBr,.4H,0 4418 2%
Zni.4H,0 4271 5%
CdF, 3137 43%
AgF 2168 108%

The following salts specify a decomposition reaction through their respective

available MSDS information.

Table F.
Compound Decomposition Energy Notes
MgCl,-6H,0 4500
MnCl,-4H,0 5043 only Mn*? forms a stable carbonate
Nal-2H,0 1023 too rare
Coly-6H,0 4123 too rare
FeCl,-4H,0 3860 May oxidize to ferric (Zzirdbeo,r’:;\;z will not form a stable
LiBr 3006 too rare
Mg(NOs),-4H,0 1606 leaves Nox
CoS0,-4H,0 3351 somewhat rare leaves SO3
CdCl,-2.5H,0 not aval. toxic byproducts
Ca(NO3),-4H,0 2331 leaves NO,
Compound References
MgCl,-6H,0
MnCl-4H,0 http://avogadro.chem.iastate.edu/MSDS/MnCI2.htm
Nal,-H,0 http://www.chemicalbook.com/ProductMSDSDetailCB6170714_EN.htm
Col,-6H,0 http://www.espimetals.com/index.php/msds/527-cobalt-iodide
FeCl,-4H,0
LiBr http://www.chemcas.com/material/cas/archive/7550-35-8_v1l.asp
Mg(NO;),-4H,0 http://avogadro.chem.iastate.edu/MSDS/MgNO3-6H20.htm
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C0S50,.4H,0 http://www.chemicalbook.com/ProductMSDSDetailCB0323842_EN.htm
CdCl,-2.5H20 http://www.espimetals.com/index.php/msds/460-cadmium-chloride
Ca(NO;),-4H20 http://avogadro.chem.iastate.edu/MSDS/Ca%28N03%292-4H20.htm

IX. Limestone Generation and Uses

In aspects of the present invention there are provided methods of sequestering carbon
dioxide in the form of limestone. Limestone is a sedimentary rock composed largely of the
mineral calcite (calcium carbonate: CaCQOj3). This mineral has many uses, some of which are
identified below.

Limestone in powder or pulverized form, as formed in some embodiments of the
present invention, may be used as a soil conditioner (agricultural lime) to neutralize acidic
soil conditions, thereby, for example, neutralizing the effects of acid rain in ecosystems.
Upstream applications include using limestone as a reagent in desulfurizations.

Limestone is an important stone for masonry and architecture. One of its advantages
is that it is relatively easy to cut into blocks or more elaborate carving. It is also long-lasting
and stands up well to exposure. Limestone is a key ingredient of quicklime, mortar, cement,
and concrete.

Calcium carbonate is also used as an additive for paper, plastics, paint, tiles, and other
materials as both white pigment and an inexpensive filler. Purified forms of calcium
carbonate may be used in toothpaste and added to bread and cereals as a source of calcium.
CaCOs is also commonly used medicinally as an antacid.

Currently, the majority of calcium carbonate used in industry is extracted by mining
or quarrying. By co-generating this mineral as part of carbon dioxide sequestration in some

embodiments, this invention provides a non-extractive source of this important product.

X. Magnesium Carbonate Generation and Uses

In aspects of the present invention there are provided methods of sequestering carbon
dioxide in the form of magnesium carbonate. Magnesium carbonate, MgCOs, is a white solid
that occurs in nature as a mineral. The most common magnesium carbonate forms are the
anhydrous salt called magnesite (MgCO3) and the di, tri, and pentahydrates known as
barringtonite (MgCOj;-2H,0), nesquehonite (MgCO;-3H,0), and lansfordite (MgCO3-5H,0),
respectively. Magnesium carbonate has a variety of uses; some of these are briefly discussed

below.
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Magnesium carbonate may be used to produce magnesium metal and basic refractory
bricks. MgCO; is also used in flooring, fireproofing, fire extinguishing compositions,
cosmetics, dusting powder, and toothpaste. Other applications are as filler material, smoke
suppressant in plastics, a reinforcing agent in neoprene rubber, a drying agent, a laxative, and
for color retention in foods. In addition, high purity magnesium carbonate is used as antacid
and as an additive in table salt to keep it free flowing.

Currently magnesium carbonate is typically obtained by mining the mineral
magnesite. By co-generating this mineral as part of carbon dioxide sequestration in some

embodiments, this invention provides a non-extractive source of this important product.

X1. Silicon Dioxide Generation and Uses

In aspects of the present invention there are provided methods of sequestering carbon
dioxide that produce silicon dioxide as a byproduct. Silicon dioxide, also known as silica, is
an oxide of silicon with a chemical formula of SiO; and is known for its hardness. Silica is
most commonly found in nature as sand or quartz, as well as in the cell walls of diatoms.
Silica is the most abundant mineral in the Earth’s crust. This compound has many uses; some
of these are briefly discussed below.

Silica is used primarily in the production of window glass, drinking glasses and
bottled beverages. The majority of optical fibers for telecommunications are also made from
silica. It is a primary raw material for many whiteware ceramics such as earthenware,
stoneware and porcelain, as well as industrial Portland cement.

Silica is a common additive in the production of foods, where it is used primarily as a
flow agent in powdered foods, or to absorb water in hygroscopic applications. In hydrated
form, silica is used in toothpaste as a hard abrasive to remove tooth plaque. Silica is the
primary component of diatomaceous earth which has many uses ranging from filtration to
insect control. It is also the primary component of rice husk ash which is used, for example,
in filtration and cement manufacturing.

Thin films of silica grown on silicon wafers via thermal oxidation methods can be
quite beneficial in microelectronics, where they act as electric insulators with high chemical
stability. In electrical applications, it can protect the silicon, store charge, block current, and
even act as a controlled pathway to limit current flow.

Silica is typically manufactured in several forms including glass, crystal, gel, aerogel,

fumed silica, and colloidal silica. By co-generating this mineral as part of carbon dioxide
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sequestration in some embodiments, this invention provides another source of this important

product.

XII. Separation of Products

Separation processes may be employed to separate carbonate and bicarbonate
products from the liquid solution and/or reaction mixture. By manipulating the basic
concentration, temperature, pressure, reactor size, fluid depth, and degree of carbonation,
precipitates of one or more carbonate and/or bicarbonate salts may be caused to occur.
Alternatively, carbonate/bicarbonate products may be separated from solution by the
exchange of heat energy with incoming flue-gases.

The exit liquid streams, depending upon reactor design, may include water, CaCOs,
MgCOs3, Ca(HCO3),, Mg(HCOs3),, Ca(OH),, Ca(OH),;, NaOH, NaHCOs, Na,CO3, and other
dissolved gases in various equilibria. Dissolved trace emission components such as HySOq,
HNO;3, and Hg may also be found. In one embodiment, removing/separating the water from
the carbonate product involves adding heat energy to evaporate water from the mixture, for
example, using a reboiler. Alternatively, retaining a partial basic solution and subsequently
heating the solution in a separating chamber may be used to cause relatively pure carbonate
salts to precipitate into a holding tank and the remaining hydroxide salts to recirculate back to
the reactor. In some embodiments, pure carbonate, pure bicarbonate, and mixtures of the two
in equilibrium concentrations and/or in a slurry or concentrated form may then be
periodically transported to a truck/tank-car. In some embodiments, the liquid streams may be
displaced to evaporation tanks/fields where the liquid, such as water, may be carried off by
evaporation.

The release of gaseous products includes a concern whether hydroxide or oxide salts
will be released safely, i.e., emitting “basic rain.” Emission of such aerosolized caustic salts
may be prevented in some embodiments by using a simple and inexpensive condenser/reflux
unit.

In some embodiments, the carbonate salt may be precipitated using methods that are
used separately or together with a water removal process. Various carbonate salt equilibria
have characteristic ranges where, when the temperature is raised, a given carbonate salt, e.g.,
CaCOs will naturally precipitate and collect, which makes it amenable to be withdrawn as a

slurry, with some fractional NaOH drawn off in the slurry.
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XIHI. Recovery of Waste-Heat

Because certain embodiments of the present invention are employed in the context of
large emission of CO; in the form of flue-gas or other hot gases from combustion processes,
such as those which occur at a power plant, there is ample opportunity to utilize this ‘waste’
heat, for example, for the conversion of Group 2 chlorides salts into Group 2 hydroxides. For
instance, a typical incoming flue-gas temperature (after electro-static precipitation treatment,
for instance) is approximately 300 °C. Heat exchangers can lower that flue-gas to a point less
than 300°C, while warming the water and/or Group 2 chloride salt to facilitate this
conversion.

Generally, since the flue-gas that is available at power-plant exits at temperatures
between 100°C (scrubbed typical), 300°C (after precipitation processing), and 900°C
(precipitation entrance), or other such temperatures, considerable waste-heat processing can
be extracted by cooling the incoming flue-gas through heat-exchange with a power-recovery
cycle, for example an ammonia-water cycle (e.g., a “Kalina” cycle), a steam cycle, or any
such cycle that accomplishes the same thermodynamic means. Since some embodiments of
the present invention rely upon DC power to accomplish the manufacture of the
reagent/absorbent, the process can be directly powered, partially or wholly, by waste-heat
recovery that is accomplished without the normal transformer losses associated with
converting that DC power to AC power for other uses. Further, through the use of waste-
heat-to-work engines, significant efficiencies can be accomplished without an electricity
generation step being employed at all. In some conditions, these waste-heat recovery energy

quantities may be found to entirely power embodiments of the present invention.

XIV. Alternative Processes

As noted above, some embodiments of the apparatuses and methods of the present
disclosure produce a number of useful intermediates, by-products, and final products from the
various reaction steps, including hydrogen chloride, Group 2 carbonate salts, Group 2
hydroxide salts, efc. In some embodiments, some or all of these may be used in one or more
of the methods described below. In some embodiments, some or all of one of the starting
materials or intermediates employed in one or more of the steps described above are obtained

using one or more of the methods outlined below.
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A. Use of Chlorine for the Chlorination of Group 2 Silicates

In some embodiments the chlorine gas may be liquefied to hydrochloric acid that is
then used to chlorinate Group 2 silicate minerals. Liquefaction of chlorine and subsequent
use of the hydrochloric acid is particularly attractive especially in situations where the
chlorine market is saturated. Liquefaction of chlorine may be accomplished according to

equation 27:

Cly(g) +2 HO (/) + Av (363 nm) -» 2 HCI (/) + 2 O, (g) 27)
In some embodiments, the oxygen so produced may be returned to the air-inlet of the power
plant itself, where it has been demonstrated throughout the course of power-industry
investigations that enriched oxygen-inlet plants have (a) higher Carnot-efficiencies, (b) more
concentrated CO, exit streams, (¢) lower heat-exchange to warm inlet air, and (d) other
advantages over non-oxygen-enhanced plants. In some embodiments, the oxygen may be
utilized in a hydrogen/oxygen fuel cell. In some embodiments, the oxygen may serve as part
of the oxidant in a turbine designed for natural gas power generation, for example, using a

mixture of hydrogen and natural gas.

B. Use of Chlorine for the Chlorination of Group 2 Hydroxides

In some embodiments the chlorine gas may be reacted with a Group 2 hydroxide salts
to yield a mixture of a chloride and a hypochlorite salts (equation 28). For example, HCI
may be sold as a product and the Group 2 hydroxide salt may be used to remove excess

chlorine.

Ca/Mg(OH), + Cly —> %2 Ca/Mg(OCl); + 2 Ca/MgCl, + H,O (28)
The Group 2 hypochlorites may then be decomposed using a cobalt or nickel catalyst to form

oxygen and the corresponding chloride (equation 29).
Ca/Mg(OCl); —» Ca/MgCl, + O, (29)

The calcium chloride and/or the magnesium chloride may then be recovered.

XV. Removal of other Pollutants from Source

In addition to removing CO, from the source, in some embodiments of the invention,
the decarbonation conditions will also remove SOx and NOx and, to a lesser extent, mercury.
In some embodiments of the present invention, the incidental scrubbing of NOx, SOx, and

mercury compounds can assume greater economic importance; ie., by employing
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embodiments of the present invention, coals that contain large amounts of these compounds
can be combusted in the power plant with, in some embodiments, less resulting pollution than
with higher-grade coals processed without the benefit of the CO, absorption process. Such
principles and techniques are taught, for example, in U.S. Patent 7,727,374, U.S. Patent
Application No. 11/233,509, filed September 22, 2005, U.S. Provisional Patent Application
No. 60/718,906, filed September 20, 2005; U.S. Provisional Patent Application No.
60/642,698, filed January 10, 2005; U.S. Provisional Patent Application No. 60/612,355,
filed September 23, 2004, U.S. Patent Application No. 12/235,482, filed September 22, 2008,
U.S. Provisional Application No. 60/973,948, filed September 20, 2007, U.S. Provisional
Application No. 61/032,802, filed February 29, 2008, U.S. Provisional Application No.
61/033,298, filed March 3, 2008, U.S. Provisional Application No. 61/288,242, filed January
20, 2010, U.S. Provisional Application No. 61/362,607, filed July 8, 2010, and International
Application No. PCT/US08/77122, filed September 19, 2008. The entire text of each of the
above-referenced disclosures (including any appendices) is specifically incorporated by

reference herein.

XVI. Examples

The following examples are included to demonstrate some embodiments of the
invention. It should be appreciated by those of skill in the art that the techniques disclosed in
the examples which follow represent techniques discovered by the inventor to function well
in the practice of the invention, and thus can be considered to constitute preferred modes for
its practice. However, those of skill in the art should, in light of the present disclosure,
appreciate that many changes can be made in the specific embodiments which are disclosed
and still obtain a like or similar result without departing from the spirit and scope of the

invention.

Example 1 ~ Process Simulation of Capture CO, from Flue Gas Using
CaCl; to form CaCOs.

One embodiment of the present invention was simulated using Aspen Plus v. 7.1
software using known reaction enthalpies, reaction free energies and defined parameters to
determine mass and energy balances and suitable conditions for capturing CO; from a flue
gas stream utilizing CaCl; and heat to form CaCO; product. These results show that it is
possible to capture CO, from flue gas using inexpensive raw materials, CaCl, and water, to

form CaCOs.

47



10

15

20

25

30

WO 2013/106730 PCT/US2013/021264

Part of the defined parameters includes the process flow diagram shown in FIG. 5.
Results from the simulation suggest that it is efficient to recirculate an MgCl, stream to react
with H,O and heat to form Mg(OH),. This Mg(OH), then reacts with a saturated CaCl,/H,O
solution and CO,; from the flue gas to form CaCOs, which is filtered out of the stream. The
resulting MgCl, formed is recycled to the first reactor to begin the process again. This
process is not limited to any particular source for CaCl,. For example, it may be obtained
from reacting calcium silicate with HCl to yield CaCl,.

Constraints and parameters specified for this simulation include:

e The reactions were run at 100% efficiencies with no losses. The simulations
can be modified when pilot runs determine the reaction efficiencies.

e Simulations did not account for impurities in the CaCl, feed stock or in any
make-up MgCl, required due to losses from the system.

The results of this simulation indicate a preliminary net energy consumption of
approximately 130 MM Btu/hr. Tables 2a and 2b provide mass and energy accounting for
the various streams (the columns in the table) of the simulated process. FEach stream
corresponds to the stream of FIG. 5.

The process consists of two primary reaction sections and one solids filtration section.
The first reactor heats MgCl,y/water solution causing it to break down into a HClI/H,O vapor
stream and a liquid stream of Mg(OH),. The HCI/H,O vapor stream is sent to the HCI
absorber column. The Mg(OH), solution is sent to reactor 2 for further processing. The

chemical reaction for this reactor can be represented by the following equation:
MgCl, + 2 HyO — Mg(OH), + 2HCI (30)

A CaCl, solution and a flue gas stream are added to the MgCl, in reactor 2. This
reaction forms CaCOs, MgCl, and water. The CaCOs; precipitates and is removed in a filter
or decanter. The remaining MgCl, and water are recycled to the first reactor. Additional
water 1s added to complete the water balance required by the first reactor. The chemical

reaction for this reactor can be represented by the following equation:
Mg(OH), + CaCl; + CO; — CaCOs (s5) + MgCl, + H,O 31

The primary feeds to this process are CaCls, flue gas (CO,) and water. MgCl, in the
system is used, reformed and recycled. The only MgCl, make-up required is to replace small
amounts that leave the system with the CaCOj3 product, and small amounts that leave with the

HCl/water product.
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This process is a net energy user. There is cross heat exchange to recover the heat in
high temperature streams to preheat the feed streams. Significant heat recovery may be

obtained by reacting the concentrated HCI thus formed with silicate minerals.
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Example 2 (Case 1)— Process Simulation of Magnesium Ion Catalyzed
Capture CO; from Flue Gas Using CaCl, to form CaCO;.

Results from the simulation suggest that it is efficient to heat a MgCl,-6H,0 stream in
three separate dehydration reactions, each in its own chamber, followed by a decomposition
reaction, also in its own chamber, to form Mg(OH)CI and HCI, i.e. total of four chambers.
The Mg(OH)Cl is reacted with H,O to form MgCl, and Mg(OH),, which then reacts with a
saturated CaCly/H,O solution and CO, from the flue gas to form CaCOs, which is filtered out
of the stream. The resulting MgCl,-6H,0 formed is recycled along with the earlier product to
the first reactor to begin the process again.

This process is not limited to any particular source for CaCl,. For example, it may be
obtained from reacting calcium silicate with HCl to yield CaCl,.

Constraints and parameters specified for this simulation include:

e The reactions were run at 100% efficiencies with no losses. The simulations
can be modified when pilot runs determine the reaction efficiencies.

e Simulations did not account for impurities in the CaCl, feed stock or in any
make-up MgCl, required due to losses from the system.

e Part of the defined parameters include the process flow diagram shown in FIG.
6.

The results of this simulation indicate a preliminary net energy consumption of 5946
kwh/tonne CO,. Table 3 provides mass and energy accounting for the various streams of the
simulated process. Each stream corresponds to the stream of FIG. 6.

The process consists of two primary reactors and one solids filtration section. The
first reactor heats MgCl,-6H,0 causing it to break down into a HCI/H,O vapor stream and a
solid stream of Mg(OH)CL. The HCI/H,O vapor stream is sent to a heat exchanger to recover
extra heat. The Mg(OH), formed from the Mg(OH)CI is sent to reactor 2 for further

processing. Chemical reaction(s) occurring in this reactor include the following;:
MgCl,-6H,0 + A — Mg(OH)CI + 5 H,O1 + HCIY (32)
2 Mg(OH)Cl(aq) — Mg(OH), + MgCl, (33)

A CaCl; solution and a flue gas stream are added to the Mg(OH); in reactor 2. This
reaction forms CaCOj;, MgCl, and water. The CaCOj; precipitates and is removed in a filter

or decanter. The remaining MgCl, and water are recycled to the first reactor. Additional
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water is added to complete the water balance required by the first reactor. Chemical

reaction(s) occurring in this reactor include the following:
Mg(OH), + CaCl, + CO; —» CaCO;3 J.(s) + MgCl, + H,O (34)

The primary feeds to this process are CaCl,, flue gas (CO,) and water. MgCl, in the
system is used, reformed and recycled. The only MgCl, make-up required is to replace small
amounts that leave the system with the CaCOs product, and small amounts that leave with the
HCl/water product.

This process is a net energy user. The amount of energy is under investigation and
optimization. There is cross heat exchange to recover the heat in high temperature streams to
preheat the feed streams.

The steps for this process (Case 1) are summarized below:

CASE 1 l |

3 STEP Dehydration then Decomposition

Hexahydrate is dehydrated in 3 separate chambers. Step 1 hex to tetra, Step 2 tetra to di, Step 3 di
to mono. Monohydrate is decomposed into 80% Mg(OH)Cl 20% MgCl, in a fourth chamber.

CO, Absorbed 53333 | MTPY
CaCl, 134574 | MTPY
HCI Dry 88368 | MTPY
CaCO, 105989 | MTPY
Hexahydrate recycled 597447 | MTPY
HEX TO TETRA (100 °C) 1757 | kWh/tonne CO,
TETRATO DI (125C °) 2135 | kWh/tonne CO,
DI TO MONO (160 °C & HCI PP) 1150 | kWh/tonne CO,
DECOMPOSITION (130 °C) 1051 | kWh/tonne CO,

TO 80% Mg{OH)C! 20% MgCl,

YIELDS 90% HCI VAPOR

0.9 | MW
Heat Recovery 148 | kWh/tonne CO,
from 28% HCl vapor
TOTAL 5946 | kWh/tonne CO,
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Example 3 — Process Simulation of Magnesium Ion Catalyzed Capture
CO; from Flue Gas Using CaCl, to form CaCO;.

Part of the defined parameters includes the process flow diagram shown in FIG. 7.
Results from the simulation suggest that it is efficient to heat a MgCl,-6H,0 stream to form
Mg(OH)CI in two separate dehydration reactions, each in their own chambers followed by a
dec.omposition reaction, also in its own chamber to form Mg(OH)CI and HC], i.e. a total of
three chambers. The Mg(OH)CI is reacted with HyO to form MgCl, and Mg(OH),, which
then reacts with a saturated CaCly/H;0 solution and CO, from the flue gas to form CaCOs,
which is filtered out of the stream. The resulting MgCl,.6H,0 formed is recycled to the first
reactor to begin the process again. This process is not limited to any particular source for
CaCl,. For example, it may be obtained from reacting calcium silicate with HCI to yield
CaCl,.

Constraints and parameters specified for this simulation include:

e The reactions were run at 100% efficiencies with no losses. The simulations
can be modified when pilot runs determine the reaction efficiencies.

e Simulations did not account for impurities in the CaCl, feed stock or in any
make-up MgCl, required due to losses from the system.

The results of this simulation indicate a preliminary net energy consumption of 4862
kwh/tonne CO,. Table 4 provides mass and energy accounting for the various streams of the
simulated process. Each stream corresponds to the stream in FIG. 7.

The process consists of two primary reactors and one solids filtration section. The
first reactor heats MgCl,.6H,O causing it to break down into a HCI/H,O vapor stream and a
solid stream of Mg(OH)Cl. The HCI/H,O vapor stream is sent to a heat exchanger to recover
extra heat. The Mg(OH), formed from the Mg(OH)CI is sent to reactor 2 for further

processing. Chemical reaction(s) occurring in this reactor include the following:
MgCl,-6H,0 + A — Mg(OH)Cl + 5 H,O1 + HCIY (35)
2 Mg(OH)Cl(ag) - Mg(OH), + MgCl, (36)

A CaCl, solution and a flue gas stream are added to the Mg(OH); in reactor 2. This
reaction forms CaCOjs, MgCl, and water. The CaCOs precipitates and is removed in a filter
or decanter. The remaining MgCl, and water are recycled to the first reactor. Additional
water is added to complete the water balance required by the first reactor. Chemical

reaction(s) occurring in this reactor include the following:
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Mg(OH), + CaCl, + CO, — CaCOs L (s) + MgCl, + H,0 (37)

The primary feeds to this process are CaCl,, flue gas (CO;) and water. MgCl; in the
system is used, reformed and recycled. The only MgCl, make-up required is to replace small
amounts that leave the system with the CaCOs product, and small amounts that leave with the
HCl/water product.

This process is a net energy user. The amount of energy is under investigation and
optimization. There is cross heat exchange to recover the heat in high temperature streams to
preheat the feed streams.

The steps for this process (Case 2) are summarized below:

CASE 2
2 STEP Dehydration then Decomposition

Hexahydrate is dehydrated in 2 separate chambers. Step 1 hex to tetra, Step 2 tetra to di. Di-hydrate
is decomposed into 100% Mg{OH)Cl.

CO, Absorbed 53333 MTPY
CaCl, 134574 MTPY
HCl Dry 88368 MTPY
CaCOs, 105989 MTPY
Hexahydrate recycled 492737 " MTPY
HEX TO TETRA (100 °C) 1445 kWh/tonne CO,
TETRA TO DI (125 °C) 1774 kWh/tonne CO,
DI-HYDRATE

DEHYDRATION & DECOMPOSITION 1790 kWh/tonne CO,

TO 100% Mg(OH)CI (130 °C)

YEILDS 66% HC! VAPOR

NO CARRIER MgCl, = BETTER OVERALL EFFICIENCY
NO USE OF HCI PP '

0.9
Heat Recovery 148 kWh/tonne CO,
from 28% HCl vapor
TOTAL 4862 kWh/tonne CO,
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Example 4 — Process Simulation of Magnesium Ion Catalyzed Capture
CO; from Flue Gas Using CaCl; to Form CaCOj;.

Part of the defined parameters include the process flow diagram shown in FIG. 8.
Results from the simulation suggest that it is efficient to heat a MgCl,-6H,0 stream to form
MgO in a single chamber. The MgO is reacted with H,O to form Mg(OH),, which then
reacts with a saturated CaCl,/H,O solution ahd CO; from the flue gas to form CaCOs, which
is filtered out of the stream. The resulting MgCl,-6H,O formed is recycled to the first reactor
to begin the process again. This process is not limited to any particular source for CaCl,. For
example, it may be obtained from reacting calcium silicate with HCl to yield CaCls,.

Constraints and parameters specified for this simulation include:

e The reactions were run at 100% efficiencies with no losses. The simulations
can be modified when pilot runs determine the reaction efficiencies.

e Simulations did not account for impurities in the CaCl, feed stock or in any
make-up MgCl, required due to losses from the system.

The results of this simulation indicate a preliminary net energy consumption of 3285
kwh/tonne CO,. Table 5 provides mass and energy accounting for the various streams of the
simulated process. Each stream corresponds to the stream of FIG. 8.

The process consists of two primary reactors and one solids filtration section. The
first reactor heats MgCl,"6H,0 causing it to break down into a HCI/H,O vapor stream and a
solid stream of MgO. The HCI/H,O vapor stream is sent to a heat exchanger to recover extra
heat. The Mg(OH), formed from the MgO is sent to reactor 2 for further processing.

Chemical reaction(s) occurring in this reactor include the following:
MgCly-6H,0 + A — MgO + 5 H,O1 + 2 HCIT (38)
MgO + H,0 — Mg(OH), (39)

A CaCl, solution and a flue gas stream are added to the Mg(OH), in reactor 2. This
reaction forms CaCO3, MgCl, and water. The CaCOs precipitates and is removed in a filter
or decanter. The remaining MgCl, and water are recycled to the first reactor. Additional
water is added to complete the water balance required by the first reactor. Chemical

reaction(s) occurring in this reactor include the following::
Mg(OH), + CaCl, + CO; — CaCOs . (s) + MgCl, + H,O (40)

The primary feeds to this process are CaCl,, flue gas (CO;) and water. MgCl; in the

system is used, reformed and recycled. The only MgCl, make-up required is to replace small
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amounts that leave the system with the CaCOs product, and small amounts that leave with the
HCl/water product.

This process is a net energy user. The amount of energy is under investigation and
optimization. There is cross heat exchange to recover the heat in high temperature streams to
preheat the feed streams.

The steps for this process (Case 3) are summarized below:

CASE 3
Combined Dehydration/Decomposition to MgO

Hexahydrate is dehydrated and decomposed simultaneously at 450C. Reactor yeilds 100% MgO.

CO, Absorbed 53333 MTPY
CaCl, 134574 MTPY
HCI Dry 88368 MTPY
CaCoO, 105989 MTPY
Hexahydrate recycled 246368 MTPY
HEXAHYDRATE

DEHYDRATION & DECOMPOSITION 3778 kWh/tonne CO2

TO 100% MgO (450 °C)

YIELDS 44.7% HCI VAPOR

RECYCLES HALF AS MUCH HEXAHYDRATE
BUT NEEDS HIGH QUALITY HEAT

Heat Recovery 493 kWh/tonne CO2
from 45% HCl vapor
TOTAL 3285 kWh/tonne CO2
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Example 5 — Process Simulation of Magnesium Ion Catalyzed Capture
CO; from Flue Gas Using CaCl, to form CaCO;.

Part of the defined parameters include the process flow diagram shown in FIG. 9.
Results from the simulation suggest that it is efficient to heat a MgCl,-6H,0 stream to form
Mg(OH)CI in a single chamber. The Mg(OH)CI is reacted with H,O to form MgCl, and
Mg(OH),, which then reacts with a saturated CaCl,/H,0O solution and CO, from the ﬂue gas
to form CaCOs, which is filtered out of the stream. The resulting MgCl,-6H,0O formed is
recycled to the first reactor to begin the process again. This process is not limited to any
particular source for CaCl,. For example, it may be obtained from reacting calcium silicate
with HCl to yield CaCl,.

Constraints and parameters specified for this simulation include:

e The reactions were run at 100% efficiencies with no losses. The simulations
can be modified when pilot runs determine the reaction efficiencies.

e Simulations did not account for impurities in the CaCl, feed stock or in any
make-up MgCl, required due to losses from the system.

The results of this simulation indicate a preliminary net energy consumption of 4681
kwh/tonne CO,. Table 6 provides mass and energy accounting for the various streams of the
simulated process. Each stream corresponds to the stream of FIG. 9.

The process consists of two primary reactors and one solids filtration section. The
first reactor heats MgCl,.6H,0 causing it to break down into a HCI/H,O vapor stream and a
solid stream of Mg(OH)CI. The HCI/H,O vapor stream is sent to a heat exchanger to recover
extra heat. The Mg(OH), formed from the Mg(OH)CI is sent to reactor 2 for further

processing. Chemical reaction(s) occurring in this reactor include the following:
MgCl,.6H,0 + A — Mg(OH)CI + 5 H,O1 + HCI} (41)
2 Mg(OH)Cl(aq) — Mg(OH), + MgCl, (42)

A CaCl; solution and a flue gas stream are added to the Mg(OH), in reactor 2. This
reaction forms CaCQO;, MgCl, and water. The CaCOj; precipitates and is removed in a filter
or decanter. The remaining MgCl, and water are recycled to the first reactor. Additional
water is added to complete the water balance required by the first reactor. Chemical

reaction(s) occurring in this reactor include the following:

Mg(OH), + CaCl, + CO, — CaCO;3 L (s) + MgCl, + 1,0 (43)
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The primary feeds to this process are CaCl,, flue gas (CO,) and water. MgCl, in the
system is used, reformed and recycled. The only MgCl, make-up required 1s to replace small
amounts that leave the system with the CaCOs3 product, and small amounts that leave with the
HCl/water product.

This process is a net energy user. The amount of energy is under investigation and
optimization. There is cross heat exchange to recover the heat in high temperature streams to
preheat the feed streams.

The steps for this process (Case 4) are summarized below:

CASE 4
Combined Dehydration/Decomposition to Mg(OH)Cl

Hexahydrate is dehydrated and decomposed simultaneously at 250 °C. Reactor yields 100%
Mg(OH)CI.

CO, Absorbed 53333 MTPY
CaCl, 134574 MTPY
HCl Dry 88368 MTPY
CaCoO; 105989 MTPY
Hexahydrate recycled 492737 MTPY
DEHYDRATION & DECOMPOSITION 5043 kWh/tonne CO2

TO 100% Mg(OH)CI (250 °C)
YEILDS 28.8% HCI VAPOR

2.2 MW
Heat Recovery 361 kWh/tonne CO2
from 28% HCl vapor
TOTAL 4681 kwWh/tonne CO2
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Example 6 — Road Salt Boiler: Decomposition of MgCl,-6H,0

FIG. 10 shows a graph of the mass percentage of a heated sample of MgCl,-6H,0.
The sample’s initial mass was approximately 70 mg and set at 100%. During the experiment,
the sample’s mass was measured while it was being thermally decomposed. The temperature
was quickly ramped up to 150 °C, and then slowly increased by 0.5 °C per minute. At
approximately 220 °C, the weight became constant, consistent with the formation of
Mg(OH)Cl. The absence of further weight decrease indicated that almost all the water has
been removed. Two different detailed decompositional mass analyses are shown in FIGS. 28
and 29, with the theoretical plateaus of different final materials shown. FIG. 30 confirms that
MgO can be made by higher temperatures (here, 500 °C) than those which produce
Mg(OH)CI.

Example 7 — Dissolution of Mg(OH)Cl in H,O

A sample of Mg(OH)CI, produced by the heated decomposition of MgCl,-6H,0, was
dissolved in water and stirred for a period of time. Afterwards, the remaining precipitate was
dried, collected and analyzed. By the formula of decomposition, the amount of Mg(OH),
could be compared to the expected amount and analyzed. The chemical reaction can be

represented as follows:

2 Mg(OH)CI (aq) - Mg(OH), + MgCl, (44)

The solubility data for Mg(OH), and MgCl, is as follows:

MgCl, 52.8 gm in 100 gm. H,O (very soluble)

Mg(OH), 0.0009 gm in 100 gm. H,O (virtually insoluble)
Theoretical weight of recovered Mg(OH);:
Given weight of sample: 3.0136 gm.

MW Mg(OH)CI 76.764

MW Mg(OH), 58.32

Moles Mg(OH), formed per mole Mg(OH)CI = %2
Expected amount of Mg(OH),

2 Mg(OH)CI (ag) — Mg(OH), + MgCl,

3.016gm * (MW Mg(OH), + (MW Mg(OH)Cl * /2 = 1.1447 gm
Precipitate collected = 1.1245 gm
% of theoretical collected = (1.1447 + 1.1245) * 100 = 98.24%
Analytical data:
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Next the sample of Mg(OH), was sent for analysis, XRD (X-ray —diffraction) and

EDS. Results are shown in FIG. 11. The top row of peaks is that of the sample, the spikes in

the middle row are the signature of Mg(OH), while the spikes at the bottom are those of

MgO. Thus verifying that the recovered precipitate from the dissolution of Mg(OH)CI has a

signal resembling that of Mg(OH)s,.

Element k-ratio ZAF Atom %
(calc.) Wt % (1-Sigma)
Mg-K 0.9472 1.014 96.88
Si-K 0.0073 2.737 1.74
Cl-K 0.0127 1.570 1.38

Total 100.00 100.00

Note: Results do not include elements with 2Z<11

Element

96.02
1.99
2.00

Wt % Err.
+/- 0.23
+/- 0.17
+/- 0.16

(Nay) .

The EDS analysis reveals that very little chlorine [CI] was incorporated into the precipitate.

Note, this analysis cannot detect oxygen or hydrogen.

Example 8 — Decarbonation Bubbler Experiment: Production of CaCOj;
by reacting CO, with Mg(OH), {or Mg(OH)Cl} and CaCl,

Approximately 20 grams of Mg(OH), was placed in a bubble column with two liters

of water and CO, was bubbled though it for x minutes period of time. Afterwards some of

the liquid was collected to which a solution of CaCl, was added. A precipitate immediately

formed and was sent through the XRD and EDS. The chemical reaction can be represented

as follows:

EDS

Element k-
(calc.)
Mg-K
Al-K
Si~K
Cl-K
Ca-K

Mg(OH), + CO, + CaCl, — CaCO3l, + H,O
The XRD analysis (FIG. 12) coincides with the CaCOj signature.

ratio ZAF

Wt % (1-Sigma
.0070 2.211
.0013 1.750
.0006 1.382
.0033 1.027
.9731 1.005
.00 100.00

Atom

9
©

.52
.33
.12
.38
.64

Element

-~ O O O

.55
.22
.09
.34
.80

Wt 3

+/-
+/-
+/-
+/-
e

Note: Results do not include elements with z<l1l

(45)

Err.

.10
.04
.03
.03
.30

OO OO0

(Na) .

The EDS analysis indicates almost pure CaCO; with only a 1.55% by weight magnesium

impurity and almost no Chlorine from the CaCls,.
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The same test was performed, except that Mg(OH)CIl from the decomposition of
MgCl,-6H,0 was used instead of Mg(OH),. Although Mg(OH)CI has half the hydroxide
[OH ], as Mg(OH);, it is expected to absorb CO, and form precipitated CaCOs (PCC).

The XRD analysis (FIG. 13) coincides with the CaCOs signature.

EDS

Chi-sgd = 5.83 Livetime = 300.0 Sec.
Standardless Analysis

PROZA Correction Acc.Volt.= 20 kV Take-off Angle=35.00 deg

Number of Iterations = 3

Element k-ratio ZAF Atom % Element Wt % Err.
(calc.) Wt % (1-Sigma)
Mg-K 0.0041 2.224 1.48 0.90 +/- 0.09
S -K 0.0011 1.071 0.14 0.11 +/- 0.04
Ca-K 0.9874 1.003 98.38 98.98 +/- 0.34

Total 100.00 100.00
Note: Results do not include elements with 7<11 (Na).
Again the results indicate almost pure CaCOs3, almost no Mg or Cl compounds.

Example 9A — Rock Melter Experiment: Reaction of Olivine and
Serpentine with HCI

Samples of olivine (Mg,Fe),SiO4 and serpentine Mg;Si,Os(OH)swere crushed and
reacted with 6.1 molar HCI over a period of approximately 72 hours. Two sets of tests were
run, the first at room temperature and the second at 70 °C. These minerals have variable
formulae and often contain iron. After the samples were filtered, the resulting filtrand and
filtrate were dried in an oven overnight. The samples then went through XRD and EDS
analysis. The filtrates should have MgCl, present and the filtrand should be primarily SiOs.
Olivine Filtrate Reacted with HCI at Room Temperature

Element k-ratio ZAF Atom $ Element Wt % FErr.
(calc.) Wt % (1-Sigma)
Mg-K 0.1960 1.451 37.06 28.45 +/- 0.18
Si-K 0.0103 1.512 1.75 1.56 +/- 0.11
Cl-K 0.5643 1.169 58.89 65.94 +/- 0.31
Fe-K 0.0350 1.161 2.30 4.06 +/- 0.22
Total 100.00 100.00

Olivine Filtrate Reacted with HCI at 70 °C

Note: Results do not include elements with Z<11 (Na).

Element k-ratio ZAF Atom % Element Wt % Err.
(calc.) Wt % (1-Sigma)
Mg-~K 0.1172 1.684 27.39 19.74 +/- 0.12
5i-K 0.0101 1.459 1.77 1.48 +/- 0.07
Cl-K 0.5864 1.142 63.70 66.94 +/- 0.24
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Fe-K 0.0990 1.144 6.84 11.33 +/- 0.21
Ni-K 0.0045 1.128 0.29 0.51 +/- 0.09
Total 100.00 100.00

5  Serpentine Filtrate Reacted with HCI at Room Temperature

Note: Results do not include elements with Z<11 (Na).

Element k-ratio ZAF Atom % Element Wt % Err.
(calc.) Wt % (1-Sigma)
Mg-K 0.1674 1.46¢6 32.47 24,53 +/- 0.15
10 Al-K 0.0025 1.863 0.55 0.46 +/- 0.06
Si-K 0.0033 1.456 0.55 0.48 +/- 0.04
Cl-K 0.6203 1.141 64.22 70.77 +/- 0.27
Ca-K 0.0016 1.334 0.17 0.21 +/- 0.05
Cr-K 0.0026 1.200 0.19 0.31 +/- 0.07
15 Mn-K 0.0011 1.200 0.08 0.14 +/- 0.08
Fe-K 0.0226 1.160 1.51 2.62 +/- 0.10
Ni-K 0.0042 1.128 0.26 0.48 +/- 0.10
Total 100.00 100.00

20 Serpentine Filtrate Reacted with HCI at 70°C

Note: Results do not include elements with Z<11 (Na).

Element k-ratio ZAF Atom % Element Wt % Err.
(calc.) Wt % (1-Sigma)
Mg-K 0.1759 1.455 33.67 25.59 +/- 0.14
25 Al-K 0.0017 1.886 0.39 0.33 +/- 0.06
Si-K 0.0087 1.468 1.46 1.28 +/- 0.04
Cl-K 0.6014 1.152 62.46 69.27 +/- 0.25
Cr-K 0.0016 1.199 0.12 0.19 +/- 0.06
Fe-K 0.0268 1.161 1.78 3.11 +/- 0.17
30 Ni-K 0.0020 1.130 0.12 0.22 +/- 0.08
Total 100.00 100.00

Note: Results do not include elements with Z2<11 (Na).

35 The filtrate clearly for both minerals serpentine and olivine at ambient conditions and
70 °C all illustrate the presence of MgCl,, and a small amount of FeCl, in the case of olivine.

Olivine Filtrand Reacted with HCI at Room Temperature

Element k-ratio ZAF Atom % Element Wt % Err.
(calc.) Wt % (1-Sigma)
40 Mg-K 0.2239 1.431 37.68 32.04 +/- 0.14
Si-K 0.3269 1.622 53.96 53.02 +/- 0.19
Cl-K 0.0140 1.658 1.87 2.32 +/- 0.06
Cr-K 0.0090 1.160 0.58 1.05 +/- 0.08
Mn-K 0.0013 1.195 0.08 0.16 +/- 0.09
45 Fe-K 0.0933 1.167 5.57 10.89 +/- 0.26
Ni-K 0.0045 1.160 0.25 0.52 +/- 0.11
Total 100.00 100.00

Note: Results do not include elements with Z<11 (Na).

50
Olivine Filtrand Reacted with HCI at 70 °C
Element k-ratio ZAF Atom % Element Wt % Err.
(calc.) Wt % (1-Sigma)
Mg-K 0.2249 1.461 38.87 32.86 +/- 0.16
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Si-K 0.3030 1.649 51.12 49.94 +/- 0.21
Cl-K 0.0223 1.638 2.96 3.65 +/~ 0.14
Ca-K 0.0033 1.220 0.29 0.41 +/- 0.05
Cr-K 0.0066 1.158 0.42 0.76 +/- 0.08
Mn-K 0.0023 1.193 0.15 0.28 +/- 0.10
Fe-K 0.0937 1.163 5.61 10.89 +/- 0.29
Ni-K 0.0074 1.158 0.42 0.86 +/- 0.13
Cu-K 0.0029 1.211 0.16 0.35 +/- 0.16
Total 100.00 100.00

Note: Results do not include elements with Z<11 (Na).
Given that the formula for olivine is (Mg,Fe),Si0Oy4, and this is a magnesium rich

olivine. The raw compound has a Mg:Si ratio of 2:1. However the filtrand, that which does
not pass through the filter has a (Mg + Fe:Si) ratio of (37+5.5:52) or 0.817:1. (Atom % on
the chart), evidently more than 50% of the magnesium passed through the filter.

Serpentine Filtrand Reacted with HCI at Room Temperature

Element k-ratio ZAF Atom % Element Wt % Err.
(calc.) Wt % (1-Sigma)
Mg-K 0.1930 1.595 37.32 30.78 +/- 0.15
Si-K 0.2965 1.670 51.94 49.50 +/- 0.20
Cl-K 0.0065 1.633 0.88 1.06 +/- 0.06
Cr-K 0.0056 1.130 0.36 0.63 +/- 0.08
Fe~-K 0.1532 1.155 9.33 17.69 +/- 0.31
Ni-K 0.0029 1.159 0.17 0.34 +/- 0.12
Total 100.00 100.00

Note: Results do not include elements with Z<11 (Na).

Serpentine Filtrand Reacted with HCI at 70 °C

Element k-ratio ZAF Atom % Element Wt % Err.
(calc.) Wt % {(1-Sigma)
Mg-K 0.1812 1.5306 33.53 27.83 +/- 0.13
Si-K 0.3401 1.593 56.49 54.18 +/~ 0.18
Cl-K 0.0106 1.651 1.45 1.75 +/- 0.11
Cr-K 0.0037 1.142 0.24 0.43 +/- 0.07
Mn-K 0.0009 1.188 0.05 0.10 +/- 0.08
Fe-K 0.1324 1.159 8.05 15.35 +/- 0.26
Ni-K 0.0032 1.160 0.18 0.37 +/- 0.11
Total 100.00 100.00

Note: Results do not include elements with Z<11 (Na).

Given that the formula of serpentine is (Mg,Fe);Si,0s(OH); the initial 1.5:1 ratio of
(Mg + Fe) to Si has been whittled down to (37 +9.3:56.5) = 0.898:1.

Example 9B — Temperature/Pressure Simulation for Decomposition of
MgCI2-6(H20)
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Pressure and temperature was varied, as shown below (Table 7) and in FIG. 14, to

determine the effect this has on the equilibrium of the decomposition of MgCl,-6(H,0).

10

Inputs are:
1) MgCl,-6H,0
2) CaCly
3) The temperature of the hot stream leaving the heat exchanger (HX) labeled
Mg(OH)CI (see FIGS. 7-8).
4) Percentage of Solids separated in decanter.
5) Water needed labeled H,O
6) Flue Gas.
Table 7.
VARY 1 VARY 2 INPUT Mg(OH)CI MgO Q
REACTOR1 | REACTOR1
PARAM PARAM
TEMP PRES
°C PSIA MOL/SEC | MOL/SEC | MOL/SEC Mw kWhitonne CO2
400 5 51.08399 25.31399 25.77001 23.63765 3883
410 5 38.427 0 38.427 19.85614 3261
420 5 38.427 0 38.427 19.87482 3264
430 5 38.427 0 38.427 19.89354 3268
440 5 38.427 0 38.427 19.9123 3271
450 5 38.427 0 38.427 19.93111 3274
400 7 76.854 76.854 0 31.37484 5153
410 7 53.24627 29.63854 23.60773 24.31186 3993
420 7 38.427 0 38.427 19.87482 3264
430 7 38.427 0 38.427 19.89354 3268
440 7 38.427 0 38.427 19.9123 3271
450 7 38.427 0 38.427 19.93111 3274
400 9 76.854 76.854 0 31.37484 5153
410 9 72.85115 68.84829 4.002853 30.20646 4961
420 9 50.2148 23.5756 26.6392 23.42411 3847
430 9 38.427 0 38.427 19.89354 3268
440 9 38.427 0 38.427 19.9123 3271
450 9 38.427 0 38.427 19.93111 3274
400 11 76.854 76.854 0 31.37484 5153
410 11 76.854 76.854 0 31.41 5159
420 11 64.78938 52.72476 12.06462 27.81251 4568
430 11 4467748 12.50096 32.17652 21.77822 3577
440 11 38.427 0 38.427 19.9123 3271
450 11 138.427 0 38.427 19.93111 3274
400 13 76.854 76.854 0 31.37484 5153
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VARY 1 VARY 2 INPUT | Mg(OH)CI | MgO Q
REACTOR1 | REACTOR1
PARAM PARAM
TEMP PRES
°C PSIA MOL/SEC | MOL/SEC | MOL/SEC MW KWhitonne CO2
410 13 76.854 76.854 0 31.41 5159
420 13 76.854 76.854 0 31.44515 5165
430 13 5559535 | 34.3367 | 21.25865 | 25.07026 4118
440 13 38.427 0 38.427 19.9123 3271
450 13 38.427 0 38.427 19.93111 3274
400 15 76.854 76.854 0 31.37484 5153
410 15 76.854 76.854 0 3141 5159
420 15 76.854 76.854 0 31.44515 5165
430 15 66.51322 | 56.17244 | 1034078 | 28.36229 4659
440 15 4641875 | 1598351 | 3043525 | 22.32544 3667
450 15 38.427 0 38.427 19.93111 3274
200 5 127 76.854 0 47.51946 7805
210 5 85 76.854 0 33.34109 5476
220 5 77 76.854 0 30.74184 5049
230 5 77 76.854 0 30.77702 5055
240 5 77 76.854 0 30.8122 5061
250 5 77 76.854 0 30.84739 5067
200 7 184 76.854 0 66.57309 10935
210 7 125 76.854 0 46.75184 7679
220 7 85 76.854 0 33.32609 5474
230 7 77 76.854 0 30.777 5055
240 7 77 76.854 0 30.81218 5061
250 7 77 76.854 0 30.84737 5067
200 9 297 76.854 0 89.51079 14702
210 9 165 76.854 0 60.16258 9882
220 9 13 76.854 0 42.92123 7050
230 9 78 76.854 0 31.04401 5099
240 9 77 76.854 0 30.81217 5061
250 9 77 76.854 0 30.84735 5067
200 1 473 76.854 0 136.5784 22433
210 1 205 76.854 0 7357332 12084
220 11 142 76.854 0 5251638 8626
230 11 98 76.854 0 38.01558 6244
240 11 77 76.854 0 30.81216 5061
250 11 77 76.854 0 30.84734 5067
200 13 684 76.854 0 192.9858 31698
210 13 303 76.854 0 91.43505 15018
220 13 170 76.854 0 62.11152 10202
230 13 119 76.854 0 44.98715 7389
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VARY 1 VARY 2 INPUT | Mg(OH)CI MgO Q
REACTOR1 | REACTORT
PARAM PARAM
TEMP PRES
°C PSIA MOL/SEC | MOL/SEC | MOL/SEC MW kWh/tonne CO2
240 13 83.3323 76.854 0 33.00459 5421
250 13 76.854 76.854 0 30.84733 5067
200 15 930.5287 76.854 0 258.7607 42502
210 15 422.9236 76.854 0 123.7223 20322
220 15 198.7291 76.854 0 71.70666 11778
230 15 139.6567 76.854 0 51.95871 8534
240 15 9851739 76.854 0 38.14363 6265
250 15 76.854 76.854 0 30.84733 5067

Examples 10 — 21

The following remaining examples are concerned with obtaining the necessary heat to
perform the decomposition reaction using waste heat emissions from either coal or natural
gas power plants. In order to obtain the necessary heat from coal flue gas emissions, the heat
source may be located prior to the baghouse where the temperature ranges from 320-480 °C
in lieu of the air pre-heater. See Reference: pages 11-15 of “The structural design of air and
gas ducts for power stations and industrial Boiler Applications,” Publisher: American Society
of Civil Engineers (August 1995), which is incorporated by reference herein in its entirety.
Open cycle natural gas plants have much higher exhaust temperatures of 600 °C. See
Reference: pages 11-15 of “The structural design of air and gas ducts for power stations and
industrial Boiler Applications,” Publisher: American Society of Civil Engineers (August
1995), which is incorporated by reference herein in its entirety. Additionally, the
decomposition reaction of MgCl,-6H,O may also run in two different modes, complete
decomposition to MgO or a partial decomposition to Mg(OH)Cl. The partial decomposition
to Mg(OH)CI requires in some embodiments a temperature greater than 180 °C whereas the
total decomposition to MgO requires in some embodiments a temperature of 440 °C or
greater.

Additionally the incoming feed to the process can be represented as a continuum
between 100% Calcium Silicate (CaSiO3) and 100% Magnesium Silicate (MgSiO3) with
Diopside (MgCa(SiO3);) (or a mixture of CaSiOs; and MgSiO; in a 1:1 molar ratio)
For each of these cases the resulting output will

representing an intermediate 50% case.

range in some embodiments from calcium carbonate (CaCOs) to magnesium carbonate
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(MgCQO3) with Dolomite CaMg(CO3), representing the intermediate case. The process using
100% calcium silicate is the Ca-Mg process used in all of the previously modeled
embodiments. It is also important to note that the 100% magnesium silicate process uses no
calcium compounds; whereas the 100% calcium silicate incoming feed process does use
magnesium compounds, but in a recycle loop, only makeup magnesium compounds are
required. '

Further details regarding the Ca-Mg, Mg only, Diopside processes, for example, using
complete and partial decomposition of hydrated MgCl, to MgO and Mg(OH)C], respectively,
are depicted below.

I) Ca-Mg Process
Overall reaction CaSiO; + CO, — CaCO; + SiO,
a) Full decomposition (“the CaSi03-MgO process™):

1) MgCl,.6H,0 + A - MgO + 5H,01 + 2HCI]
A thermal decomposition reaction.

2) 2HCl(aq) + CaSiO3; — CaCly(ag) + SiO,] + H,0
A rock melting reaction.
Note 5 H,O will be present per 2 moles of HCI during the reaction.

3) MgO + CaCly(aq) + CO, — CaCO3] + MgCly(aq)
Some versions of this equation use Mg(OH), which is formed from
MgO and H,O0.

4) MgCly(aq) + 6H,0 — MgCly-6H,0
Regeneration of MgCl,.6H,0, return to #1.

b) Partial decomposition (“the CaSiOs;-Mg(OH)CI process™):

1) 2 x[MgCly-6H,0 + A - Mg(OH)CI + 5H,01 + HCI1 ]
Thermal decomposition.
Twice as much MgCl,-6H,0 is needed to trap the same amount of
CO,.

2) 2HCl(aq) + CaSiO; — CaCly(aq) + Si0,] + H,0O
Rock melting reaction.

3) 2Mg(OH)CI + CaCly(ag) + CO; — CaCOj; | +2MgCly(ag) + H,O
CO; capture reaction

4) 2 MgCl, + 12H,0 — 2MgCly-6H,0
Regeneration of MgCl,.6H,0, return to #1.
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IT) Mg Only Process
Overall reaction MgSi0O; + CO, — MgCO5 + Si0,
¢) Full decomposition (“the MgSiO3-MgO process”™)

1) 2HCl(aq) + MgSiOs + (x-1)H,0 — MgCl, + SiO,] + xH,0
Rock melting reaction.

2) MgCly-xH,0 + A — MgO + (x-1)H,01 + 2HCIt
Thermal decomposition reaction.
Note “x-1” moles H,O will be produced per 2 moles of HCI.

3) MgO + CO,; - MgCO;
CO; capture reaction.

Note, in this embodiment no recycle of MgCl, is required. The value of x, the number
of waters of hydration is much lower than 6 because the MgCl, from the rock melting
reaction is hot enough to drive much of the water into the vapor phase. Therefore the path
from the rock melting runs at steady state with “x” as modeled with a value of approximately
2.

d) Partial decomposition (“the MgSiO3;-Mg(OH)CI process™)
1) 2HCl(aq) + MgSiO3 — MgCl, + SiO,| + H,0
Rock melting reaction.
Note “x-1” H,O will be present per mole of HCI during the reaction.
2) 2 x [MgCl.xH,0 + A — Mg(OH)CI + (x-1) H,O1 + HCI1]
Decomposition.
Twice as much MgCl,-(x-1)H,0 is needed to trap the same amount of
COs.
3) 2Mg(OH)Cl + CO, — MgCO;]| + MgCl, + H,0
CO;, capture reaction..
4) MgCly(ag) + 6H,0 — MgCl,-6H,0
Regenerate MgCl,-6H,0, Return to #1.

Note, in this embodiment half of the MgCl, is recycled. The value of x, the number
of waters of hydration is somewhat lower than 6 because half of the MgCl; is from the rock
melting reaction which is hot enough to drive much of the water into the vapor phase and the
remaining half is recycled from the absorption column. Therefore the number of hydrations
for the total amount of MgCl, at steady state will have a value of approximately 4, being the

average between the MgCl,-6H,0 and MgCl,-2H,0.
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III)  Diopside or Mixed process:
Note diopside is a mixed calcium and magnesium silicate and dolomite is a mixed
calcium and magnesium carbonate.
Overall reaction: /2 CaMg(SiOs3), + CO; — Y2 CaMg(COs), + SiO,
e) Full decomposition (“the Diopside-MgO process™):

1) MgCL.6H,0 + A —> MgO + 5H,01 + 2HCIt
Thermal decomposition.

2) HCl+ % CaMg(SiO3), — 2 CaCl, + ¥ MgSiOs| + ¥ SiO,| + Y2 H,O
First rock melting reaction.

3) HCl+ %2 MgSiO; — ¥%MgCl, + ¥4 Si0,| + ¥ H,0
Second rock melting reaction. The MgCl, returns to #1.

4) MgO + % CaCl, + CO, — V2 CaMg(CO3) 2] + Y2 MgCl,

5) 72 MgCl, + 3H,0 — ¥ MgCl,.6H20
Regenerate MgCl,.6H,0, return to #1.

f) Partial decomposition (“the Diopside-Mg(OH)CI process™):

1) 2 x[MgCl-6H,0 + A - Mg(OH)CI + 5H,01 + HC17 ]
Thermal decomposition.
Twice as much MgCl,-6H,0 is needed to trap the same amount of
COa,.

2) HCl+ % CaMg(SiO3), — % CaCl, + %2 MgSiOs] + % Si0, | + % H,O
First rock melting reaction.

3) HCl+ 2 MgSiO; — ¥2MgCl, + % SiO,] + %2 H,O
Second rock melting reaction. Here the MgCl, returns to #1.

4) 2Mg(OH)Cl + %2 CaCl, + CO; — 2 CaMg(COs3) 2| + 3/2 MgCl, +
H,O

5) 3/2 MgCl, + 9H,0 — 3/2 MgCl,-6H,0
Regenerate MgCl,-6H,0, return to #1
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Calcium Silicate process:

The CaSi03-MgO and CaSiO3-Mg(OH)Cl decomposition processes are further
divided into two stages, the first step consists of a dehydration reaction where MgCl,-6H,0 is
converted to MgCl,-2H,O + 4 H,O and the second step in which the MgCl,-2H,0 is
converted to Mg(OH)Cl + HCI + H,O if partial decomposition is desired or required and
MgO + 2HCI + H,O if total decomposition is desired or required. FIG. 15 describes a layout
of this process.

Magnesium Silicate process:

The MgSiO3-MgO and MgSiO;-Mg(OH)CI processes consists of a one chamber
decomposition step in which the HCI from the decomposition chamber reacts with MgSiO3 in
the rock-melting reactor and the ensuing heat of reaction leaves the MgCl, in the dihydrate
form MgCl,-2H,O as it leaves the rock-melting chamber in approach to the decomposition
reactor where it is converted to either MgO or Mg(OH)CI as described earlier. This process
may be preferred if calcium silicates are unavailable. The HCI emitted from the
decomposition reacts with MgSiO; to form more MgCl,. The magnesium silicate process
follows a different path from the calcium. The process starts from the “rock melting reaction
HC] + silicate”, and then moves to the “decomposition reaction (MgCl, + heat),” and lastly
the absorption column. In the calcium silicate process, all the magnesium compounds rotate
between the decomposition reaction and the absorption reaction. FIG. 16 describes the layout
of this process.

Mixed Magnesium and Calcium Silicate “Diopside” process:

The intermediate process Diopside-MgO and Diopside-Mg(OH)CI also involve a two
stage decomposition consisting of the dehydration reaction MgCl, 6H,0 + A — MgCl,-2H,0
+ 4 H,0 followed by the decomposition reaction MgCl, 2H,0 + A — MgO + 2HCI] + H,O
(full decomposition) or MgCl,-2H,0 + A — Mg(OH)Cl + HCI + H,O partial decomposition.
FIG. 17 describes a layout of this process.

The ensuing HCl from the decomposition then reacts with the Diopside CaMg(SiOs),

2

in a two step “rock melting reaction.” The first reaction creates CaCl, through the reaction
2HCI + CaMg(Si03); = CaCly(aq) + MgSiOs]+ SiO,] + H,O. The solids from the previous
reaction are then reacted with HCI a second time to produce MgCl, through the reaction
MgSi03 + 2HCl — MgCl, + SiO, [ +H,0. The CaCl, from the first rock melter is transported
to the absorption column and the MgCl, from the second rock melter is transported to the

decomposition reactor to make Mg(OH)CI or MgO.
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Basis of the reaction:

All of these examples assume 50% CO, absorption of a reference flue gas from a
known coal fired plant of interest. This was done to enable a comparison between each
example. The emission flow rate of flue gas from this plant is 136,903,680 tons per year and
the CO; content of this gas is 10% by weight. This amount of CO; is the basis for examples
10 through 21 which is:

Amount of CO, present in the flue gas per year:

136,903,680 tons per year * 10% = 13,690,368 tons per year

Amount of CO;, absorbed per year.

13,690,368 tons per year * 50% = 6,845,184 tons per year of CO,.

Since the amount of CO, absorbed is a constant, the consumption of reactants and
generation of products is also a constant depending on the reaction stoichiometry and
molecular weight for each compound.

For all the examples of both the CaSiO3-MgO and the CaSiO;-Mg(OH)CI process
(examples 10-13) the overall reaction is:

CaSiO; + CO, — CaCO; + Si0O;

For all the examples of both the MgSiO3;-MgO and the MgSiO3;-Mg(OH)CI process
(examples 14-17) the overall reaction is:

MgSiOs + CO, - MgCOs5 + Si0,

For all the examples of both the Diopside-MgO and the Diopside-Mg(OH)CI process
(examples 18-21) the overall reaction is:

Y2 CaMg(Si03),+ CO; — Y2 CaMg(CO;),+ SiO;

The Aspen model enters the required inputs for the process and calculates the required
flue gas to provide the heat needed for the decomposition reaction to produce the carbon
dioxide absorbing compounds MgO, Mg(OH), or Mg(OH)CI. This flue gas may be from a
natural gas or a coal plant and in the case of coal was tested at a range of temperatures from
320 °C to 550 °C. This flue gas should not be confused with the reference flue gas which
was used a standard to provide a specific amount of CO, removal for each example. A
process with a higher temperature flue gas would typically require a lesser amount of flue gas
to capture the same amount of carbon dioxide from the basis. Also a flue gas with a greater
carbon dioxide concentration would typically result in greater amount of flue gas needed to
capture the carbon dioxide because there is a greater amount of carbon dioxide that needs to

be captured.
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The consumption of reactants and generation of products can be determined from the

basis of CO, captured and the molecular weights of each input and each output for each

example.
Table 10. Molecular Masses of Inputs and Outputs (all embodiments).
Compound Molecular Weight
CaSiO3; 116.16
MgSiO3 99.69
Diopside* 215.85
CaCOs3 100.09
MgCO3 84.31
Dolomite* 184.40
S10; 60.08
CO, 44.01

5 * Number of moles must be divided by 2 to measure comparable CO, absorption with the

other processes,
For Examples 10-13:
The CaSiO; consumption is:

6,845,184 tons per year * (116.16/44.01) = 18,066,577 tons per year.

10 The CaCOs; production is:
6,845,184 tons per year * (100.09 / 44.01) = 15,559,282 tons per year.

The SiO; production is:
6,845,184 tons per year * (60.08 / 44.01) = 9,344,884 tons per year
The same type of calculations may be done for the remaining examples. This
15  following table contains the inputs and outputs for examples 10 through 21. Basis: 6,845,184
tons CO, absorbed per year.
Table 11. Mass Flows of Inputs and Outputs for Examples 10-21.

All measurements are in tons per year (TPY)

Examples
10-13 14-17 18-21
CO; absorbed 6,845,184 6,845,184 6,845,184
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All measurements are in tons per year (TPY)

Examples
10-13 14-17 18-21
INPUTS
Flue Gas for CO, Capture 136,903,680 136,903,680 136,903,680

10% CO, 13,690,368 13,690,368 13,690,368
CaSiO; 18,066,577

MgSiO3 15,613,410
Diopside 16,839,993

OUTPUTS
Si0, 9,344,884 9,344,884 9,344,884

CaCO;3 15,559,282

MgCO; 13,111,817
Dolomite 14,319,845

Running the Aspen models generated the following results for the heat duty for each

step of the decomposition reaction, dehydration and decomposition. The results for each

example are summarized in the table below.
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Example 22: Decomposition of other salts.

The thermal decomposition of other salts has been measured in lab. A summary of
some test results are shown in the table below.

Table 22. Decomposition of other salts.

Salt Temp.’C (2;:;3 Results
Mg(NO3), 400 30 63% decornposition.21{1\?£a)cz‘[ijr)l/r12 i(s) i\/Ig(N 0O3); — MgO +
Mg(NO3); 400 45 64% decomposition.
Mg(NOs), 400 90 100% decomposition
Mg(NOs3), 400 135 100% decomposition
Ca(NO3), 400 30 <25% decompositiogggazciilo/zn (1):2 Ca(NO3), — CaO +
Ca(NOs), 600 50 61% decomposition
Ca(NOs), 600 Overnight 100% decomposition
LiCl 450 120 ~0% decomposition

Example 22: Two, Three and Four-Chamber Decomposition Models

Table 23 (see below) is a comparison of the four configurations corresponding to
FIGS. 31-34. Depicted are the number and description of the chambers, the heat consumed in
MW (Megawatts), the percentage of heat from that particular source and the reduction of
required external heat in kW-H/tonne of CO, because of available heat from other reactions
in the process, namely the hydrochloric acid reaction with mineral silicates and the
condensation of hydrochloric acid. In the FIG. 34 example, the hot flue gas from the open-

cycle natural gas plant also qualifies.

Example 23: Output Mineral Compared with Input Minerals—Coal

In this case study involving flue gas from a coal-based power plant, Table 24
llustrates that the volume of mineral outputs (limestone and sand) are 83% of the volume of
input minerals (coal and inosilicate). The results summarized in Table 24 are based on a 600

MWe coal plant; total 4.66 E6 tonne CO,, includes CO; for process-required heat.
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Example 24: Output Mineral Compared with Input Minerals—Natural
Gas

In this case study summarized in Table 25 (below) involving flue gas from a natural
gas-based power plant, the “rail-back volume” of minerals is 92% of the “rail-in volume” of
minerals. The results summarized in Table 25 are (based on a 600 MWe CC natural gas

plant; total 2.41 E6 tonne CO,, which includes CO; for process-required heat.
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Example 25: Selective production of magnesium hydroxide by
disproportionation of water and magnesium chloride

Mg(OH), can be used in the following reaction to produce limestone from CO, gas.

CaCly(aq) + CO; + Mg(OH), => MgCly(aq) + CaCO3|+ H,O

In order to optimize production of Mg(OH),, upon conversion of MgCl, to
Mg(OH)CI, the amount of water in the reaction chamber will be adjusted to favor Mg(OH),
precipitation. Specifically, when Mg(OH)CI and MgCl, is provided in a large enough volume
of water, the magnesium hydroxide precipitates, as it is virtually insoluble, whereas the
magnesium chloride forms an aqueous solution. Thus the two compounds may be efficiently
separated. Note the water (H,O) in the reaction below, does not become part of the products,
it merely solvates the Mngr and CI so they become an ionic solution.

Mg(OH)Cl (H,0) => Y2 Mg(OH), |+ Y2 MgCly(aq) .

If the amount of water is reduced until the a ratio of about 6 to 1 relative to
magnesium, it would be possible to form MgCl,-6H,0 instead of MgCly(aq). The equation
would be as follows:

Mg(OH)CI + 3H,0 => 2 Mg(OH), |+ Y2 MgCl,.6H,0

Thus, by maintaining a MgCl, to water ratio of greater than or equal to 6 to 1,
production of aqueous MgCl, and solid Mg(OH), is favored. Thus, an example set of CO,
capture reactions can be represented as:

i) MgCl,-H,O => Mg(OH)CL + H,O + HCl

ii) HCl + CaSiO3 => CaCl, + H,0 + Si0;,

ii1) Mg(OH)CI + MgCl; + H,0 => Mg(OH), + MgCl, + H,O

iv) H,0 + Mg(OH), + CO; + CaCl, => MgCl, + CaCOs + H,O

With an overall reaction of: CaSiO; CO; => CaCO3+ Si0».

This system is shown in the the Aspen diagram of FIG. 38A-I and FIG. 39A-1. The
outlined rectangle in the center of the diagram is around the defined “water
disproportionator”. At the top of the rectangle, Mg(OH)CI, stream SOLIDS-1, is leaving the
decomposition reactor labeled “DECOMP”. Then in the module labeled MGOH2, the
Mg(OH)CI is mixed the aqueous MgCl, from the absorption column, stream RECYCLE2.
They leave as a slurry from the unit as stream “4”, pass through a heat exchanger and send
heat to the decomposition chamber. The stream is then named “13” which passes through a
separation unit which separates the stream into stream MGCLSLRY (MgCl,.6H,O almost)
and stream SOLIDS-2, which is the Mg(OH); heading to the absorption column.
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All of the methods disclosed and claimed herein can be made and executed without
undue experimentation in light of the present disclosure. While the compositions and
methods of this invention have been described in terms of particular embodiments, it will be
apparent to those of skill in the art that variations may be applied to the methods and in the
steps or in the sequence of steps of the method described herein without departing from the
concept, spirit and scope of the invention. All such similar substitutes and modifications
apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the

invention as defined by the appended claims.
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WHAT IS CLAIMED IS:

1. A method of sequestering carbon dioxide produced by a source, comprising:

(a)

(b)

(©)

(d)

reacting MgCl, or a hydrate thereof with water in a first admixture under
conditions suitable to form a first product mixture comprising a first step (a)

product comprising Mg(OH)CI and a second step (a) product comprising HCI,

reacting some or all of the Mg(OH)CI from step (a) with a quantity of water
and a quantity of MgCl, in a second admixture under conditions suitable to
form a second product mixture comprising a first step (b) product comprising
Mg(OH), and a second step (b) product comprising MgCl,, wherein the
quantity of water is sufficient to provide a molar ratio of water to MgCl, of

greater than or equal to 6 to 1 in the second product mixture;

admixing some or all of the Mg(OH), from the first step (b) product with
CaCl, or a hydrate thereof and carbon dioxide produced by the source in a
third admixture under conditions suitable to form a third product mixture
comprising a first step (¢) product comprising MgCl, or a hydrate thereof, a
second step (c) product comprising CaCOs, and a third step (¢) product

comprising water; and

separating some or all of the CaCOj3 from the third product mixture,

whereby some or all of the carbon dioxide is sequestered as CaCOs.

2. The method of claim 1, wherein some or all of the water in step (a) is present in the

form of a hydrate of the MgCl,.

3. The method according to either claims 1 or 2, wherein the molar ratio of water to

MgCl; in the second product mixture is between 6 and 10.

4. The method of claim 3, wherein the molar ratio of water to MgCl, in the second

product mixture is between about 6 and about 7.

5. The method according to any one of claims 1-4, further comprising monitoring the

concentration of Mg in the second admixture.

6. The method of claim 5, wherein the amount of Mg(OH)CI or the quantity of water in

a second admixture is adjusted based on said monitoring.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

The method according to any one of claims 1-6, wherein the MgCl, of step (a) is a

MgCl, hydrate.
The method of claim 7, wherein the MgCl, hydrate of step (a) is MgCl,-6H,0.

The method according to any one of claims 1-8, wherein the MgCl, of step (a) is
greater than 90% by weight MgCl,-6(H,0).

The method according to any one of claims 1-9, wherein the first step (a) product

comprises greater than 90% by weight Mg(OH)CI.

The method according to any one of claims 1-10, further comprising separating the

step (b) products.

The method of claim 11, wherein the Mg(OH), product of step (b) is a solid and

wherein separating the step (b) products comprises separating some or all of the solid

Mg(OH), from the water and the MgCl,.

The method according to any one of claims 1-12, wherein the MgCl, product of

step (b) is aqueous MgCls.

The method according to any one of claims 1-13, wherein some or all of the MgCl,

formed in step (b) or step (c¢) is the MgCl, used in step (a).

The method according to any one of claims 1-13, where some or all of the water in

step (a) is present in the form of steam or supercritical water.

The method according to any one of claims 1-15, where some or all of the water of
step (a) 1s obtained from the water of step (c).

The method of any one of claims 1-16, further comprising:

(e) admixing a calcium silicate mineral with HCI under conditions suitable to

form a third product mixture comprising CaCl,, water, and silicon dioxide.

The method of claim 17, where some or all of the HCI in step (e) is obtained from

step (a).

The method of claim 17, wherein step (e) further comprises agitating the calcium

silicate mineral with HCI.
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20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

The method according to any one of claims 17-19, wherein some or all of the heat

generated in step (e) is recovered.

The method according to any one of claims 17-20, where some or all of the CaCl; of

step (¢) is the CaCl, of step (e).

The method according to any one of claims 17-21, further comprising a separation

step, wherein the silicon dioxide is removed from the CaCl, formed in step (e).

The method according to any one of claims 17-22, where some or all of the water of

step (a) is obtained from the water of step (e).

The method according to any one of claims 17-22, wherein the calcium silicate

mineral of step () comprises a calcium inosilicate.

The method according to any one of claims 17-22, wherein the calcium silicate

mineral of step (e) comprises CaSiOs.

The method according to any one of claims 17-22, wherein the calcium silicate
mineral of step(e) comprises diopside (CaMg[Si;Og]) or tremolite

CazMgs { [OH] Si401 1 }2.

The method according to any one of claims 17-22, wherein the calcium silicate further

comprises iron and or manganese silicates.
The method of claim 27, wherein the iron silicate is fayalite (Fe,[SiO4]).
The method according to any one of claims 1-28, wherein the carbon dioxide is in the

form of flue gas, wherein the flue gas further comprises N; and H,O.

The method according to any one of claims 1-29, wherein suitable reacting conditions

of step (a) comprise a temperature from about 200 °C to about 500 °C.

The method of claim 30, wherein the temperature is from about 230 °C to about

260 °C.
The method of claim 30, wherein the temperature is about 250 °C.

The method of claim 30, wherein the temperature is from about 200 °C to about

250 °C.
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34.

35.

36.

37.

38.

39.

40.

41.
42.

The method of claim 30, wherein the temperature is about 240 °C.

The method according to any one of claims 1-34, wherein the suitable reacting

conditions of step (b) comprise a temperature from about 140 °C to about 240 °C.

The method according to any one of claims 1-35, wherein suitable reacting conditions

of step (c) comprise a temperature from about 20 °C to about 100 °C.
The method of claim 36, wherein the temperature is from about 25 °C to about 95 °C.

The method according to any one of claims 17-37, wherein suitable reacting

conditions of step (e) comprise a temperature from about 50 °C to about 200 °C.

The method of claim 38, wherein the temperature is from about 90 °C to about

150 °C.

The method according to any one of claims 1-39, wherein some or all of the hydrogen

chloride of step (a) is admixed with water to form hydrochloric acid.

The method of claim 1, wherein step (a) occurs in one, two or three reactors.

The method of claim 1, wherein step (a) occurs in one reactor.
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