Title: FISH EGG SWEEPER

Abstract: A device for handling fish eggs and other benthic macro invertebrates is provided for removal from a surface of a waterway. An enlarged, generally planar housing has a lower surface formed of a material having sufficient flexibility so that a vacuum that communicates through a collector cavity can remove fish eggs, for example, from a waterway. Fish eggs can be destroyed, either with high pressure fluid that may be a part of the vacuum assembly, or mechanically destroyed, or alternatively the fish eggs may be filtered or separated from the remainder of the collected material. Fluid such as water, saline, chemical or toxins, warm water, etc., are preferably introduced into the waterway surface about the periphery of the housing to treat and/or dislodge the fish eggs.
FISH EGG SWEEPER

Background of the Disclosure

[0001] This application relates to a method and an apparatus for removing select material from an associated waterway. More particularly, this disclosure relates to a method and apparatus for removing non-indigenous species of macro invertebrates and fish eggs from a waterway.

[0002] The owner of the present disclosure also commonly owns U.S. Patent No. 7,513,008 which is directed to an apparatus for directing pressurized water into a substrate to dislodge small sediment and gravel particles from interstitial spaces within larger cobble and gravel of a stream bed. The entire disclosure of the commonly-owned patent is hereby expressly incorporated herein by reference.

[0003] Studies have shown that select fish species introduced either purposefully or inadvertently into certain streams and lakes have become increasingly problematic because these non-indigenous species prey upon and potentially compete with native and sport fish. Known methods to control or reduce these invasive species include harvesting the selected species, commercial scale netting, disrupting spawning, and stocking the waterway with sterile fish (see FISHERIES, vol. 34, no. 9, September 2009, “Western Lake Trout Woes”). Such efforts to control the invasive, non-indigenous species are expensive, and only partially successful. Thus, a need exists for an alternative method and apparatus for addressing this problem that is effective, relatively inexpensive, and does not adversely impact other native fish species or the associated waterway.

Summary of the Disclosure

[0004] A fish egg sweeper and associated method have been developed for removing selected macro invertebrates and fish eggs from a waterway.

[0005] The fish egg sweeper preferably includes a housing having a lower, first surface dimensioned for receipt on a bottom surface of an associated waterway, a cavity in a portion of the housing that communicates with the first surface, perimeter openings in the housing for directing flow and establishing a suction velocity from an
associated fluid source toward the associated waterway, a collector opening that communicates with the associated waterway adjacent the first surface of the housing, and an associated vacuum source for removing material from the associated waterway.

[0006] The first surface of the housing preferably has a substantially planar conformation and is formed from a flexible material.

[0007] An ejector pump communicates with the collector opening to create a vacuum.

[0008] A hinged support is preferably provided along a portion of the housing for facilitating movement of the housing in the associated waterway.

[0009] A manifold receives the pressurized flow and distributes fluid and determines the flow velocity to perimeter locations of the housing.

[0010] A fish egg rupturing device may be included. One form of rupturing device directs collected fish eggs through pressurized fluid, while another embodiment directs the collected fish eggs through a mechanical rupturing member.

[0011] Another embodiment employs a filter for separating the collected fish eggs from the remaining collected material.

[0012] A preferred method of collecting the fish eggs includes directing pressurized fluid to displace fish eggs from an associated waterway surface, and using a vacuum force to collect the displaced fish eggs.

[0013] The directing step includes providing a flexible surface that generally conforms to the associated waterway surface.

[0014] The method includes orienting pressurized fluid along a peripheral portion of the flexible surface.

[0015] The collected fish eggs may be ruptured by mechanically piercing the fish eggs, or using pressurized fluid.

[0016] Alternatively, the collected eggs may be filtered from the remainder of the material collected from the associated waterway.

[0017] Still other advantages and benefits of the disclosure will become apparent upon reading and understanding the following detailed description.
Brief Description of the Drawings

[0018] Figure 1 is a perspective view of a preferred form of a fish egg sweeper.

[0019] Figure 2 is a side elevational view of the sweeper of Figure 1, taken generally from the left-hand side thereof.

[0020] Figure 3 is a front elevational view of the fish egg sweeper of Figure 1.

[0021] Figure 4 is a plan view of the fish egg sweeper of Figure 1.

[0022] Figure 5 is a plan view similar to Figure 4 with selected portions of the apparatus removed for ease of illustration.

Detailed Description of the Preferred Embodiments

[0023] Figures 1-5 show a device 100 and an associated method of treating or handling fish eggs, embryos, bivalves, or similar benthic (i.e., found in the ecological region at the lowest level or strata of a body of water) macro invertebrates (all of which are sometimes generally referred to as “fish eggs” in the present application). The device will be generally referred to as a “fish egg sweeper” in the present application used to handle or treat fish eggs, e.g., euthanizing and/or removing targeted embryonic-to-adult species (including fish eggs) in a waterway (river, stream, pond, lake, etc.). For example, the fish egg sweeper 100 finds particular application in removing, treating, handling, and/or euthanizing fish eggs. This fish egg sweeper is typically used to remove non-indigenous or invasive species, particularly where such non-indigenous species have resulted in problems in the waterway, although there may be instances where native species are removed for other purposes. By “handling” or “treating” the fish eggs, it will be understood by one skilled in the art that these terms refer to in-site treating, dislodging, euthanizing, and/or removing the fish eggs for subsequent separation, filtering, treating, euthanizing, destruction, etc.

[0024] A preferred form of a fish egg sweeper 100 includes a housing or mat 102 having a lower, first surface 106 and an upper, second surface 108. Preferably, the housing has a generally or substantially planar conformation, and in one form has a generally rectangular conformation, for example on the order of four feet by six feet (4’x6’), although these particular dimensions and shapes should not be deemed to be limiting. The rectangular conformation is desirable, however, since multiple housings...
may be advantageously joined together to increase the surface area of the waterway being treated. The housing preferably is substantially entirely formed from a flexible material, or at least has a flexible base, such as a rubber or urethane material construction. The housing 102 has sufficient flexibility so that when the housing is dragged or moved over a bottom surface of an associated waterway, for example, the housing generally conforms to the waterway surface and allows effective vacuum or suction forces to be formed along the lower surface 106 with the waterway bottom surface.

[0025] More particularly, a collector such as collector 110 has a generally trapezoidally-shaped cross-section and has an internal cavity 112 that communicates with the lower surface 106 of the housing. The internal cavity design reduces the flow of the suction proportionally to the surface area of the lower portion of the cavity. The collector and cavity extend above a remainder of the generally planar housing and in the preferred embodiment are generally centrally located in the housing, although this need not necessarily be the only desired configuration. Sloped or angled sidewalls of the trapezoidally-shaped collector are useful when the vacuum force is applied through an upper portion of the collector, shown here as a pair of outlet passages 114 that communicate with the cavity 112 and with a vacuum source. In one preferred arrangement, the vacuum or negative suction force is provided by a pair of ejector pumps 116 that receive pressurized fluid at their respective inlet ends 118 (from a source that may be outside the waterway, e.g., shore, surface vessel, or the like) and more desirably in one preferred arrangement communicate with an inlet or “T” 120 that provides pressurized fluid from the single passage and splits the fluid into the separate inlets 118 associated with respective ejector pumps. The ejector pumps include outlet passages 130 that draw a vacuum through passage 114 that intersects with the ejector pump 116. In a manner well known in the art, the passage of pressurized fluid flow from the inlets 118 to the outlets 130 of the ejector pumps 116 draws a vacuum in passages 114 and thereby collects material from the lower surface 106 of the housing, into the housing cavity 112, and ejects the vacuumed material through outlet 130.

[0026] Although this is a preferred manner of applying a vacuum to the cavity, it will be understood that other sources of vacuum can be used without departing from the
scope and intent of the present invention. Thus, separate vacuum lines can be substituted for the ejector pumps for communication with a source of vacuum (not shown but, for example, as typically located outside the waterway such as provided on shore) to provide the desired suction or vacuum force along the lower surface 106 of the housing, and thereby urge or draw the fish eggs into the cavity 112.

[0027] Of course, the above description presumes that the fish eggs are free or detached in the waterway and can be easily vacuumed into the housing cavity when encompassed by the fish egg sweeper. In some instances, however, the fish eggs must be dislodged from the waterway surface, e.g., separated from the cobble, gravel, rock, etc., that forms a part of the waterway surface, before the fish eggs can be drawn into the housing cavity by the vacuum force. To achieve this, fluid is introduced at the site of the fish eggs in the waterway. In some instances, the fish eggs are treated (e.g., exposed to a toxic fluid, heated fluid, saline solution, chemical, or pressurized fluid on the order of approximately 120 psi or greater, etc.) in-situ to either aid in dislodging the fish eggs and/or euthanizing the fish eggs in the waterway. The fluid portion may at least in part be the waterway fluid that is either pressurized or which is otherwise modified (e.g., heated, or a toxin, salt, chemical, etc. added to the fluid). The vacuum force will then remove any fish eggs that have been dislodged, and/or likewise remove any fluid that is introduced into the waterway.

[0028] The fluid may be waterway fluid and/or a fluid introduced from outside the waterway (e.g., from shore, surface vessel, etc.) that is pressurized and then routed as additionally illustrated in Figures 1-4. More particularly, a manifold assembly 150 includes first and second manifolds 152 that are commonly supplied with fluid, for example, from inlets 154 that in the preferred arrangement are operatively connected to a common inlet 156. Each of the manifolds preferably includes a series of openings 160 (Figures 1 and 3). Each of these openings includes a line or passage 162, only one of which is shown in Figure 1 for ease of illustration that communicates with a peripheral opening 164 in a perimeter portion of the housing. In other words, each opening 160 in the first and second manifolds 152 communicates with an individual opening 164, for example, in the periphery of the housing. The openings 164 extend through the housing and thus direct fluid from the common inlet 156, through individual inlets 154, to
the manifolds 152, through manifold outlet openings 160, through passages 162 to openings 164 (only one of which is shown in Figure 1) that are disposed about the perimeter of the bottom surface 106 of the housing. This arrangement provides a perimeter curtain of fluid flow from all or some of the openings 164 that surrounds the perimeter of the lower surface 106, and likewise surrounds the inlet to cavity 112.

[0029] As noted above, the fluid can be heated, toxic, saline, pressurized, etc. to treat the fish eggs and other invasive species. Pressurized fluid such as water can be introduced through this pathway and creates sufficient turbulence to loosen the fish eggs from the waterway surface. Alternatively, heated water may be introduced through the openings 164 where the difference in temperature thermally shocks the fish eggs to facilitate removal of the fish eggs from the bottom surface of the waterway. Of course, still other materials can be used to dislodge the eggs from the bottom surface as the housing is dragged over the cobble or lower surface of the waterway. Introducing other fluids (pressurized or otherwise) may be particularly useful in treating the fish eggs. A saline solution, for example, can treat the fish eggs in-situ or facilitate dislodging of the fish eggs. Likewise, a synthetic toxin may be introduced through the openings 164 (for example for treating zebra mussels where a local inoculation with a synthetic toxin may be operative for eradicating the zebra mussels) and the toxin and/or fish eggs subsequently effectively removed from the waterway through the collector cavity to prevent dispersal through the remainder of the waterway. Likewise, other chemicals or toxin materials that could be introduced into and around colonies of zebra, quagga, or other invasive bivalve species may find particular application because of the subsequent removal of this introduced material through the vacuum applied to the lower surface 106 of the housing. Because the waterway might be used for drinking or agricultural use, it would be important to contain any excessive release of such a substance into the remainder of the waterway. However, this controlled dispersal into the bottom surface of the waterway with immediate removal through the collector cavity 112 reduces such concerns.

[0030] In the arrangement shown in Figures 1-5, the fish eggs collected from the bottom surface of the waterway are drawn into the cavity 112 and expelled through outlets 130 of the ejector pumps. This necessarily intermixes the fish eggs with the high
pressure fluid that operates the ejector pumps. The pressurized fluid can advantageously also serve to rupture the fish eggs and destroy/euthanize the fish eggs. Alternatively, the fish eggs may be directed through an outlet passage to a rupturing device, such as a series of pins or needles that mechanically pierce the fish eggs as the fish eggs travel through the passage. In still another arrangement, the collected fish eggs are separated from the remainder of the collected material, such as through a filter, screen, membrane, cyclonic separator, or similar density separation device in order to separately collect or treat the fish eggs.

[0031] As noted above, introduction of the collected material into the high pressure fluid associated with the outlet passages 130 of the ejector pumps likely results in destruction of many fish eggs collected through this process. Alternatively, the vacuum removal would allow for mechanical piercing, or even separate delivery to a highly flexible and expandable bag-like structure 170 represented in broken line in Figure 2 where the fish eggs or other collected material could be effectively filtered from the water from the waterway. Of course, it will be necessary to periodically empty the bag-like structure. It is also contemplated that the expandable bag-like structure 170 need not be in close communication with the outlet 130 but may be disposed at a remote location.

[0032] The size of the system may be varied, and the elastomeric properties of the arrangement modified to suit the particular waterway selected for treatment. Likewise, system balancing and dimensional sizing of the pumping capabilities could also be advantageously tuned to meet the particular requirements of a selected waterway.

[0033] Figures 1, 2, 4, and 5 also more particularly illustrate a mounting member 180 that is preferably pivotally or hingedly connected at 182 to the remainder of the housing. For example, member 180 may be secured to an off-shore structure such as a cable or flexible line for dragging the housing over the bottom surface of the waterway. Preferably, an upwardly angled edge 184 is provided at a leading edge, i.e., the edge adjacent the structure 180, that advances the housing over the waterway bottom surface. The angled, leading edge surface of the housing aids in traversing an uneven
bottom surface of the waterway by allowing the housing to ride up and over obstructions of a certain height.

[0034] This fish egg sweeper device is particularly designed for and targets fish egg harvesting. The functionality of the fish egg sweeper includes, among other features, injecting a fluid such as water at high pressure, at multiple points, deep into the spawning substrate with a powerful suction phase that targets objects with density and mass characteristics of fish embryos. The fish egg sweeper is not particularly designed to remove quantities of sand or sediment from interstitial spaces, but instead targets negatively buoyant fish embryos that have been deposited into cobble substrate. The mat-like, planar footprint of the housing has a significantly large area and is particularly useful in being manipulated over simple gravel and cobble substrate. The fish egg sweeper may lend itself to automated remote operation at substantial depths or may be scaled to a smaller model that can be easily transported and then carried by two people, or up-scaled to significantly larger, machine operated sizes. As noted previously, multiple mats or housings may also be interleaved to provide a broad area coverage.

[0035] The disclosure has been described with reference to the preferred embodiments. Modifications and alterations will occur to others upon reading and understanding this specification. It is intended to include all such modifications and alterations in so far as they come within the scope of the appended claims or the equivalents thereof.
Having thus described the invention, I claim:

1. A fish egg sweeper comprising:
 a housing having a lower first surface dimensioned for receipt on a bottom surface of the associated waterway;
 a cavity in a portion of the housing thereof that communicates with the lower surface and collects water and material from the associated waterway;
 perimeter openings in the housing for directing flow from an associated pressurized fluid source; and
 a collector opening communicating with the cavity and an associated vacuum source for removing material therethrough.

2. The fish egg sweeper of claim 1 wherein the lower surface of the housing has a substantially planar conformation.

3. The fish egg sweeper of claim 2 wherein at least the substantially planar portion of the housing is formed from a flexible material.

4. The fish egg sweeper of claim 1 further comprising an ejector pump that creates a vacuum that communicates with the collector opening in response to pressurized flow through the ejector pump.

5. The fish egg sweeper of claim 1 further comprising a support extending from the housing for moving the housing in the associated waterway.

6. The fish egg sweeper of claim 5 further comprising a hinge interposed between the support and the housing.
7. The fish egg sweeper of claim 1 further comprising at least one manifold adapted for communication with an associated pressurized fluid source and the plural openings extending about the housing perimeter.

8. The fish egg sweeper of claim 7 further comprising a second manifold disposed in parallel with the at least one manifold for communication with a different set of the plural openings extending about the housing perimeter.

9. The fish egg sweeper of claim 1 further comprising a fish egg rupturing device.

10. The fish egg sweeper of claim 9 wherein the fish egg rupturing device uses pressurized fluid.

11. The fish egg sweeper of claim 9 further comprising a mechanical rupturing member disposed in an outlet passage extending from the collector opening.

12. The fish egg sweeper of claim 1 wherein the housing is a substantially planar component formed of a flexible material and the cavity is generally centrally located therein.

13. The fish egg sweeper of claim 12 wherein one edge of the housing angles upwardly for connection with a support hinged to the housing.

14. A method of treating fish eggs in a waterway comprising:

directing fluid toward a waterway surface to displace fish eggs therefrom;

and

using a vacuum force to collect the displaced fish eggs.

15. The method of claim 14 wherein the directing step includes providing a flexible surface that generally conforms to a waterway surface.
16. The method of claim 15 wherein the directing step includes orienting the fluid along a peripheral portion of the flexible surface.

17. The method of claim 14 further comprising separating the collected fish eggs from the waterway.

18. The method of claim 17 wherein the separating step includes passing water and fish eggs vacuumed from the waterway through a filter to separate the water and fish eggs.

19. The method of claim 17 wherein the separating step includes rupturing the fish eggs.

20. The method of claim 19 wherein the rupturing step includes mechanically piercing the fish eggs.

21. The method of claim 19 wherein the rupturing step includes pressurizing the fluid to break the fish eggs.

22. The method of claim 14 wherein the fluid directing step includes introducing a saline solution in-situ around the fish eggs.

23. The method of claim 14 wherein the fluid directing step includes introducing a heated fluid above the temperature of water in the associated waterway in-situ around the fish eggs.

24. The method of claim 14 wherein the fluid directing step includes introducing a chemical or toxic material in-situ around the fish eggs.
25. The method of claim 14 wherein the fluid directing step includes pressurizing the fluid to at least approximately 120 psi.
INTERNATIONAL SEARCH REPORT

International application No. PCT/US2010/052348

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A01K 69/08 (2011.01)
USPC - 43/8101

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8) - A01K 69/06, 69/08 (2011.01)
USPC - 43/4, 9.1, 9.4, 100, 101, 103

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
MicroPatent, Google Patents

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5, 6, 13-25</td>
</tr>
<tr>
<td>Y</td>
<td>US 2,951,761 A (STEPHAN) 06 September 1960 (06.09.1960) entire document</td>
<td>22-24</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐

* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 19 February 2011
Date of mailing of the international search report 11 MAR 2011

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer: Blaine R. Copenheaver
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)