发明名称
一种含甲基二乙醇胺的废水处理装置及其处理工艺

摘要
本发明涉及一种含甲基二乙醇胺的废水处理装置及其处理工艺，属于废水处理工艺领域。一般废水处理装置，由混凝沉降池、光催化装置、厌氧水解酸化池和好氧反应池组成，所述光催化装置由筒体、紫外灯和石英玻璃罩组成。一种废水处理工艺，包括以下步骤：(1)混凝沉降处理；(2)光催化处理；(3)厌氧生化处理；(4)好氧生化处理。本发明的有益效果是：通过控制废水流量，并通过曝气管曝气，在水流和气流的冲击下陶瓷球均匀悬浮在废水中，增大陶瓷球内的催化剂TiO₂与废水的接触面积，在紫外光的分解和TiO₂的催化下，大幅提高废水中甲基二乙醇胺的分解效率；其次由于滤网的隔离，陶瓷球不会流失，高效节能。
1. 一种含甲基二乙醇胺的废水处理装置，由混凝沉淀池 (1)、光催化装置 (2)、厌氧水解酸化池 (3) 和好氧反应池 (4) 组成，其特征在于：所述光催化装置 (2) 由筒体 (9)、紫外灯 (6) 和石英玻璃罩 (7) 组成，石英玻璃罩 (7) 置于筒体 (9) 的中心部，紫外灯 (6) 装在石英玻璃罩 (7) 内；筒体 (9) 上设有下进高出的进水管 (10) 和出水管 (8)，筒体 (9) 内安装有曝气管 (11)，筒体 (9) 与石英玻璃罩 (7) 之间的腔体内设由添加 TiO₂ 粉末的陶土烧结的陶瓷球 (12)。

2. 根据权利要求 1 所述的一种含甲基二乙醇胺的废水处理装置，其特征在于：所述好氧反应池 (4) 上设有污泥回流装置 (5)。

3. 根据权利要求 1 所述的一种含甲基二乙醇胺的废水处理装置，其特征在于：所述陶瓷球 (12) 为多孔结构，其密度略大于水。

4. 根据权利要求 1 所述的一种含甲基二乙醇胺的废水处理装置，其特征在于：所述筒体 (9) 的出水管 (8) 下部的筒体 (9) 与石英玻璃罩 (7) 之间的腔体内设有过滤网 (13)。

5. 根据权利要求 1 所述的一种含甲基二乙醇胺的废水处理装置，其特征在于：所述筒体 (9) 的内壁上涂有反光层。

6. 一种废水处理工艺，包括以下步骤：
 (1) 混凝沉淀处理，去除废水中的有机物及悬浮物
 向混凝沉淀池 (1) 内含甲基二乙醇胺的废水中加入用铁盐、铝盐改性聚氯化铝及聚丙烯酰胺，混凝沉降去除废水中的有机物及悬浮物；
 (2) 光催化处理，分解废水中的甲基二乙醇胺
 将步骤 (1) 中处理后的废水由泵提升至光催化装置 (2)，废水的流速控制在 1~3m³/h，通过曝气管 (11) 曝气，在水流和气流的冲击下陶瓷球 (12) 均匀悬浮在废水中，在紫外光的分解和陶瓷球 (12) 内催化剂 TiO₂ 的催化下，分解废水中的甲基二乙醇胺；
 (3) 厌氧生化处理，进一步分解废水中的甲基二乙醇胺
 将步骤 (2) 中处理后的废水由泵提升至厌氧水解酸化池 (3) 中，推流 3~6h，厌氧水解酸化池 (3) 内活性污泥中的厌氧菌在厌氧条件下分解废水中的甲基二乙醇胺；
 (4) 好氧生化处理，分解废水中的甲基二乙醇胺及其降解产物
 好氧反应池 4 内活性污泥的好氧菌在好氧条件下分解废水中的甲基二乙醇胺及甲基二乙醇胺分解后的甲酸、乙酸及氨类物质；处理后的废水通过外排管线排出。

7. 根据权利要求 6 所述的一种废水处理工艺，其特征在于：所述步骤 (1) 中聚合氯化铝和聚丙烯酰胺的投加量根据废水量及废水浑浊情况，分别按 5~15g/t 和 3~5g/t 投加。
一种含甲基二乙醇胺的废水处理装置及其处理工艺

技术领域
[0001] 本发明涉及一种含甲基二乙醇胺的废水处理装置及其处理工艺，属于废水处理工艺领域。

背景技术
[0002] 含硫天然气净化厂检修废水的主要污染物为 N-甲基二乙醇胺 (简称 MDEA)，属于叔胺，化学性质极其稳定；甲基二乙醇胺分子式为 CH₃N(CH₂OH)₂，分子量为 119.16，比重 1.0418，沸点 247℃，凝固点 -48℃，能与水混溶。MDEA 主要用于酸性气体净化，特别是石化企业炼厂气尾气、天然气脱硫，化肥厂脱碳，具有较好的选择性。MDEA 还可适用于表面活性剂、水性涂层溶剂及医药中间体乳化剂等，而且溶剂稳定性好，称为当今高效低能耗脱硫脱碳溶剂。生产及检修过程中，设备、管线中残余的 MDEA 会进入清洗废液中，且 MDEA 在水中无限互溶，不易降解，能引起水中化学需氧量 (简称 COD) 的增加。由于 MDEA 化学性质稳定，一般水处理工艺无法降解处理。净化厂检修废水还含有钝化剂成分，常用絮凝剂无法絮凝沉淀，必须用铁锌等盐类改性。所以该废水需要通过合理的水处理技术组合联用进行降解处理。

[0003] 申请号为 201210485521.1 的发明申请公开了一种甲基二乙醇胺工业废水的微波化学法处理方法，主要包括以下步骤：氧化预处理，微波敏化反应，沉淀分离，臭氧氧化，其缺陷在于微波化学法处理为间断性处理，不具有连续性，且由于废水内添加的敏化剂在废水内处于悬浮不均匀状态，导致微波处理废水的处理率不稳定；申请号为 20121048246.2 的发明申请公开了一种甲基二乙醇胺 (MDEA) 工业废水处理方法，主要包括以下步骤：pH 调节，铁硫酸电解，(类) 芬顿，混凝沉淀，氧化，其缺陷在于微电泳处理废水时，要求废水的 pH 值在 2-4 之间，因此在处理过程中需大量补充酸液，同时芬顿反应后续沉降阶段有大量的铁泥沉淀物，处理难度大。

发明内容
[0004] 本发明的目的是为了解决上述现有技术中微波敏化反应存在的废液处理率不稳定，无法连续生产，铁钠微电解时存在的需大量酸碱且后期铁泥沉淀物处理难度大。提供一种含甲基二乙醇胺的废水处理装置。
[0005] 本发明的另一个目的是提供一种废水处理工艺。
[0006] 本发明的目的可以通过以下技术方案实现：

一种含甲基二乙醇胺的废水处理装置，由混凝沉降池、光催化装置、厌氧水解酸化池和好氧反应池组成，所述光催化装置由筒体、紫外灯和石英玻璃罩组成，石英玻璃罩置于筒体的中心部位，紫外灯卡装在石英玻璃罩内，筒体上设有下进高出的进水管和出水管，筒体内安装有曝气管，筒体与石英玻璃罩之间的腔体内装有添加 TiO₂ 粉末的陶土烧结的陶瓷球。

[0007] 一种废水处理工艺，包括以下步骤：
（1）混凝沉降处理。去除废水中的有机物及悬浮物
向混凝沉降池内含甲基二乙醇胺的废水中加入用铁盐、锌盐改性的聚合氯化铝及聚丙烯酰胺，混凝沉降去除废水中的有机物及悬浮物；
（2）光催化处理，分解废水中的甲基二乙醇胺
将步骤（1）中处理后的废水由泵提升至光催化装置，控制废水的流速在1-3m³/h，通过曝气管曝气，在水流和气流的冲击下陶瓷球均匀悬浮在废水中，使紫外光的分解和陶瓷球内光催化剂TiO₂的催化下，分解废水中的甲基二乙醇胺；
（3）厌氧生化处理，进一步分解废水中的甲基二乙醇胺
将步骤（2）中处理后的废水由泵提升至厌氧水解酸化池中，推流3-6h，厌氧水解酸化池内活性污泥中的厌氧菌在厌氧条件下分解废水中的甲基二乙醇胺；
（4）好氧生化处理，分解废水中的甲基二乙醇胺及其降解产物
将步骤（3）中处理后的废水由泵提升至好氧反应池中，好氧反应池内活性污泥中的好氧菌在好氧条件下分解废水中的甲基二乙醇胺及甲基二乙醇胺降解后的甲酸、乙酸及氨氮类物质，处理后的废水通过外排管线排出。

【0008】本发明的有益效果在于：本发明通过控制废水的流速，并通过曝气管曝气，在水流和气流的冲击下陶瓷球均匀悬浮在废水中，增大陶瓷球内的光催化剂TiO₂与废水的接触面积，在紫外光的分解和TiO₂的催化下，大幅提高废水中甲基二乙醇胺的分解效率，而且可以连续生产；其次由于滤网的隔离，陶瓷球不会流失，高效节能；不加入其他化学药剂，处理后没有沉淀生成。

附图说明
【0009】图1是本发明的装置流程示意图。
【0010】图2是本发明中光催化装置的结构示意图。

具体实施方式
【0011】下面通过结合附图和具体实施方式进一步说明。
【0012】一种含甲基二乙醇胺的废水处理装置，由混凝沉降池1、光催化装置2、厌氧水解酸化池3和好氧反应池4组成，所述光催化装置2由筒体9、紫外灯6和石英玻璃罩7组成，石英玻璃罩7置于筒体9的中心部位，紫外灯6卡装在石英玻璃罩7内；筒体9上设有下进高出的进水管10和出水管8，筒体9内安装有曝气管11，筒体9与石英玻璃罩7之间的腔体内装有由添加TiO₂粉末的陶土烧结的陶瓷球12。
【0013】所述好氧反应池4内设有污泥回流装置5，可将好氧反应池4内的污泥泵入厌氧水解酸化池3。
【0014】所述陶瓷球12为多孔结构，其密度略大于水，便于悬浮在废水中。
【0015】所述筒体9的出水管8下部的筒体9与石英玻璃罩7之间的腔体内覆盖有过滤网13。
【0016】所述筒体9的内壁上涂有反光层。
【0017】一种废水处理工艺，包括以下步骤：
（1）混凝沉降处理，去除废水中的有机物及悬浮物
向混凝沉降池 1 内含甲基二乙醇胺的废水中加入用铁盐、锌盐改性的聚合氯化铝聚丙烯酰胺，混凝沉降去除废水中的有机物及悬浮物

（2）光催化处理，分解废水中的甲基二乙醇胺

将步骤（1）中处理后的废水由泵提升至光催化装置 2，控制废水的流速在 1-3m³/h，通过曝气管 11 曝气，在水流和气流的冲击下陶瓷球 12 均匀悬浮在废水中，在紫外光的分解和陶瓷球 12 内催化剂 TiO₂ 的催化下，分解废水中的甲基二乙醇胺

（3）厌氧生化处理，进一步分解废水中的甲基二乙醇胺

将步骤（2）中处理后的废水由泵提升至厌氧水解酸化池 3 中，推流 3-6h，厌氧水解酸化池 3 内活性污泥中的厌氧菌在厌氧条件下分解废水中的甲基二乙醇胺

（4）好氧生化处理，分解废水中的甲基二乙醇胺及其降解产物

将步骤（3）中处理后的废水由泵提升至好氧反应池 4 中，好氧反应池 4 内活性污泥中的好氧菌在好氧条件下分解废水中的甲基二乙醇胺及甲基二乙醇胺降解后的甲酸、乙酸及氨氮类物质，处理后的废水通过外排管线排出。

【0018】所述步骤（1）中聚合氯化铝和聚丙烯酰胺的投加量根据废水量及废水浑浊情况，分别按 5~15g/t 和 3~5g/t 投加。

【0019】实施例

某天然气净化厂在联合装置检修后产生大量含甲基二乙醇胺的检修废水，原始 COD 在 3500mg/L

（1）混凝沉降处理，去除废水中的有机物及悬浮物

向混凝沉降池 1 内含甲基二乙醇胺的废水内投 10g/t 投加用铁盐、锌盐改性的聚合氯化铝，按 5g/t 投加用铁盐、锌盐改性的聚丙烯酰胺，混凝沉降去除废水中的有机物及悬浮物，混凝沉降池 1 的出水质经过化验 COD 值为 3250mg/L

（2）光催化处理，分解废水中的甲基二乙醇胺

将步骤（1）中处理后的废水由泵提升至光催化装置 2，其中光催化装置 2 内的紫外灯 6 选择波长 365nm，功率为 20W，废水的流速控制在 2m³/h，通过曝气管 11 曝气，在水流和气流的冲击下陶瓷球 12 均匀悬浮在废水中，在紫外光的分解和陶瓷球 12 内催化剂 TiO₂ 的催化下，分解废水中的甲基二乙醇胺，光催化反应后的出水质经过化验 COD 值为 1660mg/L，COD 的去除率为 48.9%，其中光催化装置 2 上部的过滤网 13 将陶瓷球 12 拦截并置用于光催化装置 2 内，实现了陶瓷球 12 的重复利用。

（3）厌氧生化处理，进一步分解废水中的甲基二乙醇胺

将步骤（2）中处理后的废水由泵提升至厌氧水解酸化池 3 中，推流 4h，厌氧水解酸化池 3 内活性污泥中的厌氧菌在厌氧条件下分解废水中的甲基二乙醇胺，所用厌氧菌为引用于净化厂废水处理单元活性污泥驯化培养 4 天得到。

（4）好氧生化处理，分解废水中的甲基二乙醇胺及其降解产物

将步骤（3）中处理后的废水由泵提升至好氧反应池 4 中，通过好氧反应池 4 内活性污泥中的好氧菌，在好氧条件下分解废水中的甲基二乙醇胺及甲基二乙醇胺降解后的甲酸、乙酸及氨氮类物质，出水质经过化验 COD 值为 38mg/L，COD 的去除率达 98.9%，处理后的废水通过外排管线排出，其中好氧反应池 4 上设有污泥回流装置 5，可将好氧反应池 4 内的污泥泵入厌氧水解酸化池 3。
实施例 2

某天然气净化厂在联合装置检修后产生大量含甲基二乙醇胺的检修废水，原始 COD 在 4100mg/L：

（1）混凝沉降处理，去除废水中的有机物及悬浮物

向混凝沉降池 1 内含甲基二乙醇胺的废水内按 5g/t 投加用铁盐、锌盐改性的聚合氯化铝，按 3g/t 投加用铁盐、锌盐改性的聚丙烯酰胺，混凝沉降去除废水中的有机物及悬浮物，混凝沉降池 1 的出水水质经过化验 COD 值为 3800mg/L；

（2）光催化处理，分解废水中的甲基二乙醇胺

将步骤（1）中处理后的废水由泵提升至光催化装置 2，其中光催化装置 2 内的紫外灯 6 选择波长 365nm，功率为 20W，废水的流速控制在 3m³/h，通过曝气管 11 曝气，在水流和气流的冲击下陶瓷球 12 均匀悬浮在废水中，在紫外光的分解和陶瓷球 12 内催化剂 TiO₂ 的催化下，分解废水中的甲基二乙醇胺，光催化反应后的出水水质经过化验 COD 值为 1910mg/L，COD 的去除率为 49.7%，其中光催化装置 2 上部的过滤网 13 将陶瓷球 12 拦截并留置于光催化装置 2 内，实现了陶瓷球 12 的重复利用；

（3）厌氧生化处理，进一步分解废水中的甲基二乙醇胺

将步骤（2）中处理后的废水由泵提升至厌氧水解酸化池 3 中，推流 5h，厌氧水解酸化池 3 内活性污泥中的厌氧菌在厌氧条件下分解废水中的甲基二乙醇胺，所用厌氧菌为引用净化厂废水处理单元活性污泥驯化培养 4 天得到；

（4）好氧生化处理，分解废水中的甲基二乙醇胺及其降解产物

将步骤（3）中处理后的废水由泵提升至好氧反应池 4 中，通过好氧反应池 4 内活性污泥中的好氧菌在好氧条件下分解废水中的甲基二乙醇胺及甲基二乙醇胺降解后的甲酸、乙酸及氨氮类物质，出水水质经过化验 COD 值为 46mg/L，COD 的去除率达 97.6%，处理后的废水通过外排管线排出，其中好氧反应池 4 上设有污泥回流装置 5，可将好氧反应池 4 内的污泥泵入厌氧水解酸化池 3。