/84285 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
8 November 2001 (08.11.2001)

PCT

(10) International Publication Number

WO 01/84285 A2

(51) International Patent Classification’: GO6F 1/00

(21) International Application Number: PCT/US01/13799

(22) International Filing Date: 27 April 2001 (27.04.2001)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/200,316 28 April 2000 (28.04.2000) US
(71) Applicant: INTERNET SECURITY SYSTEMS, INC.
[US/US]; 6303 Barfield Road, Atlanta, GA 30328 (US).
(72) Inventors: FARLEY, Timothy, P.; 128 Old Holcomb

Bridge Way, Roswell, GA 30076 (US). HAMMER,
John, M.; 5584 Wilmer Drive, Norcross, GA 30092
(US). WILLIAMS, Bryan, Douglas; 430 Thorntree Pass,
Lawrenceville, GA 30043 (US). BRASS, Philip, Charles;
1140 Pine Grove Pointe Drive, Roswell, GA 30075 (US).
YOUNG, George, C.; 3355 Commons Gate Bend, Nor-
cross, GA 30092 (US). MEZACK, Derek, John; 3615
Blackwell Run, Marietta, GA 30066 (US).

(74) Agent: WIGMORE, Steven, P.; King & Spalding, 191
Peachtree Street, Atlanta, GA 30303-1763 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, ™M, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND SYSTEM FOR MANAGING COMPUTER SECURITY INFORMATION

22

Context
(Knowiedge
Basa)
Database

Memory
Management

— 625

CoBRA
Processor

I}
* 650

Corretation
Event List

Event Reporter|

|
|
|
|
|
| /
J
{
)
|
|
|

660 600
?
y
Mature |

v
645 % _
Raw Event | |

Raw Event ' EVeT

" Classification
List Tracking Index Database :
—

£18 //(— o0 |
! Classifier IS . |
a—— (Event Type |
| Object(s)) Rulets) |
i 665 |
Correlation !
Event Reader Eveg;(:é:xgh |
Memory |
i

\
o
| 3
[
N

Event Log
File

30

j— Console

Event
Collector

I26
)

Event
Database

(57) Abstract: A security management system includes a fusion engine which "fuses" or assembles information from multiple data
sources and analyzes this information in order to detect relationships between raw events that may indicate malicious behavior and
to provide an organized presentation of information to consoles without slowing down the processing performed by the data sources.
= The multiple data sources can comprise sensors or detectors that monitor network traffic or individual computers or both. The sensors
can comprise devices that may be used in intrusion detection systems (IDS). The data sources can also comprise firewalls, audit
systems, and other like security or IDS devices that monitor data traffic in real-time. The present invention can identify relationships
between one or more real-time, raw computer events as they are received in real-time. The fusion engine can also assess and rank
the risk of real-time raw events as well as mature correlation events.

WO 01/84285 PCT/US01/13799

10

15

20

25

30

METHOD AND SYSTEM FOR MANAGING COMPUTER SECURITY
INFORMATION

PRIORITY AND RELATED APPLICATIONS

The present application claims priority to provisional patent application
entitled, “Intrusion Detection Fusion System of a Network Security System,” filed
on April 28, 2000 and assigned U.S. Application Serial Number 60/200,316. The
present application is also related to non-provisional application entitled, "System
and Method for Managing Security Events on a Network," (Attorney Docket No.
05456-105005) filed on April 27, 2001 and assigned U.S. Application Serial

Number

TECHNICAL FIELD

The present invention relates to computer systems and the security of such
systems. More particularly, the present invention relates to a method and system
for ranking individual security events according to risk and fusing or identifying
relationships between two or more security events that may occur on or within a
computer system. The invention can also identify relationships in other security

related information.

BACKGROUND OF THE INVENTION

The nature of a distributed network, such as the internet, makes it
vulnerable to attack. The internet was designed to allow for the freest possible
exchange of information, data, and files. However, this free exchange of
information carries a price: many users will try to attack the networks and
computers connected to the internet; many users will also try to invade other
users’ privacy and attempt to crack databases of sensitive information or intercept

information as it travels across internet routes.

To detect or prevent such computer attacks, intrusion detection systems
(IDS) and software programs that gather information and make changes to

security configurations of network computers have been developed. However,

WO 01/84285 PCT/US01/13799

10

15

20

25

these conventional intrusion detection systems can typically have many problems
and drawbacks. Conventional intrusion detection systems typically comprise
hardware that is dedicated to intrusion detection on networks. Other intrusion

detection systems can simply comprise programs running on a host computer.

The problems and drawbacks of many conventional intrusion detection
systems can be attributed to at least two parameters that are part of any detection
design: The first parameter is the speed in which a detector of an intrusion
detection system must run in order to be transparent to the data or communication
that flows through the detector. Detectors that typically run on dedicated personal
computers must be able to handle constantly increasing loads of information
traffic, as network speeds increase from 100 megabits per second to gigabit per
second speed and beyond. Because of these high speeds, a detector of an
intrusion detection system cannot perform complex analysis of the information
that flows through the detector for obvious reasons. That is, if a detector were to
perform complex analysis of the information flowing through it, then such
analysis would fail to keep up with the flow of information that passes through the

detector.

A second key parameter that is part of any detection design is typically the
volume of information that may pass through a detector. Because of the high
speed at which information passes through a detector, a detector must be able to

analyze high volumes of data packets.

In light of current network speeds and the corresponding volume of
information that is generated as a result of the network speeds, many detectors of
conventional intrusion detection systems can provide very limited protection
against complex and more sophisticated computer attacks. This limited protection
can manifest itself when many false positives are generated by an intrusion
detection system. In other words, many conventional intrusion detection systems
may generate false alarms based on communications between computers that do

not comprise any threat or attacks.

WO 01/84285 PCT/US01/13799

10

15

20

25

In addition to false alarms, conventional intrusion detection systems are
typically not equipped to handle complex analysis because of the limitations on
current processing speeds. For example, many conventional intrusion detection
systems cannot execute central processing unit-intensive checks such as the well-
known LOpht Crack. The LOpht Crack decode can use cryptographic challenge-
response data from Windows (SMB) connections to crack passwords in use on a
network. The conventional method for executing LOpht Crack is to obtain packets
using a packet-capturing tool and then crack the passwords offline. Conventional
intrusion detection system typically cannot employ the LOpht Crack method in

any real-time analysis.

Another obstacle of conventional intrusion detection systems is that most
intrusion detection systems have very limited or short term memory capacity. In
other words, long histories of data streams are seldom kept by the detectors in

conventional intrusion detection systems.

Another problem of conventional intrusion detection systems is that the
detectors of such systems typically only watch or observe a single environment.
For example, detectors usually observe only parts of networks. Conventional
detectors typically have a limited scope of awareness since they are designed to
observe only portions of a network instead of the entire network as a whole.
Because conventional detectors typically monitor only portions of a network, they
are unable to track more sophisticated computer attacks such as distributed

attacks.

In addition to the inability to track more sophisticated computer attacks,
many conventional intrusion detection systems do not permit active probing of an
attacker or the target of a computer attack. Active probing typically involves
making a determination to see whether a computer attack has had an effect on its
target. Further, probing can also comprise methods for discovering additional
information about an attacker. However, as mentioned above, most intrusion

detection systems do not permit active probing since such probing could reveal

WO 01/84285 PCT/US01/13799

10

15

20

25

30

the location of the detector. And if the location of a detector is revealed, it

sometimes may also become a target for a computer attack.

Accordingly, there is a need in the art for a method and system for
managing security information for an entire network. That is, there is a need in
the art to log, investigate, respond to, and track computer security incidents that
may occur in a network computer system. There is also a need in the art to
determine whether security within a network or over a network has been
compromised or if an incident is just some odd behavior that should be
disregarded by an intrusion detection system. Another need exists in the art for a
method and system that can monitor and analyze security information from
multiple data sources so that rather complex and sophisticated computer attacks
can be identified, stopped, or prevented. A further need exists in the art for a

method and system for managing security information in real-time.

Another need exists in the art for a method and system for managing
security information such that it can be determined if one or more real-time
computer events are related to each other and if they are a part of a larger scheme
or sophisticated attack. An additional need exists in the art for a method and
system for managing security information where multiple computer events can be
correlated together if the computer events are part of a larger scheme or attack.
Another need exists in the art for a method and system for managing security
information where computer events that are detected can be prioritized so that
attention can be focused on those computer events which could cause the most
damage to a network or individual computers. Similarly, another need exists in
the art for a method and system for managing security information that enables
rapid response to existing computer attacks in addition to prevention of the
additional computer attacks which may spin off from or be generated from a
single computer attack. A further need exists in the art for a method and system
for managing security information such that real-time computer events can be
classified and ranked according to their respective priorities in the context of the

environment in which the event occurred.

WO 01/84285 PCT/US01/13799

10

15

20

25

30

SUMMARY OF THE INVENTION

The present invention can solve the aforementioned probléms by providing
a computer security management system that can log, investigate, respond to, and
track computer security incidents that can occur in a networked computer system.
The invention can track suspicious computer activity or actual computer security
threats. Actual security threats can include, but are not limited to, integrity
attacks, confidentiality attacks, denial of service attacks, multi-stage attacks, or
other similar attacks on computers or computer networks. The invention typically
refers to suspicious computer activity descriptions obtained from data sources as
real-time raw events and actual computer security threats as mature correlation
events. The invention can comprise a method and system for managing security
information collected from one or more data sources. More specifically, the
present invention can comprise a fusion engine which "fuses" or assembles
information from multiple data sources and analyzes this information in order to
detect relationships between raw events that may indicate malicious behavior and
to provide an organized presentation of information to one or more consoles
without slowing down the processing performed by the data sources.

The multiple data sources can comprise sensors or detectors that monitor
network traffic or individual computers or both. The sensors can comprise
devices that may be referred to as intrusion detection systems (IDS). Because the
present invention can be separate from IDS devices, it permits the IDS devices to
operate efficiently and at high speeds when real-time processing of high volumes
of data traffic is essential.

The data sources can also comprise firewalls and other like security or IDS
devices. Further, the data sources can comprise any devices that may or may not
provide real-time information, such as audit systems, that provide additional
environmental information about a network or computer of interest. For example,
one data source could comprise a database. The database may include a raw event
classification database that contains categories of different types of raw events.

Another database can comprise a context or knowledge database that includes

5.

WO 01/84285 PCT/US01/13799

10

15

20

25

30

network context information, such as host vulnerability statuses, historical
computer event frequency values, and network zone definitions.

From the multiple data sources, the fusion engine of the present invention
can correlate and classify real-time, raw computer events. That is, unlike the
conventional art which usually processes computer events after some period of
time, the present invention can identify relationships between one or more real-
time, raw computer events as they are received in real-time. Real-time raw
computer events or raw events may comprise any computer activity that may be
tracked by an intrusion detection system as a possible attack on a computer or a
plurality of computers. Raw events can be generated by detectors of intrusion
detection systems. Each raw event may comprise various parameters that may
include, but are not limited to the following: source internet protocol address of
the computer activity, destination internet protocol address of the computer
activity, priority status assigned by the detector, a vulnerability status assigned by
the detector, a timé stamp, and an event type parameter.

The fusion engine can determine if one or more real-time raw events are
related to each other and if they are part of a larger scheme or computer attack.
Real-time raw events that are related to each other and that may indicate that a
computer attack may be occurring are referred to by the fusion engine as a mature
correlation event. A correlation event can comprise one or more raw events.
However, a correlation event does not mean an actual security threat or attack has
been detected. Correlation events typically store related raw events and usually
indicate that a security event or computer attack has occurred when the correlation
event is deemed to be mature. In order to be deemed mature, a correlation event
must satisfy the criteria or algdrithm of a corresponding correlation rule.
Therefore, it is possible to track numerous correlation events that may comprise
one or more raw events that have not yet been identified as being a mature
correlation event or actual computer security threat or computer attack.

The fusion engine can also assess and rank the risk of real-time raw events
as well as mature correlation events base on information about the environment or

context in which the event occurred. The fusion engine can display this risk and

-6-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

rank information as messages on a console. The fusion engine can generate and
send updates related to mature correlation events to a console. Further, the fusion
engine can determine and indicate when a mature correlation event has stopped
occurring.

In order to assess risks and determine ranks of real-time raw events, the
fusion engine can utilize the aforementioned raw event classification database and
the knowledge database. The raw event classification database can permit the
fusion engine to classify raw computer events while the knowledge database can
permit the fusion engine to rank and evaluate the risk of a raw computer event
based upon the context of the raw computer event. The raw event classification
database can comprise one or more tables of security information. That is, the
raw event classification database can comprise tables that include information that
can categorize raw events based on their impact on the target host (confidentiality,
integrity, or availability), their scope (network, host, or service), and the method
they employ (backdooring, IDS evasion or detection evasion, etc.). The context
of the raw computer event can be determined by comparing parameters of the raw
event with context parameters in a context or knowledge database, such as the
aforementioned event vulnerability statuses, historical computer event frequency
values, and zone definitions.

To determine if one or more raw computer events are part of or form a
mature correlation event, the fusion engine can apply one or more rules that can
be triggered based upon how the fusion engine classifies a raw computer event. In
other words, the rules applied by the fusion engine can be activated and applied to
raw computer events according to the classification (identification of the type or
kind) of the raw events.

In addition to determining whether raw computer events are part of or
form a mature correlation event or actual security threat, the fusion engine can
also manage its high speed memory resources very efficiently. For example, the
fusion engine can employ memory management techniques that erase raw events,
immature, and mature correlation events that have either exceeded a

predetermined time period or that have met predetermined conditions or both. The

-7-

WO 01/84285 PCT/US01/13799

5

10

15

20

25

30

high speed memory resources can comprises RAM containing data that is
categorized according to the classifications of the raw events and mature

correlation events.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of a network personal computer that
provides the exemplary operating environment for the present invention.

Fig. 2 is a functional block diagram illustrating exemplary network
architecture for the present invention.

Fig. 3 is a functional block diagram illustrating an exemplary
software architecture for the present invention.

Fig. 4 is a functional block diagram illustrating exemplary software
and hardware architecture for the present invention.

Fig. 5A is a functional block diagram illustrating security
information data sources feeding information about a computer incident source to
an event collector that is connected to a fusion engine.

Fig. 5B is a diagram illustrating the type of data that may be

present in a raw event generated by a detector in an intrusion detection system.

Fig. 5C is a diagram illustrating an exemplary raw event that has

been processed by the CoBRA processor of the fusion engine.

Fig. 5D is a functional block diagram illustrating an exemplary
attack from attacked host computer security threat.

Fig. 5E is a diagram illustrating the possible data of an exemplary
correlation event that is based on Fig. 5D.

Fig. 5F is a diagram illustrating the possible data of another
‘exemplary correlation event that is based on Fig. 5D.

Fig. 6 is a functional block diagram illustrating some components
of the fusion engine illustrated in Fig. 2.

Fig. 7 is a logic flow diagram illustrating an exemplary
embodiment of a method for managing security information collected from one or

more data sources.

-8-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

Fig. 8 is a data flow diagram illustrating the exchange of
information between various software components that are illustrated in Fig. 6 and
discussed with reference to Figs. 7, and 9-15.

Fig. 9 is a logic flow diagram illustrating an exemplary subprocess
or routine of Fig. 7 for assigning real-time raw events to one or more categories in
an event type list.

Fig. 10 is a logic flow diagram illustrating an exemplary
subprocess or routine of Fig. 7 for assigning context parameters to each real-time
raw event.

Fig. 11 is a logic flow diagram illustrating an exemplary
subprocess or routine of Fig. 7 for adjusting the priority status of each real-time
raw event.

Fig. 12 is a logic flow diagram illustrating an exemplary
subprocess or routine of Fig. 7 for adjusting the priority status of each real-time
raw event.

Fig. 13 is a logic flow diagram illustrating an exemplary
subprocess or routine of Fig. 7 for forwarding real-time raw event data to
corresponding rules.

Fig. 14 is a logic flow diagram illustrating an exemplary
subprocess or routine of Fig. 7 for determining whether a correlation event is
mature.

Fig. 15 is a logic flow diagram illustrating an exemplary
subprocess or routine of Fig. 7 for determining whether a mature correlation event

has stopped occurring.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

The present invention may be embodied in program modules that run in a
distributed computing environment. The present invention can comprise a
computer security management system that can log, investigate, respond, and
track computer security incidents that can occur in a network computer system.

The present invention can comprise a fusion engine which “fuses” or assembles

-9-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

information from multiple data sources and analyzes this information in order to
provide an organized, and sometimes ranked, presentation of information to one
or more consoles. The fusion engine can classify raw real-time computer events
while also ranking the real-time computer events based upon comparisons with

one or more databases.

Ilustrative Operating Environment

Although the illustrative embodiment will be generally described in the
context of an program modules running on a personal computer and a server,
those skilled in the art will recognize that the present invention may be
implemented in conjunction with operating system programs or with other types
of program modules for other types of computers. Furthermore, those skilled in
the art will recognize that the present invention may be implemented in either a
stand-alone or in a distributed computing environment or both. In a distributed
computing environment, program modules may be physically located in different
local and remote memory storage devices. Execution of the program modules
may occur locally in a stand-alone manner or remotely in a client server manner.
Examples of such distributed computing environments include local area networks
and the Internet.

The detailed description that follows is represented largely in terms of
processes and symbolic representations of operations by conventional computer
components, including a processing unit (a processor), memory storage devices,
connected display devices, and input devices. Furthermore, these processes and
operations may utilize conventional computer components in a heterogeneous
distributed computing environment, including remote file servers, computer
servers, and memory storage devices. Each of these conventional distributed
computing components is accessible by the processor via a communication
network.

The processes and operations performed by the computer include the
manipulation of signals by a processor and the maintenance of these signals

within data structures resident in one or more memory storage devices. For the

-10-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

purposes of this discussion, a process is generally conceived to be a sequence of
computer-executed steps leading to a desired result. These steps usually require
physical manipulations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical, magnetic, or optical signals capable of
being stored, transferred, combined, compared, or otherwise manipulated. It is
convention for those skilled in the art to refer to representations of these signals as
bits, bytes, words, information, elements, symbols, characters, numbers, points,
data, entries, objects, images, files, or the like. It should be kept in mind,
however, that these and similar terms are associated with appropriate physical
quantities for computer operations, and that these terms are merely conventional
labels applied to physical quantities that exist within and during operation of the
computer.

It should also be understood that manipulations within the computer are
often referred to in terms such as creating, adding, calculating, comparing,
moving, receiving, determining, identifying, populating, loading, executing, etc.
that are often associated with manual operations performed by a human operator.
The operations described herein can be machine operations performed in
conjunction with various input provided by a human operator or user that interacts
with the computer.

In addition, it should be understood that the programs, processes, methods,
etc. described herein are not related or limited to any particular computer or
apparatus. Rather, various types of general purpose machines may be used with
the program modules constructed in accordance with the teachings described
herein. Similarly, it may prove advantageous to construct a specialized apparatus
to perform the method steps described herein by way of dedicated computer
systems in a specific network architecture with hard-wired logic or programs
stored in nonvolatile memory, such as read-only memory.

Referring now to the drawings, in which like numerals represent like
elements throughout the several Figures, aspects of the present invention and the

illustrative operating environment will be described.

-11-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

Fig. 1 and the following discussion are intended to provide a brief, general
description of a suitable computing environment in which the invention may be
implemented. Referring now to Fig. 1, an illustrative environment for
implementing the invention includes a conventional personal computer 100,
including a processing unit 102, a system memory, including read only memory
(ROM) 104 and random access memory (RAM) 108, and a system bus 105 that
couples the system memory to the processing unit 102. The read only memory
(ROM) 104 includes a basic input/output system 106 (BIOS), containing the basic
routines that help to transfer information between elements within the personai
computer 100, such as during start-up. The personal computer 100 further
includes a hard disk drive 118 and an optical disk drive 122, e.g., for reading a
CD-ROM disk or DVD disk, or to read from or write to other optical media. The
drives and their associated computer-readable media provide nonvolatile storage
for the personal computer 100. Although the description of computer-readable
media above refers to a hard disk, a removable magnetic disk and a CD-ROM or
DVD-ROM disk, it should be appreciated by those skilled in the art that other
types of media are readable by a computer, such as magnetic cassettes, flash
memory cards, digital video disks, Bernoulli cartridges, and the like, may also be
used in the illustrative operating environment.

A number of program modules may be stored in the drives and RAM 108,
including an operating system 114 and one or more application programs 110,
such as a program for browsing the world-wide-web, such as WWW browser 112.
Such program modules may be stored on hard disk drive 118 and loaded into
RAM 108 either partially or fully for execution.

A user may enter commands and information into the personal computer
100 through a keyboard 128 and pointing device, such as a mouse 130. Other
control input devices (not shown) may include a microphone, joystick, game pad,
satellite dish, scanner, or the like. These and other input devices are often
connected to the processing unit 102 through an input/output interface 120 that is
coupled to the system bus, but may be connected by other interfaces, such as a

game port, universal serial bus, or firewire port. A display monitor 126 or other

-12-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

type of display device is also connected to the system bus 105 via an interface,
such as a video display adapter 116. In addition to the monitor, personal
computers typically include other peripheral output devices (not shown), such as
speakers or printers. The personal computer 100 may be capable of displaying a
graphical user interface on monitor 126.

The personal computer 100 may operate in a networked environment using
logical connections to one or more remote computers, such as a host computer
140. The host computer 140 may be a server, a router, a peer device or other
common network node, and typically includes many or all of the elements
described relative to the personal computer 100. The LAN 136 may be further
connected to an internet service provider 134 (“ISP”) for access to the Internet
138. In this manner, WWW browser 112 may connect to host computer 140
through LAN 136, ISP 134, and the Internet 138. Such networking environments
are commonplace in offices, enterprise-wide computer networks, intranets and the
Internet.

When used in a LAN networking environment, the personal computer 100
is connected to the LAN 136 through a network interface unit 124. When used in
a WAN networking environment, the personal computer 100 typically includes a
modem 132 or other means for establishing communications through the internet
service provider 134 to the Internet. The modem 132, which may be internal or
external, is connected to the system bus 105 via the input/output interface 120. It
will be appreciated that the network connections shown are illustrative and other
means of establishing a communications link between the computers may be used.

The operating system 114 generally controls the operation of the
previously discussed personal computer 100, including input/output operations.
In the illustrative operating environment, the invention is used in conjunction with
Microsoft Corporation’s “Windows NT” operating system and a WWW browser
112. However, it should be understood that the invention can be implemented for
use in other operating systems, such as Microsoft Corporation's “WINDOWS
3.1,” “WINDOWS 95”, “WINDOWS 98” and “WINDOWS 2000” operating
systems, IBM Corporation's “OS/2” and “AIX “operating system, SunSoft’s

-13-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

“SOLARIS” operating system used in workstations manufactured by Sun
Microsystems, and the operating systems used in “MACINTOSH” computers
manufactured by Apple Computer, Inc. Likewise, the invention may be
implemented for use with other WWW browsers known to those skilled in the art.

Host computer 140 is also connected to the Internet 138, and may contain
components similar to those contained in personal computer 100 described above.
Additionally, host computer 140 may execute an application program for
receiving requests for WWW pages, and for serving such pages to the requestor,
such as WWW server 142. WWW server 142 may receive requests for WWW
pages 150 or other documents from WWW browser 112. In response to these
requests, WWW server 142 may transmit WWW pages 150 comprising hyper-text
markup language (“HTML”) or other markup language files, such as eXetnsible
Markup Language (XML), to WWW browser 112. Likewise, WWW server 142
may also transmit requested data files 148, such as graphical images or text
information, to WWW browser 112. WWW server 142 may also execute scripts
144, such as CGI, PERL, ASP, or JSP (Java Server Pages) scripts, to dynamically
produce WWW pages 150 for transmission to WWW browser 112. WWW server
142 may also transmit scripts 144, such as a script written in JavaScript, to WWW
browser 112 for execution.

Similarly, WWW server 142 may transmit programs written in the Java
programming language, developed by Sun Microsystems, Inc., to WWW browser
112 for execution. The WWW server 142 could comprise a UNIX platform
running Apache or Netscape webserver. Alternatively, the WWW server 142
could comprise an Internet Information Server (IIS). The present invention is not
limited to these enumerated examples. Other web server environments are not
beyond the scope of the present invention.

As will be described in more detail below, aspects of the present invention
may be embodied in application programs executed by host computer 142, such as
scripts 144, or may be embodied in application programs executed by computer

100, such as Java applications 146. Those skilled in the art will also appreciate

-14-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

that aspects of the invention may also be embodied in a stand-alone application

program.

Exemplary Computer Architecture

Referring now to Figure 2, the computer architecture for one exemplary
embodiment of the present invention will be described. Figure 2 illustrates the
System 20 for managing security information collected from one or more data
sources. The security system 20 can comprise a fusion engine 22 that is linked to
an event collector 24. The event collector 24 can comprise an event sink or
device that can organize events received from multiple data sources in a logical
manner. Further details of the event collector 24 are described in a related
application entitled, "System and Method for Managing Security Events on a
Network," (Attorney Docket No. 05456-105005) filed on April 27, 2001 and
assigned U.S. Application Serial Number , the contents of

which is hereby incorporated by reference.

The security management system 20 can further comprise an event
database 26 that is also linked to the event collector 24. The security management
system can also comprise data sources 28 that are linked to the event collector 24
and a console 30 which is also linked to event collector 24. Information from the
databases are typically loaded into fusion engine 22 that comprises high-speed
memory devices such as random access memory (RAM) since comparisons
between raw events and the databases must be performed in a very rapid and in a
very efficient manner. Most memory resources used in the fusion engine 22
comprise high-speed memory devices such as RAM (sometimes referred to as
"caches" hereinbelow). However, other memory resources are not beyond the
scope of the present invention. The memory resources of the fusion engine 22
should be designed to handle high volumes of information with increased speed.

The one or more data sources 28 can comprise many different hardware
and software devices. For example, a data source 28 can comprise a network

detector or a host detector. Similarly, a data source 28 could also comprise a

-15-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

firewall or an audit system. The present invention is not limited to the types of
data sources illustrated. The function of a data source 28 is to provide the event
collector 24 with various types of information as it may relate to the network,
host, or single computer being monitored by the security management system 20.
Other like data sources 28 are not beyond the scope of the present invention. One
data source 28 can comprise a host detector which monitors network traffic in the
form of data packets. Another data source 28 could comprise observations made
by users who are monitoring any network or computer activity.

The one or more data sources 28 forward their information to the event
collector 24. The event collector 24 may comprise one or more program modules
designed to store and collect the data received from the one or more data sources
28. The event collector 24 can arrange the data and store it in the event database
26. The event collector 24 also forwards any information received from the data
sources 28 to the fusion engine 22. The detectors 28 of intrusion detection
systems scan raw network traffic or local system events for predefined patterns.
Once the detectors identify these predefined patterns of information, the detectors
generate a raw event which is then sent to the event collector and later to the
fusion engine 22. The fusion engine assembles or “fuses” the raw events or
information received from the event collector 24. In other words, the fusion
engine 22 organizes and analyzes the information received from the one or more
data sources 28 in order to provide an organized presentation of information by
correlating (identifying relationships between) raw computer events that are

related to each other.

Once the fusion engine 22 determines that two or more events are related
to each other (to form a “correlation” event), the fusion engine 22 generates
messages and forwards these messages to the event collector 24. The event
collector 24, in turn, forwards the messages generated by the fusion engine 22 to a

console 30.

Console 30 may comprise a program module that runs on a separate
personal computer. The fusion engine 22 may comprise one or more program

modules running on a personal computer. The fusion engine 22, the event

-16-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

collector 24, and the event database 26 have been circumscribed by a box 32 to
demonstrate that each of these software components can reside on a single
computer. However, the present invention is not limited to this configuration.
And therefore, the fusion engine 22, the event collector 24, and the event database
26 could also reside on separate computer devices. Other combinations of the
software components illustrated could be implemented. That is, the fusion engine
22 and event collector 24 could reside on one hardware device while the event
database 26 resides on another hardware device. Conversely, the event collector
24 and event database 26 could reside on one hardware device while the fusion
engine 22 resides on another hardware device. Those skilled in the art will
appreciate that disclosed software architecture is not limited to the architecture

illustrated in the drawings.

Referring now to Figure 3, a functional block diagram illustrating another
exemplary software architecture for the present invention is illustrated. In Figure
3, the fusion engine program module 22 and a data source such as a detector
module 28 could reside in a single machine. That is, the high speed IDS functions
of the detector 28 could reside near the kernel of a computer while the fusion
engine 22 could reside in the user mode part of the computer. In this way, the
additional processing of the fusion engine 22 would not slow down the high speed

intrusion detection system functions performed by the detector 24.

Referring now to Figure 4, this Figure illustrates another functional block
diagram of exemplary software and hardware architectures for the present
invention. In this one exemplary embodiment, the data source 28 comprising a
detector could be implemented in a hardware device such as a detector board or a
detector chip so that the high speed intrusion detection system functions could be
performed. In this exemplary embodiment, the fusion engine 22 could simply
reside as a program module in software. Figure 4 demonstrates that the data
sources 28 that require access to high speed data streams can be separated from
the fusion engine 22 such that network processing speeds can be achieved without

significant interpretation or delay or both.

17-

WO 01/84285 PCT/US01/13799

10

15

20

25

Referring now to Figure SA, this Figure illustrates a functional block
diagram of the security information data sources 28 feeding information about a
computer incident source 500 to the event collector 24 which is also connected to
the fusion engine 22. Figure SA further illustrates a network 510 that may
comprise numerous data sources 28, user work stations 520, a server 530 that is a
target for a computer incident source 500, an internal router 540, and the server
550. The network 510 is connected to the internet 590 by an external router 580
and by a firewall 28. The firewall 28 can comprise a bastion host or similar
device. The firewall 28 can also be connected to an internal screening router 540
that may examine all packets of data travelling to and from the internal screening
router 540. The user work stations 520 can be stand-alone personal computers

that access the servers 530, 550.

The computer incident source 500 can be a computer or a network of
computers that originate an attack against the network 510 and more specifically,
the server 530 (attacked host). The computer incident source 500 can be
connected to the server 560 of a local area network. Alternatively, instead of a
server 560, the computer incident source 500 can be connected to a dial-in internet
service provider (ISP) or any computer connected to the Internet. The server 560
or ISP (or other computer connected to the internet) can then be connected to a
router 570. A router 570 provides access to a distributed computer network such

as the Internet 590.

While the computer incident source 500 can be located outside of the
network 510, it is possible for the computer incident source 500 to be located
within the network 510. That is, a computer incident source 500 could be a user
workstation 520 located within the network 510. For example, in case of a
disgruntled employee within a company, a user workstation 520 could be used as
the computer incident source 500 when the employee decides to interfere or
hamper the operation of a network 510 or one or more other workstations 520

within the network 510.

18-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

Each of the data sources 28 has a data line illustrated by dashed lines that
feed into the event collector 24. The dashed data lines could comprise actual
physical data lines, however, these data lines are more for illustrative purposes to
demonstrate that each of the data sources is operably linked to the event collector
24. Also, the event collector 24 could reside within the network 510 so that it
would not be vulnerable to a direct attack from a computer incident source 500.
The placement of event collector 24 within Figure 5 illustrates the collection
function of the event collector 24. Figure 5 illustrates fundamental concepts of a
system for managing security information rather than the actual physical

architecture that would be implemented to support such a system.

Exemplary Data Processed by Fusion Engine

Referring now to Figure 5B, this diagram illustrates an exemplary raw
event 505 that is generated by a detector of an intrusion detection system. The
raw event 505 may comprise a source Internet protocol address 515; a destination
Internet protocol address 525; a priority status 535; a detector assigned
vulnerability status 545, an event type parameter 555; and a time stamp 565. As
will be discussed in further detail below, the priority status 535 assigned by
detectors of an intrusion detection system are typically very conservative in
nature. That is, since detectors must process information very quickly, they are
unable to run complex algorithms or tests to ascertain the risk of certain computer
raw events. Therefore, the priority status 535 of many raw events generated by

detectors will be very high relative to an actual priority of a raw event.

Referring now to Figure 5C, this Figure is a diagram illustrating a
CoBRA-(Context Based Risk Adjustment) processed raw event. The CoBRA-
processed raw event 502 typically contains all of the previously detector assigned
parameters of the raw event and in addition the CoBRA-processed parameters that
may comprise any one of the following: a CoBRA-assigned vulnerability value
504; a CoBRA-assigned historical frequency value 506; a CoBRA-assigned

source zone value 508; a CoBRA-assigned destination zone value 510; a

-19-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

CoBRA-assigned sensor zone value 512; a CoBRA-assigned original priority
status 514; and a priority change reason 516 text string comprising a reason why
the priority of the raw event was adjusted (if adjusted). These CoBRA-assigned
values will be discussed below in further detail with respect to Figures 11 and

Figure 12.

Exemplary Raw and Correlation Events Processed by Fusion Engine

Referring now to Figure 5D, this Figure is a functional block diagram
illustrating an exemplary Attack From Attacked Host (AFAH) computer security
threat. Figure 5D illustrates a computer incident source 503 with an Internet
protocol address of 1.1.1.1 sending an attack to host (attacked host) S05 that has
an Internet protocol address of 2.2.2.2. The attack between the computer incident
source 503 and the attacked host 505 may be characterized as a raw computer
event I. After being attacked, the attacked host 505 then sends another attack to a
second host 507, having an Internet protocol address of 3.3.3.3. The attack
between the attacked host 505 and the second host 507 may be characterized as a
second raw event II. The second host 507 generates an attack on a third host 509,
having an Internet protocol address of 4.4.4.4. The attack between the second

host 507 and third host 509 may be characterized as a third raw event IIL.

After processing the raw events I, II and III, the fusion engine 22 may
identify the relationships between respective raw events. Therefore, after
processing the raw events illustrated in Figure 5B, the fusion engine may generate
a mature correlation event 511 that corresponds to the first and second raw events
I and XX. Further, the fusion engine 22 may further generate a second mature
correlation event 513 that identifies a relationship between the second and third
raw events II and III. Further details of the processing performed by the fusion
engine 22 to generate the first and second mature correlation events 511 and 513

will be discussed below in further detail with respect to Figure 7 and Figure 14.

Referring now to Figure 5E, this Figure is a diagram illustrating the

possible data of an exemplary correlation event that is based on Figure 15. The

220-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

correlation event 511 illustrated in Figure 5E may comprise two sets of lists. The
first list may identify inbound attacks relative to the attacked host 505 and
outbound attacks relative to the attacked host 505. Further details of the first
exemplary correlation event 511 will be discussed in further detail below with

respect to Figure 7 and Figure 14.

Referring now to Figure S5F, this Figure is a diagram illustrating the
possible data of the second correlation event 513 illustrated in Figure 15. The
second correlation event 513 may also comprise two lists: one list identifying
inbound attacks relative to the second host 507 and a second list identifying
outbound attacks relative to the second host 507. Further details of the second
mature correlation event 513 will be discussed below with respect to Figure 7 and

Figure 14.

The exemplary attack from attacked host computer security threat
illustrated by Figures 5D through 5F is just but one example of the possible
computer security threats that can be analyzed with the fusion engine 22. As
discussed above and below, other types of computer security threats are not
beyond the scope of the present invention. In one exemplary embodiment, the
fusion engine may track at least twenty different types of possible correlation
events. Those skilled in the art will appreciate the present invention is not limited
to the exemplary correlation events illustrated in Figure 5D and that fewer or more
correlation events can be utilized by the present invention without departing from

the scope and spirit thereof.

Exemplary Software Components of Fusion Engine

Figure 6 is a function block diagram illustrating some components of the
fusion engine 22 that is illustrated in Figure 2. Basically, Figure 6 illustrates some
of the numerous software components that make up the software architecture for

the fusion engine 22.

The present invention includes a computer program which embodies the
functions described herein and illustrated in the appended flow charts. However,
it should be apparent that there could be many different ways of implementing the

21-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

invention in computer programming, and the invention should not be construed as
limited to any one set of computer program instructions. Further, a skilled
programmer would be able to write such a computer program to implement the
disclosed invention without difficulty based on the flow charts and associated
description in the application text, for example. Therefore, disclosure of a
particular set of program code instructions is not considered necessary for an
adequate understanding how to make and use the invention. The inventive
functionality of the claimed computer program will be explained in more detail in
the following description in conjunction with the remaining Figures illustrating

the program flow.

In one exemplary embodiment, the fusion engine 22 can be implemented
with object-oriented programming. Therefore, some of the software components
illustrated in Figure 6 can have both data and code associated with a respective
software object. However, the general functionality of each software object will
be generally described such that a skilled programmer will be able to write a

computer program to implement the disclosed functionality of the software object.

The fusion engine 22 may comprise several software components. In the
exemplary embodiment illustrated in Figure 6, the fusion engine 22 may comprise
an event reader 600 that receives raw computer event information from the event
collector 24. The event reader 600 is operably linked to the classifier 615. The
classifier 615 organizes the raw event information received from the event
reader 600. In other words, the classifier 615 categorizes the raw event
information by separating the raw event information according to an event type
property that is included in each raw event. The event type property of each raw

event is typically generated by a detector in an intrusion detection system.

The classifier 615 can be responsible for forwarding raw event information
to the CoBRA processor 625 and one or more correlation rules 620. The one or
more correlation rules 620 may comprise algorithms for testing and determining
whether a security incident may be occurring. The correlation rules track raw

event information that is received from the classifier and stores the raw event

22

WO 01/84285 PCT/US01/13799

10

15

20

25

30

information in correlation event high speed memory 665. The correlation event
high speed memory 665 may comprise random access memory (RAM) for storing
information. However, the present invention is not limited to RAM type memory.
Other high speed memory devices are not beyond the scope of the present
invention. The classifier 615 can be established based upon a raw event
classification database 635. The classifier 615 can be generated upon
initialization of the fusion engine 22 when event classification data is read from

the raw event classification database 635 into the classifier 615.

The CoBRA processor 625 may comprise algorithms or software
components for the context based risk adjustment of raw computer events. The
CoBRA processor 625 can adjust the priority values of raw computer events by
comparing a raw computer event against data contained within a context or
knowledge base database 630. The priority status of raw events is typically
established by detectors of intrusion detection systems before forwarding the raw
event data to the fusion engine 22. After processing raw computer events, the
fusion engine 22 can inform the event collector 24 whether a security event is
occurring. The fusion engine 22 typically formats and sends one or more
correlation events to the event collector via the event reporter 660. As noted
above, a correlation event may comprise one or more computer events that are

related to each other as determined by the fusion engine 22.

The fusion engine 22 may further comprise memory management devices
that can conserve memory resources for the fusion engine 22. For example, in
one exemplary embodiment, the fusion engine22 may comprise a memory
management list 640, a raw event tracking index 645 and a mature event list 650.
The memory management list 640 is typically linked to the raw event tracking
index 645. Further details of the functionality with respect to the memory
management list 640, raw event tracking index 645, and the mature event list 650
will be discussed below in the brief process description of the software

components illustrated in Figure 6.

23-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

Exemplary Object-Oriented Arqhitecture for Figure 6

One of the software components of the fusion engine 22 that can be
implemented as a software object, in one exemplary embodiment, is the event
reader 600. The event reader 600 can receive raw computer events from either the
event collector 24 or an event log file 610. The event log file 610 can comprise
files having comma separated values (CSV) formats that store computer event
data from an intrusion detection system. The event reader 600 typically reads in
raw computer events or raw events which can be any computer activity that may
be tracked by an intrusion detection system as a possible attack on a computer or a
plurality of computers. The event reader typically creates raw event data objects
(not shown) that are processed by other software components on a fusion engine
22.

In one exemplary embodiment, the event reader 600 can be linked to a
classifier 615 which may comprise one or more event type objects. The classifier
615 receives the raw event objects that are generated by the event reader 600. A
classifier 615 associates each raw event object with a corresponding event type
object that has been established for a specific event type parameter 555. In other
words, the classifier assigns raw event objects to event type objects according to
the type of raw event. It is noted that each raw event received by the event reader
600 has been assigned a type or categorization based upon the intrusion detection

system that generated the raw event.

One function of the classifier 615 is to categorize or classify each of the
raw events and then forward the raw event objects to specific correlation rules 620
based upon their type. The correlation rules 620 can also take form of software
objects that receive the raw event objects from the classifier 615.

The classifier 615 can also forward the raw event object to the Context
Based Risk Adjustment (CoBRA) processor 625. The CoBRA processor is a risk
assessment mechanism that can adjust priority parameters of raw event objects.
The CoBRA processor 625 accesses a context or knowledge base database 630 in

order to perform its context based risk adjustment for each received raw event

24

WO 01/84285 PCT/US01/13799

10

15

20

25

30

object. Basically the CoBRA processor determines the risk of a raw computer
event by assessing the event type parameter 555 in combination with
environmental factors such as the destination internet protocol address of an attack

in addition to the source of the attack.

The context or knowledge base database 630 can include vulnerability
statuses assigned to machines within a network, historical event frequency values,
and network zone definitions. The vulnerability statuses can be results of
vulnerability scans performed by devices outside of the fusion engine 22 that
determine the strength or resistance of a network or single computer to an attack.
The historical event frequency value can comprise signatures or data relating to
computer attacks that occur over very long periods of time. The network zone
definitions can comprise values assigned to parts of a network based upon the
amount and type of information that may be assessable in certain parts of a
network. For example, it is useful to distinguish internal, external, and

demilitarized zones as will be discussed below.

The fusion engine 22 can further comprise a raw event classification
database 635 that can be responsible for establishing the different event type
objects which form the classifier 615. The raw event classification database 635
can comprise one or more tables of security information. The tables can include
information relating to the type parameter 555 of a raw event assigned by
detectors. The raw event classification database 635 can categorize raw events
based on their impact on the target host (confidentiality, integrity, or availability),
their scope (network, host, or service), and the method they employ (backdooring,
cloaking, etc.). Confidentiality events can be those events that indicate an attacker
is attempting to obtain information from or about a host. Integrity events can be
those events that indicate an attacker is attempting to alter data on a host, possibly

to gain unauthorized access.

Availability events can be those events that indicate an attacker is
attempting to cause a denial of service, such as by causing a host to crash. In

addition to the above general criteria, specialized criteria useful in recognizing

25-

WO 01/84285 PCT/US01/13799

10

15

20

25

particular correlation events can serve as a basis for classifying events. For
example, events that confirm the success of a denial of service attempt can be
grouped into a category used by a correlation rule 620 that identifies denial of
service attacks that are believed to have succeeded. However, the raw event
classification database 635 is not limited to these categories or parameters. Other
categories and parameters which further define raw events are not beyond the

scope of the present invention.

The fusion engine 22 can further comprise a memory management list
640, a raw event tracking index 645, and a mature event list 650. The memory
management list 640 enables the fusion engine 22 to manage its memory
resources by eliminating or deleting the oldest raw events when memory resources
exceed a predetermined threshold (i.e. - when memory resources are running low).
The memory management list 640 can be implemented as a software object that
deletes raw events that are considered oldest when memory resources run low.
Related to the memory management list 640 is the raw event tracking index 645
which can also be implemented as another software object. A raw event tracking
index 645 can identify which software objects may contain a particular raw event
object. That is, the raw event tracking index identifies those software objects that
may be storing a raw event that has now become old and should be deleted from

the fusion engine 22.

Related to the memory management list 640 and raw event tracking index
645 is the mature correlation event list 650 which tracks those raw events that
have been identified as a pattern of activity or an actual computer threat that
should not be removed from the memory management list 640. In other words,
the mature correlation event list identifies the raw events which should not be
deleted from the fusion engine 22 since these events are deemed to be part of

mature correlation events or actual computer security threats.

The fusion engine 22 may further comprise a controller 655 that may be

responsible for the data flow between respective software objects. In other words,

26-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

the controller 655 can be implemented as a high level software object which

controls the data flow between lower level software objects.

The fusion engine 22 may further include the event reporter 660 that can
also be implemented as a software object in the exemplary and preferred object-
oriented programming environment. The event reporter 660 can be a software
object that receives mature correlation events which are forwarded to the event
collector 24. Mature correlation events can comprise one or more raw events that
are associated together because the one or more raw events may pose an actual

computer security threat.

Computer-Implemented Process for Managing Security Information

Referring now to Figure 7, this Figure illustrates an exemplary logic flow
diagram of a computer-implemented process for managing security information
collected from one or more data sources. More specifically, the logic flow
diagram illustrated in Figure 7 illustrates a computer-implemented process for
fusing or assembling security information received from multiple data sources and
analyzing the security information in order to provide an organized presentation of
information to one or more consoles. The logic flow described in Figure 7 is the
core logic of the top-level processing loop of the fusion engine 22, and as such is

executed repeatedly as long as the fusion engine 22 is operating.

It is noted that the logic flow diagram illustrated in Figure 7 illustrates a
process that occurs after initialization of several of the software components
illustrated in Figure 6. That is, in the exemplary object-oriented programming
architecture of the present invention, several of the software components or
software objects that are required to perform the steps illustrated in Figure 7 are
initialized or created prior to the process described by Figure 7. Therefore, one of
ordinary skill in the art recognizes that several steps pertaining to initialization of
the software objects illustrated in Figure 6 are not illustrated. For example, as
noted above, the software component or software object comprising the

classifier 615 is established after initialization of the fusion engine 22.

27-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

During initialization of the fusion engine 22, the classifier 615 is built by
reading information from the raw event classification database 635. The
classifier 615 may comprise a comprehensive list of event type objects
corresponding to the types of raw events that can be processed by the fusion
engine 22, and a distinct event type object list for each event category defined in
the raw event classification détabase 635. Each distinct event type list can contain
the subset of the comprehensive event type list that constitutes the set of raw event
types defined by the raw event classification database 635 as belonging to one
category. While the initialization of the various software components illustrated
in Figure 6 are not described with specificity, a skilled programmer would be able
to write such computer programs to implement the disclosed invention without
difficulty based upon the following flow charts and associated description of the

software architecture in the current application.

Certain steps in the processes described below must naturally precede
others for the present invention to function as described. However, the present
invention is not limited to the order of the steps described if such order or
sequence does not alter the functionality of the presenf invention. That is, it is
recognized that some steps may be performed before or after other steps without

departing from the scope and spirit of the present invention.

Referring back to Figure 7, this Figure provides an overview of the core
logic of the top-level processing loop of the entire computer security management
process where step 705 is the first step of the process 700. In decision step 705, it
is determined whether there are any raw events to be processed by the fusion
engine 22. As described above, raw events may comprise computer events
reported from detectors of intrusion detection systems. Raw computer events
identified by intrusion detection systems may include various parameters. For
example, in one exemplary embodiment, each raw event may comprise a source
internet protocol address, a destination internet protocol address, the type of
computer event being reported, a priority status, a vulnerability status, and a time

stamp.

-08-

WO 01/84285 PCT/US01/13799

10

15

20

25

If the inquiry to decision step 705 is negative, then the “no” branch” is
followed in which the process proceeds to step 785. If the inquiry to decision
step 70S is positive, then the “yes” branch is followed to step 710 in which the
raw computer events or event information is retrieved from a data source. The
data source may comprise at least one of the event database 26, an event log

file 610, or the event collector 24 as illustrated in Figure 8.

Referring briefly to Figure 8, this Figure is a data flow diagram illustrating
the exchange of information between various software components that are
illustrated in Figure 6. This data flow diagram of Figure 8 parallels the steps
described in Figure 7. For example, step 710 for retrieving event information
from data sources is illustfated in Figure 8 where the event reader object 600 in
the exemplary object-oriented software architecture reads in event information.

References to Figure 8 will be made throughout the detail description of Figure 7.
Referring back to Figure7, after step 710 and in step 715, the event

information or raw events are arranged and assigned a predefined format referred
to as raw events. In other words, in the exemplary object-oriented programming
environment, the event reader object 600 can create software objects for each raw
event as it is received from one of the data sources such as the event database 26,
the event collector 24, and the event log file 610. The event reader 600 generates
the raw event objects in response to commands received from the controller 655.
In other words, the controller 655 requests the event reader 600 to retrieve raw

events from each of the data sources.

After step 715, in routine 720, the event type from each raw event is
ascertained and each raw event is then assigned to a corresponding event type
object in an event type list. In other words, in the exemplary object-oriented
software architecture, each raw event object that is created by the event reader 600
is sent to a corresponding event type object that is present within the
classifier 615. Further details of routine 720 will be discussed with reference to

Figure 9.

-29-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

Next, in decision step 725, it is determined whether the context based risk
adjustment processor (CoBRA) 625 is activated. In other words, a user may elect
to not adjust any of the priority status information that is present in each raw
event. As noted above, each raw event generated by a detector in an intrusion
detection system typically contains parameters drawn to the priority of the event.
That is, the detectors of intrusion detection systems assign relative values to
computer events to measure the risk or potential damage that could be associated
with a raw event. For example, a distributed attack against a network could be
assigned a higher priority status relative to a computer attack against a single

machine or computer.

If the inquiry decision step 725 is negative, then the “no” branch is
followed to routine 740. If the inquiry decision step 725 is positive, then the
“yes” branch is followed to routine 730 in which parameters of a raw event are
compared with information in the context or knowledge base database 630. Also
in this routine, context parameters are éssigned for each raw event based upon the
context information present in the context database 630. Referring briefly to
Figure 8, the classifier 615 containing the event type objects forwards each raw
event to the CoBRA processing object or CoBRA processor 625. In routine 730,
the CoBRA processor 625 can assign context parameters that relate to the

environment or surrounding conditions of a raw event.

Following routine 730, in routine 735, the priority status of each raw event
can be adjusted or the original status can be left intact based upon the CoBRA
assigned context parameters or detector assigned type parameters or both of the
raw event. Basically routines 730 and 735 can comprise the exemplary algorithms
and methods of the CoBRA processor 625. Further details of routines 730
and 735 will be discussed below with respect to Figures 10, 11, and 12.

Next, in step 737, the CoBRA processed raw event or unprocessed raw
event can be sent to an output device, such as the event collector 24. The event
collector 24 then typically stores the CoOBRA processed raw event or unprocessed

raw event in the event database 26 and then forwards the event to the console 30.

-30-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

As will become apparent from the discussion below, the console 30 can be
provided with unprocessed raw events, CoBRA processed raw events, and
correlation events. All such events can be handled by the fusion engine 22 and
forwarded by the event collector 24 so that they can be displayed to user. It is
noted that when a raw event is received by the event collector 24 from a data
source 28, the event collector first sends the raw event to the fusion engine 22.
However, if after a predetermined amount of time, the fusion engine 22 does not
respond, then the event collector 24 will store the event in the event database 26
and then forward the unprocessed (not handled by the fusion engine 22) raw event

to the console 30.

In routine 740, the raw event is associated with correlation rules 620 based
upon the event type assigned by a detector 28. In this routine, the classifier 615
containing the event type objects determines which correlation rule(s) 620 should
process the raw event based upon the event type parameter 555. Further details of

routine 740 will be discussed below with respect to Figure 13.

In decision step 745, if a rule corresponding with a raw event exists, then it
is determined whether a correlation event exists that is related to the correlation
rule. Note that although depicted as a single process flow in Figure 7, steps 745
through 780 are actually performed independently for each Correlation Rule 620
associated with the raw event. Basically, in decision step 745, the correlation rule
object or correlation rule 620 determines if a correlation event object has been
created for the current raw event being processed. As illustrated in Figure 8, the
correlation rule objects or correlation rule 620 check the correlation event cache
or correlation event high speed memory 665 to determine whether the correlation
event for the current raw event being processed has been created. As noted above,
the correlation event (or correlation event object in an object-oriented software
architecture) can comprise a number of raw events that are grouped together to

form a single higher level event.

For step 745, each Correlation Event has an anchor Internet protocol (IP)

address that is used to index the Correlation Event in the Correlation Event type’s

31-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

area within the correlation event cache 665. The anchor IP address will be the
source IP address or destination IP address of one or more of the Raw Events
within the Correlation Event, depending on the Correlation Event type. For
example, the anchor IP address of the Attack From Attacked Host event is the IP
address of the attacked host. This is the destination IP address of inbound attacks,
and the source IP address of outbound attacks. The Correlation Rule for the
Attack From Attacked Host event uses the destination IP address of an inbound
Raw Event as the Correlation Event lookup key when attempting to retrieve the
Correlation Event for which the Raw Event would be an inbound attack. The
AFAH Correlation Rule uses the source IP address of the Raw Event as the
Correlation Event lookup key when attempting to retrieve the Correlation Event

for which the Raw Event would be an outbound attack.

If the inquiry to decision step 745 is positive, then the “yes” branch is
followed to step 760. If the inquiry to decision step 745 is negative, then the “no”
branch is followed to step 750 in which a correlation event of the predetermined
type associated with the current correlation rule is created. That is, in the
exemplary object-oriented software architecture, at this point in processing of a
raw event’s associated correlation rules 620, one or more correlation event objects.

can be created.

Next, in step 755, the correlation events are stored in the high speed
memory devices 665. The high speed memory devices in one exemplary
embodiment can comprise random access memory (RAM). However, other high
speed memory devices are not beyond the scope of the present invention.
Because of current network processing speeds and the corresponding volumes of
information, it is necessary to use high speed memory devices like RAM so that

rapid processing of raw information can be obtained.

In step 760, the raw event is associated with the corresponding correlation
event (which was either just created in step 750, or retrieved from the correlation
event cache 665 in step 745) based upon the type of raw event. In other words, in

this step in the exemplary object-oriented software architecture, each correlation

-32-

WO 01/84285 PCT/US01/13799

10

15

20

25

event object stores the raw event based upon its type. In addition to associating
the raw event with the correlation event, the raw event tracking index 645 is

updated to indicate that the raw event is associated with the correlation event.

Next in decision step 765, it is determined whether the current correlation
event being processed is already mature. Typically, to be mature, a correlation
event can contain two or more raw events that meet maturity criteria defined for
that specific type of correlation event. The maturity criteria for each correlation
event type are defined to identify the conditions under which the occurrence of
two or more raw events indicates that a likely security incident is occurring. In
step 765, the correlation event is being examined to determine if it had already

been deemed mature as a result of processing of an earlier raw event.

If the inquiry to decision step 765 is positive, then the “yes” branch is
followed to step 780. If the inquiry to decision step 765 is negative, then the “no”
branch is followed to routine 770. In routine 770, it is determined whether the
current correlation event with the newly associated raw event being processed
meets or fulfills the maturity criteria set forth in one or more of the correlation
rules 620. In routine 770, each of the rules that correspond to the type of raw
event being processed determines whether the current raw event and any other
raw events listed in the current correlation event together satisfy the maturity
criteria as set forth in the rule. The present invention can include any number of

rules that correspond to the type parameter of a given raw event.

In one exemplary embodiment, the fusion engine 22 can employ numerous
correlation rules 620. The correlation rules can use the event categories defined in
the Raw Event Classification Database 635 as a basis for identifying event
patterns that indicate either malicious or nonmalicious activity. Many of the
correlation events and corresponding correlation rules can reveal the intent of an
attacker. The set of correlation events detected by the present invention and

corresponding correlation rules includes, but is not limited to, the following:

233-

WO 01/84285

1))
2)

5
3)

10
4)

15
20 5)
25 6)
7)

30

PCT/US01/13799

Attack From Attacked Host. This event can be generated when an
Integrity attack is seen against a host followed by a Confidentiality,
Integrity, or Availability attack originating from that host.

Availability Attack Sweep (Multihost DoS Attack). This event can be
generated when two or more different types of Awvailability attacks
originating from the same source IP address are seen against multiple
target IP addresses.

Confidentiality Attack Sweep (Multihost Information Gathering). This
event can be generated when two or more types of Confidentiality attacks
are seen originating from a single source IP address against multiple target
IP addresses.

DoS Followed By Confirming Event. This event can be generated when
an Availability attack is seen against a target IP address followed by
another event indicating that the target is no longer behaving normally.
Confirming events include events detected by a network-based sensor
indicating the host is not reachable (for example, detection of ARP
requests from other hosts for the target), and events detected on the target
system itself by a host-based sensor indicating that system resources (such
as memory) have become exhausted.

External Source Using Internal IP Address. This event can be generated
when a network-based sensor that monitors an external network detects a
duplicate internal IP address. The occurrence of this condition indicates
that an external host is attempting to use the IP address of an internal host,
a practice known as spoofing.

Integrity Attack Followed By Remote Login. This event can be generated
when an Integrity attack is seen against a host followed by a remote login
originating from that host.

Integrity Attack Followed By Start Of Service. This event can be
generated when an Integrity attack is seen against a host followed by a
report from a host-based sensor that a new service has been started on the

host.

-34-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

8) Internet Scanner Scan. This event can be generated when an ISS Internet
Scanner scan is detected from a host. For a period following detection of
the start E)f the scan, all other events originating from the same host are
subsumed into the Internet Scanner Scan event. If the source IP address is
configured as an approved scan source, the event can be treated as a
nonmalicious event; otherwise it can be treated as a malicious event.

9) Probe Followed By Integrity Attack. This event can be generated when a
Probe event is seen against a host followed by an Integrity attack against
the host. |

10) Integrity Attack Sweep (Trolling For Victims). This event can be
generated when two or more types of Integrity attacks are seen originating
from a single source IP address against multiple target IP addresses.

11) Login From DoS-attacked Host. This event can be generated when a
remote login is seen from a source IP address that is currently the target of
an ongoing Availabiliw attack. This combination of events can indicate
that an attacker is masquerading as a particular host (the target of the
Availability attack) in order to exploit network trust relationships to access
other machines on the network. ‘

12) Login Failure Of One User On Multiple Hosts. This event can be
generated when login failures of the same user are reported by multiple
network- or host-based sensors.

13) Suspicious Activity Followed By Availability Attack. This event can be
generated when an event that involves a Cloaking method is reported,
followed by an Availability attack. The term “cloaking” applies to any
technique that attempts to conceal an attack from intrusion detection
systems.

14) Suspicious Activity Followed By Integrity Attack. This event can be
generated when an event that involves a Cloaking method is reported,
followed by an Integrity attack. The term “cloaking” applies to any
technique that attempts to conceal an attack from intrusion detection

systems.

-35-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

15) Suspicious Activity Followed By Integrity Attack. This event can be
generated when an event that involves a Cloaking method is reported,
followed by an Integrity attack. The term “cloaking” applies to any
technique that attempts to conceal an attack from intrusion detection
systems.

16) Sustained Availability Attack (Focused DoS Attack). This event can be
generated when two or more types of Availability attacks are seen from a
single source IP address targeted at a single destination IP address.

17) Sustained Confidentiality Attack (Focused Information Gathering Attack).
This event can be generated when two or more types of Confidentiality
attacks are seen from a single source IP address targeted at a single
destination IP address.

18) Sustained Integrity Attack (Focused Break-in Attempt). This event can be
generated when two or more types of Integrity attacks are seen from a
single source IP address targeted at a single destination IP address.

19) Web Scan. This event can be generated when multiple Web-related
attacks targeted against a Web server are detected within a certain interval.
By examining features of the Web-related attacks such as the sequence of
URLs being probed, it can be possible to identify the use of specific Web

scanning tools such as Whisker.

Additional rules may be employed without departing from the scope and

spirit of the present invention. Further details of routine 770 will be discussed in
further detail below with respect to Figure 14. However, it is noted that
routine 770 as illustrated in Figure 14 only covers the application of one rule. The
exemplary rule illustrated in Figure 14 is the rule corresponding to the “Attack
From Attacked Host” (AFAH) correlation event listed above. The attack from
attacked host scenario will also be described in further detail below with respect to

Figures 5D through SF.

If the inquiry to decision routine 770 is negative, then the “no” branch is

followed to decision routine 785. If the inquiry to decision routine 770 is positive,

-36-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

then the “yes” branch is followed to step 775 in which a mature event message is
generated and forwarded to an output device such as the event collector 24. In
step 775, the event reporter 660 receives an indication that the correlation event is
mature and then the event reporter 660 forwards this message to the event

collector 24.

In step 780, a correlation event update notification is sent to the output
device when a raw event is added to a correlation event that is already mature. In
this step, the event reporter forwards the correlation event update to event
collector 24 which, in turn, updates the representation of the correlation event in
the Event Database 26 and forwards this information to the console 30 where it
may be viewed by a user. This allows the user to be notified when additional raw
events occur that are part of an ongoing security incident (i.e., a mature

correlation event).

Next, in decision routine 785, it is determined whether any mature
correlation events have stopped occurring. Further details of decision routine 785

will be discussed below with respect to Figure 185.

If the inquiry to decision routine 785 is negative, then the “no” branch is
followed to step 795. If the inquiry to decision step 78S is positive, then the “yes”
branch is followed to step 790 in which a message is sent indicating that a
correlation event has stopped occurring. This message can be forwarded from the
event reporter 660 to the event collector 24. In turn, the event collector 24 would
update the representation of the now-concluded correlation event in the event

database 26 and then forward this message to the console 30.

In step 795, the oldest raw events and immature correlation events in the
memory management list may be erased. Because the fusion engine 22 has a
limited amount of memory, it is necessary to keep the memory filled with raw
events that are the most likely to become mature. The fusion engine has several
memory usage monitoring devices such as the memory management list 640, the
raw event tracking index 645, and the mature event list 650. In one exemplary

embodiment, the memory usage monitoring devices of the fusion engine

-37-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

determine how much memory is available and when the memory is close to being
filled to capacity, the memory usage monitoring devices will erase the oldest
existing stored raw events and immature correlation events in order to increase
available memory. Raw events that are included within mature correlation events
are removed from the memory management list 640 but are not erased. Whenever
a raw event is deleted, the raw event tracking index 645 is used to locate any
immature correlation events that contain the raw event, and the raw event is
removed from those immature correlation events. When a raw event is removed
from an immature correlation event and the immature correlation event then

contains no other raw events, the immature correlation event is also erased.

Referring now to Figure9, this Figure illustrates the computer-
implemented process for routine 720 of Figure 7 which identifies the type of raw
event and assigns each raw event to a corresponding event type object of the
classifier 615. Routine 720 begins with step 910 where each raw event is matched
with a corresponding event type in the classifier 615. Next, in step 915, the time
stamp of each raw event is identified. In step 920, each raw event is added to the
memory management list 640 based upon the time stamp identified in step 915.
The entries in this list are typically maintained in order by timestamp to facilitate
locating the oldest events during the memory cleanup processing described above
In step 925, each raw event is stored in the high speed memory device associated
with its event type object as contained in the classifier 615. Next, in step 930,
each event type object receiving a raw event is added to the raw event tracking
index 645. That is, typically, each software component of the fusion engine
registers itself with the raw event tracking index 645 upon receiving a raw event.
In this way, when a raw event is determined to be deleted from the system, the
raw event tracking list 645 can be used to identify the location of the raw event
references that need to be erased. After step 930, the process returns back to

decision step 725 of Figure 7.

Figure 10 illustrates the computer-implemented process for routine 730 of
Figure 7 in which parameters of each raw event are compared with the context or

knowledge base database 630. Also in this routine, additional parameters are

-38-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

assigned to each raw event based upon this comparison with the context
database 630. As noted above, the context database 630 can comprise
environmental information that may be helpful in evaluating the importance of a
raw event. For example, the context database 630 can comprise vulnerability
information about machines or computers within a network, the relative location
of a computer or detector based upon predetermined zones, and information

relating to historical event frequency.

The vulnerability information of the context database 630 is usually
derived from scans made across a network to determine the relative security risk
that may be present at one or more machines that make up a network. A tool that
analyzes historical raw event logs for the network being monitored by the fusion
engine 22 typically derives the historical event frequency information of the
context database 630. This tool typically calculates average event frequencies for
groups of events sharing the same raw event type, source internet protocol
address, and destination internet protocol address, though other approaches to
grouping raw events for the purpose of calculating average event frequencies
could be used are within the scope of the present invention. The zone definitions
of the context database 630 are usually derived by categorizing parts of a network
as they relate to the entire network. For example, an internal zone and
demilitarized zone (DMZ) may be defined such that the internal zone includes the
internet protocol network addresses of the networks that should not be accessible
from the Internet, and the DMZ zone includes the internet protocol network
addresses of the networks that are accessible from the Internet. These zones would
be defined as appropriate for the specific network being monitored by the fusion

engine 22.

Routine 730 is typically performed by the CoBRA processor 625. The
CoBRA processor 625 typically examines each raw event and compares it to the
context database 630. More specifically, in step 1010 (the first step of Routine
730) a CoBRA vulnerability status 504 is assigned for each raw event based upon
destination internet protocol address information and a comparison with the

context database 630. In one exemplary embodiment, the vulnerability value

30-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

assigned can be any one of the following: believed vulnerable; believed not

vulnerable; and unknown.

Next, in step 1015, a historical frequency value 506 is assigned for each
raw event based upon another comparison with the context database 630. This
value can be a number of events per unit time, such as events per day, or a
mathematically related value, such as an average time between events. The
historical event frequency value typically indicates how frequently raw events of a
particular type from a particular source machine to a particular destination
machine are seen on the network being monitored by the fusion engine 22.
Historical frequency data is used by the fusion engine to aid in distinguishing
events caused by normal non-malicious network activity from those caused by

unusual and malicious activity.

In step 1020, a source zone 508 value is assigned to each raw event based
upon the source internet protocol address of the raw event and a comparison with
the context database 630. In step 1025, a destination zone 510 value is assigned to
each raw event based upon the destination internet protocol address of each raw

event and a comparison with the context database 630.

In step 1030, a sensor zone 512 value is assigned to each raw event based
upon the sensor internet protocol address and a comparison with the context
database 630. The sensor zone value can comprise the internet protocol address
of the sensor or detector of an intrusion detection system that detected the
suspicious computer activity and generated the raw event. After step 1030, the

process returns to routine 735 of Figure 7.

Referring now to Figure 11, this Figure illustrates the
computer-implemented process for routine 735 of Figure 7, which can adjust the
priority status or leave an original priority status of a raw event intact based upon
the CoBRA-assigned context parameters or detector-assigned type parameters or
both. Routine 735 is another core function of the CoBRA processor 625. This
routine enables the fusion engine to rank raw events based upon their importance

to a network or a computer being protected. In this way, the security

-40-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

administrator can monitor computer security events more efficiently and
effectively, since the important computer security events will have a higher

ranking and priority relative to other lower-level security events.

The present invention can employ user-defined attributes for those events
and parts of a network that are most important to a user. For example, the zone
definitions that form part of the context database 630 can be supplied by the user.
In one exemplary embodiment, an internal zone and a so-called demilitarized zone
(DMZ) of the monitored network can be established by the user. Rather than
being explicitly defined by the user, an external zone can be any IP address that
doesn’t fall within an explicitly defined zone or zones supplied by the user. The
present invention is not limited to these types of zones and can include other types
of zones such as a business partner zone, for example. Those skilled in the art
will appreciate that the present invention can be designed to associate Internet

protocol addresses with any number of zones defined by a user.

As noted above, each raw event comprises a priority status parameter 535
that was assigned to it by a detector within an intrusion detection system. In one
exemplary embodiment, the priority status parameter can comprise any one of the
following three values: 1, 2, or 3. The highest priority status value in the
exemplary embodiment is typically the number 1. Meanwhile, the lowest priority
status in the exemplary embodiment is typically the value of 3. The mid-range
priority value is typically the number 2. Adjustments of the priority status values
for each raw event are necessary since the priority status values assigned by the
detectors typically are very conservative in nature. That is, raw events are
typically the result of simple processing techniques that must occur at the detector

level in order to maintain high network traffic speeds.

Therefore, the priority status values coming from the detector level of
conventional intrusion detection systems typically are defined as appropriate for
the worst-case scenario that could apply for each event type. For example, in the
exemplary embodiment, if a given type of raw event could have an actual priority

of 1, 2, or 3 depending on the circumstances that apply on a given network, the

41-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

detector would typically assign the worst-case priority (denoted as one (1) in the
exemplary embodiment) to all events of this type. Whenever the CoBRA
processor 625 modifies the value of the priority status 535, it does so only after
storing the both the original detector-assigned priority status and the updated or
CoBRA-adjusted priority parameter in priority status 535. That is, in the
exemplary embodiment, after CoOBRA processing and if priority is adjusted, the
adjusted priority status 535 will contain two values: the original detector-assigned

priority status and the CoBRA-adjusted priority status.

The fusion engine 22 permits the ranking of raw events based upon the
environmental conditions or surroundings in which a raw event is generated. In
this way, the security network administrator will only be presented with the
computer security events that are most important to the network or computer
being monitored. The present invention is not limited to the priority status scale
illustrated. That is, the present invention is not limited to a priority scale that
spans between 1 and 3 where one is designated as the highest priority. Other
ranges or values and increments between values are not beyond the scope of the
present invention. Those skilled in the art will appreciate that more complex
scales can be generated to further reduce the possibility of ranking an unimportant

raw event over an important raw event.

Routine 735 begins with step 1110, in which it is determined whether a
target of a raw event is resistant to the computer attack. This determination is
made based on the CoBRA wvulnerability status 504 value of the raw event
previously established by step 1010 of procedure 730 described in Figure 10. If
the inquiry to decision step 1110 is negative, then the “no” branch is followed
where the process continues to step 1210 of Figure 12. If the inquiry to decision
step 1110 is positive, then the “yes” branch is followed to step 1115. In step
1115, the raw event is compared to vulnerability-adjustable event types stored in a
list in the context database 630. These vulnerability-adjustable event types stored
in the context database 630 are events identified by either a user or a system for

which the assessment of a machine’s vulnerability status is believed trustworthy

4D

WO 01/84285 PCT/US01/13799

10

15

20

25

30

and for which therefore it is allowed to adjust priority based on vulnerability

status information.

Alternatively, in another embodiment (not illustrated) the context database
630 can identify those raw event types for which a user or system does not believe
the assessment of vulnerability status to be trustworthy, and the assessment of
vulnerability status can be deemed trustworthy for all other event types. In this
way, raw events that are not desired to be adjusted with respect to their priority
status can be identified so that the CoBRA processor 625 will not reduce the
priority of such raw events. In another alternative exemplary embodiment (not
shown), the context database 630 can also contain both types of lists. That is, the
context database 630 can comprise a list of raw event types that are permitted to
have the priority status to be adjusted and a list containing raw event types that are
not permitted to have the priority status adjusted. In this case a conflict resolution
rule must also be established, so that if a particular event type appears in both
lists, it is well-defined which entry will take precedence. Those skilled in the art
will appreciate that other configurations of lists are not beyond the scope of the

present invention.

Next, in decision step 1120, it is determined whether a match exists with
the stored vulnerability-adjustable events of the context database 630. If the
inquiry to decision step 1120 is negative, then the “no” branch is followed to step
1135. If the inquiry to decision step 1120 is positive, then the “yes” branch is
followed to decision step 1125.

In decision step 1125, it is determined whether the current raw event being
processed is at its lowest priority status. In other words, if the current raw event
being processed has an exemplary priority status value of 3, then it is recognized
that its priority cannot further be adjusted. Therefore, if the inquiry to decision
step 1125 is positive, then the “yes” branch is followed to step 1135. If the
inquiry to decision step 1125 is negative, then the “no” branch is followed to step
1130, in which the priority status 535 of the current raw event is reduced and the

reason for the change in priority status 535 is recorded in the raw event. For

-43-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

example, in the exemplary embodiment, if a raw event has an original priority
status value of a 1, and if the CoBRA processor 625 determines that the raw event
is not believed to be vulnerable, then it will adjust the original priority status value
of 1 to a lower value such as the value of 2 (the mid-range priority status value).
The reason for changing the priority status value is recorded in the priority change
reason 516 parameter of the raw event so that it can be determined at the console
30 why a particular raw event was assigned a reduced priority. In one exemplary
embodiment, the reason for changing priority status of a raw event can comprise a

text string.

In step 1135, each raw event is compared to frequency-adjustable event
types stored in a list in the context database 630. Similar to the
vulnerability-adjustable event types discussed above, the frequency-adjustable
event types can comprise those raw event types for which a high historical event
frequency between a given pair of machines is seen as a reliable indicator of non-
maliciousness for the network or computer being monitored by the fusion engine
22. Alternatively, also similar to the vulnerability-adjustable event types
discussed above, in another exemplary embodiment (not shown) the context
database 630 could instead comprise a list that identifies those raw event types for
which a high historical event frequency between a given pair of machines for a
network or computer being monitored by the fusion engine 22 is not seen as a
reliable indicator of non-maliciousness, and historical event frequency can then be
considered a trustworthy indicator of non-maliciousness for all other event types.
In such a scenario, the list would identify those raw events where it is undesirable
to adjust the priority status thereof based on historical event frequency.
Alternatively, in yet another exemplary embodiment (not shown), the context
database 630 could also comprise both types of lists where one list would identify
those raw event types for which frequency-based priority adjustment is allowed
and the other would identify those raw event types for which frequency-based
priority adjustment is not allowed. In this case a conflict resolution rule must also

be established, so that if a particular event type appears in both lists, it is well-

-44-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

defined which entry will take precedence. Those skilled in the art will appreciate

that other configurations of lists are not beyond the scope of the present invention.

Following step 1135, in decision step 1145, it is determined whether a
match exists with the stored frequency-adjustable event types. If the inquiry to
decision step 1145 is negative, then the “no” branch is followed to step 1210 of
Figure 12. If the inquiry to decision step 1145 is positive, then the “yes” branch is
followed to decision step 1150.

In decision step 1150, it is determined whether historical frequency
information exists for the current raw event being evaluated. This determination is
made based on the historical frequency value 506 of the raw event previously
established by step 1015 of procedure 730 described in Figure 10. In other
words, some raw events may be of a type, source, and destination that was not
seen in the historical data analyzed to produce the historical frequency
information. If the inquiry to decision step 1150 is negative, then the “no” branch
is followed to step 1210 of Figure 12. If the inquiry to decision step 1150 is

positive, then the “yes” branch is followed to decision step 1155.

In decision step 1155, it is determined whether the historical frequency for
the current raw event being evaluated is greater than a frequent event threshold.
In other words, in this decision step, it is determined whether a raw event is of a
type that occurs frequently enough between a specific source and destination that
it can be considered to be likely to be a non-malicious event. The frequent event
threshold may be a value that corresponds to an average number of events per unit
time, such as per day. However, other mathematically related forms of this value,
such as the average time between events, could also be used and are not beyond
the scope of the present invention. If the current raw event being processed has
an historical event frequency that is greater than the threshold, then it is

considered to be a frequent event and likely to be non-malicious.

If it is determined to be a frequent raw event, then its priority status can be
lowered. However, if the current raw event being processed has been seen less

frequently on the network, then it is not considered to be a frequent raw event and

-45-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

an adjustment to its priority status based on historical event frequency is
considered undesirable. Therefore, if the inquiry to decision step 1155 is negative
(meaning that events like the current raw event being processed have not been
seen frequently on the network monitored by the fusion engine 22), then the “no”
branch is followed to step 1210 of Figure 12. If the inquiry to decision step 1155
is positive (meaning that events like the current raw event being processed have
been seen frequently on the network monitored by the fusion engine 22), then the

“yes” branch is followed to decision step 1160.

In decision step 1160, it is determined whether the raw event being
processed is at its lowest priority status. If the inquiry to decision step 1160 is
positive, then the “yes” branch is followed to step 1210, Figure 12. If the inquiry
to decision step 1160 is negative, then the “no” branch is followed to step 1165, in
which the priority of the current raw event is reduced and the reason for changing
the status of the priority of the current raw event is recorded. The reason is

typically recorded as being that the raw event being evaluated occurs frequently.

The process then continues to Figure 12. Figure 12 illustrates a second
portion of the computer-implemented process for routine 735 of Figure 7, in
which the CoBRA processor 625 adjusts the priority status or leaves an original
priority status intact based upon the CoBRA assigned context parameters or

detector-assigned type parameters of the raw event.

In step 1210, the raw event is compared to zone-adjustable event types
stored in a list of the context database 630. Similar the vulnerability-adjustable
event types and frequency-adjustable event types discussed above, the
zone-adjustable event types are raw event types that may be defined by a network
security administrator that are deemed to present low risk to the network or
computer being monitored by the fusion engine 22 if they occur internally (that is,
if both the source Internet protocol address and destination Internet protocol
address in the raw event are located in networks defined in the context database
630 as belonging to the internal zone). However, in an alternative embodiment

(not shown), the context database 630 may instead comprise a list that identifies

46-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

raw event types that cannot be deemed to present low risk to the network or
computer being monitored by the fusion engine 22 based solely on the zone(s) in

which the source and destination are located.

In such an embodiment, event types other than those listed are deemed to
present low risk to the monitored computer or network if they occur internally. In
a further alternative embodiment (not shown), the context database 630 may also
comprise both types of list: one list identifying raw event types that cannot be
deemed to present low risk based solely on the source and destination zones,
where the priority status thereof should not be adjusted, and a second list of raw
events that are deemed to present low risk when seen internally, and where
priority status should be adjusted such that these events will have a lower priority
status. In this case a conflict resolution rule must also be established, so that if a
particular event type appears in both lists, it is well-defined which entry will take

precedence.

In decision step 1215, it is determined whether a match exists with the
stored zone-adjustable event types in the context database 630. If the inquiry to
decision step 1215 is negative, then the “no” branch is followed back to routine
740 of Figure 7. If the inquiry to decision step 1215 is positive, then the “yes”
branch is followed to decision step 1220.

In decision step 1220, it is determined whether the source zone and
destination zone of the current raw event being processed are both internal relative
to the network or computer being monitored by the fusion engine 22. This
determination is made by examining the values of the source zone parameter 508
and destination zone parameter 510 of the raw event assigned by steps 1020 and
1025, respectively, of routine 730 shown in Figure 10. For many event types, raw
events classified as being internal are less of a threat to a network of computers
being monitored compared to an event that may be external to a network or

computer being monitored by the fusion engine 22.

Therefore, for internal events, it may be desirable to lower the priority

status of such raw events. Conversely for raw events for which either the source

47-

WO 01/84285 PCT/US01/13799

10

15

20

25

or destination Internet protocol address is either in the DMZ zone or not in any
defined zone (and therefore considered external), it may be desirable to keep the
priority status of a raw event that was assigned to it by the detectors in the
intrusion detection system. If the inquiry to decision step 1220 is negative, then
the “no” branch is followed back to routine 740 if Figure 7. If the inquiry to
decision step 1220 is positive, then the “yes” branch is followed to decision step

1225.

In decision step 1225, it is determined whether the current raw event is at
its lowest priority status. If the inquiry to decision step 1225 is positive, then the
“yes’ branch is followed back to routine 740, Figure 7. If the inquiry to decision
step 1225 is negative, then the “no” branch is followed to step 1230, in which the
priority status of the current raw event is reduced and the reason for change in the
priority status of the raw event is recorded. Typically, the reason in step 1230 will
indicate that the priority status of the current raw event was lowered because it

comprises an internal attack. The process then returns to routine 740 of Figure 7.

The present invention is also not limited to the technique of reducing
priority status values. In other words, the present invention can also comprise a
scale where values are increased in order to reflect either reduced priority or
increased priority. Those skilled in the art will appreciate that any number of risk
adjustment schemes can be utilized and not depart from the scope and spirit of the

present invention.

Referring now to Figure 13, this Figure illustrates the
computer-implemented process for routine 740 of Figure 7 in which raw events
are associated with predetermined correlation rules based upon the event type
parameter 555. In this routine, the classifier 615 may identify one or more
correlation rules 620 that should process each given raw event. Step 1310 is the
first step of routine 740, in which all lists containing the raw events are updated to
reflect any CoBRA processing changes. In other words, all objects in the

exemplary object-oriented architecture containing the raw events that were

-48-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

adjusted by the CoBRA processor 625 are updated to reflect any adjustments in
priority status.

Next, in step 1315, the raw events are forwarded to the correlation rules
that apply to the raw event type parameter 555. More specifically, in step 1315,
the definition of each correlation rule 620 includes a list of the raw event
categories that are of interest to it. The raw event types included in each raw
event category are defined in the raw event classification database 635.
Therefore, the list of raw event types of interest to a correlation rule 620 is the
union of the category-specific lists of raw event types for the categories of interest
to the rule, where each category-specific list of raw event types is defined by the
raw event classification database 635. The category-specific lists of raw event
types are stored in the classifier 615, which is initialized based on the contents of

the raw event classification database 635.

When the controller 655 loads a correlation rule 620 during system
initialization, it associates the rule with all the event types included in the event
categories of interest to the rule (determined as described in the previous
paragraph) by adding the rule to a list of interested rules maintained within each
such event type. Thus, after initialization, each event type includes a list of all of
the correlation rules 620 that are interested in events of its type. As each raw event
is received, the event reader 600 determines which correlation rules 620 should
process it by retrieving the raw event’s event type and then retrieving the event
type’s list of interested rules. Having determined the set of correlation rules 620

that should process the raw event, the process then returns to step 745 of Figure 7.

Referring now to Figure 14, this Figure illustrates the
computer-implemented process for routine 770 of Figure 7, which determines if a
currently immature correlation event to which the current processed raw event has
been added meets or satisfies the maturity criteria of a corresponding rule 620.
The process described here is for an exemplary event type, Attack From Attacked
Host (AFAH), rather than being generic. However, given this processing

description and the descriptions of exemplary correlation event types presented

-49-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

earlier, it should be apparent to those skilled in the art how similar processing
could be used to recognize the occurrence of each of the described exemplary
event types. As noted above, each rule 620 may be implemented as a rule object
in an object-oriented computer architecture. As should be clear to those skilled in
the art from the previously described processing of step 1315 of Figure 13, a

single raw event may be processed by multiple correlation rule objects.

Though not depicted in Figure 7 or Figure 14, the processing of steps 745
through 780 of Figure 7 (including the routine 770 processing described in Figure
14) can be performed twice for the current processed raw event in the case of the
exemplary AFAH correlation event. In one exemplary embodiment, the raw event
is processed once to consider it as an inbound attack only if the raw event is an
integrity attack, and is always processed to consider it as an outbound attack.
When the raw event is considered as an inbound attack by steps 745 through 780,
step 745 uses the raw event’s destination Internet protocol address as the lookup
key when attempting to retrieve a corresponding AFAH correlation event from the
correlation event cache 665 (as described earlier in the discussion of step 745

processing).

When the raw event is considered as an outbound attack by steps 745
through 780, step 745 uses the raw event’s source Internet protocol address as the
lookup key when attempting to retrieve a corresponding AFAH correlation event
from the correlation event cache 665 (as also described earlier in the discussion of
step 745 processing). This “double processing” of the raw event is a unique
aspect of the exemplary AFAH correlation event relative to other correlation
events that can be processed by the fusion engine 22. For all of the other
exemplary correlation event types described earlier, the processing of steps 745
through 780 is performed once, as should be apparent to those skilled in the art

based on the descriptions of the exemplary correlation event types.

Referring again to Figure 14, step 1410 is the first step of routine 770, in
which the event type object of the classifier 615 for the current raw event being

processed is added to the raw event tracking index 645. Also, the correlation

-50-

WO 01/84285 PCT/US01/13799

10

15

20.

25

30

event object corresponding to the current raw event object being processed is
either added to the memory management list 640 (if it is a new correlation event
that was just created in step 750 of Figure 7), or is moved to a new position in the
memory management list if the timestamp of the current raw event has the most
recent timestamp of all the raw events associated with the current correlation

event.

In addition, the current correlation event object is added to the raw event
tracking index 645 in association with the raw event. The event type object and
correlation event object are added to the raw event tracking index 645 so that they
can later be informed by the memory management processing if the raw event is
erased from memory, so they can erase their own references to the raw event. The
current correlation event is also added to the memory management list 640 so that
when memory resources run low, the oldest events (some of which may be

immature correlation events) can be deleted from the fusion engine 22.

In decision step 1415, it is determined whether the raw event is being
considered as an inbound attack. This step distinguishes whether the current
AFAH correlation event includes the current raw event as an inbound or outbound
attack. If the inquiry to decision step 1415 is negative, then the raw event is being
considered as an outbound attack and the “no” branch is followed to step 1425. If
the inquiry to decision step 1415 is positive, then the raw event being considered
is an inbound attack and the “yes” branch is followed to step 1420.

In decision step 1420, it is determined whether the raw event being
considered as an inbound attack ia an integrity attack and occurs earlier than at
least one event in the outbound attacks list of the current correlation event. The
raw event being processed is known to be an integrity attack since it was added to
the inbound attack list of the correlation event during the processing of step As
indicated in the description of the Attack From Attacked Host event included in
the earlier list of exemplary correlation event types, the AFAH event can be
generated when an Integrity attack is seen against a host followed by a
Confidentiality, Integrity, or Availability attack originating from that host. As

indicated in the discussion of Figure 13, when the controller 655 loads a

-51-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

correlation rule 620 during system initialization, it associates the rule with all of
the event types included in the event categories of interest to the rule.

In the case of the AFAH rule, the event categories of interest are
Confidentiality, Integrity, and Availability attacks. The AFAH rule is therefore
associated with all event types defined by the raw event classification database
635 as belonging to one of these three categories. Therefore, any raw event
whose event type belongs to one of these three categories can be forwarded to
routine 770 for processing. Since the definition of the AFAH event requires
inbound attacks to be Integrity attacks, and some of the raw events forwarded to
routine 770 can instead be Confidentiality or Availability attacks, the present
decision step 1420 must verify that the raw event being considered as an inbound
attack is an Integrity attack.

A further consideration results from the fact that the fusion engine 22 can
receive raw events generated by multiple detectors, leading to the possibility that
raw events can be received in non-chronological order (that is, a raw event with a
later timestamp can be received before a raw event with an earlier timestamp).
For this reason, routine 770 cannot assume that raw events will be received in
chronological order, and the present decision step 1420 therefore determines
whether the current raw event occurs earlier than at least one event in the
outbound attacks list of the current correlation event. If the inquiry to decision
step 1420 is negative, then the current correlation event is deemed not mature and
the “no” branch is followed back to routine 785 of Figure 7. If the inquiry to
decision step 1420 is positive, then the current correlation event is deemed mature
and the “yes” branch is followed to step 1427.

In decision step 1425, it is determined whether the raw event being
considered as an outbound attack occurs later than at least one event in the
inbound attacks list of the current correlation event. Unlike decision step 1420, it
is not necessary to determine whether the current raw event belongs to a particular
category because (as described in the discussion of step 1420) every raw event
forwarded to routine 770 will be either a Confidentiality, Integrity, or Availability

attack and will therefore meet the criteria for inclusion as an outbound attack in

-52-

WO 01/84285 PCT/US01/13799

10

15

20

25

any AFAH event. If the inquiry to decision step 1425 is negative, then the current
correlation event is deemed not mature and the “no” branch is followed back to
routine 785 of Figure 7. If the inquiry to decision step 1425 is positive, then the
current correlation event is deemed mature and the “yes” branch is followed to
step 1427.

In step 1427, any outbound attacks in the current correlation event that
occur earlier than the earliest inbound attack of the correlation event are removed
from the list of outbound attacks. This is done because the definition of the
AFAH correlation event requires that each outbound attack included in a mature
AFAH correlation event must be preceded by at least one inbound attack.

In step 1430, the correlation event is removed from the memory
management list 640 so that the correlation event will not be subject to being
erased by the memory management mechanisms. In this way, the correlation
event that is removed will not be deleted from the fusion engine 22 since the
correlation event is now deemed to be mature.

In step 1435, the update time of the correlation event can be set to the most
recent raw event’s time stamp if the event source being read by the event reader
600 is either the event database 26 or the event log file 610, in which case the
fusion engine 22 is operating in a batch mode. Alternatively, the update time of
the correlation event can be set to the current time of the system on which the
fusion engine 22 is executing if the event source being read by the event reader
600 is the event collector 24, in.which case the fusion engine 22 is operating in a
real-time mode.

In step 1440, the correlation event is added to the mature event correlation
list 650. In step 1445, the correlation event containing the two or more raw events
is indicated as being mature by setting an internal parameter of the correlation
event. The process then returns to step 775 of Figure 7. In one exemplary
embodiment (not shown), each correlation event may be assigned a priority status,

similar to the priority status parameter 555 of raw events.

-53-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

Exemplary Rule Processing for Raw Event II Illustrated in Figures 5D, 5E, 5F

The following is the processing that would be carried out by an Attack
From Attacked Host correlation rule 620 for raw event II as illustrated in Figures
5(d), 5(e), and 5(f). This discussion assumes that raw events I and II are both
types of Integrity attacks and therefore qualify as inbound attacks according to the
definition of the AFAH event, that raw event I occurs before raw event II, and that
raw event II occurs before raw event III.

Referring back to Figure 7, in step 745, when raw event II is being
considered as an inbound attack, its destination internet protocol address (3.3.3.3)
would be used as a lookup key to retrieve an AFAH correlation event from the
correlation event cache 665. Assuming that in this case raw events are received in
chronological order and therefore raw event III has not yet been processed by the
fusion engine, there would be no AFAH correlation event indexed by the attacked
internet protocol address 3.3.3.3, and therefore the “no” branch of decision step
745 would be taken and correlation event 513 would be created in step 750. In
step 755, correlation event 513 would be stored in the correlation event cache 665.
In step 760, raw event II would be associated with correlation event 513 by
storing a reference to it in the inbound attacks list of correlation event 513. In step
765 it would be determined that correlation event 513 is not already mature, so the
“no” branch would be followed to step 770.

Referring now to Figure 14, in decision step 1415 the “yes” branch would
be followed since raw event II is being considered as an inbound attack. In
decision step 1420, the “no” branch would be followed since there are no raw
events in the outbound attacks list of the newly created correlation event 513. To
summarize this processing, when considered as an inbound event, raw event II is
added to a newly created but still immature correlation event 513.

Referring back to Figure 7, in step 745, when raw event II is being
considered as an outbound attack, its source internet protocol address (2.2.2.2)
would be used as a lookup key to retrieve an AFAH correlation event from the

correlation event cache 665. Assuming that in this case raw events are received in

-54-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

chronological order and therefore raw event I has already been processed by the
fusion engine, AFAH correlation event 511 would already be present in the
correlation event cache 665 indexed by the attacked internet protocol address
2.2.2.2, and therefore the “yes” branch of decision step 745 would be taken to step
760. In step 760, raw event II would be associated with correlation event 511 by
storing a reference to it in the outbound attacks list of correlation event 511. In
step 765 it would be determined that correlation event 511 is not already mature,
so the “no” branch would be followed to step 770.

Referring now to Figure 14, in decision step 1415 the “no” branch would
be followed since raw event II is being considered as an outbound attack. In
decision step 1425, the “yes” branch would be followed since the inbound attacks
list of correlation event 511 already contains raw event I, and the timestamp of
raw event II is later than that of raw event I. At this point, correlation event 511
has been determined to be mature and steps 1427 through 1445 would be followed
to process the newly-mature correlation event 511. To summarize this processing,
when considered as an outbound attack, raw event II is added to existing
correlation event 511 which becomes mature as a result.

To perform decision step 1425 in the above-described exemplary rule
processing, the respective time stamps of the first-generated raw eventI and the
second-generated raw event I are compared. However, it is noted that since the
raw events could originate from different detectors, there could be some variance
in the time stamps provided for each raw event. That is, while the second-
generated raw event II may occur after the first-generated raw event I, because of
possible variances in the internal clocks of the detectors generating the raw events,
it is foreseeable that the first-generated raw event I may have a later time stamp
than the second-generated raw event II.

In other words, the internal clocks between respective detectors in
neighboring intrusion detection systems may not be synchronized. In order to
compensate for such a scenario, a tri-state comparison could be performed. That
is, the fusion engine 22 and more specifically, the rules 620 may allow for the

possibility that there may be some synchronization offsets so a determination can

-55-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

be made if a first raw event came before another raw event. More specifically,
when comparing the timestamps of two raw events generated by different
detectors to determine whether one of the events precedes (or follows) the other,
the result of the comparison can be yes, no, or maybe. The “maybe” result occurs
when the timestamps of the two events are sufficiently close that uncertainty
regarding the synchronization offsets of the two detectors makes it impossible to
determine which event occurred first.

The fusion engine 22 could be configured to treat the “maybe” result either
as a “yes” (in one configuration) or as a “no” (in an alternative configuration). In
a preferred embodiment, the fusion engine 22 treats a “maybe” as a “yes” to
maximize the chance that correlation event maturity criteria will be met (so that
mature correlation events will be generated whenever it appears possible that their
criteria might be met). When the fusion engine 22 compares the timestamps of
two events generated by the same detector, then it can ignore any synchronization
effects and perform a simple binary comparison between the timestamps of the

two events.

Exemplary Computer-Implemented Process to Determine if Mature
Correlation Events Timed Out

Referring now to Figure 15, this Figure illustrates the computer-
implemented process for routine 785 which determines whether any mature
correlation events have stopped occurring. Step 1510 is the first step of routine
785 in which the current processing time is compared with the update times of the
correlation events stored in the mature event list 650 (the update times of
correlation events are set as described in step 1435 of figure 14). For the purpose
of this comparison, the definition of the current processing time depends on the
mode in which the fusion engine 22 is operating. If it is operating in a batch mode
(that is, the event source from which events are being read is either the event
database 26 or the event log file 610), then the current processing time is the
timestamp of the last event that was read from the event source. Alternatively, if

the fusion engine 22 is operating in real-time mode (that is, the event source from

-56-

WO 01/84285 PCT/US01/13799

10

15

which events are being read is the event collector 24), then the current processing
time is the current time of the system on which the fusion engine 22 is running.

In decision step 1515, it is determined whether the difference between the
current processing time and the update time of each correlation event exceeds a
predetermined threshold. In other words, it is determined whether the mature
correlation events contained within the mature event list 650 have become old or
stale in that no computer activity or raw events have occurred for these correlation
events over some period of time. If the inquiry to decision step 1515 is positive,
then the “yes” branch is followed back to step 790 of Figure 7. If the inquiry to
decision step 1515 is negative, then the “no” branch is followed back to step 795
of Figure 7.

It should be understood that the foregoing relates only to illustrative
embodiments of the present invention, and that numerous changes may be made
therein without departing from the spirit and scope of the invention as defined by

the following claims.

-57-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

CLAIMS

What is claimed is:
1. A method for managing security information comprising the steps of:

receiving raw events from one or more data sources;

classifying the raw events;

storing the raw events;

assigning a ranking to each raw event;

identifying relationships between two or more raw events;

in response to identifying any relationships between two or more raw
events, generating a mature correlation event message; and

displaying one or more mature correlation event messages on a console

that describe relationships between raw events.

2. The method of claim 1, wherein each raw event comprises suspicious computer

activity detected by one of an automated system and human observation.

3. The method of claim 1, wherein the step of receiving raw events from one or
more data sources further comprises the step of receiving real-time raw events
from one of intrusion detection system, a detector within an intrusion detection

system, and a firewall.

4. The method of claim 1, wherein the step of receiving raw events from one or
more data sources further comprises the step of receiving raw events from one of

a file and database.

5. The method of claim 1, wherein the step of classifying the raw events further
comprises the steps of:

identifying an event type parameter for each raw event;

comparing the event type parameter with an event type category of a list;

and

-58-

WO 01/84285 PCT/US01/13799

10

15

20

25

30

assigning each raw event to a corresponding event type category in the list.

6. The method of claim 1, wherein the step of assigning a ranking to each raw
event further comprises the steps of:

comparing parameters of each raw event with information in a database;
and

assigning additional parameters to each raw event relating to the

environment of the raw event.

7. The method of claim 6, wherein the additional parameters comprise one of a
priority status, a vulnerability status, a historical frequency value, a source zone

value, a destination zone value, a detector zone value, and a text string.

8. The method of claim 1, wherein the step of assigning a ranking to each raw
event further comprises the steps of:

identifying a priority status parameter of a raw event;

comparing each raw event to information contained in a context database;

changing the priority status parameter of a respective raw event if a match
occurs in response to the comparison step; and

leaving the priority status in tact if a match does not occur in response to

the comparison step.

9. The method of claim 1, wherein the step of identifying relationships between
two or more raw events further comprises the steps of:

associating each raw event with a rule which corresponds with a type
parameter of a raw event; and

applying one or more rules to groups of raw events having the same type
parameter; and

determining if a computer attack or security breach has occurred based

upon successful application of a rule.

-59-

WO 01/84285 PCT/US01/13799

10

15

10. The method of claim 1, wherein the step of storing raw events further
comprises the step of storing each raw event in a high speed memory device

comprising random access memory (RAM).

11. The method of claim 1, further comprising the step of determining the intent

of a computer attack based upon the type of mature correlation event generated.

12. The method of claim 1, further comprising the steps of:
creating a memory management list;
identifying a time stamp for each raw event; and

adding each raw event to the memory management list.
13. The method of claim 1, further comprising the step of creating a raw event

tracking index that identifies one or more software components that are

monitoring one or more raw events.

-60-

WO 01/84285 PCT/US01/13799

10

15

20

25

14. A method for determining relationships between two or more computer
events, comprising the steps of:

receiving a plurality of raw events having a first set of parameters;

creating raw event storage areas based upon information received from a
raw event classification database;

storing each event in an event storage area based upon an event type
parameter;

comparing each raw event to data contained in a context database;

adjusting a priority parameter or leaving the priority parameter in tact for
each raw event in response to the comparison to the context database;

associate each raw event with a correlation event;

applying one or more rules to each event based upon the correlation event
association; and

generating a mature correlation event message in response to a successful

application of a rule.

15. The method of claim 14, wherein each raw event comprises suspicious
computer activity detected by one of an automated system and human

observation.

16. The method of claim 14, wherein the context database comprises any one of
vulnerability values, computer event frequency values, and source and destination

zone values.

17. The method of claim 14, wherein the raw event classification database
comprises tables that include information that categorizes raw events based on any
one of the following: how a raw event may impact one or more target computers,
how many target computers that may be affected by a raw event, and how

respective raw events gain access to one or more target computers.

-61-

WO 01/84285 PCT/US01/13799

18. A security management system comprising:
a plurality of data sources;
an event collector linked to the plurality of data sources;
a fusion engine linked to the event collector, said fusion engine identifying
5 relationships between two or more raw events generated by the data sources; and
a console linked to the event collector for displaying ainy output generated

by the fusion engine.

19. The security management system of claim 18, further comprising a detector,
10 the detector running in a kernel mode of a computer and the fusion engine running

in a user mode of the computer.

20. The security management system of claim 18, further comprising a detector
chip, and the fusion engine comprising software running on a computer.

15
21. The security management system of claim 18, further comprising a detector

board, and the fusion engine comprising software running on a computer.

-62-

WO 01/84285 PCT/US01/13799

10

15

20

25

22. A fusion engine comprising:

a controller;

an event reader for receiving raw events;

a classifier linked to the event reader for classifying the received raw
events;

a raw event classification database linked to the classifier;

a context based risk-adjustment processor linked to the classifier, for
adjusting priorities of raw events;

a context database linked to the context based risk-adjustment processor;
and

a rule database, for determining if relationships exist between two or more

events.

23. The fusion engine of claim 22, further comprising an event reporter, a mature

event list, a memory management list, and a raw event tracking index .

24. The fusion engine of claim 22, wherein the context database comprises any
one of vulnerability values, computer event frequency values, and source and

destination zone values.

25. The fusion engine of claim 22, wherein the raw event classification database
comprises tables that include information that categorizes raw events based on any
one of the following: how a raw event may impact one or more target computers,
how many target computers that may be affected by a raw event, and how

respective raw events gain access to one or more target computers.

-63-

PCT/US01/13799

WO 01/84285

05t . 0gL
L "OId
g&_ sabed gaM\ | mmr
oneg | 'sddy /j, mur Y \\‘\
dLA/MMM VAVE T o, e oo ool
7
[seud Bred | Zhl p_SidS T~
wonom - I
Jepiroid ([coo o]
99INIBS 7
| zel
=
1 % N S ———
o4 | . ===
9k~
J lsydepy welsAs
i
o (04 ‘f Aeidsiq vl Bunesedo
= oﬁJ O03PIA
~— J9SMOY
PHOMISN wn soepolu . il >>»>>>\m_
JouIRlU| ealy QoeLBU| mu.__“ _ 44!
2901 %Emz _| | sweiboid
mw\ vzl SAlQ 0L} | uoneoyddy
g INOY-aAd onud —
8cl m_D _Q.hm_n_ _>_<N_ \ _\/_ON_
/ INOY-AD 1! / 701
ez’ | al | o |
_ _
g0l
oor 201] Ndd

WO 01/84285 PCT/US01/13799

2/12
[—l; I _|
28 usion 22 20
~ : Engine [| (
Data Sources | :; } 30
Network Detector(s) / 24
Host Detector(s) / N CEI\IIee:ttor <] » Console
Firewall(s) / | ’ |
Audit System(s) | |
Y
: Event | 26
FIG. 2 | Database T
_____ i
Fusion Engine 22
(User Mode) /‘
FIG. 3 Detector 28
(Kernel Mode) _
[28
. 28 —= DETECTOR =
4 —2la CHP
- a4 GNIZ’ 1]
DETECTOR) -
BOARD [~~~ I
~
=" FUSION 22
] ENGINE 1

(software)

FIG. 4 7
A mmm%

WO 01/84285 PCT/US01/13799

3/12
22 30
) [
Fusion Engine Console
24
J
____________ y
r—— = =7 Event Collector - — — — — — — — — — _
| | ! 590
| |

| o | |

28 Internet
L [Vs 28 580 570
Audit \ Network ! Y
Detector
System Detector | Eé(ternal N Router
outer
User | 520
Workstation
530
User - 920 \
Workstation Server Internal 500
/| (Attacked Host) Router /
\
i
| \540 Computer
g)- ——————— Detector |28 Network | Incident
| Detector | Source
28 < I
User) 28 |
Worf<stat|on Wo:liz?e:tion Detector Server |
N 520 = I . |
520 550
b e o ——— — _O_ ______ J

FIG. 5A

WO 01/84285 PCT/US01/13799

4/12

Detector Raw Event

515 Source IP Address 7]
525 Destination IP Address

535 ~—priority Status

545 ——|Vulnerability Status

555 —— Event Type

565

Time Stamp
FIG. 5B
/ 502

CoBRA Processed Raw Event

(From Detector) (From CoBRA Processor)
515 ——Source IP Address CoBRA Vulnerability Status — 504
525~ Destination IP Address Historical Frequency Value L 506
535 —— Priority Status* Source Zone————— 9508

(original + adjusted)
Destination Zone — 210
545 — Vuinerability Status

Sensor / Detector Zone— 212

555—— Event Type
Priority Change Reason ————|516

565 —— Time Stamp

FIG. 5C

WO 01/84285

503

5/12

/513

PCT/US01/13799

Mature Correlation Event # 2

|

505 I
/ P 507 / 509
! [/ !
Computer Incident .
Attacked Host Second Host Third Host
fﬂ”;cf — 2222 II— 3333 I—> 4444
Mature Correlation Event # 1
511 FIG. 5D

Correlation Event #1 /’—51 1

Inbound Attacks:

Raw Event [:

Source = Computer Incident Source (1.1.1.1)
Destination = Attacked Host (2.2.2.2)

Outbound Attacks:

Raw Event 1l
Source = Attacked Host (2.2.2.2)
Destination = Second Host (3.3.3.3)

FIG. 5E

Correlation Event #2 /

Inbound Attacks:

Raw Event Il
Source = Attacked Host (2.2.2.2)
Destination = Second Host (3.3.3.3)

Outbound Attacks:

Raw Event [lI:
Source = Second Host (3.3.3.3)t
Designation = Third Host (4.4.4.4)

~ 513

FIG. 5F

“;;;\\\\\\\\\\“\\sIKBZS

WO 01/84285 PCT/US01/13799
6/12
22
630 /’ 635
S 640 L
e e P S

| Context

Memory Raw Event

| (Kné);vledge Management r«—» Tr:z‘}\:ilnEV!igILx Classification

se) List 9 Database

| Database

FIG. 6

|
/_ Classifier . |
L Contro"er COBRA - (Event Type - - Correlatlon |
I > <
Processor Object(s)) Rule(s)
l 650 665 |
| A r 66.0 600 Y~ l
‘) Correlation
| b | Event(s) High | |
Correlation Event Reporter Event Reader Speed
| Event List > :mory |
l / A l
610 24
J 30
r
Fvent Log Event » Console
File Collector
A
26
Y)
Event
Database

WO 01/84285

A- 700

705

Any Event Info to

No Process?

Y
Goto
Step
785 Yes 710
\

Retrieve Event
Information from Data
sources

¢ 715

Arrange and assign Event
Information in predefined
format as a Raw Event
(Create Raw Event)

720

A

Ascertain type of event
and assign raw event to
corresponding event type
category in an event type
list

725
Is Context
Based
Risk Adjustment
(CoBRA)
Activated?

730

Yes

v

Compare Parameters of Raw
Event with information in
Context database and assign
context parameters for each
Raw Event based on Context
information

Y 735

Adust Priority Stafus or leave
original Status in tact based
upon assigned context
parameters or type
parameters or both

72

737

Send CoBRA
processed Raw event
or unprocessed Raw
event to output device

y 740

Associate Raw
Event(s) with
predetermined
Correlation rules
based upon event type

4

faRue /4°

corresponding with
Raw Event exists, does
Correlation Event
corresponding to the
rule exist?

No
v 750

Create Correfation
event(s) of predetermined
types in response fo
rule(s) association

v 755

Store Correlation Event(s)
in-separate High Speed
Memory devices

Associate Raw Event with
Correlation Eventof a |

predetermined type

765

s Current Correlation
vent already Mature?

PCT/US01/13799

Does
Current
Correlation Event
with newly associated
Raw Event meet -

Yes

¥ 775

Forward Mature Event
Message to Ouput Device
(i.e. - file, event collector,

console, efc.)

780

Generate and send
Correlation Event Update

» to Ouput Device (i.e. - file,
console, event collector,

Y
(Nt
NN

etc.)
785
Have any
mature Correlation
Events stopped 1
occuring?

|
Yes

+ 790

Send Message
indicating that
Correlation Event
has stopped (timed
out)

y 795

Erase Raw Events and
Correlation Events in
Memory Management List
that have met
predetermined conditions

-

End

FIG. 7

PCT/US01/13799

WO 01/84285

8/12

8 'Old

0gL

Y
AMV_HMMM Mow_ 09 58 (shusng mN@\xm 109ld0 > Sid Xel
! = uone[aLI0) uIssaosold
wsm_mtoo VHE0D
/
G99 mﬁ
_ 0s. _ 062 ‘082 ‘0L
vau_.om_.no _ 06. '08L .ou_n
\ (shoslqo Ispodey 10
an «—— : 3 o 109]10D
u o;m__ mw*l_ 09 ot \ma> 1 Juang JusAg 06 ‘08L ‘0LL—P~ JuonT
- G619 — /
029 ——1 4//&/ A
ovL \ 144
aseqejeq
—] (eseg abpsjmou)) - Juang mey _#MMW@N_ <01 St
Xejo) JUeAT BoT jueng
+ SiL
0€9 009 0L9
| aseqeleq
uolneouisse|D asegeleq
JUSAT mey JuSA]
7 \
Geo /
¢

WO 01/84285

Routine
720, Fig. 7

910

Place Raw Event data
in Classifier

\ 915

Identify time stamp of
each Raw Event

Y 920

Add each Raw Event to
a Memory Management
List based upon time
stamp

925

Store each Raw event
data in high speed
memory device
associated with Event
type object

y 930

Add Event type(s)
receiving Raw event
data to a Raw Event

Tracking Index

Return to Step 725 Fig. 7

FIG. 9

9/12

Routine
730, Fig. 7

v 1010

PCT/US01/13799

Assign Vulnerabilty value for each
Raw Event based upon
destination IP information and
comparison with Context
database (i.e.
believed_vulnerable, believed_not
vulnerable, and unknown, etc.)

} 1030

Assign sensor zone value to
each Raw Event based upon
sensor |IP address and
comparison with Context
database

Y 1015

Assign Historical Frequency
Value for each Raw Event |
based upon comparision with
Context database

1020

Assign source zone value to
each Raw Event based upon
source IP address and
comparison with Context
database

\ 1025

Assign destination zone value
to each Raw Event based
upon destination IP address
and comparison with Context
database

Return to Routine 735,

Fig. 7

FIG. 10

WO 01/84285

Routine
735,
From
Fig. 7

1110

[s target resistant

NO to attack?

Continue
to Fig. 12

Yjs 1115

Compare Raw Event
to vulnerability-
adjustable event

types stored in a list

Does a
match Exist with
stored vulnerability-
adjustable
events?

Yes

1125
§ Raw Event a
lowest priority
status?
(from mtg.)

10/12

; 1130

Reduce priority of Raw
Event and record reason
for change in Raw Event

(i.e. - believed not
vulnerable)

1135

Compare Raw Event
to frequency-
adjustable event
types stored in a list

Does a match
Exist with stored
frequency-adjustable
event types?

Yes

Does a historical
frequency exist for
current Raw Event?

PCT/US01/13799

1155

Is current Raw
Event's historical
frequency greater than
the frequent event
threshold?

Yes

1160

Raw Event at
lowest priority
status?
(from mtg.)

No

Reduce priority of Raw
Event and record reason
for change in Raw Event Yes

(i.e. - event occurs
frequently)

Continue
»{0 Fig. 12/«

FIG. 11

WO 01/84285

1210

Compare Raw Event to
zone-adjustable event
types stored in a list

Does a match
Exist with stored zone-
adjustable event types?

Yes

Are both Source Zone
and Desitination Zone of Raw
event internal?

Yes

1225

Is Raw Event at
lowest priority status?

No

[P

11/12

1230

Reduce priority of Raw
Event and record reason
for change in Raw Event

(i.e. - internal attack)

PCT/US01/13799

Routine 740,
From Fig. 7

1310

-

Update all lists containing
Raw Event to reflect any
CoBRA changes

|

1315

Return to Routine
740, Fig. 7

FIG. 12

Determine which Correlation
Rules should Process Raw
Event

Routine
785, From
Fig. 7

Return to Step 745,
Fig. 7

FIG. 13

1510

Compare current time with
times of Correlation Events
listed in Mature Event

timed out list

Event time exceed
predetermined
threshold?

Return to Step 790,

Fig. 7

FIG. 15

Return to Step 795,
Fig. 7

WO 01/84285

Mature Correlation
Event Routine 770,
From Fig. 7

1410
A

Add Event type(s) receiving
Raw event data to a Raw
Event Tracking Index, Add
Correlation Event to
Memory Management List

1415

Is Raw Event being
considered as an
inbound attack?

Yes

1420

Is Raw Event an
Integrity attack that
precedes at least one
event in outbound list of
correlation event?

PCT/US01/13799

12/12

1425
Does Raw Event
follow
at least one event in
inbound list of Correlatio
Event?

()

1427

Y

Remove any outbound
events from Correlation
Event that precede
earliest inbound event

1430

/

Remove Correlation
Event from Memory
Management List

1435

Set update time of
Correlation Event

1440

Add Correlation event to
Mature Event list

1445

Indicate Correlation Event
containing these two or
more Raw Events is
mature

Return to Step 775,

Fig. 7

Return to Step 785,

Fig. 7

FIG. 14

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

