(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(10) Internationale Veröffentlichungsnummer
WO 2005/066497 A1

(51) Internationale Patentklassifikation²: F04C 2/356,
F01C 21/08, F04C 15/00, F01C 21/00

(54) Title: ROTARY PUMP PROVIDED WITH AN AXIALLY MOVABLE BLADE

(54) Bezeichnung: DREHKLÖBENPUMPE MIT AXIAL BEWEGLICHEM FLÜGEL

(21) Internationales Aktenzeichen: PCT/DE2004/002789

(22) Internationales Anmeldedatum:

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(81) Bestimmungstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL,
AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
Auf der Innenseite der Rückwand (14) ist eine dünne Platte (15, 15.2) oder eine Beschichtung so vorhanden, dass durch das Pumpengehäuse (12) hindurch gepumptes Medium zumindest mit der Rückwand (14) nicht in Berührung kommt. Die dünne Platte (15, 15.2) oder die Beschichtung bestehen aus einem die Eigenschaften dieses Mediums berücksichtigenden Material. Die Rückwand (14) besteht aus rohem Material, wie insbesondere aus Gussmaterial.
DREHKOLOBPUMPE MIT AXIAL BEWEGLICHEM FLÜGEL

TECHNISCHES GEBIET

STAND DER TECHNIK

DARSTELLUNG DER ERFINDUNG

Ausgehend von diesem vorbekannten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine zu betreibende Pumpe der eingangs genannten Art anzugeben.

Diese Erfindung ist durch die Merkmale des Hauptanspruchs gegeben. Sinnvolle Weiterbildungen der Erfindung sind Gegenstand von sich an den Hauptanspruch anschließenden weiteren Ansprüchen.

Die Rückwand des Pumpengehäuses kann an einem Halteflansch lösbar befestigt sein. Durch diesen Halteflansch und die Rückwand sowie die Rückwand innenseitig verkleidende dünne Platte hindurch ragt dann die mit dem Rotor drehfest verbundene Antriebswelle.

Lagerstellen für die Antriebswelle können im Halteflansch beziehungsweise im Bereich der Rückwand und andererseits im Innenraum des Pumpengehäuses ausgebildet sein.

So kann innerhalb des vom Rotor in axialer Richtung eingenommenen Lichtraumbereichs eine Lagerstelle für die Antriebswelle vorhanden sein. Die Antriebswelle
kragt also nicht mehr frei in den Pumpenraum hinein, sondern ist innerhalb des vom Rotor in axialer Richtung eingenommenen Lichtraumbereichs oder aber vorzugsweise in dem vom Rotorkragen in axialer Richtung eingenommenen Lichtraumbereich, in radialer Richtung abgestützt gelagert.

Die extrem großen Durchbiegungen, die bei entsprechend hohen Arbeitsdrücken konstruktiv im Stand der Technik berücksichtigt werden müssen, treten nunmehr nicht mehr auf. Das bedeutet, dass die Lagerausbildungen der Antriebswelle und die Ausbildung der Antriebswelle selber nicht mehr so stark dimensioniert werden müssen, dass die Durchbiegungen in Kragendbereich der Antriebswelle entsprechend gering werden. Die innerhalb des Pumpengehäuses vorhandene Lagerstelle für die Antriebswelle hat den weiteren Vorteil, dass die Baulänge der Pumpe gegenüber der vorbekannten Pumpe wesentlich kürzer wird; auf den von außen angeflanschten hohlzylindrischen Wellenträger gemäß dem vorbekannten Stand der Technik, an dessen zum Pumpengehäuse entfernteren Ende eine weitere Lagerstelle für die Antriebswelle ausgebildet ist, kann nämlich nunmehr verzichtet werden. Die ausreichende Lagerung der Antriebswelle kann im Bereich der Rückwand der Pumpe und innerhalb des vom Rotor beziehungsweise seines Rotorkragens in axialer Richtung eingenommenen Lichtraumprofils vorgesehen werden.

Wie schon erwähnt, muss der Rotorkragen möglichst dicht an den den Pumpkanal in axialer Richtung begrenzenden, feststehenden Wandbereichen anliegen, um einen entsprechend hohen Wirkungsgrad der Pumpen zu ermöglichen. Um nun

Mit der erfindungsgemäßen Pumpe ist es daher nicht mehr nötig, zur Vermeidung der vorstehenden Problematis auf leistungsstärkere Pumpen zurückzugreifen; nicht mit voller Leistung betriebene leistungsstärkere Pumpen weisen entsprechend kleinere Durchbiegungen auf, so dass die Toleranzenproblematis sich günstiger darstellt. Solche größeren Pumpen, die betriebstechnisch an sich nicht erforderlich wären, erhöhen die Betriebskosten einer solchen Pumpe.

Aufgrund der zusammen mit dem Wellenträger ein frei auskragendes Konstruktionsteil bildenden Antriebswelle kann der Rotor in Art einer Stirnkappe die Antriebswelle und dabei auch den Wellenträger stirmseitig umfassen. Dies erlaubt dann eine einfache Montage und Demontage des Rotors, indem der Rotor axial auf die Antriebswelle drehfest aufgeschoben und beispielsweise mittels einer Halte- oder Verschlussmutter axial unverrückbar an der Antriebswelle gehalten werden kann.
Die Lagerstelle der Antriebswelle kann auf der Innenseite des Wellenträgers ausgebildet sein. Auf der dazu gegenüberliegenden Außenseite des Wellenträgers kann eine zusätzliche Lagerstelle für den Rotor ausgebildet sein, sofern die Kappenwand des Rotors nicht so biegsteif ist, dass die drehfeste Lagerstelle des Rotors an der Antriebswelle ausreicht.

Die im Kragendbereich des Wellenträgers vorhandene jeweilige Lagerstelle für die Antriebswelle und für den Rotor, sofern letztere zusätzlich zu der drehfesten Lagerung des Rotors vorgesehen wird, können in derselben axialen Querschnittsebene angeordnet werden.

Um möglichst schlanke Lager auszubilden, kann jede Lagerstelle aus mehreren, in axialer Richtung nebeneinanderliegenden Lagern bestehen.

Neben dieser vorstehend beschriebenen, innerhalb des Pumpengehäuses vorhandenen ersten Lagerstelle kann eine zweite Lagerstelle für die Antriebswelle im Bereich der dem motorischen Antrieb benachbarten Rückwand der Pumpe vorhanden sein. Bei sehr leichten Pumpenkonstruktionen könnte auf diese zweite Lagerstelle auch verzichtet werden und die Antriebswelle erst im Bereich des motorischen Antriebes gelagert werden.

Es hat sich als vorteilhaft herausgestellt, das Pumpengehäuse an einem Lagerstuhl so zu befestigen, dass das Pumpengehäuse in verschiedenen Drehstellungen an demselben befestigt werden kann. Auf diese Weise können der Einlass und der Auslass den entsprechenden örtlichen Gegebenheiten auch bei einer kreiszylindrischen Außenkontur des Pumpengehäuses optimal räumlich angepasst werden. Ein solcher Lagerstuhl kann einen Halteflansch besitzen, an dem das Pumpengehäuse beispielsweise in der jeweils gewünschter Drehstellung angeschraubt werden kann. Die Antriebswelle durchdringt dann diesen Halteflansch und endet in dem Pumpengehäuse.
Die vorstehend bereits erwähnte, hilfweise vorhandene zweite Lagerstelle für die Antriebswelle kann dann im Halteflansch vorgesehen werden.

Alternativ dazu könnte diese zweite Lagerstelle auch in der Rückwand des Pumpengehäuses vorgesehen werden.

Der in das Pumpengehäuse frei hineinkragende Wellenträger kann an der Rückwand des Pumpengehäuses oder auch an dem Halteflansch biegesteif befestigt werden. Der Wellenträger, der in diesem Falle nicht gewichtsmaßiger Bestandteil des Pumpengehäuses ist, muss beim Abnehmen des Pumpengehäuses vom Halteflansch nicht gewichtsmaßig berücksichtigt werden.

Der Deckel des Gehäuses kann einen umlaufenden, axialen Kragen aufweisen, der von außen an dem Endbereich der Mantelwand dicht anliegt. Dadurch wird verhindert, dass sich die dünne Mantelwand durch die im Inneren des Pumpengehäuses herrschenden Drücke allzu leicht verformt.

Weitere Vorteile und Merkmale der Erfindung sind den in den Ansprüchen ferner angegebenen Merkmalen sowie den nachstehenden Ausführungsbeispielen zu entnehmen.

KURZE BESCHREIBUNG DER ZEICHNUNG

Die Erfindung wird im Folgenden anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher beschrieben und erläutert. Es zeigen:

Fig. 1 einen Vertikal-Längsschnitt durch eine erste Ausführungsform einer erfindungsgemäßen Pumpe,

Fig. 2 einen Vertikal-Längsschnitt durch eine zweite Ausführungsform einer erfindungsgemäßen Pumpe.

WEGE ZUM AUSFÜHREN DER ERFINDUNG

Die in Fig. 1 dargestellte Pumpe 10 ist mit der Rückwand 14 ihres Gehäuses 12 mittels Schrauben 16 an dem Halteflansch 18 eines Lagerstuhls 20 angeschraubt. Das Gehäuse 12 ist um seine Achse 22 im wesentlichen rotationssymmetrisch

Die in Fig. 1 linke Stirn wand 26 der Mantelwand 24 liegt in einer Ringnut 25 eines das Gehäuse 12 in axialer Richtung verschließenden Deckels 28. Der Deckel 28 ist über mehrere, umfangsmäßig am Deckel 28 verteilt angeordnete Stiftschrauben, von denen in Fig. 1 lediglich zwei derselben mit ihrer Stiftschrauben-Achse 30 dargestellt sind, in der Rückwand 14 festgeschraubt. Die Stiftschrauben führen durch den Innenraum des Gehäuses 12 und durch die dünne Platte 15 hindurch. Von den Stiftschrauben ist in Fig. 1 die außenseitig aufgeschraubte Ringmutter 34 dargestellt. Zwischen der Stirnseite 26 der Mantelwand 24 und dem Deckel 28 ist in der in dem Deckel 28 umlaufenden Ringnut 25 ein O-Ring 36 eingelegt, der für die erforderliche Dichtheit sorgt. Der Deckel 28 umgreift von außen den - in Fig. 1 - linken Endbereich 23 der Mantelwand 24 mit einem sich in Richtung zur Rückwand 14 hin axial erstreckenden, einstücki g an ihm angeformten Kragen 29.

Die Innenwandung der Mantelwand 24 kann kreiszylindrisch oder zwecks leichteren Ausformens beim Herstellen des aus der dünnen Platte 15 und der Mantelwand 24 bestehenden einteiligen Stückes leicht konisch ausgebildet sein.

Die an den beiden Enden der Stiftschraube vorhandenen Gewindeabschnitte sind im Durchmesser kleiner als der Durchmesser des im Innenraum des Gehäuses 12 vorhandenen Stiftschrauben-Schaftes, so dass jede den Deckel 28 und die Rückwand 14 miteinander verschraubbende Stiftschraube den Deckel 28 und die Rückwand 14 im gegenseitigen festgelegten Abstand aneinander hält.

Der Lagerstuhl 20 besitzt eine im vorliegenden Beispielsfalle rechtwinklig mit ihm verbundene Fußplatte 38, mit der das Gehäuse 12 und damit die Pumpe 10 auf einem Untergrund 40 aufgestellt werden kann. Dieser Untergrund 40 kann auch ein Konstruktionsteil sein, das beliebig im Raum ausgerichtet sein kann, denn beispielsweise mittels einer Verschraubung, von der zwei Verschraubungsachsen 42 dargestellt sind, kann die Fußplatte 38 und damit der gesamte Lagerstuhl 20 an besagtem Untergrund 40 lösbar fest werden.

Zentral durch den Wellenträger 50 hindurch ragt eine Antriebswelle 60. Das - in Fig. 1 - rechte Ende der Antriebswelle 60 ist mittels einer Passfeder 62 drehfest an der in der Zeichnung nicht dargestellten Abtriebswelle eines motorischen Antriebes anschließbar, so dass die Antriebswelle 60 in beiden Rotationssrichtungen antreibbar ist.

An dem im Innenraum des Gehäuses 12 endenden Kragende 64 der Antriebswelle 60 ist ein Rotor 70 drehfest befestigt. Der Rotor 70 ist - bezogen auf die Fig. 1 - von links auf das Kragende 64 der Antriebswelle 60 aufgeschoben und mittels einer endseitig auf der Antriebswelle 60 aufgeschraubten Verschlussmutter 66 in seiner aufgesteckten, drehfesten Position lagefixiert gehalten. Die Verschlussmutter 66 liegt über einem O-Ring 68 abgedichtet an der Stirnwand 72 des Rotors 70 an.

Der Rotor 70 besitzt eine Rotornabe 74, die eine zentrale, zur Rückwand 14 hin zeigende Ausnehmung aufweist, so dass die Rotornabe 74 in Form einer Kappe den Kragendbereich 76 der Antriebswelle 60 von außen mit Abstand umgreift. An den Kragendbereich 76 schließt sich in Richtung des auskragenden Endes der Antriebswelle 60 das Kragende 64 und daran der Schraubbereich für die Verschlussmutter 66 an.

Im Kragendbereich 76 ist ein Kegelrollenlager 80 beziehungsweise Schrägrollenlager zwischen der Antriebswelle 60 und dem Wellenträger 50 ausgebildet. Dieses Kegelrollenlager 80 kann insbesondere radiale, darüber hinaus auch axiale Kräfte aufnehmen. Derartige auf den Rotor 70 einwirkende Kräfte können über dessen Rotornabe 74 und über die Antriebswelle 60 auf den Wellenträger 50 und letztendlich auf den Lagerstuhl 20 übertragen beziehungsweise abgetragen werden. Das Kegelrollenlager 80 bildet damit eine im Innenraum des Gehäuses 12
vorhandene Lagerstelle für die Antriebswelle 60, da das Kegelrollenlager 80 durch seine Abstützung am Wellenträger 50 lagemäß in dem Gehäuse 12 praktisch fest angedeutet ist. Die Antriebswelle 60 wird damit im Bereich des Kegelrollenlagers 80 abgestützt gehalten.

Das Kegelrollenlager 80 ist auf der - in Fig. 1 - linken Seite durch eine Schulterverbreiterung 82 der Antriebswelle 60 und auf der dazu entgegengesetzten, rechten Seite durch einen in einer Wellenmut einsitzenden, axial abgestützten Lagerinnenring 84 gehalten. Radial außenseitig wird das Kegelrollenlager 80 zwischen einem endseitig auf den Wellenträger 50 aufgeschraubten Abstützuring 86 und einem in den Wellenträger 50 eingefügten Rücksprung 88 lagefixiert gehalten.

Zum Zwecke der Abdichtung ist außenseitig des Abstützringes 86 ein Wellendichtring 90, der an der Schulterverbreiterung 82 dichtend anliegt, angeordnet.

Auf der zum Kegelrollenlager 80 gegenüberliegenden Außenseite des Wellenträgers 50 ist ein Radial-Nadellager 92 zwischen dem Wellenträger 50 und der Rotornabe 74 angeordnet. Die Rotornabe 74 stützt sich auch über dieses Nadellager 92 auf dem Wellenträger 50 ab. Dieses Lager 92 wird - bezogen auf die Fig. 1 - auf seiner linken Seite durch einen Wellendichtring 94, der zwischen der Rotornabe 74 und dem Wellenträger 50 vorhanden ist, abgedichtet. Auf seiner dazu entgegengesetzten - bezogen auf die Fig. 1 - rechten Seite schließt sich an das Radial-Nadellager 92 eine Dichtringaufnahme 100 an.

Diese Dichtringaufnahme 100 liegt rotationsfest an der Innenseite der Rotornabe 74 an. Die einen rotationssymmetrischen Querschnitt aufweisende Dichtringaufnahme 100 ragt mit ihrem Wandendbereich 102 durch die Rückwand 14 hindurch.

ausgebildete, in der Zeichnung nicht dargestellte Öffnungen nach außen treten kann.

An einer radial einspringenden Schulter 108 der Dichtingaufnahme 100 stützt sich ein Wellendichtring 110 ab, der abdichtend an der Außenseite des Wellenträgers 50 anliegt. Zusammen mit dem Wellendichtring 94 dichtet er das Radial-Nadellager 92 in axialer Richtung beidseitig ab.

Im Bereich des Halteflansches 18 ist ein weiteres Lager zwischen der Antriebswelle 60 und dem Wellenträger 50 in Form eines Kugellagers 114 vorhanden. Dieses Kugellager 114 ist zur Außenseite des Halteflansches 18 hin über einen Wellendichtring 116 abgedichtet, der seinerseits über einen von außen her auf den Halteflansch 18 aufgeschraubten Schraubring 118 gehalten ist.

Bei der in Fig. 1 dargestellten Konfiguration sind die Kegelrollenlager 80 und das Radial-Nadellager 92 in derselben Querschnittsebene 112 angeordnet.

Diese Querschnittsebene 112 liegt innerhalb des axialen Bereichs der Rotornabe 74 und darüber hinaus auch in dem axialen Querschnittsbereich des an der Rotornabe 74 einstückig angeformten Rotorkragens 120.

Dieser Rotorkragen 120 besitzt eine umlaufende wellenförmige Gestalt, so wie dies in der vorstehend zum Stand der Technik bereits erwähnten DE 34 18 708 A1 ausführlich beschrieben ist.

-11-

Die - bezogen auf die Fig. 1 - Oberseite der Frontbüchse 140 bildet den Boden des Ansaugraumes beziehungsweise des Auslassraumes 150, über die der Pumpkanal 124 einerseits mit dem Einlass 152 und andererseits mit dem Auslass der Pumpen 10 jeweils verbunden ist. Die Längsachsen 154 des Einlasses 152 und des Auslasses stehen im vorliegenden Beispielsfall rechtwinklig aufeinander.

Fluchtend zur Oberseite der Frontbüchse 140 ist auf der - bezogen auf Fig. 1 - rechten Seite der Rotornabe 74 ein Haltering 160 mit seiner Oberseite positioniert. Dieser Haltering 160 bildet mit seiner Oberseite ebenso wie die Frontbüchse 140 den Boden des Ansaugraumes beziehungsweise des Auslassraumes 150.

Der Haltering 160 ist über umfanglich verteilt angeordnete Schrauben 176 an der Rückwand 14 befestigt.

Die aus den beiden Gleitringen 164, 165 beziehungsweise 166, 167 gebildeten Abdichtungen können beide in axialer Richtung in beliebiger gegenseitiger Ausrichtung angeordnet sein.

Der Ansaugraum und der Auslassraum 150 sind durch eine Schieberführung 162, die eine dichte Absperrplatte zwischen diesen beiden Räumen darstellt, voneinander druckmäßig getrennt. An der Schieberführung 162 liegt ein Dichtschieber 182 in axialer Richtung hin und her bewegbar an. Der Dichtschieber 182 ist in dem Auslassraum 150 angeordnet, so dass er durch den dort herrschenden Druck, der größer ist als der im Ansaugraum herrschende Druck, dicht an der Schieberführung 162 bei seiner Hin- und Herbewegung anliegt. In dem Dichtschieber 182 ist ein nach unten offener, zentraler Durchbruch 184 für den Rotorkragen 120 vorhanden. Der Rotorkragen 120 liegt bei seiner rotierenden Bewegung mit seinen beiden in axialer Richtung seitlichen Kragenwänden, von denen in Fig. 1 seine eine Seitenwand 186 sichtbar ist, dicht an. Dieses Konstruktionsprinzip ist ebenfalls in der bereits vorstehend erwähnten DE 34 18 708 A1 ausführlich beschrieben.

Der Dichtschieber 182 wird auf seiner zur Schieberführung 162 entgegengesetzten Seite durch in der Zeichnung nicht dargestellte Konstruktionsteile, die mit dem Gehäuse 12 fest verbunden sind, gehalten, so dass der Dichtschieber 182 auch bei gegenüber der Darstellung in Fig. 1 gestürzten, anderen, am Halteflansch 18 angeschaubten Drehstellungen seine dichte Lage an der Schieberführung 162 beibehält und nicht von der Schieberführung 162 beispielsweise in Umfangsrichtung wegfällt. Die Schieberführung 162 kann beispielsweise durch eine der mit ihrer Achse 30 dargestellten Stiftschrauben lagemäßig zwischen dem Deckel 28 und der dünnen Platte 15 fixiert werden.

Aus der Rückwand 14 ragen in den Zwischenraum 106 umfangsmäßig verteilt mehrere Leckabläufe 190 hinein. Diese schlauch- beziehungsweise röhrenförmigen Leckabläufe 190 verbinden über in der Zeichnung nicht dargestellte, in dem Wellenträger 50 ausgebildete Längs- und Querbohrungen die einzelnen Lagerräume miteinander, so dass sie zur Schmierung dieser Lager zu verwenden sind.
Die in Fig. 2 dargestellte Pumpe 10.2 ist prinzipiell wie die vorstehend beschriebene Pumpe 10 aufgebaut. Auch ihre Rückwand 14.2 ist durch eine dünne Platte 15.2 abgedeckt. Die Platte 15.2 bildet mit der Mantelwand 24.2 ein einteiliges, als Tiefziehteil hergestelltes topfartiges Gehäuseteil. Statt der Platte 15.2 könnte wiederum eine Beschichtung vorgesehen werden.

Das Kegelrollenlager 80 und das Radial-Nadellager 92 liegen in derselben axialen Querschnittsebene 112, die innerhalb des von dem Rotorkragen 120 in axialer Richtung eingenommenen Lichtraumbereiches liegt. Das im Bereich des Halteflansches 18.2 vorhandene weitere Lager, das im vorliegenden Beispielsfall ebenfalls ein als Kugellager 114 ausgebildetes Hilfslager für die Antriebswelle 60.2 darstellt, ist statt des Schraubringes 118 der Pumpe 10 nunmehr ein die Wellendichtung 116 axial haltender Haltering 118.2 vorhanden, der mittels Schrauben 117 an dem Wellenträger 50.2 festgeschraubt gehalten wird.

Als weitere Unterschiede zur Pumpe 10 sind bei der Pumpe 10.2 ihr Deckel 28.2 außenseitig ebenflächig und ihre Rückwand 14.2 ohne die bei der Rückwand 14 im unteren Bereich vorhandene Querschnittsverstärkung ausgebildet.

Der Haltering 160.2, der dem Haltering 160 entspricht, besitzt aufgrund der zur Pumpe 10 anderen räumlichen Gegebenheiten eine etwas andere Querschnittsform als der Haltering 160. Seine Funktion ist wie beim Haltering 160 vorhanden; über zwei an ihm über Federringe in axialer Richtung wegrückend gehaltene Gleitringe 165.2, 167.2 liegt er dichtend an in der Rotornabe 74.2 eingeförmter gehaltenen Dichtringen 164.2 beziehungsweise 166.2 an.

Das Kegelrollenlager 80 wird an seiner radialen Innenseite statt des in der Pumpe 10 vorhandenen Lagerinnenringes 84 durch einen Schraubring 84.2 abgestützt gehalten.

Der Zwischenraum 106 ist über die Leckläufe 190 und Quer- und Längsbohrungen 196, 198 mit den einzelnen Lagern verbunden, so dass einerseits Lager mit Ölschmierung versehen werden können, andererseits bei Leckagen entsprechende Medien in den Zwischenraum 106 und von dort aus durch in der Zeichnung nicht dargestellte, in dem Halteflansch 18 beziehungsweise 18.2 vorhandene Öffnungen aus der Pumpe 10 beziehungsweise 10.2 herausfließen können.
Ansprüche

01. Pumpe (10, 10.2)
- mit einem einen Deckel (28, 28.2), eine Rückwand (14, 14.2) und eine
dazwischen angeordnete Mantelwand (24) aufweisenden Pumpengehäuse
(12),
- mit einem Rotor (70), der drehfest auf einer mit einem motorischen
Antrieb verbindbaren Antriebswelle (60, 60.2) vorhanden ist und der
einen radial wegstehenden, wellenförmig umlaufenden Rotorkragen (120)
besitzt,
- mit den Rotorkragen in axialer Richtung beidseitig begrenzenden, einen
Pumpkanal (124) zwischen sich freilassenden Begrenzungsf lächen,
- mit einem Einlass (152) und einem Auslass für den Pumpkanal (124),
- mit einem in axialer Richtung verstellbaren, an dem Rotorkragen (120) in
axialer Richtung beidseitig dichtend anliegenden und den Pumpkanal
(124) zwischen dem Einlass (152) und dem Auslass unterteilenden
Dichtschieber (182),
- dadurch gekennzeichnet, dass
- eine dünne Platte (15, 15.2) oder eine Beschichtung zumindest auf der
Innenseite der Rückwand (14, 14.2) so vorhanden ist, dass durch das
Pumpengehäuse (12) hindurch gepumptes Medium zumindest mit der
Rückwand (14, 14.2) nicht in Berührung kommt,
- diese dünne Platte (15, 15.2) oder diese Beschichtung aus einem die
Eigenschaften dieses Mediums berücksichtigenden Material besteht,
- die Rückwand (14, 14.2) aus rohem Material, wie insbesondere aus
Gussmaterial besteht.

02. Pumpe nach Anspruch 1,
- dadurch gekennzeichnet, dass
- die Mantelwand (24, 24.2) aus einer die Eigenschaften des
Fördermediums berücksichtigenden dünnen Wand besteht.
03. Pumpe nach Anspruch 2,
- dadurch gekennzeichnet, dass
- die Mantelwand (24, 24.2) einteilig mit der dünnen Platte (15, 15.2) verbunden ist.

04. Pumpe nach Anspruch 3,
- dadurch gekennzeichnet, dass
- der von der Mantelwand (24, 24.2) umschlossene Innenraum des Pumpengehäuses (12) sich zum Deckel (28, 28.2) hin konisch erweitert.

05. Pumpe nach einem der vorstehenden Ansprüche,
- dadurch gekennzeichnet, dass
- die Rückwand (14, 14.2) an einem Halteflansch (18, 18.2) lösbar befestigt ist.

06. Pumpe nach Anspruch 5,
- dadurch gekennzeichnet, dass
- die Antriebswelle (60, 60.2) den Halteflansch (18, 18.2) durchdringt und in dem Pumpengehäuse (12) endet.

07. Pumpe nach Anspruch 6,
- dadurch gekennzeichnet, dass
- eine Lagerstelle für die Antriebswelle (60, 60.2) im Halteflansch (18, 18.2) vorhanden ist.

08. Pumpe nach einem der Ansprüche 5 bis 7,
- dadurch gekennzeichnet, dass
- das Pumpengehäuse (12) in verschiedenen Rotationsstellungen an dem Halteflansch (18, 18.2) befestigbar, wie insbesondere festschraubbar ist.
09. Pumpe nach einem der vorstehenden Ansprüche,
 - dadurch gekennzeichnet, dass
 - aus Richtung der dem motorischen Antrieb benachbarten Außenwand
 der Pumpe ein hülsenförmiger, die Antriebswelle (60, 60.2) in sich
 tragender Wellenträger (50, 50.2) vorhanden ist,
 - im Kragendbereich (76) des Wellenträgers diese erste Lagerstelle für die
 Antriebswelle vorhanden ist,
 - der die Antriebswelle (60, 60.2) für den Rotor (70) in sich tragende und in
 das Pumpengehäuse (12) hineinragende Wellenträger (50, 50.2) an dem
 Halteflansch (18, 18.2) des Lagerstuhls (20) befestigbar ist.

10. Pumpe nach einem der vorstehenden Ansprüche,
 - dadurch gekennzeichnet, dass
 - der Deckel (28, 28.2) einen umlaufenden, axialen Kragen (29) aufweist,
 - dieser Kragen (29) von außen an einem Endbereich der Mantelwand (24,
 24.2) dicht anliegt.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 F04C2/356 F01C21/08 F04C15/00 F01C21/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 F04C F01C F04B A22C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>DE 34 18 708 A1 (SINE PUMPS N.V) 22 November 1984 (1984-11-22) cited in the application figures 3,17,18 page 42, line 13 - line 22 page 49, line 1 - page 51, paragraph 2</td>
<td>1,2,5-9</td>
</tr>
<tr>
<td>A</td>
<td>US 4 465 445 A (SOMMER ET AL) 14 August 1984 (1984-08-14) figure 2 column 2, line 3 - line 37 column 3, line 17 - line 30 column 8, line 32 - line 66</td>
<td>1,2,5-9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establishment of publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'*X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'*Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

'*S' document member of the same patent family

Date of the actual completion of the international search 22 April 2005

Date of mailing of the international search report 06/05/2005

Name and mailing address of the ISA European Patent Office, P.B. 5018 Patentbas 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fac. (+31-70) 340-3016

Authorized officer

Lequeux, F

From PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 3 396 667 A (SCHMITT ARMIN) 13 August 1968 (1968-08-13) column 1, line 69 - column 2, line 39</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>MASO PROCESS-PUMPEN; SUNDYNE CORPORATION: "MANUAL - TECHNICAL DOCUMENTATION MASO-SINE-PUMP MR 160" ANNOUNCEMENT SUNDYNE, January 2003 (2003-01), page COMPLETE11, XP001219572 page 3 page 10</td>
<td>1-10</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1224361 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3474051 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0129345 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1646588 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3007034 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 60045789 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4575324 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5045798 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 57122185 A</td>
</tr>
<tr>
<td>DE 4012789 A1</td>
<td>24-10-1991</td>
<td>NONE</td>
</tr>
<tr>
<td>US 3396667 A</td>
<td>13-08-1968</td>
<td>CH 463964 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1553031 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1157797 A</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

| IPK | F04C2/356 | F01C21/08 | F04C15/00 | F01C21/00 |

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

| IPK | F04C F01C F04B A22C |

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ

C. ALS WESENTLICH ANGESEHEN AN UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
--- | --- | ---

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

*Siehe Anhang Patenfamilie

Datum des Abschlusses der Internationalen Recherche

22. April 2005

Absendetermin des Internationalen Recherchenberichts

06/05/2005

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5816 Patentlinen 2 NL – 2230 HV Rijswijk Tel. (+31–70) 240-2040, Tx. 31 651 epos nl, Fax: (+31–70) 340-3016

Bevollmächtigter Beisitzer

Lequeux, F
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Begr. Anspruch Nr.</th>
</tr>
</thead>
</table>
| A | DE 40 12 789 A1
(MASO-DICKSTOFFPUMPEN-ENTWICKLUNGS- UND VERTRIEBSGESELLSCHAFT MBH, 7129)
Seite 7, Zeile 33 - Zeile 39 | 1 |
| A | US 3 396 667 A (SCHMITT ARMIN)
13. August 1968 (1968-08-13)
Spalte 1, Zeile 69 - Spalte 2, Zeile 39 | 1 |
| A | MASO PROCESS-PUMPEN; SUNDYNE CORPORATION:
"MANUAL - TECHNICAL DOCUMENTATION
MASO-SINE-PUMP MR 160"
ANNOUNCEMENT SUNDYNE,
Januar 2003 (2003-01), Seite COMPLETE11,
XP001219572
Seite 3
Seite 10 | 1-10 |
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA 1224361 A1</td>
<td></td>
<td></td>
<td>21-07-1987</td>
</tr>
<tr>
<td>DE 3474051 D1</td>
<td></td>
<td></td>
<td>20-10-1988</td>
</tr>
<tr>
<td>EP 0129345 A2</td>
<td></td>
<td></td>
<td>27-12-1984</td>
</tr>
<tr>
<td>JP 1646588 C</td>
<td></td>
<td></td>
<td>13-03-1992</td>
</tr>
<tr>
<td>JP 3007034 B</td>
<td></td>
<td></td>
<td>31-01-1991</td>
</tr>
<tr>
<td>JP 60045789 A</td>
<td></td>
<td></td>
<td>12-03-1985</td>
</tr>
<tr>
<td>US 4575324 A</td>
<td></td>
<td></td>
<td>11-03-1986</td>
</tr>
<tr>
<td>JP 5045798 B</td>
<td></td>
<td></td>
<td>12-07-1993</td>
</tr>
<tr>
<td>JP 57122185 A</td>
<td></td>
<td></td>
<td>29-07-1982</td>
</tr>
<tr>
<td>DE 4012789 A1</td>
<td>24-10-1991</td>
<td>KEINE</td>
<td></td>
</tr>
<tr>
<td>US 3396667 A</td>
<td>13-08-1968</td>
<td>CH 463964 A</td>
<td>15-10-1968</td>
</tr>
<tr>
<td>DE 1553031 A1</td>
<td></td>
<td></td>
<td>18-12-1969</td>
</tr>
<tr>
<td>GB 1157797 A</td>
<td></td>
<td></td>
<td>09-07-1969</td>
</tr>
</tbody>
</table>