发明名称
蓝牙载具控制系统及应用蓝牙系统管理载具的方法

摘要
本发明公开了一种蓝牙载具控制系统及应用蓝牙系统管理载具的方法，包含利用蓝牙系统取得载具与手持装置间之距离值，比较距离值与第一预设距离值及第二预设距离值之大小以及依据距离值与预设距离值之比较以使得载具开启不同之功能，甚至执行不同之动作。此外，蓝牙载具控制系统包含接收讯号之蓝牙收发装置、控制载具之载具控制装置以及执行取得距离值与比较距离值之处理器。其中，处理器藉由比较结果以使载具控制装置执行一动作。
1. 一种应用蓝牙系统管理载具的方法，其特征在于，至少包含下列步骤；
 利用所述蓝牙系统取得所述载具与一手持装置之间之一距离值；以及
 利用所述蓝牙系统判断所述距离值是否小于一第一预设距离值，若是，则令所述载具
 开启一第一功能，若否，则令所述载具开启一第二功能。

2. 根据权利要求1所述的应用蓝牙系统管理载具的方法，其特征在于，当所述蓝牙系
 统判定所述距离值大于所述第一预设距离值后，先判断所述距离值是否小于一第二预设距
 离值，若是，再令所述载具开启所述第二功能。

3. 根据权利要求2所述的应用蓝牙系统管理载具的方法，其特征在于，所述第二预设
 距离值介于50米至60米之间，所述第一预设距离值介于2米至3米之间。

4. 根据权利要求2所述的应用蓝牙系统管理载具的方法，其特征在于，所述蓝牙系统具
 有一记忆单元，所述第一预设距离值与第二预设距离值储存于所述记忆单元中。

5. 根据权利要求2所述的应用蓝牙系统管理载具的方法，其特征在于，所述蓝牙系统具
 有一输入装置，以让使用者利用所述输入装置设定所述第一预设距离值与第二预设距离值。

6. 根据权利要求1所述的应用蓝牙系统管理载具的方法，其特征在于，所述蓝牙系统
 包含一第一蓝牙装置与一第二蓝牙装置，所述第一蓝牙装置与第二蓝牙装置之一者设置于
 所述载具上，另一者设置于所述手持装置上，而取得所述距离值之一方法至少包含下列步
 骤：
 所述第一蓝牙装置传送一讯号至所述第二蓝牙装置，藉以使所述第二蓝牙
 装置得知所述讯号之一讯号强度；
 所述第二蓝牙装置依据所述讯号强度以得知所述距离值；以及
 所述第二蓝牙装置传送所述距离值至所述第一蓝牙装置，藉以使所述第一蓝牙装置得
 知所述距离值。

7. 根据权利要求1所述的应用蓝牙系统管理载具的方法，其特征在于，所述载具为二
 轮、四轮或二轮以上之一行动载具，所述手持装置为手机或钥匙。

8. 根据权利要求1所述的应用蓝牙系统管理载具的方法，其特征在于，所述第二功能
 为解除所述载具之一防盗系统，传送一载具讯号给所述手持装置或开启所述载具内部之至
 少一设备。

9. 根据权利要求1所述的应用蓝牙系统管理载具的方法，其特征在于，所述第一功能
 为解除锁定所述载具之一车门，解除锁定所述载具之一引擎或开启所述载具内部之至少一
 设备。

10. 一种蓝牙载具控制系统，其特征在于，至少包含：
 一蓝牙收发装置，藉由一蓝牙技术无线连接于一外部装置，所述蓝牙收
 发装置用以接收所述外部装置传输之一讯号；
 一载具控制装置，设置于一载具上且控制所述载具；以及
 一处理器，电连接所述蓝牙收发装置与载具控制装置，当该蓝牙收发
 装置传送所述讯号至所述处理器时，该处理器量测所述讯号之一讯号强度以藉由该
 讯号强度取得所述外部装置与载具之一距离值，接着所述处理器比较所述距离值与一预设
 距离值以得到一比较结果，所述载具控制装置与所述外部装置依据所述比较结果执行一动
蓝牙载具控制系统及应用蓝牙系统管理载具的方法

技术领域
[0001] 本发明是有关于一种蓝牙载具控制系统与应用蓝牙系统以执行动作之方法，特别是有关于一种可测距之蓝牙载具控制系统与应用蓝牙系统管理载具的方法。

背景技术
[0002] 现今之科技技术日异进展，举例而言，传统之载具之钥匙为机械式开启载具之车门或引擎，但现今之载具之钥匙则多为感应式钥匙，当使用者靠近载具时，若此载具感应到此感应式钥匙后，可自行开启锁定载具之车门或引擎，藉以减少使用者于使用载具时之麻烦。
[0003] 并且，现今之感应式钥匙多采用射频 (Radio Frequency, RF) 技术或无线射频识别 (Radio Frequency Identification, RFID) 技术。而此二种技术均为具有二个相对应之标签与识别器，当识别器感应到标签后，载具随即可自行开启锁定载具之车门或引擎。但是，此二种技术均为视线型 (Line of sight, LOS) 技术，因此其较易受到干扰而增加使用者之不方便性。此外，若需于不同距离之条件下分别进行不同之连结关系，则现今之技术均需使用不同之连结设备以分别进行不同之连结关系，如此一来，将增加使用成本及使用空间。

发明内容
[0004] 本发明的主要目的在于提供一种蓝牙载具控制系统及应用蓝牙系统管理载具的方法，从而使得蓝牙系统具有测距的功能。
[0005] 为达以上目的，本发明提出一种应用蓝牙系统管理载具的方法，其特征在于，至少包含下列步骤：
[0006] 利用所述蓝牙系统取得所述载具与一手持装置之间之一距离值；以及
[0007] 利用所述蓝牙系统判断所述距离值是否小于一第一预设距离值，若是，则令所述载具开启一第一功能，若否，则令所述载具开启一第二功能。
[0008] 优选地，当所述蓝牙系统判定所述距离值大于所述第一预设距离值后，先判断所述距离值是否小于一第二预设距离值，若是，再令所述载具开启所述第二功能。
[0009] 优选地，所述第二预设距离值介于 50 米至 60 米之间，所述第一预设距离值介于 2 米至 3 米之间。
[0010] 优选地，所述蓝牙系统具有一记忆单元，所述第一预设距离值与第二预设距离值储存于所述记忆单元中。
[0011] 优选地，所述蓝牙系统具有一输入装置，以让使用者利用所述输入装置设定所述第一预设距离值与第二预设距离值。
[0012] 优选地，所述蓝牙系统包含一第一蓝牙装置与一第二蓝牙装置，所述第一蓝牙装置与所述第二蓝牙装置其中之一者设置于所述载具上，另一者设置于所述手持装置上，而取得所述距离值之一方法至少包含下列步骤：
所述第一蓝牙装置传送一讯号至所述第二蓝牙装置，藉以使所述第二蓝牙装置得知所述讯号之一讯号强度；
所述第二蓝牙装置依据所述讯号强度以得知所述距离值；以及
所述第二蓝牙装置传送所述距离值至所述第一蓝牙装置，藉以使所述第一蓝牙装置得知所述距离值。
优选地，所述载具为二轮、四轮或二轮以上之一行动载具，所述手持装置为手机或钥匙。
优选地，所述第二功能为解除所述载具之一防盗系统，传送一载具讯号给所述手持装置或开启所述载具内部之至少一设备。
优选地，所述第一功能为解除锁定所述载具之一车门，解除锁定所述载具之一引擎或开启所述载具内部之至少一设备。
本发明同时提出一种蓝牙载具控制系统，其至少包含；
一蓝牙收发装置，藉由一蓝牙技术无线连结于一外部装置，所述蓝牙收发装置用以接收所述外部装置传输之一讯号；
一载具控制装置，设置于一载具上且控制所述载具；以及
一处理器，电连接所述蓝牙收发装置与载具控制装置，当该蓝牙收发装置传送所述讯号至所述处理器时，该处理器量测所述讯号之一讯号强度以藉由该讯号强度取得所述外部装置与载具之一距离值，接着所述处理器比较所述距离值与一预设距离值以得到一比较结果，所述载具控制装置依据所述比较结果执行一动作。
本发明所提供的一种蓝牙载具控制系统及应用蓝牙系统管理载具的方法，可藉由蓝牙系统测定载具与手持装置之间的距离值，并根据所测距离值之不同，使载具开启不同的功能，以使载具开放不同的权限给手持装置，进而使得载具与手持装置对应不同的情况，执行不同的动作。从而增加了传输与配对时的安全性及方便性。

附图说明
图 1 是本发明之蓝牙系统于测定距离值以执动作之步骤流程图；
图 2 是本发明之蓝牙系统取得距离值之步骤流程图；
图 3 是本发明之应用蓝牙系统管理载具的方法之实施步骤流程图；
图 4 是本发明之蓝牙载具控制系统之系统方块图；
图 5 是本发明之控制载具之手持蓝牙系统之系统方块图。
【主要组件符号说明】
100 - 414 : 步骤
500 : 蓝牙载具控制系统
510 : 车载蓝牙装置
511 : 蓝牙收发装置
512 : 处理器
513 : 记忆单元
514 : 警示装置
具体实施方式

[0050] 应当理解，此处所描述的具体实施例仅仅用以解释本发明，并不用于限定本发明。
[0051] 请参照图1，图1系为本发明之蓝牙系统于测定距离值以执行动作之步骤流程图。如图1所示，本发明可先进行步骤100，亦即设定预设距离值。其中，可例如于生产制造蓝牙系统时，即已设定好此预设距离值，亦或者，可让使用者藉由输入装置以设定此预设距离值。接着，可进行步骤200，亦即判定距离值与手持装置之距离值。其中，手持装置可例如为二轮载具、四轮载具或二轮以上之载具，举例而言，载具可例如为轿车、货车、公交车、游览车、机车、脚踏车、电动车、沙滩车或多功能休闲车。并且，手持装置可例如为手机或钥匙。
[0052] 继言之，本发明系藉由蓝牙系统以测定并取得载具与手持装置之距离值，且此蓝牙系统至少包含第一蓝牙装置与第二蓝牙装置，而此第一蓝牙装置与此第二蓝牙装置之一者例如设置于载具上，另一者例如设置于手持装置上。并且，第一蓝牙装置与第二蓝牙装置系相互配对。其中，由于任一蓝牙装置系具有独特的地址码，因此可藉由二地址码之相互配对，藉以使此二蓝牙装置相互配对。此外，第一蓝牙装置与第二蓝牙装置可能例如以点对点方式相互连接，藉以于传输数据时可不必经过第三者，进而增加传输与配对时之安全性及方便性。另外，蓝牙系统可使用跳频技术及藉由先进加密标准-128（advanced encryption standard，AES-128）进行加密，藉以进一步增加传输之安全性。
[0053] 请接续参阅图2，图2系为本发明之蓝牙系统取得距离值之步骤流程图。如图2所示，本发明于取得距离值时系首先进行步骤201，亦即令第一蓝牙装置传送测距讯号至第二蓝牙装置，藉以使得第二蓝牙装置得知测距讯号之讯号强度。其中，第一蓝牙装置与第二蓝牙装置之任二者系每隔一间隔时间即传送一讯号给另一者，因此，此讯号可作为测距讯号。其中，此间隔时间可例如为三秒、五秒、十秒或其它适合之时间。此外，测距讯号亦可例如为带有其它信息之讯号，亦或者为仅用以测知讯号强度之测距之讯号。若测距讯号为带有其它信息之讯号，则第二蓝牙装置于接收到测距讯号后，除了可以得知测距讯号之讯号强度外，亦可将测距讯号中之其它信息传输至与第二蓝牙装置相互连接或第二蓝牙装置本身之处理器，藉以进一步处理此其它信息。此外，第二蓝牙装置可例如利用讯号强度量测装置以得知此测距讯号之讯号强度。
接着，当第二蓝牙装置接收此测距讯号及得知此测距讯号之讯号强度后，可进行步骤202，亦即第二蓝牙装置依据测距讯号之强度，以得知或决定第一蓝牙装置与第二蓝牙装置之距离值。举例而言，第二蓝牙装置可例如具有讯号强度与距离值之对照表，当第二蓝牙装置得知讯号强度后，可藉由查表之方式以得知对应之距离值。亦或者，第二蓝牙装置可例如内建有讯号强度与距离值之线性或非线性之关系函数，当第二蓝牙装置得知此讯号强度后，将此讯号强度代入此关系函数中，藉以计算得知第一蓝牙装置与第二蓝牙装置之距离值。其中，因为第一蓝牙装置与第二蓝牙装置之一者系位于载具上，另一者系位于手持装置上，因此第一蓝牙装置与第二蓝牙装置之距离值系等同于载具与手持装置之距离值。

续言之，当第二蓝牙装置得知载具与手持装置之距离值后，可选择性进行步骤203，亦即第二蓝牙装置传送载具与手持装置之距离值至第一蓝牙装置，藉以使第一蓝牙装置与第二蓝牙装置均可得知此距离值。除此之外，第二蓝牙装置与第一蓝牙装置亦可藉由相互传送讯号至另一者，藉以使得第一蓝牙装置与第二蓝牙装置均可量测得知此讯号之讯号强度，进而分别得知或决定载具与手持装置之距离值。之后，可例如再藉由传输得知之距离值至另一蓝牙装置，藉以进一步确认此距离值是否有误。举例而言，若第一蓝牙装置与第二蓝牙装置各别得知之距离值之误差过大时，则可再次进行步骤200。反之，若第一蓝牙装置与第二蓝牙装置各自得知之距离值之误差近似或相等时，则可取此二距离值之平均值为载具与手持装置之距离值，亦或者，可任取其中之一距离值为载具与手持装置之距离值。其中，此处所述之距离值之误差是否过大之判断，可依据此距离值之应用目的，而分别定义此差距之值。

于检测载具与手持装置之距离值后，可进行步骤300，亦即比较距离值之大小。举例而言，于步骤300中，第一蓝牙装置与第二蓝牙装置之一者或二者可例如分别比较预设距离值及载具与手持装置之距离值之大小，亦或者，可例如分别比较不同时间之载具与手持装置之距离值之大小。并且，不论步骤300系比较距离值与预设距离值之大小或比较不同时间之距离值之大小，均可得到一比较结果。接着，第一蓝牙装置与第二蓝牙装置之一者或二者可依据此比较结果以进行步骤400，亦即执行动作。其中，此执行之动作亦可例如为第一蓝牙装置与第二蓝牙装置建立连结关系，亦或者可例如为警示使用者。除此之外，此执行之动作亦可例如为传送讯息至载具或手持装置，藉以使得载具或手持装置开启其特定之功能或关闭其特定之功能。

因此，因为蓝牙装置会每隔一段时间即传送一讯号给与其相互配对之另一蓝牙装置，所以蓝牙系统可藉由此固定传送之讯号以测定二个蓝牙装置之间的距离值。另外，蓝牙装置亦可特地传送一测距讯号以执行测定距离值之动作。其中，此间隔时间可例如为定义于蓝牙技术协议（IEEE 802.15）中之时间，亦可例如由使用者或制造商所设定之任何时间。举例而言，此间隔时间可例如为三秒、五秒、十秒或其它适合之时间。

请接续参阅图4至图5，图4系为本发明之蓝牙载具控制系统之系统方块图，图5系为本发明之控制载具之手持蓝牙系统之系统方块图。其中，蓝牙载具控制系统与手持蓝牙系统可例如系相互配对，且其中之一者可例如为前述之第一蓝牙装置，另一者可例如为前述之第二蓝牙装置。如图4至图5所示，其中，蓝牙载具控制系统500可例如位于载具上，举例而言，蓝牙载具控制系统500可例如位于载具之后视镜、前仪表板、置物箱或载具之其
它装置上。此外，手持蓝牙系统 600 可例如为钥匙或内建于一例如为手机之手持装置中。除此之外，本发明例如分别藉由一供电方式以提供电力给蓝牙载具控制系统 500 与手持蓝牙系统 600。其中供电方式可例如为太阳能供电、水力发电供电、火力发电供电、风力发电供电、电池供电、动力或振动产生电能供电、无线电充电供电或其它可产生电力之方式供电。

[0059] 另言之，蓝牙载具控制系统 500 可例如具有相互电性连接之车载蓝牙装置 510 与载具控制装置 520。其中，车载蓝牙装置 510 可例如包含有蓝牙收发装置 511、处理器 512 及电性连接于处理器 512 之记忆单元 513 与警示装置 514。而载具控制装置 520 可例如设置于载具上，且载具控制装置 520 可例如包含有载具控制单元 521 以及电性连结于载具控制单元 521 之输入装置 522、输出装置 523 与摄像装置 525。其中，蓝牙收发装置 511 可例如藉由蓝牙技术无线连结外部装置，用以接收外部装置传输之讯号。并且，此外外部装置可例如为与蓝牙载具控制系统 500 相互配对之手持蓝牙系统 600。此外，载具控制单元 521 可设置于载具上且控制此载具。

[0060] 另外，处理器 512 电性连接蓝牙收发装置 511 与载具控制单元 521。其中，若蓝牙载具控制系统 500 为前述之第二蓝牙系统，则当蓝牙收发装置 511 将所接收到之讯号传递至处理器 512 时，处理器 512 首先量测此讯号之讯号强度，并藉由此讯号强度测定外部装置与载具之距离值。接着，处理器 512 比较此距离值与一预设距离值，藉以得到一比较结果。其中，此预设距离值可例如储存于记忆单元 513 中，且此记忆单元 513 串联电性连接于处理器 512，藉以提供此预设距离值给处理器 512。亦或者，载具控制单元 521 可例如电性连接输入装置 522，藉以让使用者利用此输入装置 522 设定预设距离值，此预设距离值再经由载具控制单元 521 传输至处理器 512。此外，此预设距离值可例如约介于 1 米至 100 米之间。

[0061] 于得到距离值之比较结果后，处理器 512 可例如再藉由此比较结果，分别传送动作讯号给载具控制单元 521 与外部装置，使得载具控制单元 521 与外部装置藉由此动作讯号以执行一动作。举例来说，当此比较结果为预设距离值大于载具与外部装置之距离值时，外部装置可例如与载具控制单元 521 建立连结关系，藉以使载具控制单元 521 控制载具选择性进行一动作。其中，此动作可例如为开启一功能，且此功能可例如为解除载具之防盗系统，传送载具讯号于外部装置、开启载具内部之设备、解除锁定载具之车门或引擎，亦或者，警示使用者。此外，当载具开启此功能时，载具可直接进行相对应此功能之动作，亦或者，开放外部装置选择性进行相对应此功能之动作。举例而言，载具控制单元 521 可控制载具开启载具内部之设备之锁定，藉以使外部装置得以连结载具控制单元 521 以开启载具内部之设备。换言之，若载具控制单元 521 未开启解除锁定载具内部设备之功能时，则外部装置无法命令载具控制单元 521 开启载具内部之设备。

[0062] 此外，若载具开启可被控制功能，则外部装置可与载具控制单元 521 建立连结关系。而于外部装置与载具控制单元 521 建立连结关系后，载具控制单元 521 可例如控制摄像装置 525 撷取影像并回传至载具控制单元 521，再经由车载蓝牙装置 510 之处理器 512 传输至蓝牙收发装置 511，藉以经由蓝牙收发装置 511 发送此影像至外部装置。另外，若此动作为警示使用者时，处理器 512 可例如发送警示讯号至车载蓝牙装置 510 内置之警示装置 514，藉以使例如为发音组件之警示装置 514 发光或闪烁发光以警示使用者，亦或者，藉以使例如为声音组件之警示装置 514 发出声音以警示使用者。除此之外，处理器 512 亦可例如发送警示讯号至载具控制单元 521，载具控制单元 521 于收到警示讯号后再发送至输出装置。
523，藉以使得输出装置523输出警示讯号。其中，警示讯号可例如为声音讯号、光源讯号或显示于输出装置523之屏幕上。

[0063] 除此之外，手持蓝牙系统600可例如包含有蓝牙收发装置601、处理器602以及电性连结于处理器602之记忆单元603、输入装置604与输出装置605。其中，蓝牙收发装置601可例如藉由蓝牙技术无线连结于载具，用以接收载具传输之一讯号。并且，此载具可例如具有与手持蓝牙系统600相互配对之蓝牙载具控制系统500。

[0064] 另外，处理器602电性连接蓝牙收发装置601，若此手持蓝牙系统600为前述之第二蓝牙装置时，则当蓝牙收发装置601将接收到之讯号传送至处理器602时，处理器602首先量测此讯号之讯号强度，并藉由此讯号强度测定并得知手持装置与载具之距离值。接着，处理器602比较此距离值与一预设距离值或预设之距离值，以得到一比较结果。其中，此预设距离值可例如存储于记忆单元603中，当处理器602需比较此距离值与此预设之距离值时，记忆单元603提供此预设距离值给处理器602。亦或，若使用者利用输入装置604设定预设距离值，且此预设距离值再经由输入装置604传输至处理器602中。其中，此预设距离值可例如约介于1米至100米之间。

[0065] 于得到距离值之比较结果后，处理器602再藉由此比较结果，藉以例如分别传送动作讯号至输出装置605，使得载具藉由此动作讯号进行一动作，亦或，输出装置605藉由此动作讯号输出一警示讯号或其之讯号。举例来说，当此比较结果为预设距离值大于手持装置与载具之距离值，手持装置可例如与载具建立连结关系，藉以控制载具进行一动作，亦或，可藉以控制载具开启一功能。其中，此功能可例如为解除载具之防盗系统、传送载具讯号给手持装置、开启载具内部之设备或解除锁定载具之车门或引擎。此外，处理器602亦可例如发送警示讯号至输出装置605，藉以输出装置605发光、发光、发出声音、显示图像、显示文字、显示影像或震动以警示使用者。此外，输出装置605亦可输出警示讯号以警示或提醒使用者。其中，输出装置605可例如为发光源、喇叭、屏幕、震动装置或上述组件之组合。并且，屏幕可例如显示图像、文字、影像或其它可显示于屏幕上之对象。

[0066] 请接续参阅图3，图3系为本发明之应用蓝牙系统管理载具的方法之实施步骤流程图。如图1至图5所示，本发明之应用蓝牙系统管理载具的方法系例如首先于步骤100中设定第一预设距离值与第二预设距离值，其中第一预设距离值小于第二预设距离值。接着，于步骤200中测量并取得载具与手持装置之间之距离值，于步骤300中比较此测量之距离值与第一预设距离值及第二预设距离值之大小，以得到一比较结果。其中，此比较结果系为此距离值大于第二预设距离值、此距离值介于第一预设距离值与第二预设距离值之间或此距离值小于第一预设距离值。最后，依据步骤300之不同比较结果，于步骤400中执行不同之动作。举例而言，当比较结果系为此距离值大于第二预设距离值时，则因为蓝牙装置系每隔一时间段即会传送一讯息给与其相互配对之另一蓝牙装置，因此执行之动作可例如为令载具处于等待状态。而当比较结果系为此距离值介于第一预设距离值与第二预设距离值之间时，则执行之动作可例如为载具开启第二功能。此外，当比较结果系为此距离值小于第一预设距离值时，执行之动作可例如为载具开启第一功能。
如先进行步骤100以设定预设距离值，且此预设距离值可例如为第一预设距离值与第二预设距离值，而第二预设距离值系大于第一预设距离值。其中，第一预设距离值与第二预设距离值可例如预先存储于车载蓝牙装置510之记忆单元513中，亦或者可藉由使用者利用载具控制装置520之输入装置522以设定好此第一预设距离值与第二预设距离值。此外，第一预设距离值与第二预设距离值之一者亦可例如预先存储于车载蓝牙装置510之记忆单元513中，再藉由使用者利用输入装置522设定另一者。另外，第二预设距离值可例如约介于50米至60米之间，第一预设距离值可例如约介于2米至3米之间。

[0068]于步骤100之后或同时，可例如利用车载蓝牙装置510之处理器512进行步骤200以测定载具与手持装置之间的距离。其中，载具可例如为二轮载具、四轮载具或二轮以上之载具，而手持装置亦可例如为手机或钥匙。详言之，手持装置上可例如具有手持蓝牙系统600，而载具上可例如具有蓝牙载具控制系统500，且此蓝牙载具控制系统500与手持蓝牙系统600系相互配置。因此，手持蓝牙系统600之蓝牙收发装置601可例如传送讯号至蓝牙载具控制系统500之蓝牙收发装置511，当蓝牙收发装置511接收到此讯号后，再将此讯号传送至处理器512。其中，此讯号可例如为蓝牙系统每隔一隔时间即传送之讯号，亦或者是特地为一隔讯号或一连结请求讯号。之后，处理器512依据此讯号之讯号强度以得知载具与手持装置之间距离。接着，处理器512可再将此距离值藉由蓝牙收发装置511传送至手持蓝牙系统600之蓝牙收发装置601。若蓝牙收发装置601接收到此距离值，则蓝牙收发装置601再将此距离值传送至处理器602，藉以使蓝牙载具控制系统500与手持蓝牙系统600均得此距离值。

[0069]接着，于取得距离值、第一预设距离值与第二预设距离值后，处理器512进行步骤311，亦即判断此得知之距离值是否小于第一预设距离值，若是，则进行步骤411，亦即令载具开启第一功能；若否，则进行步骤412，亦即令载具开启第二功能，且当载具处于开启第一功能之状态时，可再令载具关闭第一功能。举例而言，于步骤411中，处理器511可传送一通知讯号至手持蓝牙系统600及载具控制单元521，藉以使载具控制单元521控制载具开启第一功能，进而使得使用者可藉由手持蓝牙系统600控制载具进行所开启功能之动作。此时，手持蓝牙系统600可例如发送连结请求讯号，处理器511再将此连结请求讯号传送至载具控制单元521，并回复一确认连结讯号至手持蓝牙系统600，藉以使手持装置上之手持蓝牙系统600与载具上之载具控制单元521建立第一连结关系，进而使得使用者可藉由手持装置控制载具。其中，第一功能可例如为解除锁定载具之车门、解除锁定载具之引擎、开启载具内部之设备或其他载具可进行之动作。举例而言，当载具与手持装置之上之距离值小于第一预设距离值后，载具控制单元521可解除锁定载具之引擎，进而发动引擎或开启载具内之设备。另外，载具控制单元521亦可先不自行进行任何动作，直至使用者利用手持装置控制载具控制单元521解除锁定载具之引擎、发动引擎或开启载具内之设备。

[0070]另外，当使用手持装置命令载具控制单元521进行动作时，可例如先藉由输入装置604输入控制指令，且此控制指令可例如系于输出装置605所显示之选项。接着，输入装置604将此控制指令传送至处理器602，此处理器602于得知控制指令后藉由蓝牙收发装置601与蓝牙收发装置511，传送此控制指令至处理器512。之后，处理器512再将此控制指令传送至载具控制单元521以控制载具。

[0071]另外，若蓝牙系统510之处理器512判定测定之距离值大于第一预设距离值后，处
理器 512 可直接透过载具控制单元 521 以令载具开启第二功能 (步骤 412)；亦可先进行步骤 312，亦即判断距离值是否小于第二预设距离，再决定是否进行步骤 412。详言之，若距离值小于第二预设距离值，则透过载具控制单元 521 令载具开启第二功能 (步骤 412)；若距离值大于第二预设距离值，则回至步骤 210，亦即再次得到距离值、第一预设距离值与第二预设距离值。其中，第二功能可例如为解除载具之防盗系统、传送载具讯号至手持装置、开启载具内部之设备或载具可进行之其它动作。举例而言，处理器可令载具与手持装置建立连结关系，藉以使载具选择性进行动作。其中，此动作可例如为解除载具之防盗系统、传送载具讯号至手持装置、开启载具内部之设备或载具可进行之其它动作。

另外，使用者可例如藉由手持装置命令载具控制装置 521 启动载具上之摄像装置 525，并将摄像装置 525 撷取之影像传回至手持装置。当手持装置之处理器 602 接收到此影像后，可将此影像传送至手持装置之输出装置 605，藉以让使用者实时观看载具之摄像装置 525 所撷取之影像。

除此之外，若于步骤 311 中，处理器 512 检定距离值大于第一预设距离值，且载具处于开启第一功能之状态时，处理器 512 可例如先透过载具控制单元 521 控制载具关闭第一功能 (步骤 413)，处理器 512 再判断距离值是否小于第二预设距离 (步骤 312)。同理，若于步骤 312 中，处理器 512 检定距离值大于第二预设距离值，且载具处于开启第二功能之状态时，处理器 512 可例如先透过载具控制单元 521 控制载具关闭第二功能 (步骤 414)。其中，第一预设距离值与第二预设距离值之一者或二者可维持原本之第一预设距离值或第二预设距离值。

因此，本发明之蓝牙载具控制系统及应用蓝牙系统管理载具的方法之一特点在于，藉由使用蓝牙系统，藉以测定载具与手持装置之间的距离值。

本发明之蓝牙载具控制系统及应用蓝牙系统管理载具的方法之另一特点在于，藉由蓝牙系统所测定之距离值之不同，藉以使得载具与手持装置建立不同之连结关系，以使得载具开放不同之权限给手持装置。

应理解的是，以上仅为本发明的优选实施例，不能因此限制本发明的专利范围，凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换，或直接或间接运用在其它相关的技术领域，均同理包括在本发明的专利保护范围内。
图 1

设定预设距离值

测定载具与手持装置之距离值

比较距离值之大小

执行动作

图 2

第一蓝牙装置传送测距讯号至第二蓝牙装置

第二蓝牙装置藉由测距讯号之强度，以得知载具与手持装置之距离值

第二蓝牙装置传送载具与手持装置之距离值至第一蓝牙装置
图3

图4
图 5