A gasket body formed with an opening disposed in registration with the bore of a carburetor barrel so that the fuel mixture will pass therethrough on its way to an intake manifold, the gasket body having an air inlet passageway leading from a source of air to the gasket opening and through which additional air may be conveyed to the carburetor for intermixing with the fuel mixture for leaning down the air-fuel ratio, and a vacuum blade projects into the gasket body opening and arranged to create a vacuum in the air inlet passageway for drawing in the additional air.

4 Claims, 7 Drawing Figures
3,643,641

GASKET WITH PASSAGEWAY AND VACUUM BLADE FOR INTRODUCING AIR INTO BARREL OF CARBURETOR

In my U.S. Pat. No. 3,435,810 there is disclosed an apparatus for separating the heavier and lighter components of exhaust gases from one another by centrifugal force, and these lighter components are conveyed to the internal combustion to augment the fuel mixture from the carburetor. After the unburned hydrocarbon compounds are returned to the engine, additional air is required to reduce the reading of the carbon monoxide to a point where the formation of smog is substantially prevented.

My present invention is designed to perform the duty of leaning down the mixed air-fuel ratio of the carburetor without changing the jet sizes of the carburetor in the primary (low speed) section by providing an air inlet passageway that will supply additional air to the carburetor, and further having a vacuum blade arranged to create a vacuum in this passageway for drawing air from a suitable source into the carburetor, providing the necessary leaning down of the mixed air-fuel ratio. This additional air is required to substantially reduce the carbon monoxide reading at idle speed of the engine, after the unburned hydrocarbon compounds have been returned to the engine and substantially preventing formation of smog.

Other objects and advantages will appear as the specification proceeds, and the novel features of the invention will be set forth in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention, reference should be made to the accompanying drawings, in which:

FIG. 1 is an elevational view of a carburetor, partly in section, and illustrating my gasket with passageway and vacuum blade for introducing air into the barrel of the carburetor, as seen from the horizontal plane 2—2 in FIG. 1;

FIG. 2 is a plan view of the gasket with passageway and vacuum blade for introducing air into the barrel of the carburetor, as seen from the horizontal plane 3—3 of FIG. 2, the gasket being shown as being laminated in three layers;

FIG. 3 is a sectional view taken along the plane 3—3 of FIG. 2, the gasket being shown as being laminated in three layers;

FIG. 4 is a plan view of the lower layer of the laminated gasket, as seen from the plane 4—4 of FIG. 3;

FIG. 5 is a sectional view similar to FIG. 3, but disclosing the gasket as being formed in a unitary structure;

FIG. 6 is an elevational view, partly in section, and being similar to FIG. 1, but showing the additional air being supplied from the air filter and intake manifold.

FIG. 7 is a horizontal sectional view taken along the plane 7—7 of FIG. 6.

While I have shown only the preferred embodiments of the invention, it should be understood that various changes, or modifications, may be made within the scope of the appended claims without departing from the spirit thereof.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings in detail, it will be noted that FIG. 1 illustrates a carburetor A of the downdraft type having an air filter B mounted on the top thereof, and an intake manifold C arranged under the carburetor. The carburetor A has a pair of low-speed barrels 10 and 11, however, it should be made clear that carburetors of the single barrel or two barrel types may be used as far as this invention is concerned.

As disclosed in FIG. 1, a choke valve 12 has been shown in the upper portion of the low-speed barrel 10, and a gas-feed jet 13 is arranged in the venturi throat 14 of this barrel. Likewise, the high-speed barrel 11 has a gas-feed jet 15 disposed in its venturi throat 16. Moreover, the barrel 11 is provided with a vacuum air valve 17 disposed below the jet 15, and this valve is opened by a vacuum in the intake manifold C.

The carburetor A defines a main body 18 having a throttle valve assembly body 19 removably secured thereunder, and this body 19 is provided with a low-speed throttle valve 20 and a high-speed throttle valve 21. It is well known that the throttle valve 20 opens first, and a mixture of gas and air is fed downwardly through the low-speed barrel 10 from idling to about half speed. At this time, the high-speed valve 21 is closed. After the car reaches the higher speeds, the throttle valve 21 opens and additional fuel mixture is drawn into the manifold C: At this time the low-speed throttle valve 20 remains open.

The control mechanisms for opening and closing the valves 12, 20 and 21 is well known in the art and has been omitted accordingly from the drawings.

In the first embodiment of the invention, as shown in FIGS. 1 to 4, inclusive, it will be observed that a gasket D is disposed horizontally and interposed between the carburetor body 18 and the throttle valve assembly 19. This gasket has a gasket body formed with a pair of openings 22 disposed in registration with the bores 23 of the low-speed barrels 10. Moreover, the gasket body has a pair of larger openings 24 registering with the bores 25 of the high-speed barrels 11. The fuel mixture will pass through the openings 22 and 25 on its way to the intake manifold C.

The body of the gasket D has a pair of air inlet passageways 26 leading from a source of air to the gasket openings 22 and through which additional air may be conveyed to the carburetor A for intermixing with the fuel mixture for leaning down the mixed air-fuel ratio. Vacuum passages 27 are provided on the gasket body adjacent to and above the air inlet passageways 26, the blades defining tips projecting into the gasket body openings 22, as shown in FIGS. 1—3, the blades being disposed horizontally so that the fuel mixture flowing over the blades as indicated by the arrows 28 will create a vacuum in the air inlet passageways for drawing additional air into the carburetor, as suggested by the arrows 29. As shown in FIGS. 1 and 2, the blades 27 are flat and wider than the passageways 26 and the latter are thinner than wide so that the vacuum created will spread the inducted air across the bore of the carburetor barrel 10.

It will be apparent from FIG. 1 that this additional air is provided by the high-speed barrels 11. When the car is operating on the low-speed barrels 10 only, the additional air is drawn into these barrels from the high-speed barrels 11 to further lean down the fuel-air ratio of the low-speed barrels to prevent or materially reduce formation of carbon monoxide and excessive hydrocarbons, when the fuel mixture explodes in the cylinders of the engine.

In FIG. 1, there is shown the legend "Patent No. 3,435,810" with an arrow 30 leading from the legend to a fitting 31 connected to the manifold C. As shown in detail in this patent as identified above, an apparatus is provided for separating lighter components in exhaust gases from heavier components, and conveying these lighter components back to the engine. It is these returned components that require the additional air to reduce the carbon monoxide readings at idle speed of the engine and prevent the formation of smog.

As clearly shown in FIG. 3, the gasket D is laminated in three layers, the upper layer 32 being a sealing gasket, the intermediate layer 33 preferably being made of metal and carrying the vacuum bladders 27, and the lower layer 34 being made of material forming a sealing gasket and being formed with the air inlet passageways 26 therein.

The gasket D illustrated in FIG. 5 is the same as that shown in FIG. 3, with the exception that it is made in a unitary structure, for instance, made of plastic or relatively soft metal so that it will seal against the carburetor body 18 and the intake manifold C. Like reference numerals have been applied to corresponding parts of FIGS. 3 and 5.

Turning now to the modification shown in FIGS. 6 and 7, the carburetor A, air filter B and the intake manifold C are identical with those illustrated in FIG. 1, and like reference numerals have been used to designate corresponding parts.
However, the gasket D shown in FIGS. 6 and 7 has its air inlet passageways 26' connected by tubes 35 leading to the air filter B, whereby the additional air is supplied by the air filter.

In FIG. 7, only two of the air inlet passageways 26' have tubes 35 connected thereto, while the remaining air inlet passageways 26a communicate directly with the atmosphere surrounding the carburetor A. Otherwise, the construction of the gasket D is the same as the gasket D', and, of course, may be the same as the gasket D'.

When a carburetor of the downdraft type is used, as in FIGS. 1 and 6, the air inlet passageways 26, 26', 26a in the gasket body are located directly below the vacuum blades 27. All of the air inlet passageways 26' and 26a in FIG. 7 may have tubes 35 connected thereto, or all may open directly to the atmosphere.

What is claimed is:
1. The combination with a carburetor having a barrel defining a bore through which a fuel mixture may be delivered to an intake manifold connected to the carburetor, and means for returning lighter components recovered from exhaust gases to the intake manifold to augment the fuel mixture, of a gasket comprising:
   a. a gasket body formed with an opening disposed in registration with the bore of the barrel so that the fuel mixture will pass therethrough on its way to the manifold;
   b. the gasket body having an air inlet passageway leading from a source of air to the gasket opening and through which additional air may be conveyed to the carburetor for intermixing with the fuel mixture for leaning down the mixed air-fuel ratio;
   c. and a vacuum blade provided on the gasket body adjacent to the air inlet passageway, the blade defining a tip projecting into the gasket body opening, the blade tip being disposed so that the fuel mixture flowing over the blade will create a vacuum in the air inlet passageway for drawing the additional air into the carburetor that is required by the returned components to reduce the carbon monoxide readings at idle speed of an engine and prevent formation of smog.

2. The combination, as set forth in claim 1;
   d. and in which the carburetor defines a main body having a throttle valve assembly body disposed therebeneath, both the gasket body and its vacuum blade being arranged horizontally and interposed between the main body of the carburetor and the throttle valve assembly body.

3. In a gasket with passageway and vacuum blade for introducing air into barrel of carburetor;
   a. a horizontally disposed gasket body formed with an opening therein made to be disposed in registration with a bore of a downdraft carburetor barrel so that fuel mixture will pass therethrough on its way to an intake manifold;
   b. the gasket body having an air inlet passageway formed therein and leading from a source of air to the gasket body opening;
   c. a horizontally disposed vacuum blade provided on the gasket body, the blade being disposed adjacent to and above the air inlet passageway and defining a tip projecting into the gasket body opening so that the fuel mixture flowing over the blade will create a vacuum in the air inlet passageway for drawing additional air into the carburetor;
   d. and the gasket body being laminated in three layers, the upper and lower layers being made of material forming sealing gaskets, the intermediate layer being made of metal, and the vacuum blade being formed integral with the intermediate layer.

4. The gasket with passageway and vacuum blade for introducing air into barrel of carburetor, as set forth in claim 3;
   e. and in which the air inlet passageway is formed in the lower layer of the gasket body.

* * * * *