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METHOD AND SYSTEM FOR CONTROLLED 
SCANNING, IMAGING AND/OR THERAPY 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claim priority from U.S. Provisional 
Application No. 60/570,145, entitled “Method and System 
for Three-Dimensional Scanning and Imaging and filed May 
12, 2004. 

FIELD OF INVENTION 

The present invention relates to imaging and treatment 
systems, and in particular to a method and system for con 
trolled scanning, imaging and/or therapy. 

BACKGROUND OF THE INVENTION 

Ultrasound images are typically generated and displayed 
as two-dimensional (2-D) image slices. For example, with 
reference to FIG. 1A, a conventional ultrasound imaging 
system 100 comprising a transducer 102 and a control system 
104 are configured to obtain two-dimensional imaging infor 
mation 106 and display two-dimensional imaging slices 108. 
However, it is often desirable to acquire a whole volume of 
data in the form of multiple image planes and render it in a 
three-dimensional (3-D) format, such as for viewing a fetus. 
Acquiring multiple image slices can be performed by moving 
the imaging probe in a manner to produce Volumetric infor 
mation. The quality of the computer-rendered 3-D image (the 
output) is closely related to spatial sampling of the Volume 
of-interest (the input data). Specifically, for ease and accuracy 
of the 3-D reconstruction, it would be desirable for the input 
image planes to be configured a minimum distance apart to 
avoid spatial aliasing, as well as in a defined attitude and 
position to avoid gross spatial distortions in rendering based 
on assumptions about the probe's motion. Unfortunately, 
prior art methodologies cannot provide Such features. 

For example, one shortcoming of so-called “free-hand” 
3-D scanning is the lack of precision and repeatability in 
which the 3-D volume is interrogated due to spatially and 
temporally imprecise angular and linear displacements. As a 
result a number of pitfalls exist. As a first example, if sensors 
record the attitude and position of the probe, it is still possible 
to over- and/or under-sample the Volume-of-interest. Second, 
even if the Volume is adequately sampled, the random nature 
of the input data orientation requires excessive mathematical 
interpolations to compute a 3-D image in a uniform output 
grid. Third, if no sensors are used image frame correlation 
methods cannot accurately ascertain the relative orientation 
of image planes. Finally, even if six-degree-of-freedom sen 
sors are utilized. Such sensors are expensive and have limited 
range. In fact, what is desirable is motion having a single 
degree-of-freedom. 
Some methodologies have used mechanical fixtures with 

water baths (for acoustic coupling) as well as motorized 
assemblies to move an imaging probe in one dimension. 
However, Such mechanisms can be extremely cumbersome 
and unwieldy for human Scanning and may pose safety haZ 
ards if designed improperly. 

SUMMARY OF THE INVENTION 

A method and system for controlled scanning, imaging 
and/or therapy are provided. In accordance with one aspect, 
an exemplary method and system are configured to Suitably 
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2 
control an imaging probe within a one-degree of freedom. 
With Such control, an exemplary method and system can 
facilitate three-dimensional imaging. For example, an exem 
plary method and system can enable multiple two-dimen 
sional image planes to be collected in a manner to provide an 
accurate and computationally efficient three-dimensional 
image reconstruction while providing the user with a user 
friendly mechanism for acquiring three-dimensional images. 
In accordance with another aspect of the present invention, an 
exemplary method and system can allow therapeutic treat 
ment to occur along a prescribed path or pattern. For example, 
treatments that would normally occur at a single point in 
space become a line or other guided path after Scanning in the 
controlled pattern, while line treatments scanned along a path 
can Suitably become a matrix of treatments. 

In accordance with an exemplary embodiment, an exem 
plary Scanning and imaging System comprises an imaging 
probe, a control system, a positioning system and a display 
system. The imaging probe can comprise various probe and/ 
or transducer configurations. For example, the imaging probe 
can also be configured for a combined imaging/therapy 
probe, or simply replaced with a therapy probe. The control 
system and display system can also comprise various con 
figurations for controlling probes and displaying images, 
including for example a microprocessor with 3-D reconstruc 
tion software with a plurality of input/output devices. 

In accordance with an exemplary embodiment, a position 
ing system is configured for facilitating controlled movement 
of the imaging probe within one-degree of freedom. In accor 
dance with an exemplary embodiment, the positioning sys 
tem comprises a guide assembly and a position sensing sys 
tem. The guide assembly is configured to provide pure 
rectilinear or rotational motion of the probe during scanning 
operation while the position sensing system is configured to 
detect the direction of movement and/or position of the probe 
during scanning. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The subject matter of the invention is particularly pointed 
out in the concluding portion of the specification. The inven 
tion, however, both as to organization, structure and method 
of operation, may best be understood by reference to the 
following description taken in conjunction with the accom 
panying drawing figures, in which like parts may be referred 
to by like numerals: 

FIG. 1A is a schematic diagram of a 2-D region-of-interest 
being scanned by a probe connected to a conventional imag 
ing system and display unit, which renders a 2-D image; 

FIG. 1B is a schematic diagram illustrating one-degree-of 
freedom rectilinear motion for a probe in accordance with an 
exemplary embodiment of the present invention; 

FIG. 1C is a schematic diagram representing one-degree 
of-freedom rotational motion of a probe in accordance with 
an exemplary embodiment of the present invention; 

FIG. 2A is a block diagram of an exemplary scanning and 
imaging system in accordance with an exemplary embodi 
ment of the present invention; 

FIG. 2B is a block diagram of an exemplary positioning 
system configured with an imaging probe in accordance with 
an exemplary embodiment of the present invention; 

FIG. 3 is a side view of an imaging probe configured with 
an exemplary guide assembly and a position sensing system 
for rectilinear motion in accordance with an exemplary 
embodiment of the present invention; 

FIG. 4 is an isometric view of the imaging probe configured 
with an exemplary guide assembly and a position sensing 
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system for rectilinear motion in accordance with an exem 
plary embodiment of the present invention; 

FIG. 5 is an exploded side view of an imaging probe con 
figured with an exemplary guide assembly and a position 
sensing system for rotational motion in accordance with an 
exemplary embodiment of the present invention; 

FIG. 6 is an isometric view of an imaging probe configured 
with an exemplary guide assembly and a position sensing 
system for rotational motion inaccordance with an exemplary 
embodiment of the present invention; 

FIG. 7 is a schematic diagram of an output signal for a 
quadrature position sensor illustrating relative displacement 
and direction of displacement between an encoder element 
and a position sensor in accordance with an exemplary 
embodiment of the present invention; 

FIG. 8 is a cross-sectional view of a guide assembly for 
rotational motion in accordance with an exemplary embodi 
ment of the present invention; and 

FIG. 9 is a diagram of an exemplary scanning and/or treat 
ment system within a continuous flow arrangement in accor 
dance with an exemplary embodiment of the present inven 
tion. 

DETAILED DESCRIPTION 

The present invention may be described herein in terms of 
various functional components and processing steps. It 
should be appreciated that Such components and steps may be 
realized by any number of hardware components configured 
to perform the specified functions. For example, the present 
invention may employ various medical treatment devices, 
visual imaging and display devices, input terminals and the 
like, which may carry out a variety of functions under the 
control of one or more control systems or other control 
devices. In addition, the present invention may be practiced in 
any number of medical contexts and that the exemplary 
embodiments relating to an imaging, therapy and/or scanning 
system as described herein are merely indicative of exem 
plary applications for the invention. For example, the prin 
ciples, features and methods discussed may be applied to any 
medical application. Further, various aspects of the present 
invention may be suitably applied to other industrial, manu 
facturing or engineering applications, such as the inspection 
of materials such as steel, plastics, concrete or wood. In 
addition, while various components and devices may be 
described as coupled together, such coupling can be realized 
through direct connection of such components and devices, or 
the coupling together of Such components and devices 
through the interconnection of one or more other components 
and devices. 

In accordance with various aspects of the present inven 
tion, a method and system for controlled Scanning, imaging 
and/or therapy are provided. In accordance with one aspect, 
an exemplary method and system are configured to Suitably 
control an imaging probe within a one-degree of freedom. 
With Such control, an exemplary method and system can 
facilitate three-dimensional imaging. For example, an exem 
plary method and system can enable multiple two-dimen 
sional image planes to be collected in a manner to provide an 
accurate and computationally efficient three-dimensional 
image reconstruction while providing the user with a user 
friendly mechanism for acquiring three-dimensional images. 

In accordance with an exemplary embodiment, with refer 
ence to FIG. 2, an exemplary scanning and imaging system 
200 comprises an imaging probe 202, a control system 204, a 
positioning system 210 and a display system 208. 
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4 
Imaging probe 202 can comprise various probe and/or 

transducer configurations. For example, imaging probe 202 
can comprise any ultrasound transducer element configured 
for facilitating imaging of a treatment region. Imaging probe 
202 can also comprise any other imaging mechanism, Such as 
lasers, or other light source devices. Imaging probe 202 is 
configured to obtain 2-dimensional sliced images of a treat 
ment region 206. In addition, imaging probe 202 can com 
prise other functions. For example, imaging probe 202 can 
also be configured as a combined imaging and/or therapy 
probe, a combined imaging and/or therapy and/or tempera 
ture monitoring probe, a combined therapy and other tissue 
parameter monitoring probe, or other combination of tissue 
parameter monitoring functions. Moreover, imaging probe 
202 can be suitably replaced with a therapy-only probe or 
other single tissue parameter-type probes. Probe 202 can also 
include those used for applications in urology, such as for 
bladder volume; obstetrics, such as for fetal viewing; derma 
tology, such as for forming imaging scan lines and/or thera 
peutic lesions; and other therapy, and/or imaging/therapy 
probes Such as multi-directional, variable depth, and/or ultra 
high frequency probes, as disclosed in U.S. patent application 
Ser. No. 10/944,499, filed Sep. 16, 2004, in U.S. patent appli 
cation Ser. No. 10/944,500, filed Sep. 16, 2004 and in U.S. 
Application No. 60/616.356, filed Oct. 6, 2004, hereby incor 
porated by reference in their entireties. Imaging, therapy, 
and/or imaging/therapy probes can be electronic (array 
based) or mechanically scanned probes such as those with a 
direct-drive mechanism and/or linkage mechanism for imag 
ing or treatment in sectors (arcs), lines, or other more complex 
patterns, e.g. 3-D paths within the probe housing. 

Imaging probe 202 can also be configured within any hous 
ing structure or enclosure, and can be suitably connected to 
control system 204 in various manners. With momentary 
reference to an exemplary embodiment illustrated in FIG. 3, 
an imaging probe 302 can comprise an imaging transducer 
configured within a housing 316, with a cable 340 configured 
to couple to a control system. 

Control system 204 and display system 208 can also com 
prise various configurations for controlling probes and dis 
playing images or other information. For example, control 
system 204 can comprise any conventional microprocessor 
based or other computational device. In accordance with an 
exemplary embodiment, control system 204 comprises a 
microprocessor with 3-D reconstruction software. Such 3-D 
software can be configured to interpolate, filter, and/or thresh 
old incoming 2-D image slices, along with positional infor 
mation, and correlate Such information among any other 
image processing functions to render a 3-D image in a variety 
of display formats. The 3-D software and/or other resident 
Software may also guide the user with instructions and feed 
back before, during, and after the 3-dimensional scanning. 
Control system 204 can also include a plurality of input/ 
output devices. For example, one or more limit Switches or 
other Switches, indicators, and/or audible signaling mecha 
nisms to detect or indicate a particular position, e.g., a home 
position, a user-actuated function, or serve any other function, 
can be provided. Control system 204 can be communicatively 
coupled to imaging probe 202, positioning system 210 and 
display system 208 in any manner now known or hereinafter 
devised. 

Display system 208 is configured to display any portion of 
the two-dimensional slices, or any other relevant information 
collected from imaging probe 202, or processed by control 
system 204. In accordance with an exemplary embodiment, 
display system 208 is configured to display 3-dimensional 
images provided by imaging system 200. Display system 208 
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can comprise any display configuration or device for display 
ing images and/or information and data. Display system 208 
can also be communicatively coupled to control system 204 
in any manner, such as by direct cabling, wireless coupling, 
and/or any combination thereof or any other communication 
mechanisms. 

Positioning system 210 is configured for facilitating con 
trolled movement of imaging probe 202 within one-degree of 
freedom. For purposes of this disclosure, the term “one 
degree of freedom” comprises any prescribed path or guide 
Such as a straight line, curvilinear line, piecewise linear and/ 
or curvilinear collection of points, axis of rotation and/or 
combination thereof in two or three dimensions such that a 
known geometric travel or scan path is achieved. For 
example, with reference to FIG. 1B, positioning system 210 
can be configured to permit Substantially rectilinear move 
ment 120 of probe 202, or with reference to FIG. 1C, posi 
tioning system 210 can be configured to permit Substantially 
rotational movement 130 of probe 202. Positioning system 
210 can also be configured for any other controlled movement 
within one-degree of freedom, such as, for example, transla 
tional movement of probe 202 about treatment region 206, or 
any other movement comprising curvilinear, piecewise linear 
and/or curvilinear collection of points, variable axis of rota 
tion and/or combination thereof in two or three dimensions. 
In addition, positioning system 210 can facilitate manual 
movement, automated movement, such as by a stepper motor 
or any other automated movement device, or any combination 
of manual and automated movement systems. Moreover, 
while the exemplary embodiment illustrates positioning sys 
tem 210 configured for control of an imaging probe, position 
ing system 210 can also be configured for control of move 
ment of a combined imaging/therapy probe, a therapy-only 
probe, or any other configuration of ultrasound or medical 
probes. 

In accordance with an exemplary embodiment, with refer 
ence to FIG. 2B, positioning system 210 comprises a dis 
placement guide assembly 212 and a position sensing system 
214. Displacement guide assembly 212 is configured to pro 
vide controlled movement of a probe 202, such as rectilinear, 
rotational, translational or other controlled motion, with auto 
mated and/or manual operation, while position sensing sys 
tem 214 is configured to detect the direction and position of 
probe 202 during scanning operation. 

In accordance with an exemplary embodiment, displace 
ment guide assembly 212 can be configured for rectilinear 
movement. For example, with reference to FIGS. 3 and 4, a 
guide assembly can comprise a holder device 310 and a 
stationary guide 314. Holder device 310 is configured to 
enclose, surround or otherwise attach to probe 302 in a sub 
stantially rigid manner, and can comprise various shapes and 
configurations. In accordance with an exemplary embodi 
ment, holder device 310 comprises a vane-like device that 
suitably encloses probe 302 on both sides as well as a back 
side opposite of stationary guide 314. Such as for example, a 
biopsy needle guide configured to geometrically align a 
biopsy needle; however, holder device 310 can also be con 
figured to enclose on only the sides and/or one side of probe 
302, and can be configured in any shape or manner to facili 
tate a restriction or control of movement of probe 302 relative 
to stationary guide 314. In addition, holder device 310 can be 
configured for a quick-engagement and/or attachment to 
imaging probe 302. Such as through a spring clamp or other 
like device, as well as a more fixed engagement, such as 
through screw, glue or other more fixed attachments. 

Holder device 310 comprises a guide member 312 that can 
be slidably inserted into a slot 320 of stationary guide 314. 
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6 
Guide member 312 and slot 320 can comprise various sizes, 
shapes and configurations for allowing slidable insertion to 
facilitate rectilinear or other like movement. For example, 
while guide member 312 comprises a square or rectangular 
configuration in accordance with exemplary embodiment 
illustrated in FIGS. 3 and 4, guide member 312 can also 
comprise circular, octagonal, or any other configurations 
capable of being slidably inserted within slot 320, i.e., guide 
member 312 does not need to have substantially the same 
geometric shape or configuration as slot 320, but only capable 
of being slidably inserted. Guide member 312 can comprise a 
separate component suitably attached to holder 310 in any 
manner, or can comprise a unitary member with holder 310, 
such as comprising a tip-end portion of holder 310. Slot 320 
can comprise any slot, raceway, groove or other like guiding 
path to facilitate and/or restrict the freedom of movement of 
guide member 312, and thus holder 310 and probe 302, within 
during scanning operation. The combination and/or insertion 
of member 312 within slot 320 preclude any angular displace 
ment (e.g., yaw, pitch, or roll) and further allow displacement 
along only one axis, namely, the axis defined by slot 320. To 
the extent that slot 320 provides other displacement orienta 
tions, e.g., a wave-like pattern, then guide member 312 will 
Suitably follow Such other displacement orientations during 
Scanning. 

In accordance with another exemplary embodiment, dis 
placement guide assembly 212 can be configured for rota 
tional movement. For example, with reference to FIGS. 5 and 
6, a guide assembly can comprise a rotary device 512 and a 
stationary guide 514. Rotary device 512 is configured to 
enclose or surround probe 502, such as probe 502 being 
configured within a vane member 510 or other holder device 
configuration and placed within rotary device 512, or probe 
502 being configured directly within rotary device 512 with 
out use of vane member 510 or any other holder member. 
Stationary guide 514 is configured to facilitate controlled 
rotational movement of rotary device 512. For example, in 
accordance with an exemplary embodiment, rotary device 
512 can comprise essentially one-half of a rotary bearing 
assembly and Stationary guide 514 comprising the other half 
of a rotary bearing. In accordance with another exemplary 
embodiment, rotary device 512 and stationary guide 514 can 
also be configured with a ball bearing arrangement by utiliz 
ing a sleeve bearing or assembly such that stationary guide 
514 comprises a body of revolution, such as a cylinder, with 
an inner portion Substantially and closely fitting around an 
outward surface of imaging and/or therapy probe 502. 

In accordance with an exemplary embodiment, rotary 
device 512 can comprise a guide member and Stationary 
guide 514 comprises a raceway or slot component configured 
to engage with the guide member of rotary device512. Such as 
the engagement to permit rotational movement within one 
degree of freedom. For example, with momentary reference 
to FIG.8, a probe 802 can be configured within a rotary device 
812 and defining a slot 820 disposed between rotary device 
812 and stationary guide 814. In other words, rotary device 
512 can have an outer circumference configured slightly 
Smaller than an inner perimeter of stationary guide 514 Such 
as to permit rotary device 512 to reside within a tight or 
otherwise restricted fashion as defined by slot 820 to allow 
rotational movement of rotary device 812 and probe 802 in a 
controlled manner allowing one-degree of freedom. In accor 
dance with another exemplary embodiment, rotary device can 
be configured with a guide member that protrudes outward 
and slidaby engages within a slot or raceway configured 
within stationary guide 514, such as for example slot 320 
within stationary guide 314. Accordingly, rotary device 512 
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and stationary guide 514 can comprise various sizes, shapes 
and configurations to facilitate controlled rotational move 
ment of probe 502 about a region of interest. 

In accordance with an exemplary embodiment, stationary 
guide 514 allows rotation of probe 502 along the same central 
axis, rotating in a single plane; however, rotation can also be 
permitted in a manner outside the same central axis to main 
tain spatial control, e.g., in Some translational manner. For 
example, probe 502 can be controllably moved in an arc, i.e. 
a fixed radius from the center of rotation, such that the probe 
502 (or its scan plane) is oriented in a position parallel to the 
axis of rotation, perpendicular to the axis of rotation, or tilted 
in a variable orientation with respect to the axis of rotation. 
Such configurations can be particularly useful in the instance 
of three dimensional scanning of an annular region of space, 
while the perpendicular configuration can allow scanning of 
the inside of a cylinder or cylindrical section, and a tilted 
probe can allow scanning of a conic section. 

While scanning and imaging systems 300 and 500 can be 
Suitably configured to facilitate three-dimensional imaging, 
in accordance with another aspect of the present invention, an 
exemplary method and system can also allow therapeutic 
treatment to occur along a controlled, prescribed path or 
pattern. For example, therapeutic treatments that would nor 
mally occur at a single point in space become a line or other 
guided path after scanning in the controlled pattern, while line 
treatments scanned along a path can Suitably become a matrix 
of treatments, while an initial matrix of treatment can become 
a denser matrix or pattern. 

Position sensing system 214 is configured to determine 
position and/or direction during the controlled rectilinear, 
rotational and/or translational or other controlled movement. 
Position sensing system 214 can also provide feedback over 
time that can also be used to control therapy or imaging 
functions, such as, for example, the spatial and/or temporal 
placement of therapeuticlesions, or any other like therapeutic 
treatment. 

For example, in accordance with an exemplary embodi 
ment, with reference again to FIGS. 3 and 4, a position sens 
ing system can comprise a position sensor 322 and an encoder 
element 324, with position sensor 322 configured within or 
otherwise coupled to holder device 310, e.g., attached to 
guide member 312, and configured to interact with encoder 
element 324 within stationary guide 314 to provide position 
feedback to a control system during rectilinear movement. In 
accordance with another exemplary embodiment, position 
sensor 322 can be integrated inside imaging probe 302 and 
interfaced to a control system 204. In Such a case, encoder 
element 324 can be placed on stationary guide 314 such that 
it can be detected by position sensor 322. In accordance with 
other exemplary embodiments, position sensor 322 can be 
attached to or configured within stationary guide 314 and 
encoder element 324 can be attached to or configured within 
guide member 312, holder device 310 and/or probe 302. 

Position sensor 322 and encoder element 324 can comprise 
various types of components and configurations. For 
example, position sensor 322 can comprise a quadrature Hall 
effect type sensor and encoder element 324 can comprise a 
multipole flexible magnetic strip, or position sensor 322 can 
comprise an optical quadrature sensor and encoder strip 324 
comprise an alternately optically reflecting and absorbing 
(opaque) strips configuration. With momentary reference to 
FIG. 7, a schematic diagram of an output signal for a quadra 
ture position sensor is provided, such as position sensor 322. 
that outputs quadrature square wave signals that describe the 
relative displacement and direction of displacement between 
encoder strip 324 and position sensor 322. Position sensor 
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8 
and encoder can also comprise analog/digital magnetic field 
sensing integrated circuit(s) and magnetic field producing 
device(s). Such as one or more permanent magnets, whereby 
rotary, 1-D, 2-D, or 3-D positioning information is derived by 
measuring magnetic field gradients and field strengths at 
more than one location on the sensor(s). 

In accordance with another exemplary embodiment, with 
reference again to FIGS. 5 and 6, a position sensing system 
can comprise a position sensor 522 and an encoder element, 
with position sensor S22 configured with stationary guide 514 
to detect rotational position with the encoder element, e.g., an 
encoder Strip, configured within or coupled to rotary device 
512. For example, with momentary reference again to FIG. 8a 
position sensor 822. Such as a magnetic encoder, quadrature 
magnetic encoder, alternatively optical or other type of sensor 
device, may be attached to or configured within stationary 
guide 814 and positioned within or adjacent to slot 820, while 
rotary device 812 can comprise a linearly encoded magnetic 
strip 824 or other like encoder device. In accordance with 
another exemplary embodiment, with reference again to FIG. 
5, position sensor 522 can be integrated inside or otherwise 
coupled to imaging probe 502 and interfaced to a control 
system. In such a case, an encoder Strip is placed on the 
stationary guide 514 such that it can be detected by position 
sensor 522. 

In addition to a sensor and encoder strips, any other mecha 
nisms for determining position of a first device with respect to 
a second device can be utilized. For example, the encoder 
devices and strips can be suitably combined with other encod 
ers having one-degree of freedom, Such as to provide a com 
bined two-degree of freedom encoder device, a hemispheri 
cal-configured encoder or any other position encoder device. 
As another example, various limit Switches can be configured 
along the displacement axis that can be suitably enabled by a 
latch or other enablement device configured with imaging 
probe 202. In addition, both a limit switch configuration and 
a sensor/encoder Strip configuration can be suitably imple 
mented in accordance with various exemplary embodiments. 
Moreover, Such components can be suitably configured inside 
and/or alongside imaging probe 202 and displacement guide 
assembly 212. Still further, the positioning system, including 
the encoder and/or sensor components, can also be configured 
in combination with any other positioning device. Such as a 
B-scan arm member or any other positioning devices and 
components. 

In addition to being configured for controlled movement of 
probe 202 through use of a guide assembly 212, position 
sensing system 214 can also be configured for determining 
position and/or direction of movement where the region of 
interest is under movement through use of a guide assembly. 
For example, in accordance with another exemplary embodi 
ment, with reference to FIG.9A, a scanning, imaging, and/or 
therapy region of interest 906 may be achieved by moving 
objects 904 in a direction 920 past a probe 902 through a 
guide assembly 908 comprising a transport mechanism, Such 
as a conveyor belt or other like arrangement. For example, 
objects 904 may be mice used in research, or any other desired 
objects. In this exemplary embodiment, probe 902 is acous 
tically coupled to object 904 through an acoustically compat 
ible transport mechanism 908. For example, guide assembly 
908 comprising a conveyor or other transport mechanism can 
be made of a thin plastic-like material with low acoustic 
losses and Suitable acoustic impedance. Such as TPX plastic 
or others similar materials. Coupling media Such as fluids like 
water or oils, and/or gels can be suitably utilized. 

With reference to another exemplary embodiment as 
shown in FIG.9B, a single object or collections of objects 904 
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to be scanned or treated may also lie on and be acoustically 
coupled to a stationary or nearly stationary surface 918, while 
probe 902 is swept in a direction 930 utilizing a guide assem 
bly, such as guide assembly 212, past and acoustically 
coupled to surface 918 to scan objects 904. Surface 918 has 
the same favorable acoustic characteristics as a guide assem 
bly 908 comprising a moving conveyor, namely an acousti 
cally small thickness, low acoustic losses, and favorable 
acoustic impedance among others, such as an impedance 
similar to both objects 904 being scanned and/or treated as 
well as probe 902. As a result, surface 918 provides efficient 
transfer of acoustic energy to and from scanned objects 904. 

In Such rectilinear, rotational or translational configura 
tions, position sensing system 214 can be interfaced to control 
system 204 via an appropriate communication interface. Such 
as the Universal Serial Bus (USB) or any other available 
communication interface, such that the position of probe 202, 
for example, the 2-D image frame position, and/or the direc 
tion of movement may be ascertained at any time while image 
frames are being collected. In addition, the speed of scanning 
can be determined by control system 204 through detection of 
position of probe 202 relative to the amount of scanning time, 
thus enabling a user to prevent under-sampling or under 
treatment of volume of interest 206. 

The present invention has been described above with ref 
erence to various exemplary embodiments. However, those 
skilled in the art will recognize that changes and modifica 
tions may be made to the exemplary embodiments without 
departing from the scope of the present invention. For 
example, the various functional components and elements, as 
well as the components for carrying out the operational 
thereof, may be implemented in alternate ways depending 
upon the particular application or in consideration of any 
number of cost functions associated with the operation of the 
system. For example, the position encoder and sensor con 
figurations can also be suitably configured for non-imaging 
applications, such as therapy, temperature monitoring, or any 
other tissue parameter effect or monitoring. In addition, the 
various components and devices can comprise numerous 
types of plastics, metals, woods, composites or other combi 
nation of materials thereof to provide the requisite structures 
or functions. These and other changes or modifications are 
intended to be included within the scope of the present inven 
tion, as set forth in the following claims. 

The invention claimed is: 
1. A method for facilitating controlled scanning of animag 

ing probe relative to a region of interest, said method com 
prising: 

holding an imaging probe in a hand; 
Scanning a region of interest with said imaging probe in 

said hand; 
restricting movement of said imaging probe through use of 

a guide assembly to rotation around an axis which is 
Substantially perpendicular to a Surface of the region of 
interest; and 

determining position of said imaging probe within said 
guide assembly through use of a position sensing system 
to facilitate three-dimensional reconstruction of images 
by a control system, wherein restricting movement com 
prises coupling a guide member to said imaging probe. 

2. The method according to claim 1, wherein restricting 
movement comprises controlling movement in a rotational 
a. 

3. The method according to claim 1, further comprising 
collecting a plurality of two-dimensional image planes to 
facilitate said three-dimensional reconstruction of images by 
a control system. 
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10 
4. The method according to claim 1, wherein said imaging 

probe comprises an ultrasound transducer configured with at 
least one of a single element, multiple element, or electronic 
array based transducer. 

5. The method according to claim 1, wherein said imaging 
probe is a combined imaging/therapy probe. 

6. The method according to claim 5, further comprising 
placing at least one therapeutic lesion with said combined 
imaging/therapy probe in said region of interest along said 
movement of said combined imaging/therapy probe through 
the use of the guide assembly. 

7. The method according to claim 1, further comprising 
monitoring at least one tissue parameter and reporting to said 
control system. 

8. The method according to claim 1, further comprising 
providing therapeutic treatment to said region of interest. 

9. A method for facilitating controlled scanning of an imag 
ing probe relative to a region of interest, said method com 
prising: 

holding an imaging probe in a hand; 
scanning a region of interest with said imaging probe in 

said hand; 
restricting movement of said imaging probe within one 

degree, of freedom through use of a guide assembly to 
rectilinear along a plane which is substantially parallel 
to a surface of the region of interest; and 

determining position of said imaging probe within said 
guide assembly through use of a position sensing system 
to facilitate three-dimensional reconstruction of images 
by a control system. 

10. The method according to claim 9, further comprising 
collecting a plurality of two-dimensional image planes to 
facilitate said three-dimensional reconstruction of images by 
a control system. 

11. The method according to claim 9, further comprising 
coupling the guide member to said imaging probe. 

12. The method according to claim 9, wherein said imaging 
probe comprises an ultrasound transducer configured with at 
least one of a single element, multiple element, or electronic 
array based transducer. 

13. The method according to claim 9, wherein said imaging 
probe is a combined imaging/therapy probe. 

14. The method according to claim 13, further comprising 
placing at least one therapeutic lesion with said combined 
imaging/therapy probe in said region of interest along said 
movement of said probe through the use of the guide assem 
bly. 

15. The method according to claim 9, further comprising 
monitoring at least one tissue parameter and reporting to said 
control system. 

16. The method according to claim 9, further comprising 
providing therapeutic treatment to said region of interest. 

17. A method for facilitating controlled scanning of an 
imaging probe relative to a region of interest, said method 
comprising: 

holding an imaging probe in a hand; 
scanning a region of interest with said imaging probe in 

said hand; 
restricting movement of said imaging probe within one 

degree of freedom through use of a guide assembly to a 
prescribed path which is substantially parallel to a sur 
face of the region of interest; and 

determining position of said imaging probe within said 
guide assembly through use of a position sensing system 
to facilitate three-dimensional reconstruction of images 
by a control system. 
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18. The method according to claim 17, further comprising 
collecting a plurality of two-dimensional image planes to 
facilitate said three-dimensional reconstruction of images by 
a control system. 

19. The method according to claim 17, further comprising 
coupling the guide member to said imaging probe. 

20. The method according to claim 17, wherein said imag 
ing probe comprises an ultrasound transducer configured 
with at least one of a single element, multiple element, or 
electronic array based transducer. 

21. The method according to claim 17, wherein said imag 
ing probe is a combined imaging/therapy probe. 

12 
22. The method according to claim 21, further comprising 

placing at least one therapeutic lesion with said combined 
imaging/therapy probe in said region of interest along said 
movement of said probe through the use of the guide assem 
bly. 

23. The method according to claim 17, further comprising 
monitoring at least one tissue parameter and reporting to said 
control system. 

24. The method according to claim 17, further comprising 
10 providing therapeutic treatment to said region of interest. 
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