HIGH DEFINITION AND LOW POWER PARTIAL FUNCTIONALITY COMMUNICATION LINK

Inventors: Eyran Lida, Kfar Ha-Oranim (IL); Avi Avrahami, Cohav-Yair (IL); Alon Benzaray, Herzelia (IL); Nadav Banet, Kadima (IL); Micha Risling, Raanana (IL); Massad Eyal, Zichron Yaakov (IL); Zeev Brunin, Hod Hasharon (IL)

Correspondence Address:
Active Knowledge Ltd.
POB 294
Kiryat Tivon 36010

Assignee: Valens Semiconductor Ltd., Hod Hasharon (IL)

Filed: Aug. 17, 2008

Abstract

Communication link including a cable containing four pairs of wires, three transmitters to transmit uncompressed video data and audio data over three of the pairs of wires to three receivers, and two transceivers to form a bidirectional multi data type communication link over the fourth pair of wires. An active mode of operation for transmitting the uncompressed video data and the audio data over the three pairs of wires, and for transmitting bidirectional data over the fourth pair of wires. And a first low power partial functionality mode of operation for transmitting bidirectional system controls.

Related U.S. Application Data

Continuation-in-part of application No. 11/703,080, filed on Feb. 7, 2007.

Provisional application No. 61/056,410, filed on May 27, 2008, provisional application No. 61/086,174, filed on Aug. 5, 2008.

Publication Classification

Int. Cl.
H04N 7/173

U.S. Cl. 725/121
FIG. 2A
FIG. 2B
FIG. 3

FIG. 4
System Controller 67

Video Stream 66a

Audio Stream 66b

Control Stream 66c

Link Layer Data Demux 63

Selector 65

Link Layer LPPF Data Demux 64

DSP RCV 69b

LPPF DSP RCV 69c

Rx AFE 69a

FIG. 6
FIG. 7

FIG. 8
FIG. 13
Transmit a first stream over conductive wires using a first modulation

Transmit a second stream, comprising less data types, over a subset of the wires used for the first stream, using a second simpler modulation

FIG. 16

Transmit bidirectional data and unidirectional uncompressed HD video over a cable

Transmit bidirectional data in a much lower symbol rate over a subset of the wires

FIG. 17
Transmit an asymmetric data stream over conductive wires

Transmit over a subset of the conductive wires a bidirectional stream having a lower throughput and comprising less data types

FIG. 18

Test the type of a link partner transceiver

not multi data type

Operate according to the detected type

multi data type

Negotiate the required functionality

Switch to an appropriate mode of operation

FIG. 19
Negotiate the functionality of a multi data type communication link transceiver

Switch to an appropriate mode of operation supporting the required functionality

FIG. 20
HIGH DEFINITION AND LOW POWER PARTIAL FUNCTIONALITY COMMUNICATION LINK

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation-in-part of application Ser. No. 11/703,080, filed on Feb. 7, 2007, incorporated herein by reference. This application also claims the benefit of U.S. Provisional Patent Application No. 61/056,410, filed on May 27, 2008, incorporated herein by reference. This application also claims the benefit of U.S. Provisional Patent Application No. 61/086,174, filed on Aug. 5, 2008, incorporated herein by reference.

BACKGROUND

[0002] A multimedia system transmitting, for example, video, audio, and controls may enter a standby mode, enabling limited performance, in order to reduce power consumption. In some cases, limited performance refers to transmitting only a subset of the data types that are supported by the device, that is also in standby mode, to which it is connected. In other words, there is no need to turn on the source and/or sink devices in order to read their properties.

[0003] Current video, audio, or multimedia solutions transmit some or all of their standby and/or low power data types over dedicated wires. For example, a High-Definition Multimedia Interface (HDMI™) includes dedicated wires for DDC, HPD, and CEC controls. DisplayPort™ includes two wires for transmitting the auxiliary data. The above solutions implement the standby mode by turning off the transceiver(s) that are not required for transmitting the data types that are supported by the standby mode. For example, in HDMI, only the transceivers that are physically connected to the wires used for transmitting the standby mode data types are operated in standby mode. In other words, standard HDMI systems include dedicated control wires that are connected to dedicated modems, and only these modems operate in standby mode. Moreover, the standby mode bandwidth is much smaller than the regular bandwidth, and allocating dedicated wires for the standby mode increases the total number of required wires because the standby wires are not used for significantly increasing the bandwidth of the regular mode of operation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] In one embodiment, a communication link including: a cable containing four pairs of wires, three transmitters operative to transmit uncompressed video data and data over three of the pairs of wires to three receivers, and two transceivers operative to form a bidirectional multi data type communication link over the fourth pair of wires; an active mode of operation for transmitting the uncompressed video data over the three pairs of wires, and for transmitting bidirectional system control data, bidirectional general data, and audio data over the fourth pair of wires; and an LPFF mode of operation for transmitting over the fourth pair of wires a subset of the data types transmitted in the active mode of operation over the fourth pair of wires.

[0005] In one embodiment, a communication link including: a cable containing four pairs of wires, three transmitters operative to transmit uncompressed video data and audio data over three of the pairs of wires to three receivers, and two transceivers operative to form a bidirectional multi data type communication link over the fourth pair of wires; an active mode of operation for transmitting the uncompressed video data and the audio data over the three pairs of wires, and for transmitting bidirectional data over the fourth pair of wires; and a first LPFF mode of operation for transmitting bidirectional system controls.

[0006] In one embodiment, a communication device including: a cable containing wires, at least one transmitter operative to transmit uncompressed video data over a first subset of the wires, and a transceiver operative to transmit bidirectional data including at least two data types over a second subset of the wires; an active mode of operation for transmitting the uncompressed video data over the first subset of the wires, and for transmitting bidirectional data over the second subset of the wires; and an LPFF mode of operation for transmitting over a third subset of the wires a subset of the data types transmitted in the active mode of operation over the second subset of the wires.

[0007] Implementations of the disclosed embodiments involve performing or completing selected tasks or steps manually, semi-automatically, fully automatically, and/or a combination thereof. Moreover, depending upon actual instrumentation and/or equipment used for implementing the disclosed embodiments, several embodiments could be achieved by hardware, by software, by firmware, or a combination thereof. In particular, with hardware, embodiments of the invention could exist by variations in the physical structure. Additionally, or alternatively, with software, selected functions of the invention could be performed by a data processor, such as a computing platform, executing a software instructions or protocols using any suitable computer operating system.

BRIEF SUMMARY

[0008] The embodiments of the present invention are herein described, by way of example only, with reference to the accompanying drawings. No attempt is made to show structural details of the embodiments in more detail than is necessary for a fundamental understanding of the embodiments. In the drawings:

[0009] FIGS. 1A-1B are schematic diagrams of one embodiment of the invention;

[0010] FIGS. 2A-2B are state machines of embodiments of the invention;

[0011] FIG. 2C is a schematic diagram of one embodiment of the invention;

[0012] FIGS. 3-4 illustrate data types in accordance with one embodiment of the invention;

[0013] FIG. 5A illustrates a MDTCL in accordance with one embodiment of the invention;

[0014] FIG. 5B illustrates a multi stream daisy chain in accordance with one embodiment of the invention;

[0015] FIG. 6 illustrates a receiving path in accordance with one embodiment of the invention;

[0016] FIG. 7 illustrates a transmitting path in accordance with one embodiment of the invention;

[0017] FIG. 8 is a schematic diagram of one embodiment of the invention;
FIG. 9 illustrates a sink side of a MDTCL in accordance with one embodiment of the invention; FIG. 10 illustrates a source side of a MDTCL in accordance with one embodiment of the invention; FIG. 11 illustrates a multimedia system in accordance with one embodiment of the invention; FIG. 12 illustrates one embodiment of a state machine of a MDTCL in accordance with one embodiment of the invention; FIG. 13 illustrates a communication device in accordance with one embodiment of the invention; FIG. 14 illustrates a communication device in accordance with one embodiment of the invention; FIG. 15 illustrates a communication device in accordance with one embodiment of the invention; FIG. 16 is a flow diagram of a modulation based method in accordance with one embodiment of the invention; FIG. 17 is a flow diagram of a symbol rate based method in accordance with one embodiment of the invention; FIG. 18 is a flow diagram of a throughput based method in accordance with one embodiment of the invention; FIG. 19 is a flow diagram of a link type based method in accordance with one embodiment of the invention; and FIG. 20 is a flow diagram of a functionality negotiation based method in accordance with one embodiment of the invention.

DETAILED DESCRIPTION

In the following description, numerous specific details are set forth. However, the embodiments of the invention may be practiced without these specific details. In other instances, well-known hardware, software, materials, structures and techniques have not been shown in detail in order not to obscure the understanding of this description. In this description, references to “one embodiment” or “an embodiment” mean that the feature being referred to is included in at least one embodiment of the invention. Moreover, separate references to “one embodiment” in this description do not necessarily refer to the same embodiment. Illustrated embodiments are not mutually exclusive, unless so stated and except as will be readily apparent to those of ordinary skill in the art. Thus, the invention may include any variety of combinations and/or integrations of the embodiments described herein. Also herein, flow diagrams illustrate non-limiting embodiment examples of the methods, and block diagrams illustrate non-limiting embodiment examples of the devices. Some flow diagrams operations are described with reference to the embodiments illustrated by the block diagrams. However, the methods of the flow diagrams could be performed by embodiments of the invention other than those discussed with reference to the block diagrams, and embodiments discussed with reference to the block diagrams could perform operations different from those discussed with reference to the flow diagrams. Moreover, although the flow diagrams may depict serial operations, certain embodiments could perform certain operations in parallel and/or in different orders from those depicted. Moreover, the use of repeated reference numerals and/or letters in the text and/or drawings is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.

The term “different data types” or “data types” or “types of data” as used herein denotes symbols that are used for different purposes and/or feature different characteristics. Examples of different data types include, but are not limited to: video pixel data; audio data; video synchronization control data, such as horizontal and vertical video picture synchronization; video system controls, such as CEC, HPD and DDC signals; or general data transmissions, such as Ethernet data, USB data, or RS232 data; or infra-red (IR) control data. The data types may also be differentiated by features such as time sensitivity characteristics of the data, the required quality of transmission associated with the data, or the required throughput for each type of data. Examples of such data types include, but are not limited to: (i) time sensitive data, such as video pixel data or audio data, and time insensitive data, such as Ethernet data and video system controls; or (ii) data requiring high transmission quality, such as video synchronization controls or video system controls, and data requiring relatively low transmission quality, such as video pixel data.

The term “multi data type communication link” (MDTCL) as used herein denotes a communication link that transfers at least two different data types. The different data types may be multiplexed into one or more data streams that are transmitted over the MDTCL by the same one or more modems. In the embodiments of the present invention, a MDTCL comprises at least one active mode of operation and at least one low-power partial-functionality (LPPF) mode of operation. While in the LPPF mode of operation, the MDTCL: (i) consumes less power than the power consumed in the active mode of operation, (ii) transmits at a lower throughput than the throughput transmitted in the active mode of operation, (iii) transfers only a subset of the data types that are transferred in the active mode of operation, and (iv) optionally transfers one or more low bandwidth data types that are not transferred in the active mode of operation. It is to be understood that the communication channel is not turned off while operating in the LPPF mode of operation. For example, assuming the LPPF mode of operation is utilized for transmitting system control data, there should be no need to establish the communication channel each time a system control datum is to be transmitted. It is also to be understood that the LPPF is a mode of operation and therefore it may transmit data repetitively without changing the mode of operation. In one embodiment, the LPPF mode of operation is non-isochronous and non-mesochronous.

The term “high definition” as used herein denotes at least 720p, 1080i with a total bitrate of more than 1 Gbit per second; wherein the total bitrate equals to the number of lines times the number of columns times the refresh rate times the number of bits per pixel.

FIG. 3 illustrates different data types as a function of the required transmission quality and the required bandwidth. As illustrated, video pixel data requires high bandwidth and low transmission quality; general data, audio data, video synchronization control data, and video system control data all require lower bandwidth and require higher transmission quality in increasing order. FIG. 4 illustrates different data types as a function of the required transmission quality and the required time sensitivity. As illustrated, video pixel data, audio data, and video synchronization control data all require strict timing and require transmission quality in increasing order; general data, such as Ethernet, RS232 data, or USB data, and video system control data are both less time sensitive and require transmission quality in increasing order. It is
to be understood that FIGS. 3 and 4 are just schematic illustrations and should not limit the scope of the disclosed embodiments.

[0035] In one embodiment, a communication link having at least two modes of operation, operating over the same physical media, connects between a sink device and a source device. As a non limiting example, the sink device may be a display device and the source device may be an HDMI source or an Ethernet source. The link identifies the source and operates according to the type of the source.

[0036] FIG. 1A illustrates one embodiment of a MDTCL having two modes of operation. The MDTCL has two transceivers (12a, 12b). A first mode of operation 13, referred to as the active mode, transmits relatively low throughput bidirectional control signals 17 and relatively high throughput unidirectional data signals 18, over the four conductive wires (11a, 11b, 11c, 11d) of the cable 11. A second mode of operation 14, referred to as the low-power partial-functionality (LPPF) mode, transmits relatively low throughput bidirectional control signals 16, over a subset (11c, 11d) of the conductive wires of the cable 11. The selector 15 illustrates that the required mode of operation may be set as needed. In one example, the bidirectional control signals 17 are multi media controls and/or HDMI controls; the unidirectional data signals 18 are uncompressed high definition digital video signals; and the bidirectional control signals 16 are standby signals.

[0037] Optionally, in the active mode of operation 13, the high throughput data 18 is transmitted over the four conductive wires (11a-11d) of the cable 11 and the control data 17 is multiplexed with the high-throughput data 18. Alternatively (not shown in the drawings) the high throughput data 18 and the multiplexed controls 17 are transmitted over a first subset of the conductive wires of the cable 11, and the controls 16 of the LPPF mode of operation 14 are transmitted over a subset of the first subset. Optionally, the cable 11 may be one of the following cables: CAT5, CAT5e, CAT6, CAT6a, CAT7, or coax.

[0038] In one embodiment, the MDTCL has two or more LPPF modes of operation, featuring different power consumptions, transfer of different data types, and/or different available functionalities. A few examples of LPPF functionalities include: transferring Ethernet without video, transferring the system controls, transferring audio, or a combination thereof. According to another example, the LPPF mode of operation may transfer one or more of the following data types: standby control data, multimedia control data, auto negotiation data, topology discovery data, network addressing data, general data, or consumer electronic control (CEC) data. Examples of electronic devices which may take advantage of such an LPPF mode of operation include one or more of the following: a display (such as a television, projector, or plasma display), a multimedia source, an audio system, a receiver, a tuner, an amplifier, or an HDMI compatible device.

[0039] FIG. 5A illustrates one embodiment of a MDTCL having one active mode of operation and two LPPF modes of operation. The different modes of operations are implemented using multi function transceivers denoted in FIG. 5A by small squares. The multi function transceivers have active, #1 LPPF, and #2 LPPF modes of operations. As illustrated, the DVD 59 transmits uncompressed content to the TV 62. Therefore, MDTCLs 60 and 61 are in the active mode of operation, i.e. the transceivers are in their active mode. The communication is transmitted through the DLNA compliant audio video (AV) receiver with DLNA client capabilities 56. The PC DLNA server 51 transmits to the TV 62 CEC communications and a compressed video stream using DLNA over Ethernet. Therefore, MDTCLs 52 and 55 operate in the #2 LPPF mode of operation which supports the required functionalities, e.g. CEC transactions and compressed video over Ethernet. The transceivers implementing the #2 LPPF mode of operation consume less power than the power consumed when operating in the active mode of operation. As illustrated, PC 51 is connected to TV 62 in a daisy chain through TV 54. TV 54 may be in standby mode. In order to save power while supporting the various MDTCL modes of operation, TV 54 may have a plurality of standby modes corresponding to the MDTCL modes of operation. In one embodiment, the standby mode of operation is determined by the MDTCL mode of operation. The STB 57 is in standby mode. Therefore, MDTCL 58 operates in the #1 LPPF mode of operation, which supports only CEC transactions. The TV 62 receives uncompressed video from DVD 59 and compressed video from PC 51 and, as an example, may use the two streams for displaying picture in picture.

[0040] In one embodiment, the LPPF modes of operation and their corresponding standby modes are determined according to one or more of the following: (i) the amount of the transmitted bandwidth, (ii) the type of transmitted data, or (iii) the required functionality of the MDTCL. Examples of three LPPF modes of operation include the following: (i) an LPPF mode for transmitting video stream control data, (ii) an LPPF mode for transmitting video system control data and audio data, and (iii) an LPPF mode for transmitting video system control data and general data, such as Ethernet data. The third example may also be considered as a low power mode because the Ethernet transmission consumes less power than uncompressed video transmission. In one embodiment, 100 Mb Ethernet is transmitted over two pairs of wires of a CATx cable, and video system control data is transmitted over the other two pairs of wires of the CATx cable.

[0041] The communication link in one or more of the embodiments discussed herein may be a multi stream communication link. Alternatively or additionally, the communication link in one or more of the embodiments discussed herein may be a multi stream communication link. Still alternatively or additionally, the communication link in one or more of the embodiments discussed herein may be a symmetric and multi stream communication link. FIG. 5B illustrates one embodiment of a multi-stream daisy chain comprising two source devices (531 and 532) and two display devices (533 and 534). Source device 531 and display device 534 are in a standby mode of operation; therefore, MDTCLs 535 and 537 are in their LPPF mode of operation. Source device 532 transmits to display device 533; therefore, the multi stream MDTCL 536 is in its active mode. In one example, the multi stream MDTCL 536 transfers, in its active mode of operation, video from source device 532 to display device 533 and system controls between source device 532 and display device 533, and system controls between source device 531 and display device 534. It is to be understood that the MDTCLs 535 and 537 may also be multi stream MDTCLs.

[0042] In one embodiment, a daisy chain device includes a daisy chain mechanism which manages and supports the communication link. In one embodiment, the daisy chain mechanism may operate almost independently of the daisy
chain device. For example, the daisy chain mechanism may operate in its active mode of operation while the daisy chain device is in a standby mode of operation. In one embodiment, the daisy chain mechanism comprises a first and a second MDTCI transceiver that may operate in different modes of operation. Referring again to FIG. 3B as an example, the first MDTCI transceiver of source device 5132 may communicate with source device 5131 in the LPPF mode of operation, while the second MDTCI transceiver may communicate with display device 5133 in the active mode of operation. All other combinations, such as Active-LPPF, LPPF-LPPF and active-active, may be possible.

[0043] FIG. 2A illustrates one embodiment of a state machine for operating a MDTCI over the same physical media (e.g. a copper cable). In this embodiment, the communication link has an Ethernet mode of operation 24 and two MDTCI modes of operation, named LPPF mode of operation 26 and active mode of operation 28. Optionally, during the Link Partner Detection mode of operation 22, each side connected to the link performs auto negotiation with the other side, if exists. The Link Partner Detection mode of operation 22 may be entered upon waking up, turning on, or resetting. In one embodiment, one or more interfaces are tested. For example, an Ethernet interface may be tested 22a; if the Ethernet interface is established, the state of the communication link changes to Ethernet mode of operation 24; otherwise, a MDTCI application, such as HDMI, may be tested 22b; if both sides support the MDTCI properties, the state of the communication link changes to LPPF mode of operation 26. Optionally, if the link is plugged out (28c, 28d) or there is an invalid link response 26a, the MDTCI switches back to the link partner detection mode 22.

[0044] Referring to FIG. 1B and FIG. 2A, optionally, upon entering the LPPF mode of operation 26, the communication link receives from both sides (19a, 19b) information about their modes of operation. If both sides (19a and 19b) are in active modes of operation, the communication link switches to its active mode of operation 28. If at least one of the sides (19a or 19b) is in standby mode, the communication link stays in the LPPF mode of operation 26.

[0045] While operating in the active mode of operation 28, if the link is down 28d or one of the sides (19a, 19b) changes its mode to #1 LPPF or #2 LPPF (28a, 28e), the communication link enters the LPPF mode of operation 26. Optionally, during the active mode of operation 28, one of the following combinations of data types may be transmitted over the communication link: uncompressed high definition digital video data and bidirectional control data, uncompressed high definition digital video and audio data and bidirectional control data, uncompressed high definition digital video and audio data and bidirectional control data and Ethernet general data.

[0046] Optionally, during the LPPF mode of operation 26, the communication link is able to transmit control signals needed for the system to determine whether it should change its mode of operation, and/or perform other standby mode activities, such as the standby mode activities defined by DVI™ (Digital Visual Interface), HDMI™, DisplayPort™, or DVI™ standards. In one embodiment, the LPPF mode of operation 26 may support one or more of the following control signals: (i) control signals needed for nodes in the network to go into and out of standby mode, (ii) control signals supporting network topology changes performed while the devices are in standby mode, (iii) control signals for finding the network topology while some of the network is in standby, or (iv) control signals for assigning identification numbers to the various nodes in the network while the network is in standby mode. In one embodiment, the LPPF mode of operation 26 supports the control signals defined by the HDMI standard. For example, the LPPF mode of operation 26 may support one or more of the following HDMI control signals: EDID DDC transactions, HPD, 5V status signals, or transparent transfer of CEC transactions.

[0047] FIG. 2B illustrates one embodiment of a state machine for operating a MDTCI over the same physical media. In this embodiment, the multi function transceivers used by the MDTCI have an active mode of operation 28 and two LPPF modes of operation (26a, 26b). In one example, each mode of the multi function transceiver processes different data type(s) or different combination(s) of data types, such that the different modes of operation (26a, 26b, 28) feature different functionalities and optionally different power consumptions.

[0048] During the link partner detection mode 22, the system sets the function(s) to be operated by the multi function transceiver. For example, if the devices connected to both sides of the MDTCI are in their active mode of operation, the multi function transceivers are set to be (22c) in the active mode of operation 28. If a first device connected to the MDTCI is in the active mode, and a second device connected to the MDTCI is in another mode, a communication takes place between the two devices, optionally resulting in the second device changing its mode to the active mode of operation 28, or the first device changing its mode to another mode that is accepted by the second device. The MDTCI may also switch between the various LPPF modes of operation (27a, 27b). For example, assuming a first and a second device connected to the MDTCI are in the #1 LPPF mode of operation 26a, the first device may transmit a message to the second device that may agree to switch mode, resulting in both devices switching 27a to the #2 LPPF mode of operation 26b. Alternatively, assuming the first and the second device connected to the MDTCI are in the #2 LPPF mode of operation 26b, the first device may notify the second device it switches to the #1 LPPF mode of operation, resulting in both devices switching to the #1 LPPF mode of operation.

[0049] FIG. 2C illustrates a configuration supporting the feature of switching between the various LPPF modes of operation using messages. In the illustrated embodiment, the #1 LPPF mode of operation 2C1 transmits over pairs of wires 11a and 11d. The #2 LPPF mode of operation 2C3, which transmits over the four pairs of wires 11a-11d, transmits approximately the same data over pairs of wires 11c and 11d as the #1 LPPF mode of operation and transmits additional data over pairs of wires 11a and 11b. Because the same data transmissions over the same pairs of wires are used by the #1 and the #2 modes of operations, it is possible to switch between the #1 and the #2 modes of operations using messages transmitted over pairs of wires 11c and 11d.

[0050] FIG. 19 is a flow diagram illustrating one method for operating a multi data type communication link transceiver, comprising the following steps: In step 190, testing the type of the link partner transceiver. If the link partner transceiver is not a multi data type communication link transceiver, operating the multi data type communication link transceiver according to the detected type of the link partner transceiver (step 192). If the link partner transceiver is a multi data type communication link transceiver, further comprising the steps of negotiating the functionality required from the multi data type commu-
communication link with the link partner (step 194), and switching to an appropriate mode of operation (step 196).

FIG. 20 is a flow diagram illustrating one method for operating a multi data type communication link transceiver, comprising the following steps: In step 200, negotiating with a link partner the functionality required from the multi data type communication link transceiver. And in step 202, switching to an appropriate mode of operation, which supports the required functionality, selected from the group of at least a first active mode of operation and a second LPPF mode of operation; wherein the required functionality is based on the data types to be transmitted over the multi data type communication link, and the second LPPF mode of operation transmits over a subset of the physical media used by the first active mode of operation.

Various auto negotiations may be implemented for different devices running different interfaces. The various auto negotiation protocols may differ in the following non-limiting features: (i) using different conductive wires for identification. For example, Ethernet uses the pair of conductive wires A and B, while a MDTCL may use the pair of conductive wires C and D; (ii) using different transmission amplitudes. For example, a MDTCL may utilize amplitude which is below the lower threshold of Ethernet; or (iii) using different pulse shapes. For example, a MDTCL may use a pulse shape that is different from the pulse shape used by Ethernet.

U.S. patent application Ser. No. 11/703,080, filed on Feb. 7, 2007, which is incorporated herein by reference in its entirety, discloses methods and systems, which may be used with the discussed embodiments, for transmitting the following data types over the same wires: (i) uncompressed high definition digital video data, (ii) uncompressed audio data, (iii) bidirectional control data, and/or (iv) general data, such as Ethernet.

Power Saving Techniques

Since the bandwidth of the LPPF mode of operation is significantly lower than the bandwidth of the active mode of operation, the LPPF mode of operation may utilize one or more of the following techniques for power reduction.

The LPPF mode of operation may utilize a simpler modulation scheme than the modulation scheme used in the active mode of operation 28. FIG. 16 is a flow diagram illustrating one method comprising the following steps: in step 160, transmitting in a first mode of operation a first data stream, comprising at least two data types, over conductive wires using a first modulation scheme. And in step 162, transmitting in a second LPPF mode of operation a second data stream, comprising less data types than the first data stream, over at least a subset of the conductive wires used for transmitting the first data stream, using a second modulation scheme that is simpler than the first modulation scheme.

The LPPF mode of operation may utilize a much lower symbol rate than the symbol rate used in the active mode of operation 28. FIG. 17 is a flow diagram illustrating one method comprising the following steps: in step 170, transmitting in a first mode of operation bidirectional data between a source device and a sink device and unidirectional uncompressed high definition digital video from the source device to the sink device over at least a first subset of conductive wires comprised in a cable. And in step 172, transmitting in a second LPPF mode of operation bidirectional data between the source device and the sink device over at least a second subset of the conductive wires used by the first mode of operation for transmitting the unidirectional uncompressed high definition digital video. Wherein, the bidirectional data transmitted in the second LPPF mode of operation comprises at least one data type that is also transmitted in the bidirectional data of the first mode of operation, and the transmissions in the second LPPF mode of operation are have a much lower symbol rate compared to the transmissions in the first mode of operation.

The transmissions in the LPPF mode of operation may utilize a subset of the wires used for the active mode of operation 28. For example, when operating over a multi twisted pairs cable, such as CAT5e, one pair may be used for transmitting and one pair for receiving.

Instead of transmitting full duplex over the same wires, in the LPPF mode of operation, a unidirectional transmission may be transmitted over a first set of wires and a unidirectional transmission may be transmitted to the opposite side over a second set of wires, where the first and second sets of wires are also used by the active mode of operation. Utilizing unidirectional transmissions in the LPPF mode of operation reduces the receiver’s signal analysis workload and as a result reduces the receiver’s power consumption.

Low amplitude transmissions may be used in the LPPF mode of operation.

In the LPPF mode of operation, the link may be activated only when valid data is available for transmissions, instead of activating the link also when there is no data to transmit, usually using idle symbols.

In the LPPF mode of operation, the link may be activated on request and may be maintained only when additional transmissions are expected soon. Synchronization and timing problems as a result of turning off the link may be resolved by a self clocking code, such as Manchester II, wherein the clock is embedded within the data.

In the LPPF mode of operation, signal acquisition may be performed each time a transaction is to be performed.

In the LPPF mode of operation, a modem having at least two modes of operation may be utilized as further discussed below. The plural modes modem may be implemented as one or more modems connected to the same media through the same analog front ends or through different analog front ends. In one embodiment, the first mode of operation is a 10 Gbps Ethernet modem and the second mode of operation is a low power modem utilizing one or more of the above described techniques (lower frequency, fewer conductive wires, low amplitude, partial functionality, maintaining the link, Synchronization, signal acquisition, lower symbol rate, or modem with two modes of operation).

FIG. 18 is a flow diagram illustrating one method comprising the following steps: in step 180, transmitting in a first mode of operation, over a cable comprising conductive wires, a first asymmetric data stream comprising at least two data types. And in step 182, transmitting in a second LPPF mode of operation, over a subset of the conductive wires used by the first mode of operation, a second bidirectional data stream having a much lower throughput (e.g., at most approximately 1/10 of the throughput) and comprising less data types than the first asymmetric data stream.

MDTCL Modems

FIG. 6 illustrates an example of a receiving path of a receiver used in a MDTCL. The illustrated receiver has (i) an active mode of operation, in which it receives a video
stream 66a, an audio stream 66b, and a control stream 66c; and (ii) an LPFF mode of operation, in which it receives only the control stream 66c. While the receiver is in its active mode of operation, the video stream 66a, the audio stream 66b, and the control stream 66c are received from the communication medium through the active mode of operation version of the receiver's analog front end 69a, the active mode of operation version of the DSP receiver 69b, and the active mode of operation version of the link layer data demultiplexer 63. The optional selector 65 selects the control stream from the active path. In another embodiment, the selector 65 is not required because the control stream received in the active mode of operation is forwarded to a first destination and the control stream received in the LPFF mode of operation is forwarded to a second destination. While the receiver is in its LPFF mode of operation, the control stream 66c is received from the communication medium through the LPFF mode of operation version of the receiver's analog front end 69a, the LPFF mode of operation version of the DSP receiver 69b, and the LPFF mode of operation version of the link layer data demultiplexer 64. As illustrated by FIG. 6, in one embodiment, at least some part of the receiver's analog front end is shared between the active receiving path and the LPFF receiving path because the different data types are received from the same wires. The optional system controller 67 sets the mode of operation of the selector 65 and the receiver's analog front end 69a according to the system controls received from the link layer data demultiplexer 63 and the link layer LPFF data demultiplexer 64.

[0066] FIG. 7 illustrates one example of a transmitting path of a transmitter used in a MDTCI. The illustrated transmitter has (i) an active mode of operation, in which it transmits a video stream 70, an audio stream 71, and a control stream 72; and (ii) an LPFF mode of operation, in which it transmits only the control stream 72. While the transmitter is in its active mode of operation, the video stream 70, audio stream 71, and control stream 72 are transmitted to the communication medium through the active mode of operation version of the link layer data multiplexer 73, the active mode of operation version of the transmit modulator 75, and the active mode of operation version of the transmitter's analog front end 103a. The optional selector 77 selects the video stream 70, audio stream 71, and control stream 72 from the active path. In another embodiment, the selector 77 is not required because the streams of the active mode of operation are forwarded to a first analog front end and the control stream of the LPFF mode of operation is forwarded to a second analog front end. While the transmitter is in its LPFF mode of operation, the control stream 72 is transmitted to the communication medium through the LPFF mode of operation version of the link layer LPFF data multiplexer 74, the LPFF mode of operation version of the transmit modulator 76, and the LPFF mode of operation version of the transmitter's analog front end 78. As illustrated by FIG. 7, in one embodiment, at least some part of the transmitter's analog front end is shared between the active transmitting path and the LPFF transmitting path because the different data types are transmitted over the same wires. The optional system controller 79 sets the mode of operation of the selector 77 and the transmitter's analog front end 78 using the illustrated “mode” signal, and provides the system controls to the link layer data multiplexer 73 and to the link layer LPFF data multiplexer 74.

MDTCL Transceivers

[0067] FIG. 8 illustrates an optional configuration, including a source transceiver 81 and a sink transceiver 82, which is explained in detail by FIGS. 9 and 10. In the illustrated example, source transceiver 81 transmits to sink transceiver 82 video data and audio data; and bidirectional control data is transmitted between the source transceiver 81 and the sink transceiver 82. The video, audio and control data may be transmitted over the same wires.

[0068] FIG. 9 illustrates one embodiment of the sink side of a MDTCI, wherein the sink is a television, which receives a video stream 90a, an audio stream 90b, and a bidirectional control stream 90c. While the TV is in its active mode of operation, the optional system controller 91a sets selectors 91b and 91c to pass the active path and sets the analog front ends of the transmitted and the receiver (93a, 93b) to operate in their active mode of operation, according to the system controls received from the link layer data demultiplexer 98a. The system controller 91a also provides the system controls to the link layer data multiplexer 94a. The TV transmits the control stream 90c to the bidirectional communication medium through the active mode of operation version of the link layer data multiplexer 94a, the active mode of operation version of the transmit modulator 95a, the active mode of operation version of the transmitter's analog front end 93a, and the hybrid circuit 92. The TV receives the video stream 90a, the audio stream 90b, and the control stream 90c from the bidirectional communication medium through the hybrid circuit 92, the active mode of operation version of the receiver's analog front end 93b, the active mode of operation version of the DSP receiver 97a, and the active mode of operation version of the link layer data demultiplexer 98a.

[0069] While the TV is in its LPFF mode of operation, the optional system controller 91a sets selectors 91b and 91c to pass the LPFF path and sets the analog front ends of the transmitter and the receiver (93a, 93b) to operate in their LPFF mode of operation according to the system controls received from the link layer LPFF data demultiplexer 98b. The system controller 91a also provides the system controls to the link layer LPFF data multiplexer 94a. The TV transmits the a control stream 90c to the bidirectional communication medium through the LPFF mode of operation version of the link layer data multiplexer 94b, the LPFF mode of operation version of the transmit modulator 95b, the LPFF mode of operation version of the transmitter's analog front end 93a, and the hybrid circuit 92. The TV receives a control stream 90c from the bidirectional communication medium through the hybrid circuit 92, the LPFF mode of operation version of the receiver's analog front end 93b, the LPFF mode of operation version of the DSP receiver 97b, and the LPFF mode of operation version of the link layer data demultiplexer 98b.

[0070] FIG. 10 illustrates one embodiment of the source side of a MDTCI, wherein the source may be a STB, DVD, Blu-Ray, game console, PC, or any other device that transmits a video stream 100a, an audio stream 100b, and a bidirectional control stream 100c. While the device source is in its active mode of operation, the optional system controller 101 sets selectors 102a and 102b to pass the active path and sets the analog front ends of the transmitter and the receiver (103a, 103b) to operate in their active mode of operation according to the system controls received from the link layer data
demultiplexer 108a. The system controller 101 also provides the system controls to the link layer data multiplexer 104a. The source device transmits a video stream 100a, an audio stream 100b, and a control stream 100c to the bidirectional communication medium through the active mode of operation version of the link layer LPPF data multiplexer 104a, the active mode of operation version of the transmit modulator 105a, the active mode of operation version of the transmitter’s analog front end 103a, and the hybrid circuit 106. The source device receives a control stream 100c from the bidirectional communication medium through the hybrid circuit 106, the active mode of operation version of the receiver’s analog front end 103b, the active mode of operation version of the DSP receiver 107a, and the active mode of operation version of the link layer data multiplexer 108a.

While the source device is in its LPPF mode of operation, the system controller 101 sets selectors 102a and 102b to pass the LPPF path and sets the analog front ends of the transmitter and the receiver (103a, 103b) to operate in their LPPF mode of operation according to the system controls received from the link layer LPPF data multiplexer 108b. The system controller 101 also provides the system controls to the link layer LPPF data multiplexer 104b. The source device transmits a control stream 100c to the bidirectional communication medium through the LPPF mode of operation version of the link layer data multiplexer 104b, the LPPF mode of operation version of the transmit modulator 105b, the LPPF mode of operation version of the transmitter’s analog front end 103a, and the hybrid circuit 106. The source device receives a control stream 100c from the bidirectional communication medium through the hybrid circuit 106, the LPPF mode of operation version of the receiver’s analog front end 103b, the LPPF mode of operation version of the DSP receiver 107b, and the LPPF mode of operation version of the link layer data multiplexer 108b.

Ethernet Low Power Partial Functionality Operation Mode

In one embodiment, a modified Ethernet interface includes an LPPF mode of operation that transmits only a predefined set of data types. Ethernet with LPPF mode is especially useful when operating with consumer electronic devices, such as, but not limited to, displayed devices, or source devices such as STBs, DVD players, Video players, Blu-Ray players, game consoles, or multimedia servers.

In one example, a consumer electronic source device may use Ethernet for transferring, in its active mode of operation, video, audio, and control data to a display device. While the consumer electronic source device does not transmit video and audio data, for example, when it is in standby mode, the consumer electronic source device may still need to transmit some system controls and/or audio data, which consume much less bandwidth than consumed in the active mode of operation.

FIG. 13 illustrates one embodiment of a communication device, also referred to as a modified Ethernet interface, having two types of PHY DSPs. The first PHY DSP is a standard Ethernet PHY DSP 133, and the second PHY DSP is an LPPF PHY DSP 134. The LPPF mode of operation may utilize one or more of the power reduction techniques described herein.

The data link layer (MAC) 131 of the modified Ethernet interface may operate the standard Ethernet PHY DSP 133 or the LPPF PHY DSP 134. The optional system controller 130a sets selectors 132 and 135 to pass the signals of the required mode of operation. Optionally, the analog front end 136 has also two modes of operation, corresponding to the two PHY modes of operation. In one embodiment, the MAC 131 determines which PHY to operate. In another embodiment, the application layer 130 determines which PHY to operate using the following steps:

- The MAC 131 on a first side of the communication link receives from the application layer 130 an indication about the required mode of operation of the communication link, for example, active, #1 LPPF, or #2 LPPF modes of operation.

The MAC 131 communicates with the device on the other side of the communication link in order to coordinate the operation of the communication link. For example, the first device (connected to the first side of the communication link) may request from the second device (connected to the second side of the communication link) to switch from #1 LPPF mode to active mode; if the second device accepts the request, the communication link switches to active mode; if the second device does not accept the request, the communication link may stay in its current mode of operation, or switch to a predefined mode of operation such as the default mode of operation, or reset the link. In one embodiment, when one device connected to the communication link switches from the active mode to one of the LPPF modes, or from a comprehensive LPPF mode to slimmer LPPF mode, the device on the other side must also change its mode of operation.

In one embodiment, the application layer 130 determines which of the available physical layers to operate and which data types are to be transmitted over the communication link. In this case, only frames associated with the allowable data types are forwarded to the MAC 131; frames associated with other data types are not forwarded to the MAC 131. In one embodiment, the application layer 130 determines the type associated with each frame by communicating with the data sources. For example, a video source may be able to identify the data types of the frames it supplies, such as video data, audio data, and AV controls, and to forward that information to the application layer 130. In one embodiment, the application layer 130 determines the type associated with each frame according to the source of each frame. For example: an Ethernet port supplies a general data type; an HDMI port supplies a video data stream, an audio data stream and control streams; and an audio system provides an audio data stream.
power consumption of the 10 Gbps Ethernet PHY DSP 143 is significantly higher than the power consumption of the #1 LPPF PHY DSP 144 which is significantly higher than the power consumption of the #2 LPPF PHY DSP 145.

[0080] It is to be understood that FIGS. 13 and 14 may be amended to include designated data link layers for each mode of operation, similar to the structures illustrated in FIGS. 9

[0081] In one embodiment, the LPPF mode does not change the structure of the Ethernet frame. Maintaining the frame structure enables smooth transitions between network hops. In one embodiment, the LPPF mode and the active mode utilize different frame structures. Utilizing different frame structures may improve the efficiency and reduce overheads.

DivA Low Power Partial Functionality Operation Mode

[0082] It is to be understood that although the name “DIVA” is used herein, the claimed invention should not be limited, in any way, to the Digital Interface for Video and Audio (DIVA) initiated by a working group of some leading Chinese consumer electronics companies, described in http://www.diva-interface.org

[0083] FIG. 11 illustrates one embodiment of a multimedia system including four pairs of wires. Uncompressed video data and uncompressed audio data, optionally multiplexed with video control data, are transmitted by three transmitters (111a, 112a, 113a), over three links (111b, 112b, 113b), to three receivers (111c, 112c, 113c). Transceivers 114a and 114c form a bidirectional MDTCL. In one embodiment, approximately 4.5 Gbps of video and audio are transmitted over these links (111b, 112b, 113b), and 4.5 Gbps of data is transmitted, half-duplex, over the fourth link 114b. Optionally, each of the four communication links (111b, 112b, 113b, and 114b) is made of a pair of copper wires. Optionally, the transmissions are SerDes (Serializer/Deserializer).

[0084] FIG. 12 illustrates one embodiment of the state machine of MDTCL 114b of FIG. 11 adapted to DIVA. The MDTCL 114b may transfer, in its active mode of operation 128, the following data types over a pair of wires: bidirectional system control data, bidirectional general data, and optional unidirectional audio data from transceiver 114c to transceiver 114a. Optionally, the general data includes Ethernet MAC. The MDTCL 114b may feature one or more of the following LPPF modes of operation: (i) a first optional LPPF mode of operation 124 for transferring bidirectional system controls; (ii) a second optional LPPF mode of operation 126 for transferring bidirectional system controls and unidirectional audio from transceiver 114c to transceiver 114a; or (iii) a third optional LPPF mode of operation (not illustrated in the figure) for transferring bidirectional system controls and bidirectional general data in a rate that is lower than the transfer rate of the bidirectional data utilized by the active mode of operation. For example, in its active mode of operation, the system may transmit half-duplex general data in a rate of 4.5 Gbps, while in its third LPPF mode of operation, the system may transmit half-duplex general data in a rate of 1 Gbps, 100 Mbps, 10 Mbps, or 1 Mbps.

[0085] The LPPF mode of operation may utilize one or more of the power reduction techniques described herein. For example, operating the MDTCL 114b using different rates, using a smaller amplitude, and/or transmitting over the link only when there is a need to transmit data.

[0086] Although the embodiments have been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible.

[0087] Certain features of the embodiments, which may, for clarity, be described in the context of separate embodiments, may also be provided in various combinations in a single embodiment. Conversely, various features of the embodiments, which may, for brevity, be described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.

[0088] The embodiments are not limited in their applications to the details of the order or sequence of steps of operation of methods, or to details of implementation of devices, set in the description, drawings, or examples.

[0089] While the methods disclosed herein have been described and shown with reference to particular steps performed in a particular order, it will be understood that these steps may be combined, sub-divided, or reordered to form an equivalent method without departing from the teachings of the embodiments. Accordingly, unless specifically indicated herein, the order and grouping of the steps is not a limitation of the embodiments.

[0090] Any citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the embodiments of the present invention.

[0091] While the embodiments have been described in conjunction with specific examples thereof, it is to be understood that they have been presented by way of example, and not limitation. Moreover, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and scope of the appended claims and their equivalents. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.

What is claimed is:

1. A communication link comprising: a cable containing four pairs of wires, three transmitters operative to transmit uncompressed video data and data over three of the pairs of wires to three receivers, and two transceivers operative to form a bidirectional multimedia type communication link over the fourth pair of wires; an active mode of operation for transmitting the uncompressed video data over the three pairs of wires, and for transmitting bidirectional system control data, bidirectional general data, and audio data over the fourth pair of wires; and an LPPF mode of operation for transmitting over the fourth pair of wires a subset of the data types transmitted in the active mode of operation over the fourth pair of wires.

2. The communication link of claim 1, wherein the LPPF mode of operation bidirectional system controls are transmitted over the fourth pair of wires.

3. The communication link of claim 2, wherein the uncompressed video data is multiplexed with video control data, and the communication over the fourth pair of wires is half-duplex.

4. The communication link of claim 2, wherein the uncompressed video data is multiplexed with video control data,
each of the three transmitters transmits approximately 4.5 Gbps of video and audio, and the communication over the fourth pair of wires is half-duplex.

5. The communication link of claim 1, wherein the three transmitters are further operative to transmit audio data.

6. The communication link of claim 1, wherein in the LPPF mode of operation bidirectional system controls and unidirectional audio are transmitted over the fourth pair of wires.

7. The communication link of claim 1, wherein in the LPPF mode of operation bidirectional system controls and bidirectional general data are transmitted over the fourth pair of the wires in a lower rate than the transfer rate of the bidirectional data in the active mode of operation.

8. The communication link of claim 7, wherein in the active mode of operation, the communication link over the fourth pair of wires transmits half duplex general data in a rate of between about 2 Gbps and 8 Gbps, while in the LPPF mode of operation, the communication link transmits half duplex general data in a rate of about 1 Gbps, 100 Mbps, or 1 Mbps.

9. The communication link of claim 1, wherein one or more of the following power reduction techniques is utilized in the LPPF mode of operation: using different rates, using lower amplitude, transmitting over the link only when there is a need to transmit data, or utilizing simpler modulation.

10. The communication link of claim 1, wherein the general data comprises Ethernet Data.

11. The communication link of claim 1, wherein the wires are made of copper and the transmissions are two level pulse amplitude modulation.

12. The communication link of claim 1, wherein the wires are made of copper and the transmissions utilize 8B/10B encoding.

13. The communication link of claim 1, wherein the LPPF mode of operation transmits in one direction over one of the first three pairs of wires and in the other direction over the fourth pair of wires.

14. The communication link of claim 13, wherein the transmitter transmitting over the one of the first three pairs of wires utilizes a lower rate in the LPPF mode of operation than in the active mode of operation.

15. The communication link of claim 13, wherein the transmitter transmitting over the one of the first three pairs of wires utilizes a simpler modulation in the LPPF mode of operation than in the active mode of operation.

16. A communication link comprising: a cable containing four pairs of wires, three transmitters operative to transmit uncompressed video data and audio data over three of the pairs of wires to three receivers, and two transceivers operative to form a bidirectional multi data type communication link over the fourth pair of wires; an active mode of operation for transmitting the uncompressed video data and the audio data over the three pairs of wires, and for transmitting bidirectional data over the fourth pair of wires; and a first LPPF mode of operation for transmitting bidirectional system controls.

17. The communication link of claim 16, wherein the first LPPF mode of operation transmits over the fourth pair of wires.

18. The communication link of claim 16, wherein the first LPPF mode of operation transmits in one direction over one of the first three pairs of wires and in the other direction over the fourth pair of wires.

19. The communication link of claim 16, further comprising a second LPPF mode of operation for transmitting bidirectional system controls and unidirectional audio.

20. The communication link of claim 19, further comprising a third LPPF mode of operation for transmitting bidirectional system controls and bidirectional general data in a lower rate than the transfer rate of the bidirectional data in the active mode of operation.

21. The communication link of claim 20, wherein the LPPF modes of operation transmit over the fourth pair of wires.

22. The communication link of claim 20, wherein the LPPF modes of operation transmit in one direction over one of the first three pairs of wires and in the other direction over the fourth pair of wires.

23. The communication link of claim 22, wherein the transmitter transmitting over the one of the first three pairs of wires utilizes a lower rate in the LPPF mode of operation than in the active mode of operation.

24. The communication link of claim 22, wherein the transmitter transmitting over the one of the first three pairs of wires utilizes a simpler modulation in the LPPF mode of operation than in the active mode of operation.

25. The communication link of claim 20, wherein in the active mode of operation, the communication link over the fourth pair of wires transmits half duplex general data in a rate of between about 2 Gbps and 8 Gbps, while in the third LPPF mode of operation, the communication link transmits half duplex general data in a rate of about 1 Gbps, 100 Mbps, or 1 Mbps.

26. The communication link of claim 16, wherein the bidirectional data transmitted in the active mode of operation comprises one or more of the following: bidirectional system control data, bidirectional general data, and audio data.

27. The communication link of claim 16, wherein the general data includes Ethernet Data.

28. The communication link of claim 16, wherein one or more of the following power reduction techniques is utilized in the first LPPF mode of operation: using different rates, using lower amplitude, transmitting over the link only when there is a need to transmit data, or utilizing simpler modulation.

29. The communication link of claim 16, wherein the wires are made of copper and the transmissions are two level pulse amplitude modulation.

30. A communication device comprising: a cable containing wires, at least one transmitter operative to transmit uncompressed video data over a first subset of the wires, and a transceiver operative to transmit bidirectional data comprising at least two data types over a second subset of the wires; an active mode of operation for transmitting the uncompressed video data over the first subset of the wires, and for transmitting bidirectional data over the second subset of the wires; and an LPPF mode of operation for transmitting over a third subset of the wires a subset of the data types transmitted in the active mode of operation over the second subset of the wires.

31. The communication device of claim 30, wherein the bidirectional data transmitted over the second subset of the wires in the active mode of operation comprises bidirectional system control data, bidirectional general data, and audio data.

32. The communication device of claim 30, wherein the second subset and the third subset of the wires overlap.
33. The communication device of claim 30, wherein the wires are made of copper and the transmissions utilize 8B/10B encoding.

34. The communication device of claim 30, wherein the LPPF mode of operation transmits in one direction over one pair of the wires of the first subset and in the other direction over one pair of the wires of the second subset.

35. The communication device of claim 34, wherein the transmitter transmitting over the one pair of the wires of the first subset utilizes a lower rate in the LPPF mode of operation than in the active mode of operation.

36. The communication device of claim 34, wherein the transmitter transmitting over the one pair of the wires of the first subset utilizes a simpler modulation in the LPPF mode of operation than in the active mode of operation.

37. The communication device of claim 30, wherein the second subset of the wires comprises two pairs of wires and the LPPF mode of operation transmits in one direction over one pair of the wires of the second subset and in the other direction over the second pair of the wires of the second subset.

38. The communication device of claim 30, wherein the uncompressed video data is multiplexed with video control data, and the communication over the second subset of the wires is half-duplex.

39. The communication device of claim 30, wherein one or more of the following power reduction techniques is utilized in the LPPF mode of operation: using different rates, using lower amplitude, transmitting over the link only when there is a need to transmit data, or utilizing simpler modulation.