Title: ELECTROLYTIC CAPACITOR WITH SAFETY VENT

(57) Abstract: An electrolytic capacitor comprises a case (2), a capacitor element (3) mounted in the case (2) and a safety vent (12) for enabling pressure relief, wherein the safety vent (12) is located at least partially inside a hole (4) of the capacitor element (3). Furthermore, a method of operating a capacitor (1) comprising a safety vent for enabling gradual pressure relief through a side (6, 8) of the capacitor (1) comprises operating the capacitor (1) in an orientation where the side does not point downwards.
Published:

Description

Electrolytic Capacitor with Safety Vent

5 The present invention relates to an electrolytic capacitor with a safety vent. The safety vent is provided for enabling pressure relief and, thereby, prevent an uncontrolled explosion of the capacitor, for example.

10 It is an object of the present invention to provide an electrolytic capacitor with an improved safety vent.

In one aspect, the present invention relates to an electrolytic capacitor comprising a case and a capacitor element mounted in the case. The case may have the shape of a can. The capacitor element may be a wound element. The capacitor element may comprise foils, in particular aluminium foils. The capacitor element may be impregnated by an electrolyte, in particular a liquid electrolyte.

20 The electrolytic capacitor comprises a safety vent for enabling pressure relief.

During operation, the pressure inside the capacitor may increase, in particular in case of an overload. The safety vent may be configured to burst when the pressure approaches a critical value. Thereby, an uncontrolled explosion of the capacitor may be prevented.

30 Additionally or alternatively, the safety vent may enable gradual pressure relief. In particular, a continuous diffusion of gas may be enabled. Gradual pressure relief may
be enabled long before a critical value is reached. During gradual pressure relief, the safety vent may remain intact.

The safety vent may comprise an elastic material. As an example, the safety vent may comprise a rubber or silicone material. As an example, the safety vent is plugged in the case, for example in a hole in the case.

The safety vent may comprise a membrane. Thereby, gradual diffusion of the gas generated in the capacitor is enabled.

According to an embodiment, the safety vent is located at least partially inside a hole in the capacitor element. The hole may extend along a central axis of the capacitor element. The hole may result from winding the foils of the capacitor element around a central axis. Accordingly, the safety vent may be encircled by foils of the capacitor element.

The electrolytic capacitor may comprise terminals for electrically contacting the capacitor. The terminals are located at a first side of the capacitor. The terminals may be screw-type terminals. In other embodiments, the terminals may be configured in a snap-in style, for example.

In an embodiment, the safety vent is configured such that pressure relief is enabled through the second side of the capacitor, wherein the second side is opposite to the first side. Accordingly, the safety vent enables gas to leave the case through the second side. In an embodiment, the safety vent is located nearer to the second side of the capacitor than to the first side of the capacitor.
By enabling a pressure relief at a side remote from the first side, the risk for contamination of the terminals and/or other components such as a printed circuit board or a bus bar can be reduced and the operational life be prolonged. Such a contamination may occur due to electrolyte leaking out of the case after a burst of the safety vent.

In an embodiment, the capacitor is mounted such that the side through which pressure relief is enabled does not point downwards. As an example, the side points upwards or horizontally.

In this case, electrolyte can be efficiently prevented from flowing outwards after a burst of the safety vent. In addition to that, also a contamination of the safety vent by electrolyte during normal operation of the capacitor may be prevented. This may ensure that gradual diffusion is maintained when the safety vent is still intact.

In an embodiment, the capacitor is mounted terminal-down. Accordingly, the terminals point downwards. In a further embodiment, the capacitor is mounted with the terminals arranged horizontally. In an even further embodiment, the capacitor is mounted terminal-up.

In an embodiment, the safety vent is configured such that pressure relief is enabled through the first side of the capacitor. This may be particularly useful when the capacitor is mounted terminal-up.

The capacitor may be mounted at a mounting member. The mounting member may also provide the electrical connection of the capacitor. As an example, the mounting member may
comprise a printed circuit board or a bus bar. Alternatively, the electrical connection may be provided by a member additional to the mounting member. The capacitor may be mounted such that the first side is adjacent to the mounting member. Alternatively, the capacitor may be mounted such that the second side is adjacent to the mounting member.

The capacitor may comprise a cover member for sealing the case. The cover member may be located at the first side of the capacitor. The terminals may be lead through the cover member. The cover member may comprise an elastic material, in particular a rubber material. The cover member may be an element plugged in the case.

In an embodiment, the cover member is free from any safety vent. In an alternative embodiment, a safety vent may be at least partially located in the cover member.

In an embodiment, the capacitor may comprise a centering member extending into the hole of the capacitor element. The safety vent may be located in the centering member. The centering member may be provided for centering the capacitor element in the case.

The centering member may be located near the second side of the capacitor. As an example, the centering member may be formed integral with the second side of the capacitor. The centering member may be formed integral with a can bottom. As an example, the centering member may be formed as a hole in the second side. The centering member may extend in a direction towards the core of the capacitor. The centering
member may comprise a metal. The centering member may alternatively or additionally be located near the first side of the capacitor, e.g. beneath a cover member.

The centering member may be configured such that contact of the electrolyte with the safety vent is prevented. In particular, the centering member may separate the safety vent from the capacitor element and from the electrolyte.

The centering member may have a tubular shape. The safety vent may be located in the tube cavity. The safety vent may seal the centering member such that electrolyte is prevented from leaking out of the capacitor during normal operation of the device, in particular as long as the safety vent is intact. The centering member may be open towards the core of the capacitor.

In an embodiment, the safety vent is recessed in the capacitor. In particular, the safety vent is located at a distance from the outer surfaces of the first and second sides. Thereby, a contamination of the outer sides of the capacitor by electrolyte leakage may be prevented.

As an example, a cavity may exist between the safety vent and a side of the capacitor, in particular the outer surface of the side through which pressure relief is enabled. The cavity may be fillable with electrolyte. In this case, the cavity may take up an amount of electrolyte leaking through the safety vent.

In an embodiment, the capacitor comprises several safety vents. As an example, a first safety vent may enable pressure relief through the first side and a second safety vent may
enable pressure relief through the second side of the capacitor.

Depending on the mounting orientation of the capacitor, at least one of the safety vents may enable pressure relief through a side oriented upwards or horizontally. Thereby, gradual pressure relief may be ensured. The further safety vent may enable pressure relief through a side pointing downwards. In some embodiments, one of the safety vents may be located inside the hole of the capacitor element. The further safety vent may be located completely outside the capacitor element. The further safety vent may be located in the cover member, for example. Alternatively, both safety elements may be at least partially located inside the hole of the capacitor element.

In an embodiment, the capacitor comprises a stud. The stud may be located at the second side of the capacitor. The stud may be threaded. The stud may serve for mounting and, in particular, fixing the capacitor to a mounting member.

The safety vent may be located in the stud, in particular in a portion of the stud which extends to the core of the capacitor. The stud may be integrally formed with a side of the capacitor and/or integrally formed with a centering member.

According to a further aspect of the present invention, an electrolytic capacitor comprises a case, a capacitor element mounted in the case and a safety vent enabling gradual pressure relief. The capacitor comprises terminals located at a first side, wherein the safety vent enables pressure relief through an opposite second side of the capacitor. The
capacitor may comprise any functional and structural characteristics of the capacitor described above. As an example, the safety vent may comprise a membrane. The safety vent may be located in a hole of the capacitor element.

According to a further aspect of the present invention, a method of operating an electrolytic capacitor comprising a safety vent is disclosed. The safety vent may enable gradual pressure relief through a side of the capacitor. The capacitor may be operated in an orientation, where the side through which pressure relief is enabled does not point downwards. As examples, the side points upwards or horizontally. The capacitor may comprise any functional and structural characteristics of the capacitor described above. As an example, the safety vent may comprise a membrane. The safety vent may be located in a hole of the capacitor element.

According to a further aspect of the present invention, a mounting assembly is provided, the mounting assembly comprising at least one of the capacitors described above and a mounting member. The capacitor is mounted at the mounting member. In an embodiment, the mounting member may also enable an electrical connection of the capacitor. In an embodiment, the mounting member may not serve to electrically connect the capacitor. The capacitor and the mounting member may comprise any functional and structural characteristics of the capacitor and mounting member as described above.

The present disclosure comprises several embodiments and aspects of an invention. Every feature described with respect to one of the capacitors, the mounting assembly and or the method are also disclosed herein with respect to the
respective other embodiments and aspects, even if the respective feature is not explicitly mentioned in the context of the specific embodiment or aspect.

Further features, refinements and expediencies become apparent from the following description of the exemplary embodiments in connection with the figures.

Figure 1 shows a schematic cross sectional view of a capacitor according to a first embodiment,

Figure 2 shows a view on a second side of the capacitor according to the first embodiment,

Figure 3 shows a view on a first side of the capacitor according to the first embodiment.

Figure 4 shows a schematic cross sectional view of a capacitor according to a second embodiment.

Similar elements, elements of the same kind and identically acting elements may be provided with the same reference numerals in the figures.

Figure 1 shows an electrolytic capacitor 1. The capacitor 1 comprises a case 2 and a capacitor element 3 mounted in the case 2. The capacitor element 3 comprises a wound shape. The capacitor element 3 has a cylindrical shape with a hole 4 extending along its central axis. The capacitor element 3 may comprise foils, in particular aluminium foils. The capacitor element 3 is impregnated with a liquid electrolyte.
The case 2 may have the shape of a circular cylinder. The case 2 may comprise a metal. As an example, the case 2 may comprise aluminium. The case 2 may have the shape of a can.

The capacitor 1 comprises a first side 6, a lateral side 7 and a second side 8. The second side 8 is opposite to the first side 6. The second side 8 may be formed by a bottom 5 of the case 2. The bottom 5 may comprise a metal. The bottom 5 may be integrally formed with the lateral side 7.

At the first side 6, the capacitor 1 comprises terminals 9, 10 for electrically connecting the capacitor. The terminals 9, 10 may be configured as screw-type terminals. The capacitor 1 may be configured to be mounted terminal-down, i.e., such that the terminals 9, 10 point towards the Earth's centre. Alternatively, the capacitor 1 may be mounted horizontally, i.e., with the terminals 9, 10 pointing in a horizontal direction. Alternatively, the capacitor 1 may be mounted terminal-up.

The capacitor 1 may be mounted at a mounting member (not shown). The mounting member may serve to fix the capacitor 1. Additionally, the mounting member may serve to electrically connect the terminals 9, 10. In this case, the mounting member may comprise a printed circuit board or a bus bar, for example.

At the first side 6, the case 2 is closed by a cover member 11. The cover member 11 may have the shape of a disc. The cover member 11 may seal the case 2. The cover member 11 may comprise a rubber material or another elastic material. The terminals 9, 10 are lead through the cover member 11.
The capacitor 1 comprises a safety vent 12. The safety vent 12 enables controlled pressure relief. During operation of the capacitor 1, gas generation and pressurization inside the capacitor 1 may occur, which may be caused by electrochemical reactions. The safety vent 12 may enable a discharge of the gas when the inner pressure approaches a critical value. Thereby, an uncontrolled explosion of the capacitor 1 may be prevented. As an example, the safety vent 12 may be designed to burst in case of a critical pressure.

Additionally or alternatively, the safety vent 12 may enable gradual diffusion of the gas to the ambient during the operation of the electrolytic capacitor 1. Thereby, the inner pressure may be gradually reduced. The safety vent 12 may comprise a membrane 13. The membrane 13 may comprise a rubber or silicone material. In particular, the safety vent 12 may comprise a thin rubber membrane. The membrane 13 may be permeable or semi-permeable for gas.

The safety vent 12 may be configured such that pressure relief is enabled through the second side 8 of the capacitor 1. In particular, pressure relief is enabled through a hole 14 in the bottom 5 of the case 2. The safety vent 12 is located at a smaller distance from the second side 8 than the first side 6 of the capacitor 1.

Such an arrangement of the safety vent 12 may be particularly beneficial in a mounting orientation of the capacitor 1 where the side through which pressure-relief is enabled points upwards. In case of pressure relief being enabled through the second side 8, this orientation corresponds to a terminal-down mounting orientation. This construction may be both
beneficial in case of a burst of the safety vent 12 and for gradual pressure relief with the safety vent 12 being intact.

When the safety vent 12 is intact, this construction may prevent the safety vent 12 from being covered with electrolyte. When the safety vent 12 is located at a lower side of the capacitor 1, electrolyte may cover the safety vent 12 due to gravity and thus block diffusion. This may result in cumulative pressurization until the safety vent 12 burst. This phenomenon may reduce the efficiency of the operation of the safety vent 12. When the safety vent 12 is positioned at an upper side of the capacitor 1 it may be kept free from electrolyte such that gradual diffusion is maintained.

The capacitor 1 comprises a centring member 15 protruding at the second side 8 into the hole 4 of the capacitor element 3. The centring member 15 serves to centre the capacitor element 3 in the case 2. The centring member 15 may be formed as a peg. The centring member 15 may be hollow. The centring member 15 may be integrally formed with the bottom 5 of the case 2.

The safety vent 12 is located in the centring member 15. Thereby the two functions of winding fixation and pressure relief can be combined. The centring member 15 separates the safety vent 12 from the capacitor element 3.

The safety vent 12 is located inside the hole 4 of the capacitor element 3. The safety vent 12 is encircled by the windings of the capacitor element 3. Accordingly, the safety vent 12 is located in the core of the capacitor 1.
The safety vent 12 is located at a distance from the bottom 5 of the case 2. In particular, the safety vent 12 is located in a recessed position relative to the bottom 5. Thereby, the safety vent 12, and, in particular the membrane 13 may be protected from mechanical damage.

As an example, a cavity 16 may exist between the safety vent 12 and the bottom 5. This may help to avoid electrolyte leaking to the outside of the capacitor 1. As an example, the cavity 16 may receive a small amount of electrolyte leaking out of the capacitor 1 after a burst of the safety vent 12. This may prevent the bottom 5 from being contaminated by the electrolyte.

With the disclosed safety vent 12, the capacitor 1 can be filled with an excess amount of electrolyte, which helps to provide stable electrical parameters. Thereby, parameter drift during long-term operational life can be avoided. As an example, a drying out of the windings may be prevented. In a standard capacitor, the electrolyte reservoir may be restricted in order to avoid free-flowing liquid electrolyte inside the capacitor and, thereby, prevent electrolyte leakage. With the improved safety vent 12, electrolyte leakage may be prevented also in case of a high amount of electrolyte.

In a further embodiment, the capacitor 1 may alternatively or additionally comprise a centring member located near the first side 6. As an example, the centring member may protrude from the cover member 11 into the hole 4 of the capacitor element 3. A safety vent may be additionally or alternatively located in the centring member near the first side 6.
When the capacitor 1 comprises two safety vents, wherein one of the safety vents is located near the first side 6 and the other one is located at the second side 8, gradual diffusion may always be ensured, at least through one of the safety vents. In particular, gradual diffusion may be ensured at any orientation of the capacitor. As an example, the capacitor 1 may comprise a safety vent 12 at the second side 8 as shown in Figure 1 and a further safety vent located in the cover member 11. The further safety vent may also comprise a rubber or silicone material, in particular a membrane.

Figure 2 shows a view on the second side 8 of the capacitor 1 according to Figure 1 after a pressure relief test. The pressure relief test was conducted at reverse polarity according to the IEC-60384-1 (2008) standard. During this test, relatively fast gas generation takes place due to the reverse polarity. Thereby, a high pressure was generated inside the capacitor 1.

As can be seen in Figure 2, the membrane 13 of the safety vent 12 has burst. The capacitor 1 was mounted terminal-down. The second side 8, in particular the bottom 5, is not covered by electrolyte.

Figure 3 shows a view on the first side 6 of the capacitor 1 according to Figure 1 after the pressure relief test.

The first side 6, in particular the cover member 11, is not covered by electrolyte. In the shown embodiment, the cover member 11 is free from any safety vent.

Figure 4 shows a further embodiment of a capacitor 1, which corresponds to the capacitor 1 shown in Figures 1, 2 and 3.
but additionally comprises a stud 17 for mounting the capacitor 1. The stud 17 is located at the second side 8 of the capacitor 1.

5 The stud 17 may be threaded for screwing the capacitor 1 to a mounting member (not shown). The terminals 9, 10 may be connected to a printed circuit board or a bus bar, for example.

10 The stud 17 may be integrally formed with the bottom 5 and/or the centring member 15.
Reference numerals

1 capacitor
2 case
3 capacitor element
4 hole
5 bottom
6 first side
7 lateral side
8 second side
9 terminal
10 terminal
11 cover member
12 safety vent
13 membrane
14 hole
15 centring member
16 cavity
17 stud
20
Claims

1. An electrolytic capacitor, comprising a case (2) and a capacitor element (3) mounted in the case (2) and comprising a safety vent (12) for enabling pressure relief, wherein the safety vent (12) is located at least partially inside a hole (4) of the capacitor element (3).

2. The electrolytic capacitor of claim 1, wherein the safety vent (12) comprises a membrane.

3. The electrolytic capacitor of any one of claims 1 or 2, comprising terminals (9, 10) located at a first side (6) of the capacitor (1), wherein the safety vent (12) is configured such that pressure relief is enabled through an opposite second side (8) of the capacitor (1).

4. The electrolytic capacitor of any of claims 1 to 3, comprising a cover member (11) for sealing the case, wherein the cover member (11) comprises an elastic material and wherein the cover member (11) is free from the safety vent (12).

5. The electrolytic capacitor of any of claims 1 to 4, being configured such that the electrolyte in the capacitor (1) is not in contact with the safety vent (12).

6. The electrolytic capacitor of any of claims 1 to 5, comprising a centering member (15) extending into the hole (4) of the capacitor element (3), wherein the
safety vent (12) is located in the centering member (15).

7. The electrolytic capacitor of claim 6, wherein the centering member (15) is located near the first side (6) or the second side (8) of the capacitor (1).

8. The electrolytic capacitor of any of claims 1 to 7, wherein the safety vent (12) is recessed in the capacitor (1).

9. The electrolytic capacitor of any of claims 1 to 8, wherein a cavity (16) is present between the safety vent (12) and an outer side of the capacitor (1).

10. The electrolytic capacitor of any of claims 1 to 9, comprising a stud (17), wherein the safety vent (12) is located in the stud (17).

11. The electrolytic capacitor of claim 10, comprising terminals (9, 10) at a first side (6) of the capacitor (1), wherein the stud (17) is located at a second side (8) of the capacitor (1), wherein the first side (6) is opposite to the second side (8).

12. The electrolytic capacitor of any of claims 1 to 11, comprising two safety vents (12).

13. The electrolytic capacitor of claim 12, wherein one of the safety vents (12) is located in an elastic cover member (11) for sealing the case at a first side (6) and one of the safety vents (12) is
located inside a hole (4) in the capacitor element (3) near a second side (8) of the capacitor (1).

14. The electrolytic capacitor of claim 12, wherein one of the safety vents (12) is located near a first side (6) and one of the safety vents (12) is located near a second side of the capacitor (1), wherein both safety vents (12) are at least partially located inside a hole (4) in the capacitor element (3).

15. An electrolytic capacitor, comprising a case (2), a capacitor element (3) mounted in the case (2) and a safety vent (12) for enabling gradual pressure relief, wherein the capacitor (1) comprises terminals (9, 10) located at a first side (6) of the capacitor (1), wherein pressure relief is enabled through an opposite second side (8) of the capacitor (1).

16. A method of operating an electrolytic capacitor, the capacitor (1) comprising a safety vent (12) enabling gradual pressure relief through a side (6, 8) of the capacitor (1), wherein the capacitor (1) is operated in an orientation where the side (6, 8) does not point downwards.

17. Method of claim 16, wherein the side (6, 8) points upwards.

18. Method of claim 16, wherein the side (6, 8) points in a horizontal direction.
19. Mounting assembly comprising the capacitor of any of claims 1 to 15 and a mounting member, wherein the capacitor (1) is mounted at the mounting member.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. H01G9/12
ADD.

According to International Patent Classification (IPC) to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 3 669 302 A (MARKARIAN MARK) 13 June 1972 (1972-06-13) figure 1 col umn 1, line 53 - col umn 3, line 17 -----</td>
<td>4,15</td>
</tr>
</tbody>
</table>

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search

30 November 2016

Date of mailing of the international search report

07/12/2016

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Giessen, Fabian
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- □ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

- □ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

- □ No protest accompanied the payment of additional search fees.
This International Searching Authority found multiple (groups of) inventions in this international application, as follows:
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 2849415 AI</td>
<td>17-05-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 475048 AI</td>
<td>16-04-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2409586 AI</td>
<td>15-06-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2008323 A</td>
<td>31-05-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1100223 B</td>
<td>28-09-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S5479463 A</td>
<td>25-06-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7712605 A</td>
<td>18-05-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4245277 A</td>
<td>13-01-1981</td>
</tr>
<tr>
<td>US 3669302</td>
<td>13-06-1972</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>