(12) STANDARD PATENT (11) Application No. AU 2011374896 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Suspension and/or throttling of processes for connected standby

(51) International Patent Classification(s)
GO6F 1/32 (2006.01) GOG6F 9/44 (2006.01)

(21) Application No: 2011374896 (22) Date of Filing: 2011.10.07
(87) WIPO No: WO13/022464

(30) Priority Data

(31) Number (32) Date (33) Country
13/207,167 2011.08.10 us
(43) Publication Date: 2013.02.14

(44) Accepted Journal Date: 2017.04.27

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Robben, Matthew;Berry, Jon;Toshev, Kalin

(74) Agent/ Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
US 2005/0066006 A1

wo 2013/022464 A1 I} I A1 00000 0 O 0

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/022464 A1l

14 February 2013 (14.02.2013) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 1/32 (2006.01) GO6F 9/44 (2006.01) kind of national protection available). AE, AG, AL, AM,
21y Int tional Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: PCTIUSI01 1105547 CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
7 October 2011 (07.10.2011) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
.) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
(26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . L
13/207.167 10 August 2011 (10.08.2011) ys (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): MI- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
CROSOFT CORPORATION [US/US]; One Microsoft UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
Way, Redmond, Washington 98052-6399 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(72) Inventors: ROBBEN, Matthew; c/o Microsoft Corpora- DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). BERRY, Jon;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). TOSHEYV, Kalin; c¢/o0 Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a

Washington 98052-6399 (US).

patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: SUSPENSION AND/OR THROTTLING OF PROCESSES FOR CONNECTED STANDBY

100
N 102 FIG. 1
START
104
IDENTIFY PROCESS -
L 106
ASSIGN POWER MANAGEMENT CLASSIFICATION TO PROCESS:
IF LIFECYCLE OF PROCESS IS MANAGED, THEN ASSIGN EXEMPT /_ 108
CLASSIFICATION TO PROCESS
|F PROCESS CAN BE SUSPENDED, THEN ASSIGN SUSPEND — 110
CLASSIFICATION TO PROCESS
IF PROCESS CAN BE THROTTLED, THEN ASSIGN THROTTLING /* 12
CLASSIFICATION TO PROCESS
IF PROCESS CANNOT BE SUSPENDED COR THROTTLED, THEN /_ 114
ASSIGN EXEMPT CLASSIFICATION TO PROCESS

116

(57) Abstract: One or more techniques and/or systems are provided for as-
signing power management classifications to a process, transitioning a com-
puting environment into a connected standby state based upon power man-
agement classifications assigned to processes, and transitioning the comput-
ing environment from the connected standby state to an execution state. That
is, power management classifications, such as exempt, throttle, and/or sus-
pend, may be assigned to processes based upon various factors, such as
whether a process provides desired functionality and/or whether the process
provides functionality relied upon for basic operation of the computing envir -
onment. In this way, the computing environment may be transitioned into a
low power connected standby state that may continue executing desired func-
tionality, while reducing power consumption by suspending and/or throttling
other functionality. Because some functionality may still execute, the com-
puting environment may transition into the execution state in a responsive
manner to quickly provide a user with up-to-date information.

WO 2013/022464 A1 |IIWAT 00N AV 0O A A

— as to the applicant's entitlement to claim the priority of Published:
the earlier application (Rule 4.17(iii)) — with international search report (Art. 21(3))

19 Dec 2016

2011374896

10

15

20

25

30

Hixp\Inter woven\NRPortbN\DCCUXPA12359988 _1.docx-19/12/2016

SUSPENSION AND/OR THROTTLING OF PROCESSES FOR CONNECTED
STANDBY

BACKGROUND

[0001] Many computing devices, such as desktops, laptops, smart phones, and tablets, are
developed around conserving power consumption and/or extending battery life. For
example, a laptop screen may be dimmed if a laptop has been idle for a set period of time.
Power conservation may provide extended operating and/or time between (re)charging a
computing device, which may be desirable and convenient for a user. Unfortunately, many
applications may not comprise power conservation functionality, and may significantly
reduce power conservation and/or have poor power "hygiene", by not causing hardware to
exit high power states and/or by utilizing resources when the computing device could
otherwise be idle (e.g., an idle application may needlessly consume processor cycles).
[0002] Many power conservation techniques may degrade a user experience with a
computing device because transitioning the computing device from a low powered state,
such as a hibernation/sleep state, to an execution state may require user input, take a
relatively long amount of time and/or provide stale data until refreshed. For example, a
user may periodically interact with a laptop while at home. To conserve battery life of the
laptop, a hibernation/sleep policy may be in place, where the laptop may be placed into a
suspended state if the user does not interact with the laptop for a set period of time, such as
10 minutes. Unfortunately, conventional hibernation/sleep policies may take a significant
amount of time (e.g., minutes) to reawaken the computing system into an up-to-date
execution state useable by the user because a substantial portion of the computing system
may have been suspended (e.g., a processer may stop execution, an operating system
kernel may be suspended, etc.). Waiting for the computing system to fully reawaken may
provide a less satisfying user experience.

It is desired to address or ameliorate one or more disadvantages or limitations associated

with the prior art, or to at least provide a useful alternative.

SUMMARY

03 Apr 2017

2011374896

10

15

20

25

30

Himka\Interwoven\NRPortbRDCCMKAM 3675927 _2.docx-3/04/2017

.

[0002a] In accordance with the present invention there is provided a computer-
implemented method comprising:
identifying a newly created process within a logical container;
in response to determining that the logical container is associated with a parent
logical container of a parent process, assigning a parent power management classification
assigned to the parent process to the newly created process as the power management
classification assigned to the process; and
otherwise, assigning a power management classification to the process, comprising:
determining if the process provides functionality upon which a core kernel
process depends, then assigning an exempt classification to the process;
determining if the process can be suspended without a computing system
failure and limited runtime functionality associated with the process is not desired,
then assigning a suspend classification to the process;
determining if the process can be cycled between an execution state and a
non-executing suspended state without a computing system failure and limited
runtime functionality associated with the process is desired, then assigning a
throttling classification to the process; and
determining if the process cannot be suspended or cycled between an
execution state and a non-executing suspended state without a computing system
failure, then assigning the exempt classification to the process; and
transitioning a computing environment into a standby state based upon the power
management classification assigned to the process.
[0002b] The present invention also provides a system comprising:
a classification component configured to:
identify a newly created process as the power management classification assigned
to the process;
in response to determining that the logical container is associated with a parent
logical container of a parent process, assign a parent power management classification
assigned to the parent process, to the newly created process as the power management
classification assigned to the process; and
otherwise, assign a power management classification to the process, comprising:

assign a power management classification to a process, comprising:

03 Apr 2017

2011374896

10

15

20

25

30

Himka\Interwoven\NRPortbRDCCMKAM 3675927 _2.docx-3/04/2017

_3-

determine if the process provides functionality upon which a core kernel
process depends, then assign an exempt classification to the process;

determine if the process can be suspended without a computing system
failure and limited runtime functionality associated with the process is not desired,
then assign a suspend classification to the process;

determine if the process can be cycled between an execution state and a
non-executing suspended state without a computing system failure and limited
runtime functionality associated with the process is desired, then assign a throttling
classification to the process; and

determine if the process cannot be suspended or cycled between an
execution state and a non-executing suspended state without a computing system
failure, then assign the exempt classification to the process; and
transition a computing environment into a standby state based upon the power

management classification assigned to the process.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Some embodiments of the present invention are hereinafter described, by way of
non-limiting example only, with reference to the accompanying drawings, in which:

[0004] Fig. 1 is a flow chart illustrating an exemplary method of assigning a power
management classification to a process.

[0005] Fig. 2 is a component block diagram illustrating an exemplary system for assigning
a power management classification to a process.

[0006] Fig. 3 is a flow chart illustrating an exemplary method of transitioning a computing
environment into a connected standby state based upon power management classifications
assigned to processes.

[0007] Fig. 4 is a component block diagram illustrating an exemplary system for
transitioning a computing environment into a connected standby state based upon power
management classifications assigned to processes.

[0008] Fig. 5 is a flow chart illustrating an exemplary method of transitioning a computing
environment from a connected standby state to an execution state.

[0009] Fig. 6 is a component block diagram illustrating an exemplary system for

transitioning a computing environment from a connected standby state to an execution

19 Dec 2016

2011374896

10

15

20

25

30

Hixp\Inter woven\NRPortbN\DCCUXPA12359988 _1.docx-19/12/2016

state.

[0010] Fig. 7 is an illustration of an example of a tablet device transitioning from a
connected standby state to an execution state.

[0011] Fig. 8 is an illustration of an exemplary computer-readable medium wherein
processor-executable instructions configured to embody one or more of the provisions set
forth herein may be comprised.

[0012] Fig. 9 illustrates an exemplary computing environment wherein one or more of the

provisions set forth herein may be implemented.

DETAILED DESCRIPTION

[0013] Among other things, one or more systems and/or techniques for assigning a power
management classification to one or more processes associated with a computing
environment, transitioning the computing environment into a connected standby state
based upon power management classifications assigned to processes, and transitioning the
computing environment from a connected standby state to an execution state are disclosed
herein.

[0014] It may be appreciated that in one example, an execution state of a computing
environment may correspond to a general operating state of the computing environment.
While in the execution state, processes may be created and executed, and the computing
environment may be responsive to user input (e.g., a user may interact with a word
processor and/or other applications while the computing environment is in the execution
state). It may be appreciated that in one example, a connected standby state may
correspond to a low power consumption state of the computing environment, which may
nevertheless provide an always-on/always-connected experience. While in the connected
standby state, particular processes may be allowed to execute, while other processes may
be either suspended into a non-executing suspended state and/or throttled between the
execution state and the non-executing suspended state to reduce power consumption. For
example, while in the connected standby state, a computing environment may allow
execution and/or throttled execution of critical system processes (e.g., networking
functionality processes, particular core kernel processes, hardware functionality processes,

messaging functionality processes, etc.), power savvy applications (e.g., applications with

19 Dec 2016

2011374896

10

15

20

25

30

Hixp\Inter woven\NRPortbN\DCCUXPA12359988 _1.docx-19/12/2016

-5.

managed lifecycles), and/or other processes that may provide desired connectivity (e.g.,
simple email functionality processes) so that the computing device may provide a
responsive and up-to-date experience for a user when transitioning from the connected
standby state to the execution state (e.g., the computing environment may awaken quickly
(e.g., within seconds), and may provide the user with up-to-date email, information, and/or
connectivity). However, to conserve power, non-critical system services (e.g., a print
spooler, system update checker, etc.) and/or user applications (e.g., a word processor) may
be throttled and/or suspended.

[00015] In one example of assigning a power management classification to a process, a
process may be identified (e.g., a newly created process). The process may be assigned a
power management classification, such as an exempt Cclassification, a suspend
classification, or a throttling classification based upon various factors (e.g., how critical is
the process for basic functionality, is the process associated with a system service, is the
process associated with a user application, can the process be throttled without causing a
failure, can the process be suspended without losing desired functionality and/or causing a
failure, etc.). If a lifecycle of the process is managed by the process and/or a lifecycle
management component, then the process may be assigned the exempt classification
because the process may already be associated with power conservation functionality (e.g.,
assigning and implementing the power management classification to the process may be
redundant and/or may cause a failure of the process). If the process can be suspended
without a computing system failure (e.g., suspension of a photo viewing process may not
cause a failure of the computing environment and/or a failure of a photo viewing
application) and limited runtime functionality associated with the process is not desired
(e.g., photo viewing functionality may not be desired while the computing environment is
within a connected standby state), then a suspend classification may be assigned to the
process.

[0016] If the process can be throttled without the computing system failure and limited
runtime functionality associated with the process is desired (e.g., a user may desire to
receive message notifications while the computing environment is within the connected
standby state), then a throttling classification may be assigned to the process. If the process

cannot be throttled without the computing system failure and limited runtime functionality

19 Dec 2016

2011374896

10

15

20

25

30

Hixp\Inter woven\NRPortbN\DCCUXPA12359988 _1.docx-19/12/2016

- 3A -

associated with the process is desired, then the exempt classification may be assigned to
the process. In this way, the power management classification may be assigned to the
process. In one example, the power management classification may be utilized when
transitioning the computing environment into a connected standby state. For example,
exempt processes may be allowed to execute, suspendable processes may be suspended,
and throttleable processes may be throttled.

[0017] In one example of transitioning a computing environment into a connected standby
state based upon power management classifications assigned to processes, an enter
connected standby request associated with the computing environment may be detected
(e.g., a user may invoke a standby button of a tablet device, a threshold period of inactivity
may have passed, etc.). The computing environment may be transitioned into the
connected standby state, for example, from an execution state. For example, for respective
suspendable processes, a suspendable process may be placed into a non-executing
suspended state (e.g., the suspendable process may be ineligible for execution, and thus
may be unable to invoke hardware components to perform power consuming activity). For
respective throttleable processes, a throttling schedule may be assigned and/or applied to a
throttleable process (e.g., an email process may be allowed to execute for 5 seconds every
8 minutes to check for new messages, otherwise the email process may be in the non-
executing suspended state to reduce power consumption). For respective exempt processes,
an exempt process may be allowed to execute in an execution state (e.g., a network process
may be allowed to execute to provide desired functionality, such as receipt of new emails).
In one example, suspendable processes may be suspended before throttleable processes
because suspendable processes may rely upon functionality from throttleable process, and
thus a suspendable process may fail if a throttleable process enters a non-executing
suspended state before the suspendable process is suspended (e.g., a suspendable online
photo application may fail if an underlying network photo upload process is unavailable).
In this way, the computing environment may be transitioned into the connected standby
state to conserve power, while still providing desired functionality (e.g., notification of
new messages).

[0018] In one example of transitioning a computing environment from a connected standby

state to an execution state, an exit connected standby request associated with the

19 Dec 2016

2011374896

10

15

20

25

30

Hixp\Inter woven\NRPortbN\DCCUXPA12359988 _1.docx-19/12/2016

-5B -

computing environment may be detected (e.g., a user may attempt to interact with a tablet
device with a finger touch action on a tablet screen). The computing environment may be
transitioned from the connected standby state to the execution state based upon the exit
connected standby request. For example, for respective suspended processes, execution
functionality may be restored to a suspended process (e.g., an online photo application
process may be available in a responsive manner, such as within seconds). For respective
throttled processes, execution functionality may be restored to a throttled process (e.g., an
email process in a non-executing suspended state based upon a throttling schedule may be
transitioned into an execution state in a responsive manner). In this way, the computing
environment may be transitioned into an up-to-date execution state in a responsive manner
without a user waiting a significant amount of time for resumed functionality and/or up-to-
date information.

[0019] To the accomplishment of the foregoing and related ends, the following description
and annexed drawings set forth certain illustrative aspects and implementations. These are
indicative of but a few of the various ways in which one or more aspects may be
employed. Other aspects, advantages, and novel features of the disclosure will become
apparent from the following detailed description when considered in conjunction with the
annexed drawings.

[0020] The claimed subject matter is now described with reference to the drawings,
wherein like reference numerals are generally used to refer to like elements throughout. In
the following description, for purposes of explanation, numerous specific details are set
forth in order to provide a thorough understanding of the claimed subject matter. It may be
evident, however, that the claimed subject matter may be practiced without these specific
details. In other instances, structures and devices are illustrated in block diagram form in
order to facilitate describing the claimed subject matter.

[0021] Many computing environments may incorporate power conservation techniques to
mitigate power consumption and/or conserve battery life. For example, an operating
system may provide a hibernation/sleep policy that may prevent the execution of
applications, system processes, and/or processor functionality that may otherwise invoke
computing resources to perform power consuming tasks. Unfortunately, many power

conservation techniques may suspend processes that perform desirable functionality (e.g.,

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

a hibernation policy may not comprise functionality to selectively allow certain processes
to execute during a hibernation state), and thus a computing environment may provide
stale information upon awakening into an execution state (e.g., a computing environment
awakening from a hibernation state may not provide up-to-date message information
because a message functionality process may have been suspended during the hibernation
state). Additionally, awakening from a hibernation/sleep state may take a considerable
amount of time before the computing environment is fully responsive and/or able to
provide up-to-date information. Thus, a balance between providing adequate power
conservation and providing a user with a responsive and connected experience is desirable.
[0022] Accordingly, one or more systems and/or techniques for assigning power
management classifications to a process associated with a computing environment,
transitioning the computing environment into a connected standby state based upon power
management classifications assigned to processes, and transitioning the computing
environment from the connected standby state to an execution state are provided herein.

In particular, processes may be classified with an exemption classification, a suspend
classification, and/or a throttle classification based upon various factors, such as whether a
process provides desired functionality and/or critical system functionality. In this way, the
computing environment may be transitioned into a connected standby state, such as a low
power consumption state that provides an always-on/always-connected experience. In
particular, exempt processes may be allowed to execute, suspendable processes may be
suspended from executing, and throttleable processes may be cycled between an execution
state and a non-execution suspended state based upon a throttle schedule. Suspending
and/or throttling processes may reduce power consumption because such processes may be
placed into a non-executing suspended state that may restrict such processes from
invoking resources to perform power consuming tasks. The computing environment may
be transitioned from the connected standby state to an execution state in a responsive
manner that provides an up-to-date experience for the user in a nominal amount of time
(e.g., a user may be able to interact with an up-to-date state of the computing environment
within seconds). In particular, suspended processes and/or throttled processes may be
placed into an execution state so that the computing environment is transitioned into the
execution state.

[0023] One embodiment of assigning a power management classification to a process
is illustrated by an exemplary method 100 in Fig. 1. At 102, the method starts. At 104, a

process for which a power management classification is to be assigned may be identified

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

(e.g., a process within a computing environment, such as a tablet operating system,
desktop operating system, mobile device operating system, etc.). For example, a newly
created process may be identified as the process (e.g., a process within a logical container,
such as a hierarchal job object). At 106, a power management classification may be
assigned to the process. It may be appreciated that various factors may be evaluated to
assign the power management classification (e.g., criticality of the process to system
operation, desired functionality provided by the process, ability to throttle the process,
etc.).

[0024] In one example of assigning the power management classification, a logical
container of the process may be determined as being associated with a parent logical
container of a parent process (e.g., a logical container of a spell checker process may be
associated with (e.g., nested under) a parent logical container of a parent word processing
process). A parent power management classification assigned to the parent process may
be assigned to the process as the power management classification assigned to the process
(e.g., a suspend classification assigned to the parent word processing process may also be
assigned to the spell checker process so that both processes may be suspended together, as
opposed to one process being suspended while the other process (e.g., spell checker)
continues to needlessly execute during a connected standby state).

[0025] In another example of assigning the power management classification, if a
lifecycle of the process is managed by the process and/or a lifecycle management
component, then an exempt classification may be assigned to the process, at 108. For
example, an application (e.g., a relatively newly created application) may be developed
under an application model that provides for extensive power consumption management.
Thus, the application may be assigned the exempt classification because additional power
consumption management may be redundant and/or interfere with execution of the
application.

[0026] In another example of assigning the power management classification, if the
process can be suspended without a computing system failure (e.g., a failure of the
computing environment and/or an application associated with the process) and limited
runtime functionality associated with the process is not desired (e.g., a user may not desire
print functionality when the computing environment is in a low power connected standby
state), then the process may be assigned a suspend classification, at 110. For example, if
the process is associated with a user application, then the process may be determined as

being suspendable, and may be assigned the suspend classification (e.g., a photo sharing

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

application initialized within a user session may not provide desired functionality for when
the computing environment is in the low powered connected standby state (e.g., user does
not desire to view/share photos when his/her tablet is in a connected standby state) and/or
may not affect core system functionality of the computing environment).

[0027] In another example of assigning the power management classification, if the
process can be throttled without the computing system failure and limited runtime
functionality associated with the process is desired, then a throttling classification may be
assigned to the process, at 112. For example, if the process comprises a service (e.g., a
messaging system service initialized within a system session) that provides desired state
functionality (e.g., the message system service may listen for new messages so that the
user may be notified of up-to-date communication), then the process may be determined as
being throttleable, and may be assigned the throttling classification (e.g., a process
associated with anti-virus functionality, messaging service functionality, network service
functionality, and/or a variety of other desired functionality may be assigned the throttling
classification).

[0028] In another example of assigning the power management classification, if the
process cannot be suspended or throttled without the computing system failure, then the
exempt classification may be assigned to the process, at 114. It may be appreciated that
the computing environment may rely upon a variety of processes for basic operational
functionality, and thus suspension and/or throttling of such processes may result in the
computing system failure. In one example, particular core kernel processes, device
drivers, and/or other processes that provide basic operational functionality may be
assigned the exempt classification. In another example, a dependency graph may be
consulted. The dependency graph may have been built from a core kernel process to one
or more support processes that provide functionality upon which the core kernel process
depends (e.g., a software component network communication module that facilitates
communication between distributed software components may be relied upon by one or
more core kernel processes associated with such software components). If the process
comprises a support process specified within the dependency graph, then the process may
be determined as being unable to be suspended, and thus may be assigned the exempt
classification.

[0029] In another example of assigning the power management classification, if the
process provides functionality associated with a user defined policy, then a user defined

power management classification may be assigned to the process. For example, a user

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

may specify a desire for the computing environment to stay up-to-date with incoming
messages (e.g., regardless of whether the computing environment is within the low power
connected standby state or the execution state). Accordingly, processes that provide
message functionality (e.g., a message listener process, a message notification process,
ctc.) may be assigned a user defined power management classification, such as the exempt
classification. In this way, various processes may be assigned power management
classifications that may be used to transition the computing environment into a connected
standby state. At 116, the method ends.

[0030] Fig. 2 illustrates an example of a system 200 configured to assign a power
management classification to a process. System 200 may comprise a classification
component 204. The classification component 204 may be configured to assign a power
management classification to a process associated with a computing environment. For
example, the computing environment may be associated with computing system processes
202 comprising a network packet processor 208, a hardware event processor 210, a print
spooler 212, an anti-virus 214, a word processor 216, a spell checker 218 (e.g., the spell
checker 218 may be child process of the word processor 216), an instant messenger 220,
and/or a message notifier 222 (e.g., message notifier 222 may be a child process of instant
messenger 220).

[0031] In one example, the classification component 204 may be configured to
determine whether a process is associated with a parent process. If the process is
associated with a parent process, then the classification component 204 may assign a
parent power management classification assigned to the parent process as the power
management classification assigned to the process. For example, word processor 216 may
be a parent process of spell checker 218. Word processor 216 may have been assigned a
suspend classification (e.g., word processor 216 may be associated with a word processor
application that does not provide desired functionality during a low power connected
standby state and/or does not provide critical system functionality). Accordingly, spell
checker 218 may be assigned the suspend classification that was assigned to word
processor 216. Similarly, message notifier 222 may be assigned a user power
management classification of exempt assigned to instant messenger 220 because instant
messenger 220 is a parent process of message notifier 222. In this way, associated
processes may be classified similarly, so that such power management classification may
be implemented as a group for efficiency (e.g., fewer classification operations need to be

performed, further promoting power conservation) and/or to avoid inconsistent results

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

(e.g., if message notifier 222 was assigned an exempt classification, then message notifier
222 may needlessly execute while instant messenger 220 is suspended during a connected
standby state).

[0032] In another example, the classification component 204 may assign an exempt
classification to the process based upon determining a lifecycle of the process is managed
by the process and/or a lifecycle management component. That is, power conservation
may already be managed by the process or another component.

[0033] In another example, the classification component 204 may assign a suspend
classification to the process based upon determining the process can be suspended without
a computing system failure and/or limited runtime functionality associated with the
process is not desired. For example, word processor 216 may be assigned the suspend
classification because the word processor 216 is a user application whose suspension may
not create a computing system failure and/or a user may not desire limited runtime word
processing functionality while the computing environment is within a connected standby
state. Additionally, the printer spooler 212 may be assigned the suspend classification
because suspension of the print spooler 212 may not create a computing system failure
and/or the user may not desire limited runtime printing functionality while the computing
environment is within the connected standby state.

[0034] In another example, the classification component 204 may assign a throttling
classification to the process based upon determining the process can be throttled and
limited runtime functionality associated with the process is desired. For example, anti-
virus 214 (e.g., an anti-virus system service initialized within a system session) may
provide desired state functionality because write access to storage, for example, may be
blocked until the anti-virus 214 performs a check on data to be written (e.g., a user may
desire for incoming messages to be saved to storage while the computing environment is
within the connected standby state).

[0035] In another example, the classification component 204 may assign the exempt
classification to the process based upon determining the process cannot be suspended or
throttled without a computing system failure. In one example, the classification
component 204 may determine that particular core kernel processes, device drivers, and/or
other processes cannot be suspended without a computing system failure. For example,
network packet processor 208 and/or hardware event processor 210 may provide core
functionality relied upon by the computing environment, and thus may be assigned the

exempt classification. In another example, a dependency graph may be consulted to

10

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

determine whether the process is a support process upon which a core kernel process
depends.

[0036] In another example, the classification component 204 may assign a user
defined power management classification to the process based upon determining the
process provides functionality associated with a user defined policy. For example, instant
messenger may be assigned a user power management classification of exempt because
the user may desire to receive incoming instant messages even if the computing
environment is within a connected standby state.

[0037] In this way, power management classification assignments 206 may be created
and/or updated with assignments of power management classifications to processes. Such
assignments may be utilized in transitioning the computing environment into a connected
standby state to achieve a low powered state that may reduce power consumption and/or
improve battery life. It may be appreciated that such assignments may be utilized for a
variety of other scenarios, such as background/foreground task suspension and/or
throttling of processes while in an execution state.

[0038] One embodiment of transitioning a computing environment into a connected
standby state based upon power management classifications assigned to processes is
illustrated by an exemplary method 300 in Fig. 3. At 302, the method starts. At 304, an
enter connected standby request associated with the computing environment may be
detected. It may be appreciated that a connected standby state may correspond to a low
power consumption state, where various processes may be suspended, throttled, or
allowed to continue execution. In this way, power consumption may be reduced and the
computing environment may continue executing desired functionality to provide a
responsive and up-to-date experience when transitioning (back) into an execution state.
The connected standby state may be implemented in a variety of ways on various
computing devices, such as tablet computing devices, desktop computing devices, laptops,
mobile phones, etc.

[0039] At 306, the computing environment may be transitioned into the connected
standby state. In one example, for respective suspendable processes assigned a suspend
classification, a suspendable process may be placed into a non-executing suspended state,
at 308. That is, the suspendable process may be prevented from invoking resources to
perform power consuming tasks (e.g., a word processor may be suspended so that the
word processor does not access hardware resources that may otherwise be in a low-power

idle state). The suspend classification may correspond to whether a process is able to be

11

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

suspended without a computing system failure and/or whether limited runtime
functionality associated with the process is not desired. In this way, suspendable
processes may be placed into the non-executing suspended state without creating computer
system failures and/or losing desired functionality.

[0040] In another example, for respective throttleable processes assigned a throttling
classification, a throttling schedule may be assigned to a throttleable process, at 310. The
throttling classification may correspond to whether a process can be throttled without a
computing system failure and/or whether limited runtime functionality associated with the
process is desired. The throttling schedule may be applied to the throttleable process
while in the connected standby state. For example, the throttleable process may be cycled
between the execution state and the non-executing suspended state based upon the
throttling schedule (e.g., the throttling schedule may specify an execution time period for
the executing state and a suspended time period for the non-executing suspended state).
For example, a throttleable message process may be allowed 20 seconds of execution to
check for new messages every 5 minutes.

[0041] In another example, for respective exempt processes assigned an exempt
classification, an exempt process may be allowed to continue executing in an execution
state, at 312. The exempt classification may correspond to whether a process cannot be
suspend or throttled without a computing system failure (e.g., a core kernel process, a
device driver, and/or support processes for core kernel processes, etc.). In this way,
exempt processes that provide core functionality for the computing environment and/or
provide desired functionality may be allowed to execute in the execution state while the
computing environment is within the connected standby state.

[0042] In one example of transitioning the computing environment into the connected
standby state, suspendable processes may be placed into the non-executing suspended
state before throttleable processes are throttled. Because suspendable processes may rely
upon throttleable processes (e.g., a suspendable word processor application may rely upon
a throttleable storage access process for access to stored text documents). Suspending
before throttling may mitigate instances where a suspendable process may fail because a
throttled process, upon which the suspendable process relies, may have already been
placed into the non-executing suspended state before suspension of the suspendable
process.

[0043] In one example of transitioning the computing environment into the connected

standby state, a group of suspendable processes associated with one another may be

12

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

suspended, which may mitigate compatibility risks, for example. In one example, a first
suspendable process may be grouped with a second suspendable process because the first
suspendable process may consume a resource associated with the second suspendable
resource (e.g., a word processor application process may consume spell check data from a
spell checker process, and thus the processes may be grouped together). In another
example, the first suspendable process may be grouped with the second suspendable
process because the first suspendable process may be a child process of the second
suspendable process (e.g., a photo uploading process may be a child process of an online
photo sharing process, and thus the processes may be grouped together). In another
example, the first suspendable process may be grouped with a second suspendable process
because the first suspendable process may have been initialized within a first logical
container associated with a second logical container within which the second suspendable
process was initialized (e.g., the online photo sharing process may have been initialized
within a parent job group, and the photo uploading process may have been initialized
within a child job group nested within the parent job group, and thus the processes may be
grouped together). In this way, suspendable processes that may be associated with one
another and/or depend upon one another may be grouped together for suspension as a
group.

[0044] While in the connected standby state, a process within an execution state may
create a new process. Upon creation, the new process may be classified with a power
management classification. That is, a power management classification may be applied to
a new process even though the computing environment may already be within the
connected standby state.

[0045] In this way, the computing environment may be transitioned into the connected
standby state to reduce power usage. It may be appreciated that additional power saving
techniques may be implemented, such as turning off unnecessary hardware and/or
resources, such as powering off a screen of a computing device associated with the
computing environment. At 314, the method ends.

[0046] Fig. 4 illustrates an example of a system 400 configured to transition a
computing environment into a connected standby state 410 based upon power
management classification assignments 404 assigned to processes. System 400 may
comprise a transition component 406 and/or a throttling component 408. The transition
component 406 may be configured to detect an enter connected standby request 402

associated with the computing environment. The transition component 406 may be

13

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

configured to transition the computing environment into the connected standby state 410,
which may reduce power consumption associated with a computing device hosting the
computing environment (e.g., one or more processes may be suspended and/or throttled to
reduce power consumption associated with such processes).

[0047] For respective suspendable processes assigned a suspend classification within
the power management classification assignments 404, the transition component 402 may
be configured to place a suspendable process into a non-executing suspended state. For
example, a print spooler process, a word processor process, a spell checker process, and/or
other suspendable processes may be placed into the non-executing suspended state while
the computing environment is within the connected standby state 410. In one example, a
group of suspendable processes associated with one another may be suspended together
(e.g., a first suspendable process may be associated with a second suspendable process
based upon at least one of the first suspendable process being a child process of the second
suspendable process, the first suspendable process consuming a resource from the second
suspendable process, and/or the first suspendable process waiting for a resource locked by
the second suspendable process). For example, the word processor process and the spell
checker process may be suspended together to mitigate compatibility risks that may occur
if one process is suspended while the other is left executing for a period of time (e.g., the
word processor process may consume data from the spell checker process, and may fail if
the spell checker process is suspended before the word processor process).

[0048] For respective throttleable processes assigned a throttling classification within
the power management classification assignments 404, the transition component 406 may
assign a throttling schedule to a throttleable process. For example, an anti-virus process
may be assigned a throttling schedule, where the anti-virus process may execute for 5
seconds every 2 minutes. The throttling component 408 may be configured to apply the
throttling schedule to the throttleable process by cycling the throttleable process between
the execution state and the non-executing suspended state based upon the throttling
schedule. In one example, the transition component 406 may be configured to place
suspendable processes into the non-executing suspended state before assigning the
throttling schedule to the throttleable processes and/or before the throttling component 408
applies the throttling schedules. Suspending processes before throttling processes may
mitigate conflicts where a suspendable process relies upon data from a throttleable
process, but the throttleable process is already in a non-executing suspended state before

the suspendable process is suspended.

14

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

[0049] For respective exempt processes assigned an exempt classification within the
power management classifications assignments 404, the transition component 406 may
allow an exempt process to continue executing. For example, a network packet processor
process, a hardware event processor process, an instant messenger process, a message
notifier process, and/or other exempt processes may be allowed to continue executing
while the computing environment is within the connected standby state 410 (e.g., the
network packet processor process and/or the hardware event processor process may be
exempt because such functionality may be relied upon by the computing environment for
basic functioning, while the instant messenger process and the message notifier process
may be exempt because such functionality may be desirable to a user). In this way, the
computing environment may be transitioned by the transition component 406 into the
connected standby state 410.

[0050] One embodiment of transitioning a computing environment from a connected
standby state to an execution state is illustrated by an exemplary method 500 in Fig. 5. At
502, the method starts. At 504, an exit connected standby request associated with the
computing environment may be received. That is, the computing environment may have
been transitioned into the connected standby state to reduce power consumption. For
example, while in the connected standby state, one or more processes may have been
suspended and/or throttled to reduce power consumption, while processes relied upon for
basic operation of the computing environment and/or processes that provide desired
functionality may have been allowed to execute so that the computing environment may
seamlessly transition into an up-to-date execution state in a responsive manner (e.g., a
tablet device that was in connected standby for hours may be transitioned within seconds
into an execution state, where email messages and other information may be up-to-date
and/or accessible within seconds for the user).

[0051] At 506, the computing environment may be transitioned from a connected
standby state to an execution state. In one example, for respective suspended processes
assigned a suspend classification, execution functionality may be restored to a suspended
process, at 508. The suspend classification may correspond to whether a process is able to
be suspended without a computing system failure (e.g., failure of the computing
environment and/or the process) and/or whether limited runtime functionality associated
with the process is not desired (e.g., a word processing user application created within a
user session may have been suspended because functionality of the word processing user

application while the computing environment is within the connected standby state may

15

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

not be desired and/or such functionality may not be relied upon for basic operation by the
computing environment).

[0052] In another example, for respective throttled processes assigned a throttling
classification, execution functionality may be restored to a throttled process, at 510. For
example, execution functionality to the throttled process may be based upon a throttling
schedule applied to the throttled process, and the throttling schedule may be unapplied to
the throttled process as part of restoring execution functionality to that process (e.g., if the
throttled process is in a non-executing suspended state, then the throttled process may be
transitioned into an executing state). The throttling classification may correspond to
whether a process can be throttled without a computing system failure and/or whether
limited runtime functionality associated with the process is desired (e.g., an anti-virus
process may have been assigned a throttling classification because the anti-virus process
provides desired state functionality of scanning data before the data is written to storage
and throttling the anti-virus process may not create a failure of the anti-virus process
and/or the computing environment).

[0053] In one example of transitioning from the connected standby state to the
execution state, execution functionality may be restored to throttled processes before
execution functionality is restored to suspended processes (e.g., 510 and then 508 even
though Fig. 5 illustrates 508 before 510) because the suspended processes may rely upon
data and/or functionality provided by the throttled processes. For example, execution
functionality may be restored to a throttled storage access process before a suspended
photo editing process because the suspended photo editing process may crash if the
throttled storage access process is not available to provide the suspended photo editing
process with access to storage. In another example, execution functionality may be
restored to a parent suspended process before a child suspended process because the child
suspended process may be configured to consume a resource from the parent suspended
process. In this way, the computing environment may be transitioned from the connected
standby state into the execution state in a responsive manner, which may provide a user
with up-to-date information without undue delay (e.g., a user may be able to view new
messages within seconds of submitting the exit connected standby request). At 512, the
method ends.

[0054] Fig. 6 illustrates an example of a system 600 configured to transition a
computing environment from a connected standby state 604 to an execution state 608.

System 600 may comprise a transition component 606. The transition component 606

16

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

may be configured to detect an exit connected standby request 602 associated with the
computing environment (e.g., user swipe across a tablet screen). The transition
component 606 may be configured to transition the computing environment from the
connected standby state 604 to the execution state 608.

[0055] For respective suspended processes assigned a suspend classification, the
transition component 606 may restore execution functionality to a suspended process. For
example, a print spooler process, a word processor process, a spell checker process, and/or
other processes may have been suspended while the computing environment was in the
connected standby state 604, which may have reduced power consumption. Upon
restoring execution functionality, such processes may execute as normal while the
computing environment is in the execution state 608.

[0056] For respective throttled processes assigned a throttling classification, the
transition component 606 may restore execution functionality to a throttled process. For
example, an anti-virus process may have been throttled based upon a throttling schedule
while the computing environment was in the connected standby state 604 because the anti-
virus process may have provided desirable limited runtime functionality (e.g., the anti-
virus process may have checked data associated with write commands to storage at various
intervals so that incoming messages may be written to storage and/or available to the user
upon the computing environment transitioning into the execution state 608). In one
example, execution functionality may be restored by unapplying the throttling schedule
that was applied to the throttled process (e.g., if the throttled process is in a non-executing
suspended state, then the throttled process may be transitioned into an executing state).
[0057] In one example, the transition component 606 may be configured to restore
execution functionality to the throttled process before restoring execution functionality to
the suspended process because the suspended process may consume a resource from the
throttled process. For example, execution functionality may be restored to a throttled
storage access process before a suspended photo editing process because the suspended
photo editing process may crash if the throttled storage access process is not available to
provide the suspended photo editing process with access to storage. In another example,
execution functionality may be restored to a parent suspended process before execution
functionality is stored to a child suspended process because the child suspended process
may consume a resource from the parent suspended process.

[0058] It may be appreciated that one or more exempt processes may have been

allowed to execute within an execution state while the computing environment was in the

17

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

connected standby state 604 (c.g., a network packet processor process, a hardware event
processor process, an instant messenger process, a message notifier process, and/or other
processes may have been allowed to execute). Thus, such processes may be allowed to
continue processing when the computing environment transitions into the execution state
608. In this way, the computing environment may be seamlessly transitioned from the
connected standby state 604 into the execution state 608 by the transition component 606
in a responsive manner, which may provide a user with up-to-date information without
undue delay (e.g., a user may be able to view new messages within seconds of submitting
the exit connected standby request 602).

[0059] Fig. 7 illustrates an example 700 of a tablet device transitioning from a
connected standby state 704 to an execution state 708. The tablet device may have entered
connected standby state 704 to reduce power consumption by allowing some processes to
execute, while throttling and/or suspending other processes. For example, core system
processes relied upon by the tablet device for basic operation and/or other processes that
cannot be throttled or suspended without causing a computing system failure may be
allowed to execute in a normal manner. System service processes and/or other processes
that can be throttled without creating a computing system failure (e.g., failure of a process
and/or the tablet device) and/or provide desired limited runtime functionality may be
throttled. Throttling a process may conserve power because the throttled process may be
placed into a non-executing suspended state for significant periods of time. Thus, the
throttled process in the non-executing suspended state may not invoke resources (e.g., a
processor, hardware, etc.) to perform power consuming functionality. Additionally,
processes that can be suspended without creating a computing system failure and/or do not
provide desired limited runtime functionality may be suspended. Suspending a process
may conserve power because the suspended process may be placed into the non-executing
suspended state so that the suspended process may not invoke resources to perform power
consuming functionality. In one example of the connected standby state 704, a network
functionality process, a messaging service process, and/or other processes may be throttled
and/or allowed to fully execute. Accordingly, the tablet device in the connected standby
state 704 may continue to receive and/or process incoming messages 702. In this way, the
tablet device may operate in a low power consumption state, while continuing to provide
desired functionality.

[0060] The tablet device may be transitioned into the execution state 708. For

example, user input corresponding to an exit connected standby request 706 may be

18

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

received (e.g., a finger swipe on the tablet device may be detected). The tablet device may
be seamlessly transitioned into the execution state 708 by placing throttled and/or
suspended processes into an execution state. Because at least some functionality was
allowed to execute while the tablet device was in the connected standby state 704, up-to-
date information may be provided and/or available to the user in a responsive manner. For
example, within short time span (e.g., a few seconds) of inputting the exit connected
standby request 706, the user may be presented with up-to-date information associated
with the incoming messages 702 processed while the tablet device was in the connected
standby state 704. For example, new messages, RSS feed updates, event invites, and/or a
plethora of other information may be available to the user upon the tablet device
transitioning into the execution state. Thus, the tablet device may provide significantly
improved battery life because of the connected standby state, while still providing the user
with a responsive and up-to-date experience while in the execution state.

[0061] Still another embodiment involves a computer-readable medium comprising
processor-executable instructions configured to implement one or more of the techniques
presented herein. An exemplary computer-readable medium that may be devised in these
ways is illustrated in Fig. 8, wherein the implementation 800 comprises a computer-
readable medium 816 (e.g., a CD-R, DVD-R, or a platter of a hard disk drive), on which is
encoded computer-readable data 814. This computer-readable data 814 in turn comprises
a set of computer instructions 812 configured to operate according to one or more of the
principles set forth herein. In one such embodiment 800, the processor-executable
computer instructions 812 may be configured to perform a method 810, such as at least
some of the exemplary method 100 of Fig. 1, exemplary method 300 of Fig. 3, and/or
exemplary method 500 of Fig. 5, for example. In another such embodiment, the
processor-executable instructions 812 may be configured to implement a system, such as
at least some of the exemplary system 200 of Fig. 2, exemplary system 400 of Fig. 4,
and/or exemplary system 600 of Fig. 6, for example. Many such computer-readable media
may be devised by those of ordinary skill in the art that are configured to operate in
accordance with the techniques presented herein.

[0062] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts described above are disclosed as

example forms of implementing the claims.

19

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

nn

[0063] As used in this application, the terms "component,” "module," "system",
"interface"”, and the like are generally intended to refer to a computer-related entity, either
hardware, a combination of hardware and software, software, or software in execution.
For example, a component may be, but is not limited to being, a process running on a
processor, a processor, an object, an executable, a thread of execution, a program, and/or a
computer. By way of illustration, both an application running on a controller and the
controller can be a component. One or more components may reside within a process
and/or thread of execution and a component may be localized on one computer and/or
distributed between two or more computers.

[0064] Furthermore, the claimed subject matter may be implemented as a method,
apparatus, or article of manufacture using standard programming and/or engineering
techniques to produce software, firmware, hardware, or any combination thercof to control
a computer to implement the disclosed subject matter. The term "article of manufacture”
as used herein is intended to encompass a computer program accessible from any
computer-readable device, carrier, or media. Of course, those skilled in the art will
recognize many modifications may be made to this configuration without departing from
the scope or spirit of the claimed subject matter.

[0065] Fig. 8 and the following discussion provide a brief, general description of a
suitable computing environment to implement embodiments of one or more of the
provisions set forth herein. The operating environment of Fig. 8 is only one example of a
suitable operating environment and is not intended to suggest any limitation as to the
scope of use or functionality of the operating environment. Example computing devices
include, but are not limited to, personal computers, server computers, hand-held or laptop
devices, mobile devices (such as mobile phones, Personal Digital Assistants (PDAs),
media players, and the like), multiprocessor systems, consumer electronics, mini
computers, mainframe computers, distributed computing environments that include any of
the above systems or devices, and the like.

[0066] Although not required, embodiments are described in the general context of
“computer readable instructions” being executed by one or more computing devices.
Computer readable instructions may be distributed via computer readable media
(discussed below). Computer readable instructions may be implemented as program
modules, such as functions, objects, Application Programming Interfaces (APIs), data

structures, and the like, that perform particular tasks or implement particular abstract data

20

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

types. Typically, the functionality of the computer readable instructions may be combined
or distributed as desired in various environments.

[0067] Fig. 9 illustrates an example of a system 910 comprising a computing device
912 configured to implement one or more embodiments provided herein. In one
configuration, computing device 912 includes at least one processing unit 916 and
memory 919. Depending on the exact configuration and type of computing device,
memory 919 may be volatile (such as RAM, for example), non-volatile (such as ROM,
flash memory, etc., for example) or some combination of the two. This configuration is
illustrated in Fig. 9 by dashed line 914.

[0068] In other embodiments, device 912 may include additional features and/or
functionality. For example, device 912 may also include additional storage (e.g.,
removable and/or non-removable) including, but not limited to, magnetic storage, optical
storage, and the like. Such additional storage is illustrated in Fig. 9 by storage 920. In one
embodiment, computer readable instructions to implement one or more embodiments
provided herein may be in storage 920. Storage 920 may also store other computer
readable instructions to implement an operating system, an application program, and the
like. Computer readable instructions may be loaded in memory 919 for execution by
processing unit 916, for example.

[0069] The term “computer readable media” as used herein includes computer storage
media. Computer storage media includes volatile and nonvolatile, removable and non-
removable media implemented in any method or technology for storage of information
such as computer readable instructions or other data. Memory 919 and storage 920 are
examples of computer storage media. Computer storage media includes, but is not limited
to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital
Versatile Disks (DVDs) or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or any other medium which can
be used to store the desired information and which can be accessed by device 912. Any
such computer storage media may be part of device 912.

[0070] Device 912 may also include communication connection(s) 926 that allows
device 912 to communicate with other devices. Communication connection(s) 926 may
include, but is not limited to, a modem, a Network Interface Card (NIC), an integrated
network interface, a radio frequency transmitter/receiver, an infrared port, a USB
connection, or other interfaces for connecting computing device 912 to other computing

devices. Communication connection(s) 926 may include a wired connection or a wircless

21

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

connection. Communication connection(s) 926 may transmit and/or receive
communication media.

[0071] The term “computer readable media” may include communication media.
Communication media typically embodies computer readable instructions or other data in
a “modulated data signal” such as a carrier wave or other transport mechanism and
includes any information delivery media. The term “modulated data signal” may include a
signal that has one or more of its characteristics set or changed in such a manner as to
encode information in the signal.

[0072] Device 912 may include input device(s) 924 such as keyboard, mouse, pen,
voice input device, touch input device, infrared cameras, video input devices, and/or any
other input device. Output device(s) 922 such as one or more displays, speakers, printers,
and/or any other output device may also be included in device 912. Input device(s) 924
and output device(s) 922 may be connected to device 912 via a wired connection, wireless
connection, or any combination thereof. In one embodiment, an input device or an output
device from another computing device may be used as input device(s) 924 or output
device(s) 922 for computing device 912.

[0073] Components of computing device 912 may be connected by various
interconnects, such as a bus. Such interconnects may include a Peripheral Component
Interconnect (PCI), such as PCI Express, a Universal Serial Bus (USB), firewire (IEEE
1394), an optical bus structure, and the like. In another embodiment, components of
computing device 912 may be interconnected by a network. For example, memory 919
may be comprised of multiple physical memory units located in different physical
locations interconnected by a network.

[0074] Those skilled in the art will realize that storage devices utilized to store
computer readable instructions may be distributed across a network. For example, a
computing device 930 accessible via a network 929 may store computer readable
instructions to implement one or more embodiments provided herein. Computing device
912 may access computing device 930 and download a part or all of the computer readable
instructions for execution. Alternatively, computing device 912 may download pieces of
the computer readable instructions, as needed, or some instructions may be executed at
computing device 912 and some at computing device 930.

[0075] Various operations of embodiments are provided herein. In one embodiment,
one or more of the operations described may constitute computer readable instructions

stored on one or more computer readable media, which if executed by a computing device,

22

10

15

20

25

30

WO 2013/022464 PCT/US2011/055472

will cause the computing device to perform the operations described. The order in which
some or all of the operations are described should not be construed as to imply that these
operations are necessarily order dependent. Alternative ordering will be appreciated by
one skilled in the art having the benefit of this description. Further, it will be understood
that not all operations are necessarily present in each embodiment provided herein.

[0076] Moreover, the word "exemplary" is used herein to mean serving as an example,
instance, or illustration. Any aspect or design described herein as "exemplary" is not
necessarily to be construed as advantageous over other aspects or designs. Rather, use of
the word exemplary is intended to present concepts in a concrete fashion. As used in this
application, the term "or" is intended to mean an inclusive "or" rather than an exclusive
"or". That is, unless specified otherwise, or clear from context, "X employs A or B" is
intended to mean any of the natural inclusive permutations. That is, if X employs A; X
employs B; or X employs both A and B, then "X employs A or B" is satisfied under any of
the foregoing instances. In addition, the articles "a" and "an" as used in this application
and the appended claims may generally be construed to mean "one or more" unless
specified otherwise or clear from context to be directed to a singular form. Also, at least
one of A and B and/or the like generally means A or B or both A and B.

[0077] Also, although the disclosure has been shown and described with respect to one
or more implementations, equivalent alterations and modifications will occur to others
skilled in the art based upon a reading and understanding of this specification and the
annexed drawings. The disclosure includes all such modifications and alterations and is
limited only by the scope of the following claims. In particular regard to the various
functions performed by the above described components (e.g., elements, resources, etc.),
the terms used to describe such components are intended to correspond, unless otherwise
indicated, to any component which performs the specified function of the described
component (e.g., that is functionally equivalent), even though not structurally equivalent to
the disclosed structure which performs the function in the herein illustrated exemplary
implementations of the disclosure. In addition, while a particular feature of the disclosure
may have been disclosed with respect to only one of several implementations, such feature
may be combined with one or more other features of the other implementations as may be
desired and advantageous for any given or particular application. Furthermore, to the
extent that the terms "includes”, "having”, "has", "with", or variants thereof are used in
either the detailed description or the claims, such terms are intended to be inclusive in a

manner similar to the term "comprising.”

23

19 Dec 2016

2011374896

10

Hixp\Inter woven\NRPortbN\DCCUXPA12359988 _1.docx-19/12/2016

-23A -

[0078] Throughout this specification and the claims which follow, unless the context
requires otherwise, the word "comprise", and variations such as "comprises" and
"comprising”, will be understood to imply the inclusion of a stated integer or step or group
of integers or steps but not the exclusion of any other integer or step or group of integers or
steps.

[0079] The reference in this specification to any prior publication (or information derived
from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or
information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

03 Apr 2017

2011374896

Himka\Interwoven\NRPortbRDCCMKAM 3675927 _2.docx-3/04/2017

-4 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method comprising:
identifying a newly created process within a logical container;
in response to determining that the logical container is associated with a parent
logical container of a parent process, assigning a parent power management classification
assigned to the parent process to the newly created process as the power management
classification assigned to the process; and
otherwise, assigning a power management classification to the process, comprising:
determining if the process provides functionality upon which a core kernel
process depends, then assigning an exempt classification to the process;
determining if the process can be suspended without a computing system
failure and limited runtime functionality associated with the process is not desired,
then assigning a suspend classification to the process;
determining if the process can be cycled between an execution state and a
non-executing suspended state without a computing system failure and limited
runtime functionality associated with the process is desired, then assigning a
throttling classification to the process; and
determining if the process cannot be suspended or cycled between an
execution state and a non-executing suspended state without a computing system
failure, then assigning the exempt classification to the process; and
transitioning a computing environment into a standby state based upon the power

management classification assigned to the process.

2. The method of claim 1, the assigning a power management classification
comprising:

determining if the process provides functionality associated with a user defined
policy, then assigning a user defined power management classification to the process as the

power management classification assigned to the process.

03 Apr 2017

2011374896

Himka\Interwoven\NRPortbRDCCMKAM 3675927 _2.docx-3/04/2017

-25 -

3. The method of claim 1 or 2, comprising:
if the process is associated with a user application, then determining the process
can be suspended and assigning the suspend classification to the process as the power

management classification assigned to the process.

4. The method of claim 3, comprising:
determining the process is associated with a user application by determining the

user application is associated with a user session.

5. The method of any one of claims 1-4, comprising:

if the process corresponds to at least one of a core kernel process and a device
driver, then determining the process cannot be suspended and assigning the exempt
classification to the process as the power management classification assigned to the

process .

6. The method of any one of claims 1-5, comprising:

consulting a dependency graph built from a core kernel process to one or more
support processes that provide functionality upon which the core kernel process depends;
and

if the process comprises a support process, then determining the process cannot be
suspended and assigning the exempt classification to the process as the power management

classification assigned to the process.

7. The method of any one of claims 1-6, comprising:

if the process comprises a service created within a system session that provides
desired state functionality, then determining the process can be cycled between an
execution state and a non-executing suspended state and assigning the throttling
classification to the process as the power management classification assigned to the

process.

03 Apr 2017

2011374896

Himka\Interwoven\NRPortbRDCCMKAM 3675927 _2.docx-3/04/2017

-6 -

8. A system comprising:
a classification component configured to:
identify a newly created process as the power management classification assigned
to the process;
in response to determining that the logical container is associated with a parent
logical container of a parent process, assign a parent power management classification
assigned to the parent process, to the newly created process as the power management
classification assigned to the process; and
otherwise, assign a power management classification to the process, comprising:
assign a power management classification to a process, comprising:
determine if the process provides functionality upon which a core kernel
process depends, then assign an exempt classification to the process;
determine if the process can be suspended without a computing system
failure and limited runtime functionality associated with the process is not desired,
then assign a suspend classification to the process;
determine if the process can be cycled between an execution state and a
non-executing suspended state without a computing system failure and limited
runtime functionality associated with the process is desired, then assign a throttling
classification to the process; and
determine if the process cannot be suspended or cycled between an
execution state and a non-executing suspended state without a computing system
failure, then assign the exempt classification to the process; and
transition a computing environment into a standby state based upon the power

management classification assigned to the process.

9. The system of claim 8, the classification component configured to:
if the process provides functionality associated with a user defined policy, then
assign a user defined power management classification to the process as the power

management classification assigned to the process.

03 Apr 2017

2011374896

Himka\Interwoven\NRPortbRDCCMKAM 3675927 _2.docx-3/04/2017

-7 -

10. The system of claim 8 or 9, the classification component configured to:
if the process is associated with a user application, then determine the process can
be suspended and assigning the suspend classification to the process as the power

management classification assigned to the process.

11. The system of any one of claims 8-10, the classification component configured to:
determine the process cannot be suspended without a computing system failure
based upon determining the process corresponds to at least one of a core kernel process

and a device driver.

12. The system of any one of claims 8-11, the classification component configured to:
consult a dependency graph built from a core kernel process to one or more support
processes that provide functionality upon which the core kernel process depends; and
if the process comprises a support process, then determine the process cannot be
suspended and assign the exempt classification to the process as the power management

classification assigned to the process.

WO 2013/022464 PCT/US2011/055472

1/9

100W 102

— 104
IDENTIFY PROCESS

'

ASSIGN POWER MANAGEMENT CLASSIFICATION TO PROCESS:

IF LIFECYCLE OF PROCESS IS MANAGED, THEN ASSIGN EXEMPT /— 108
CLASSIFICATION TO PROCESS

|

IF PROCESS CAN BE SUSPENDED, THEN ASSIGN SUSPEND /— 110
CLASSIFICATION TO PROCESS

!

IF PROCESS CAN BE THROTTLED, THEN ASSIGN THROTTLING /— 112
CLASSIFICATION TO PROCESS
— 114

IF PROCESS CANNOT BE SUSPENDED OR THROTTLED, THEN /
ASSIGN EXEMPT CLASSIFICATION TO PROCESS

116

FIG. 1

WO 2013/022464

200

J/

PCT/US2011/055472

2/9

s 202

COMPUTING SYSTEM PROCESSES

208 '\

210 NETWORK PACKET PROCESSOR

212 > HARDWARE EVENT PROCESSOR

214 L PRINT SPOOLER

[\ ANTI-VIRUS

218 SPELL CHECKER

220~ INSTANT MESSENGER

592 = MESSAGE NOTIFIER

|, — 204
CLASSIFICATION COMPONENT
CLASSIFICATION ASSIGNMENTS
208 ™
210 — NETWORK PACKET PROCESSOR: EXEMPT
212 > HARDWARE EVENT PROCESSOR: EXEMPT
214 > PRINT SPOOLER: SUSPEND
™ ANTI-VIRUS: THROTTLE

216 —|—~ WORD PROCESSOR: SUSPEND
218 | SPELL CHECKER: SUSPEND
220 | INSTANT MESSENGER: USER POLICY = EXEMPT
592 |~ MESSAGE NOTIFIER: USER POLICY = EXEMPT

FIG. 2

WO 2013/022464 PCT/US2011/055472

3/9

302

™

304
DETECT ENTER CONNECTED STANDBY REQUEST /_
l 306
L
TRANSITIONING COMPUTING ENVIRONMENT INTO CONNECTED
STANDBY STATE:
PLACE SUSPENDABLE PROCESSES INTO NON-EXECUTING /— 308
SUSPENDED STATE
e 310
ASSIGN THROTTLING SCHEDULES TO THROTTLEABLE PROCESSES
ALLOW EXEMPT PROCESSES TO CONTINUE EXECUTING IN /— 312

EXECUTION STATE

314
END

FIG. 3

WO 2013/022464

400
N

PCT/US2011/055472

4/9

e 404
CLASSIFICATION ASSIGNMENTS
402 « NETWORK PACKET PROCESSOR: EXEMPT
ENTER « HARDWARE EVENT PROCESSOR: EXEMPT
CONNEGTED « PRINT SPOOLER: SUSPEND
STANDBY e ANTI-VIRUS: THROTTLE
« WORD PROCESSOR: SUSPEND
REQUEST . SPELL CHECKER: SUSPEND
« INSTANT MESSENGER: USER POLICY = EXEMPT
. MESSAGE NOTIFIER: USER POLICY = EXEMPT
Y
L 406 e 408
TRANSITION THROTTLING
COMPONENT COMPONENT

INCOMING PACKETS

EVENT

COMPUTING ENVIRONMENT (CONNECTED STANDBY)

¢ NETWORK PACKET PROCESSOR: LISTENING FOR
HARDWARE EVENT PROCESSOR: DETECTING HARDWARE

¢ PRINT SPOOLER: SUSPENDED
ANTI-VIRUS: THROTTLING SCHEDULE = EXECUTE FOR 5
SECONDS EVERY 2 MINUTES
WORD PROCESSOR: SUSPENDED

SPELL CHECKER:
INSTANT MESSENGER: LISTEN FOR IMs

MESSAGE NOTIFIER: READY TO NOTIFY OF NEW IMs

SUSPENDED

FIG. 4

WO 2013/022464 PCT/US2011/055472

5/9

502
200 \4 START
504
DETECT EXIT CONNECTED STANDBY REQUEST /_

l

TRANSITIONING COMPUTING ENVIRONMENT FROM CONNECTED
STANDBY STATE TO EXECUTION STATE:
RESTORE EXECUTION FUNCTIONALITY TO SUSPENDED /— 508

PROCESSES

I

— 510
RESTORE EXECUTION FUNCTIONALITY TO THROTTLED PROCESSES /

512
END

FIG. 5

WO 2013/022464 PCT/US2011/055472

6/9

600w /—604

COMPUTING ENVIRONMENT (CONNECTED STANDBY)

e NETWORK PACKET PROCESSOR: LISTENING FOR

602 INCOMING PACKETS
/ « HARDWARE EVENT PROCESSOR: DETECTING
EXIT HARDWARE EVENT
CONNECTED « PRINT SPOOLER: SUSPENDED
STANDBY « ANTI-VIRUS: THROTTLING SCHEDULE = EXECUTE
REQUEST FOR 5 SECONDS EVERY 2 MINUTES

WORD PROCESSOR: SUSPENDED
SPELL CHECKER: SUSPENDED
INSTANT MESSENGER: LISTEN FOR IMs
MESSAGE NOTIFIER: READY TO NOTIFY OF
NEW IMs

> TRANSITION COMPONENT

COMPUTING ENVIRONMENT (EXECUTION STATE)

e NETWORK PACKET PROCESSOR: LISTENING FOR
INCOMING PACKETS
e HARDWARE EVENT PROCESSOR: DETECTING HARDWARE
EVENT
PRINT SPOOLER: IDLE
ANTI-VIRUS: SCANNING
WORD PROCESSOR: IDLE
SPELL CHECKER: IDLE
INSTANT MESSENGER: LISTEN FOR IMs
MESSAGE NOTIFIER: READY TO NOTIFY OF NEW IMs

FIG. 6

WO 2013/022464 PCT/US2011/055472

719

700 a4 702

CONNECTED STANDBY STATE

EXIT CONNECTED
STANDBY REQUEST :

MESSAGE APPLICATION x

¢ NEW MESSAGE (1) FROM DAN...
e NEW MESSAGE (2) FROM COLLEEN...

e RSS FEED UPDATE...

e EVENT INVITE...

FIG. 7

WO 2013/022464 PCT/US2011/055472

8/9

 —_——— e e e e ——— —

|
|
|
|
|
812 v

COMPUTER
INSTRUCTIONS

814 L 4

01011010001010
10101011010101
101101011100..

816 ~ g

COMPUTER READABLE MEDIUM

FIG. 8

WO 2013/022464 PCT/US2011/055472

9/9

: __________________ | /—920
|
| 916 | STORAGE
! [
| |PROCESSING | —922
| UNIT | OUTPUT DEVICE(S)
! [
i | 924
' [
| | INPUT DEVICE(S)
! MEMORY !
I | 926
| | COMMUNICATION
| 918 | CONNECTION(S)
e | T
928

COMPUTING | ~—930
DEVICE

FIG. 9

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

