
(12) STANDARD PATENT (11) Application No. AU 2011374896 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Suspension and/or throttling of processes for connected standby

(51) International Patent Classification(s)
G06F 1/32 (2006.01) G06F 9/44 (2006.0 1)

(21) Application No: 2011374896 (22) Date of Filing: 2011.10.07

(87) WIPO No: W013/022464

(30) Priority Data

(31) Number (32) Date (33) Country
13/207,167 2011.08.10 US

(43) Publication Date: 2013.02.14
(44) Accepted Journal Date: 2017.04.27

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Robben, Matthew;Berry, Jon;Toshev, Kalin

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
US 2005/0066006 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2013/022464 Al
14 February 2013 (14.02.2013) W I P0 I P CT

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 1/32 (2006.01) G06F 9/44 (2006.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

PCT/US2011/055472 DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,

7 October 2011 (07.10.2011) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MNX, MY, MZ, NA, NG, NI, NO, NZ,

(25) Filing Language: English OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

(26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data:
13/207,167 10 August 2011 (10.08.2011) US (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): MI- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

CROSOFT CORPORATION [US/US]; One Microsoft UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
Way, Redmond, Washington 98052-6399 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

(72) Inventors: ROBBEN, Matthew; c/o Microsoft Corpora- DK, EE, ES, FI, FR, GB , R, H, R, IS, IS, ST, LU,

tion, LCA - International Patents, One Microsoft Way, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

Redmond, Washington 98052-6399 (US). BERRY, Jon; GW, ML, MR, NE, SN, TD, TG).
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399 Declarations under Rule 4.17:
(US). TOSHEV, Kalin; c/o Microsoft Corporation, LCA - _ as to applicant's entitlement to applyfor and be granted a
International Patents, One Microsoft Way, Redmond, pateotapplicant' eniio

Washington 98052-6399 (US).

[Continued on next page]

(54) Title: SUSPENSION AND/OR THROTTLING OF PROCESSES FOR CONNECTED STANDBY

100 10(57) Abstract: One or more techniques and/or systems are provided for as

START 102 FIG. 1 signing power management classifications to a process, transitioning a com
puting environment into a connected standby state based upon power man
agement classifications assigned to processes, and transitioning the comput

IDENTIFY PROCESS 104 ing environment from the connected standby state to an execution state. That
is, power management classifications, such as exempt, throttle, and/or sus
pend, may be assigned to processes based upon various factors, such as

106 whether a process provides desired functionality and/or whether the process

ASSIGN POWER MANAGEMENT CLASSIFICATION TO PROCESS: provides functionality relied upon for basic operation of the computing envir
onment. In this way, the computing environment may be transitioned into a

IF LIFECYCLE OF PROCESS IS MANAGED THEN ASSIGN EXEMPT 108 low power connected standby state that may continue executing desired fic
CLASSIFICATION TO PROCESS tionality, while reducing power consumption by suspending and/or throttling

other functionality. Because some functionality may still execute, the com
puting environment may transition into the execution state in a responsive

IF PROCESS CAN BE SUSPENDED THEN ASSIGN SUSPEND 110 manner to quickly provide a user with up-to-date information.
- CLASSIFICATION TO PROCESS

IF PROCESS CAN BE THROTTLED, THEN ASSIGN THROTTLING 112
CLASSIFICATION TO PROCESS

IF PROCESS CANNOT BE SUSPENDED ORTHROTTLED THEN 114

A (END

C4Y

W O 2 0 13 /0 2 2 4 6 4 A 1 l l lll|||1ll|||1lllllllllllll|||II|||||||||||||||||||DI||||||||||||||||||||||||||||||||||
- as to the applicant's entitlement to claim the priority of Published:

the earlier application (Rule 4.17(iii)) - with international search report (Art. 21(3))

H:\ixp\lntroven\NRPortbl\DCC\IXP\l2359988_l.docx-19/12/2016

SUSPENSION AND/OR THROTTLING OF PROCESSES FOR CONNECTED

STANDBY

5 BACKGROUND

[0001] Many computing devices, such as desktops, laptops, smart phones, and tablets, are

developed around conserving power consumption and/or extending battery life. For

example, a laptop screen may be dimmed if a laptop has been idle for a set period of time.

Power conservation may provide extended operating and/or time between (re)charging a

10 computing device, which may be desirable and convenient for a user. Unfortunately, many

applications may not comprise power conservation functionality, and may significantly

reduce power conservation and/or have poor power "hygiene", by not causing hardware to

exit high power states and/or by utilizing resources when the computing device could

otherwise be idle (e.g., an idle application may needlessly consume processor cycles).

15 [0002] Many power conservation techniques may degrade a user experience with a

computing device because transitioning the computing device from a low powered state,

such as a hibernation/sleep state, to an execution state may require user input, take a

relatively long amount of time and/or provide stale data until refreshed. For example, a

user may periodically interact with a laptop while at home. To conserve battery life of the

20 laptop, a hibernation/sleep policy may be in place, where the laptop may be placed into a

suspended state if the user does not interact with the laptop for a set period of time, such as

10 minutes. Unfortunately, conventional hibernation/sleep policies may take a significant

amount of time (e.g., minutes) to reawaken the computing system into an up-to-date

execution state useable by the user because a substantial portion of the computing system

25 may have been suspended (e.g., a processer may stop execution, an operating system

kernel may be suspended, etc.). Waiting for the computing system to fully reawaken may

provide a less satisfying user experience.

It is desired to address or ameliorate one or more disadvantages or limitations associated

with the prior art, or to at least provide a useful alternative.

30

SUMMARY

H: \mka\Interwoven\NRPortbl\DCC\MKA\3675927_2.doex-3/04/2017

-2

[0002a] In accordance with the present invention there is provided a computer

implemented method comprising:

identifying a newly created process within a logical container;

in response to determining that the logical container is associated with a parent

5 logical container of a parent process, assigning a parent power management classification

assigned to the parent process to the newly created process as the power management

classification assigned to the process; and

otherwise, assigning a power management classification to the process, comprising:

determining if the process provides functionality upon which a core kernel

10 process depends, then assigning an exempt classification to the process;

determining if the process can be suspended without a computing system

failure and limited runtime functionality associated with the process is not desired,

then assigning a suspend classification to the process;

determining if the process can be cycled between an execution state and a

15 non-executing suspended state without a computing system failure and limited

runtime functionality associated with the process is desired, then assigning a

throttling classification to the process; and

determining if the process cannot be suspended or cycled between an

execution state and a non-executing suspended state without a computing system

20 failure, then assigning the exempt classification to the process; and

transitioning a computing environment into a standby state based upon the power

management classification assigned to the process.

[0002b] The present invention also provides a system comprising:

a classification component configured to:

25 identify a newly created process as the power management classification assigned

to the process;

in response to determining that the logical container is associated with a parent

logical container of a parent process, assign a parent power management classification

assigned to the parent process, to the newly created process as the power management

30 classification assigned to the process; and

otherwise, assign a power management classification to the process, comprising:

assign a power management classification to a process, comprising:

H: \mka\Interwoven\NRPortbl\DCC\MKA\3675927_2.doex-3/04/2017

-3

determine if the process provides functionality upon which a core kernel

process depends, then assign an exempt classification to the process;

determine if the process can be suspended without a computing system

failure and limited runtime functionality associated with the process is not desired,

5 then assign a suspend classification to the process;

determine if the process can be cycled between an execution state and a

non-executing suspended state without a computing system failure and limited

runtime functionality associated with the process is desired, then assign a throttling

classification to the process; and

10 determine if the process cannot be suspended or cycled between an

execution state and a non-executing suspended state without a computing system

failure, then assign the exempt classification to the process; and

transition a computing environment into a standby state based upon the power

management classification assigned to the process.

15

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Some embodiments of the present invention are hereinafter described, by way of

non-limiting example only, with reference to the accompanying drawings, in which:

[0004] Fig. 1 is a flow chart illustrating an exemplary method of assigning a power

20 management classification to a process.

[0005] Fig. 2 is a component block diagram illustrating an exemplary system for assigning

a power management classification to a process.

[0006] Fig. 3 is a flow chart illustrating an exemplary method of transitioning a computing

environment into a connected standby state based upon power management classifications

25 assigned to processes.

[0007] Fig. 4 is a component block diagram illustrating an exemplary system for

transitioning a computing environment into a connected standby state based upon power

management classifications assigned to processes.

[0008] Fig. 5 is a flow chart illustrating an exemplary method of transitioning a computing

30 environment from a connected standby state to an execution state.

[0009] Fig. 6 is a component block diagram illustrating an exemplary system for

transitioning a computing environment from a connected standby state to an execution

H:\ixp\lntroven\NRPortbl\DCC\IXP\l2359988_l.docx-19/12/2016

-4

state.

[0010] Fig. 7 is an illustration of an example of a tablet device transitioning from a

connected standby state to an execution state.

[0011] Fig. 8 is an illustration of an exemplary computer-readable medium wherein

5 processor-executable instructions configured to embody one or more of the provisions set

forth herein may be comprised.

[0012] Fig. 9 illustrates an exemplary computing environment wherein one or more of the

provisions set forth herein may be implemented.

10 DETAILED DESCRIPTION

[0013] Among other things, one or more systems and/or techniques for assigning a power

management classification to one or more processes associated with a computing

environment, transitioning the computing environment into a connected standby state

based upon power management classifications assigned to processes, and transitioning the

15 computing environment from a connected standby state to an execution state are disclosed

herein.

[0014] It may be appreciated that in one example, an execution state of a computing

environment may correspond to a general operating state of the computing environment.

While in the execution state, processes may be created and executed, and the computing

20 environment may be responsive to user input (e.g., a user may interact with a word

processor and/or other applications while the computing environment is in the execution

state). It may be appreciated that in one example, a connected standby state may

correspond to a low power consumption state of the computing environment, which may

nevertheless provide an always-on/always-connected experience. While in the connected

25 standby state, particular processes may be allowed to execute, while other processes may

be either suspended into a non-executing suspended state and/or throttled between the

execution state and the non-executing suspended state to reduce power consumption. For

example, while in the connected standby state, a computing environment may allow

execution and/or throttled execution of critical system processes (e.g., networking

30 functionality processes, particular core kernel processes, hardware functionality processes,

messaging functionality processes, etc.), power savvy applications (e.g., applications with

H:\ixp\lntroven\NRPortbl\DCC\IXP\I2359988_I.docx-19/12/2016

-5

managed lifecycles), and/or other processes that may provide desired connectivity (e.g.,

simple email functionality processes) so that the computing device may provide a

responsive and up-to-date experience for a user when transitioning from the connected

standby state to the execution state (e.g., the computing environment may awaken quickly

5 (e.g., within seconds), and may provide the user with up-to-date email, information, and/or

connectivity). However, to conserve power, non-critical system services (e.g., a print

spooler, system update checker, etc.) and/or user applications (e.g., a word processor) may

be throttled and/or suspended.

[00015] In one example of assigning a power management classification to a process, a

10 process may be identified (e.g., a newly created process). The process may be assigned a

power management classification, such as an exempt classification, a suspend

classification, or a throttling classification based upon various factors (e.g., how critical is

the process for basic functionality, is the process associated with a system service, is the

process associated with a user application, can the process be throttled without causing a

15 failure, can the process be suspended without losing desired functionality and/or causing a

failure, etc.). If a lifecycle of the process is managed by the process and/or a lifecycle

management component, then the process may be assigned the exempt classification

because the process may already be associated with power conservation functionality (e.g.,

assigning and implementing the power management classification to the process may be

20 redundant and/or may cause a failure of the process). If the process can be suspended

without a computing system failure (e.g., suspension of a photo viewing process may not

cause a failure of the computing environment and/or a failure of a photo viewing

application) and limited runtime functionality associated with the process is not desired

(e.g., photo viewing functionality may not be desired while the computing environment is

25 within a connected standby state), then a suspend classification may be assigned to the

process.

[0016] If the process can be throttled without the computing system failure and limited

runtime functionality associated with the process is desired (e.g., a user may desire to

receive message notifications while the computing environment is within the connected

30 standby state), then a throttling classification may be assigned to the process. If the process

cannot be throttled without the computing system failure and limited runtime functionality

H:\ixp\lntroven\NRPortbl\DCC\IXP\I2359988_I.docx-19/12/2016

- 5A

associated with the process is desired, then the exempt classification may be assigned to

the process. In this way, the power management classification may be assigned to the

process. In one example, the power management classification may be utilized when

transitioning the computing environment into a connected standby state. For example,

5 exempt processes may be allowed to execute, suspendable processes may be suspended,

and throttleable processes may be throttled.

[0017] In one example of transitioning a computing environment into a connected standby

state based upon power management classifications assigned to processes, an enter

connected standby request associated with the computing environment may be detected

10 (e.g., a user may invoke a standby button of a tablet device, a threshold period of inactivity

may have passed, etc.). The computing environment may be transitioned into the

connected standby state, for example, from an execution state. For example, for respective

suspendable processes, a suspendable process may be placed into a non-executing

suspended state (e.g., the suspendable process may be ineligible for execution, and thus

15 may be unable to invoke hardware components to perform power consuming activity). For

respective throttleable processes, a throttling schedule may be assigned and/or applied to a

throttleable process (e.g., an email process may be allowed to execute for 5 seconds every

8 minutes to check for new messages, otherwise the email process may be in the non

executing suspended state to reduce power consumption). For respective exempt processes,

20 an exempt process may be allowed to execute in an execution state (e.g., a network process

may be allowed to execute to provide desired functionality, such as receipt of new emails).

In one example, suspendable processes may be suspended before throttleable processes

because suspendable processes may rely upon functionality from throttleable process, and

thus a suspendable process may fail if a throttleable process enters a non-executing

25 suspended state before the suspendable process is suspended (e.g., a suspendable online

photo application may fail if an underlying network photo upload process is unavailable).

In this way, the computing environment may be transitioned into the connected standby

state to conserve power, while still providing desired functionality (e.g., notification of

new messages).

30 [0018] In one example of transitioning a computing environment from a connected standby

state to an execution state, an exit connected standby request associated with the

H:\ixp\lntroven\NRPortbl\DCC\IXP\I2359988_I.docx-19/12/2016

- 5B

computing environment may be detected (e.g., a user may attempt to interact with a tablet

device with a finger touch action on a tablet screen). The computing environment may be

transitioned from the connected standby state to the execution state based upon the exit

connected standby request. For example, for respective suspended processes, execution

5 functionality may be restored to a suspended process (e.g., an online photo application

process may be available in a responsive manner, such as within seconds). For respective

throttled processes, execution functionality may be restored to a throttled process (e.g., an

email process in a non-executing suspended state based upon a throttling schedule may be

transitioned into an execution state in a responsive manner). In this way, the computing

10 environment may be transitioned into an up-to-date execution state in a responsive manner

without a user waiting a significant amount of time for resumed functionality and/or up-to

date information.

[0019] To the accomplishment of the foregoing and related ends, the following description

and annexed drawings set forth certain illustrative aspects and implementations. These are

15 indicative of but a few of the various ways in which one or more aspects may be

employed. Other aspects, advantages, and novel features of the disclosure will become

apparent from the following detailed description when considered in conjunction with the

annexed drawings.

[0020] The claimed subject matter is now described with reference to the drawings,

20 wherein like reference numerals are generally used to refer to like elements throughout. In

the following description, for purposes of explanation, numerous specific details are set

forth in order to provide a thorough understanding of the claimed subject matter. It may be

evident, however, that the claimed subject matter may be practiced without these specific

details. In other instances, structures and devices are illustrated in block diagram form in

25 order to facilitate describing the claimed subject matter.

[0021] Many computing environments may incorporate power conservation techniques to

mitigate power consumption and/or conserve battery life. For example, an operating

system may provide a hibernation/sleep policy that may prevent the execution of

applications, system processes, and/or processor functionality that may otherwise invoke

30 computing resources to perform power consuming tasks. Unfortunately, many power

conservation techniques may suspend processes that perform desirable functionality (e.g.,

WO 2013/022464 PCT/US2011/055472

a hibernation policy may not comprise functionality to selectively allow certain processes

to execute during a hibernation state), and thus a computing environment may provide

stale information upon awakening into an execution state (e.g., a computing environment

awakening from a hibernation state may not provide up-to-date message information

5 because a message functionality process may have been suspended during the hibernation

state). Additionally, awakening from a hibernation/sleep state may take a considerable

amount of time before the computing environment is fully responsive and/or able to

provide up-to-date information. Thus, a balance between providing adequate power

conservation and providing a user with a responsive and connected experience is desirable.

10 [0022] Accordingly, one or more systems and/or techniques for assigning power

management classifications to a process associated with a computing environment,

transitioning the computing environment into a connected standby state based upon power

management classifications assigned to processes, and transitioning the computing

environment from the connected standby state to an execution state are provided herein.

15 In particular, processes may be classified with an exemption classification, a suspend

classification, and/or a throttle classification based upon various factors, such as whether a

process provides desired functionality and/or critical system functionality. In this way, the

computing environment may be transitioned into a connected standby state, such as a low

power consumption state that provides an always-on/always-connected experience. In

20 particular, exempt processes may be allowed to execute, suspendable processes may be

suspended from executing, and throttleable processes may be cycled between an execution

state and a non-execution suspended state based upon a throttle schedule. Suspending

and/or throttling processes may reduce power consumption because such processes may be

placed into a non-executing suspended state that may restrict such processes from

25 invoking resources to perform power consuming tasks. The computing environment may

be transitioned from the connected standby state to an execution state in a responsive

manner that provides an up-to-date experience for the user in a nominal amount of time

(e.g., a user may be able to interact with an up-to-date state of the computing environment

within seconds). In particular, suspended processes and/or throttled processes may be

30 placed into an execution state so that the computing environment is transitioned into the

execution state.

[0023] One embodiment of assigning a power management classification to a process

is illustrated by an exemplary method 100 in Fig. 1. At 102, the method starts. At 104, a

process for which a power management classification is to be assigned may be identified

6

WO 2013/022464 PCT/US2011/055472

(e.g., a process within a computing environment, such as a tablet operating system,

desktop operating system, mobile device operating system, etc.). For example, a newly

created process may be identified as the process (e.g., a process within a logical container,

such as a hierarchal job object). At 106, a power management classification may be

5 assigned to the process. It may be appreciated that various factors may be evaluated to

assign the power management classification (e.g., criticality of the process to system

operation, desired functionality provided by the process, ability to throttle the process,

etc.).

[0024] In one example of assigning the power management classification, a logical

10 container of the process may be determined as being associated with a parent logical

container of a parent process (e.g., a logical container of a spell checker process may be

associated with (e.g., nested under) a parent logical container of a parent word processing

process). A parent power management classification assigned to the parent process may

be assigned to the process as the power management classification assigned to the process

15 (e.g., a suspend classification assigned to the parent word processing process may also be

assigned to the spell checker process so that both processes may be suspended together, as

opposed to one process being suspended while the other process (e.g., spell checker)

continues to needlessly execute during a connected standby state).

[0025] In another example of assigning the power management classification, if a

20 lifecycle of the process is managed by the process and/or a lifecycle management

component, then an exempt classification may be assigned to the process, at 108. For

example, an application (e.g., a relatively newly created application) may be developed

under an application model that provides for extensive power consumption management.

Thus, the application may be assigned the exempt classification because additional power

25 consumption management may be redundant and/or interfere with execution of the

application.

[0026] In another example of assigning the power management classification, if the

process can be suspended without a computing system failure (e.g., a failure of the

computing environment and/or an application associated with the process) and limited

30 runtime functionality associated with the process is not desired (e.g., a user may not desire

print functionality when the computing environment is in a low power connected standby

state), then the process may be assigned a suspend classification, at 110. For example, if

the process is associated with a user application, then the process may be determined as

being suspendable, and may be assigned the suspend classification (e.g., a photo sharing

7

WO 2013/022464 PCT/US2011/055472

application initialized within a user session may not provide desired functionality for when

the computing environment is in the low powered connected standby state (e.g., user does

not desire to view/share photos when his/her tablet is in a connected standby state) and/or

may not affect core system functionality of the computing environment).

5 [0027] In another example of assigning the power management classification, if the

process can be throttled without the computing system failure and limited runtime

functionality associated with the process is desired, then a throttling classification may be

assigned to the process, at 112. For example, if the process comprises a service (e.g., a

messaging system service initialized within a system session) that provides desired state

10 functionality (e.g., the message system service may listen for new messages so that the

user may be notified of up-to-date communication), then the process may be determined as

being throttleable, and may be assigned the throttling classification (e.g., a process

associated with anti-virus functionality, messaging service functionality, network service

functionality, and/or a variety of other desired functionality may be assigned the throttling

15 classification).

[0028] In another example of assigning the power management classification, if the

process cannot be suspended or throttled without the computing system failure, then the

exempt classification may be assigned to the process, at 114. It may be appreciated that

the computing environment may rely upon a variety of processes for basic operational

20 functionality, and thus suspension and/or throttling of such processes may result in the

computing system failure. In one example, particular core kernel processes, device

drivers, and/or other processes that provide basic operational functionality may be

assigned the exempt classification. In another example, a dependency graph may be

consulted. The dependency graph may have been built from a core kernel process to one

25 or more support processes that provide functionality upon which the core kernel process

depends (e.g., a software component network communication module that facilitates

communication between distributed software components may be relied upon by one or

more core kernel processes associated with such software components). If the process

comprises a support process specified within the dependency graph, then the process may

30 be determined as being unable to be suspended, and thus may be assigned the exempt

classification.

[0029] In another example of assigning the power management classification, if the

process provides functionality associated with a user defined policy, then a user defined

power management classification may be assigned to the process. For example, a user

8

WO 2013/022464 PCT/US2011/055472

may specify a desire for the computing environment to stay up-to-date with incoming

messages (e.g., regardless of whether the computing environment is within the low power

connected standby state or the execution state). Accordingly, processes that provide

message functionality (e.g., a message listener process, a message notification process,

5 etc.) may be assigned a user defined power management classification, such as the exempt

classification. In this way, various processes may be assigned power management

classifications that may be used to transition the computing environment into a connected

standby state. At 116, the method ends.

[0030] Fig. 2 illustrates an example of a system 200 configured to assign a power

10 management classification to a process. System 200 may comprise a classification

component 204. The classification component 204 may be configured to assign a power

management classification to a process associated with a computing environment. For

example, the computing environment may be associated with computing system processes

202 comprising a network packet processor 208, a hardware event processor 210, a print

15 spooler 212, an anti-virus 214, a word processor 216, a spell checker 218 (e.g., the spell

checker 218 may be child process of the word processor 216), an instant messenger 220,

and/or a message notifier 222 (e.g., message notifier 222 may be a child process of instant

messenger 220).

[0031] In one example, the classification component 204 may be configured to

20 determine whether a process is associated with a parent process. If the process is

associated with a parent process, then the classification component 204 may assign a

parent power management classification assigned to the parent process as the power

management classification assigned to the process. For example, word processor 216 may

be a parent process of spell checker 218. Word processor 216 may have been assigned a

25 suspend classification (e.g., word processor 216 may be associated with a word processor

application that does not provide desired functionality during a low power connected

standby state and/or does not provide critical system functionality). Accordingly, spell

checker 218 may be assigned the suspend classification that was assigned to word

processor 216. Similarly, message notifier 222 may be assigned a user power

30 management classification of exempt assigned to instant messenger 220 because instant

messenger 220 is a parent process of message notifier 222. In this way, associated

processes may be classified similarly, so that such power management classification may

be implemented as a group for efficiency (e.g., fewer classification operations need to be

performed, further promoting power conservation) and/or to avoid inconsistent results

9

WO 2013/022464 PCT/US2011/055472

(e.g., if message notifier 222 was assigned an exempt classification, then message notifier

222 may needlessly execute while instant messenger 220 is suspended during a connected

standby state).

[0032] In another example, the classification component 204 may assign an exempt

5 classification to the process based upon determining a lifecycle of the process is managed

by the process and/or a lifecycle management component. That is, power conservation

may already be managed by the process or another component.

[0033] In another example, the classification component 204 may assign a suspend

classification to the process based upon determining the process can be suspended without

10 a computing system failure and/or limited runtime functionality associated with the

process is not desired. For example, word processor 216 may be assigned the suspend

classification because the word processor 216 is a user application whose suspension may

not create a computing system failure and/or a user may not desire limited runtime word

processing functionality while the computing environment is within a connected standby

15 state. Additionally, the printer spooler 212 may be assigned the suspend classification

because suspension of the print spooler 212 may not create a computing system failure

and/or the user may not desire limited runtime printing functionality while the computing

environment is within the connected standby state.

[0034] In another example, the classification component 204 may assign a throttling

20 classification to the process based upon determining the process can be throttled and

limited runtime functionality associated with the process is desired. For example, anti

virus 214 (e.g., an anti-virus system service initialized within a system session) may

provide desired state functionality because write access to storage, for example, may be

blocked until the anti-virus 214 performs a check on data to be written (e.g., a user may

25 desire for incoming messages to be saved to storage while the computing environment is

within the connected standby state).

[0035] In another example, the classification component 204 may assign the exempt

classification to the process based upon determining the process cannot be suspended or

throttled without a computing system failure. In one example, the classification

30 component 204 may determine that particular core kernel processes, device drivers, and/or

other processes cannot be suspended without a computing system failure. For example,

network packet processor 208 and/or hardware event processor 210 may provide core

functionality relied upon by the computing environment, and thus may be assigned the

exempt classification. In another example, a dependency graph may be consulted to

10

WO 2013/022464 PCT/US2011/055472

determine whether the process is a support process upon which a core kernel process

depends.

[0036] In another example, the classification component 204 may assign a user

defined power management classification to the process based upon determining the

5 process provides functionality associated with a user defined policy. For example, instant

messenger may be assigned a user power management classification of exempt because

the user may desire to receive incoming instant messages even if the computing

environment is within a connected standby state.

[0037] In this way, power management classification assignments 206 may be created

10 and/or updated with assignments of power management classifications to processes. Such

assignments may be utilized in transitioning the computing environment into a connected

standby state to achieve a low powered state that may reduce power consumption and/or

improve battery life. It may be appreciated that such assignments may be utilized for a

variety of other scenarios, such as background/foreground task suspension and/or

15 throttling of processes while in an execution state.

[0038] One embodiment of transitioning a computing environment into a connected

standby state based upon power management classifications assigned to processes is

illustrated by an exemplary method 300 in Fig. 3. At 302, the method starts. At 304, an

enter connected standby request associated with the computing environment may be

20 detected. It may be appreciated that a connected standby state may correspond to a low

power consumption state, where various processes may be suspended, throttled, or

allowed to continue execution. In this way, power consumption may be reduced and the

computing environment may continue executing desired functionality to provide a

responsive and up-to-date experience when transitioning (back) into an execution state.

25 The connected standby state may be implemented in a variety of ways on various

computing devices, such as tablet computing devices, desktop computing devices, laptops,

mobile phones, etc.

[0039] At 306, the computing environment may be transitioned into the connected

standby state. In one example, for respective suspendable processes assigned a suspend

30 classification, a suspendable process may be placed into a non-executing suspended state,

at 308. That is, the suspendable process may be prevented from invoking resources to

perform power consuming tasks (e.g., a word processor may be suspended so that the

word processor does not access hardware resources that may otherwise be in a low-power

idle state). The suspend classification may correspond to whether a process is able to be

11

WO 2013/022464 PCT/US2011/055472

suspended without a computing system failure and/or whether limited runtime

functionality associated with the process is not desired. In this way, suspendable

processes may be placed into the non-executing suspended state without creating computer

system failures and/or losing desired functionality.

5 [0040] In another example, for respective throttleable processes assigned a throttling

classification, a throttling schedule may be assigned to a throttleable process, at 310. The

throttling classification may correspond to whether a process can be throttled without a

computing system failure and/or whether limited runtime functionality associated with the

process is desired. The throttling schedule may be applied to the throttleable process

10 while in the connected standby state. For example, the throttleable process may be cycled

between the execution state and the non-executing suspended state based upon the

throttling schedule (e.g., the throttling schedule may specify an execution time period for

the executing state and a suspended time period for the non-executing suspended state).

For example, a throttleable message process may be allowed 20 seconds of execution to

15 check for new messages every 5 minutes.

[0041] In another example, for respective exempt processes assigned an exempt

classification, an exempt process may be allowed to continue executing in an execution

state, at 312. The exempt classification may correspond to whether a process cannot be

suspend or throttled without a computing system failure (e.g., a core kernel process, a

20 device driver, and/or support processes for core kernel processes, etc.). In this way,

exempt processes that provide core functionality for the computing environment and/or

provide desired functionality may be allowed to execute in the execution state while the

computing environment is within the connected standby state.

[0042] In one example of transitioning the computing environment into the connected

25 standby state, suspendable processes may be placed into the non-executing suspended

state before throttleable processes are throttled. Because suspendable processes may rely

upon throttleable processes (e.g., a suspendable word processor application may rely upon

a throttleable storage access process for access to stored text documents). Suspending

before throttling may mitigate instances where a suspendable process may fail because a

30 throttled process, upon which the suspendable process relies, may have already been

placed into the non-executing suspended state before suspension of the suspendable

process.

[0043] In one example of transitioning the computing environment into the connected

standby state, a group of suspendable processes associated with one another may be

12

WO 2013/022464 PCT/US2011/055472

suspended, which may mitigate compatibility risks, for example. In one example, a first

suspendable process may be grouped with a second suspendable process because the first

suspendable process may consume a resource associated with the second suspendable

resource (e.g., a word processor application process may consume spell check data from a

5 spell checker process, and thus the processes may be grouped together). In another

example, the first suspendable process may be grouped with the second suspendable

process because the first suspendable process may be a child process of the second

suspendable process (e.g., a photo uploading process may be a child process of an online

photo sharing process, and thus the processes may be grouped together). In another

10 example, the first suspendable process may be grouped with a second suspendable process

because the first suspendable process may have been initialized within a first logical

container associated with a second logical container within which the second suspendable

process was initialized (e.g., the online photo sharing process may have been initialized

within a parent job group, and the photo uploading process may have been initialized

15 within a child job group nested within the parent job group, and thus the processes may be

grouped together). In this way, suspendable processes that may be associated with one

another and/or depend upon one another may be grouped together for suspension as a

group.

[0044] While in the connected standby state, a process within an execution state may

20 create a new process. Upon creation, the new process may be classified with a power

management classification. That is, a power management classification may be applied to

a new process even though the computing environment may already be within the

connected standby state.

[0045] In this way, the computing environment may be transitioned into the connected

25 standby state to reduce power usage. It may be appreciated that additional power saving

techniques may be implemented, such as turning off unnecessary hardware and/or

resources, such as powering off a screen of a computing device associated with the

computing environment. At 314, the method ends.

[0046] Fig. 4 illustrates an example of a system 400 configured to transition a

30 computing environment into a connected standby state 410 based upon power

management classification assignments 404 assigned to processes. System 400 may

comprise a transition component 406 and/or a throttling component 408. The transition

component 406 may be configured to detect an enter connected standby request 402

associated with the computing environment. The transition component 406 may be

13

WO 2013/022464 PCT/US2011/055472

configured to transition the computing environment into the connected standby state 410,

which may reduce power consumption associated with a computing device hosting the

computing environment (e.g., one or more processes may be suspended and/or throttled to

reduce power consumption associated with such processes).

5 [0047] For respective suspendable processes assigned a suspend classification within

the power management classification assignments 404, the transition component 402 may

be configured to place a suspendable process into a non-executing suspended state. For

example, a print spooler process, a word processor process, a spell checker process, and/or

other suspendable processes may be placed into the non-executing suspended state while

10 the computing environment is within the connected standby state 410. In one example, a

group of suspendable processes associated with one another may be suspended together

(e.g., a first suspendable process may be associated with a second suspendable process

based upon at least one of the first suspendable process being a child process of the second

suspendable process, the first suspendable process consuming a resource from the second

15 suspendable process, and/or the first suspendable process waiting for a resource locked by

the second suspendable process). For example, the word processor process and the spell

checker process may be suspended together to mitigate compatibility risks that may occur

if one process is suspended while the other is left executing for a period of time (e.g., the

word processor process may consume data from the spell checker process, and may fail if

20 the spell checker process is suspended before the word processor process).

[0048] For respective throttleable processes assigned a throttling classification within

the power management classification assignments 404, the transition component 406 may

assign a throttling schedule to a throttleable process. For example, an anti-virus process

may be assigned a throttling schedule, where the anti-virus process may execute for 5

25 seconds every 2 minutes. The throttling component 408 may be configured to apply the

throttling schedule to the throttleable process by cycling the throttleable process between

the execution state and the non-executing suspended state based upon the throttling

schedule. In one example, the transition component 406 may be configured to place

suspendable processes into the non-executing suspended state before assigning the

30 throttling schedule to the throttleable processes and/or before the throttling component 408

applies the throttling schedules. Suspending processes before throttling processes may

mitigate conflicts where a suspendable process relies upon data from a throttleable

process, but the throttleable process is already in a non-executing suspended state before

the suspendable process is suspended.

14

WO 2013/022464 PCT/US2011/055472

[0049] For respective exempt processes assigned an exempt classification within the

power management classifications assignments 404, the transition component 406 may

allow an exempt process to continue executing. For example, a network packet processor

process, a hardware event processor process, an instant messenger process, a message

5 notifier process, and/or other exempt processes may be allowed to continue executing

while the computing environment is within the connected standby state 410 (e.g., the

network packet processor process and/or the hardware event processor process may be

exempt because such functionality may be relied upon by the computing environment for

basic functioning, while the instant messenger process and the message notifier process

10 may be exempt because such functionality may be desirable to a user). In this way, the

computing environment may be transitioned by the transition component 406 into the

connected standby state 410.

[0050] One embodiment of transitioning a computing environment from a connected

standby state to an execution state is illustrated by an exemplary method 500 in Fig. 5. At

15 502, the method starts. At 504, an exit connected standby request associated with the

computing environment may be received. That is, the computing environment may have

been transitioned into the connected standby state to reduce power consumption. For

example, while in the connected standby state, one or more processes may have been

suspended and/or throttled to reduce power consumption, while processes relied upon for

20 basic operation of the computing environment and/or processes that provide desired

functionality may have been allowed to execute so that the computing environment may

seamlessly transition into an up-to-date execution state in a responsive manner (e.g., a

tablet device that was in connected standby for hours may be transitioned within seconds

into an execution state, where email messages and other information may be up-to-date

25 and/or accessible within seconds for the user).

[0051] At 506, the computing environment may be transitioned from a connected

standby state to an execution state. In one example, for respective suspended processes

assigned a suspend classification, execution functionality may be restored to a suspended

process, at 508. The suspend classification may correspond to whether a process is able to

30 be suspended without a computing system failure (e.g., failure of the computing

environment and/or the process) and/or whether limited runtime functionality associated

with the process is not desired (e.g., a word processing user application created within a

user session may have been suspended because functionality of the word processing user

application while the computing environment is within the connected standby state may

15

WO 2013/022464 PCT/US2011/055472

not be desired and/or such functionality may not be relied upon for basic operation by the

computing environment).

[0052] In another example, for respective throttled processes assigned a throttling

classification, execution functionality may be restored to a throttled process, at 510. For

5 example, execution functionality to the throttled process may be based upon a throttling

schedule applied to the throttled process, and the throttling schedule may be unapplied to

the throttled process as part of restoring execution functionality to that process (e.g., if the

throttled process is in a non-executing suspended state, then the throttled process may be

transitioned into an executing state). The throttling classification may correspond to

10 whether a process can be throttled without a computing system failure and/or whether

limited runtime functionality associated with the process is desired (e.g., an anti-virus

process may have been assigned a throttling classification because the anti-virus process

provides desired state functionality of scanning data before the data is written to storage

and throttling the anti-virus process may not create a failure of the anti-virus process

15 and/or the computing environment).

[0053] In one example of transitioning from the connected standby state to the

execution state, execution functionality may be restored to throttled processes before

execution functionality is restored to suspended processes (e.g., 510 and then 508 even

though Fig. 5 illustrates 508 before 510) because the suspended processes may rely upon

20 data and/or functionality provided by the throttled processes. For example, execution

functionality may be restored to a throttled storage access process before a suspended

photo editing process because the suspended photo editing process may crash if the

throttled storage access process is not available to provide the suspended photo editing

process with access to storage. In another example, execution functionality may be

25 restored to a parent suspended process before a child suspended process because the child

suspended process may be configured to consume a resource from the parent suspended

process. In this way, the computing environment may be transitioned from the connected

standby state into the execution state in a responsive manner, which may provide a user

with up-to-date information without undue delay (e.g., a user may be able to view new

30 messages within seconds of submitting the exit connected standby request). At 512, the

method ends.

[0054] Fig. 6 illustrates an example of a system 600 configured to transition a

computing environment from a connected standby state 604 to an execution state 608.

System 600 may comprise a transition component 606. The transition component 606

16

WO 2013/022464 PCT/US2011/055472

may be configured to detect an exit connected standby request 602 associated with the

computing environment (e.g., user swipe across a tablet screen). The transition

component 606 may be configured to transition the computing environment from the

connected standby state 604 to the execution state 608.

5 [0055] For respective suspended processes assigned a suspend classification, the

transition component 606 may restore execution functionality to a suspended process. For

example, a print spooler process, a word processor process, a spell checker process, and/or

other processes may have been suspended while the computing environment was in the

connected standby state 604, which may have reduced power consumption. Upon

10 restoring execution functionality, such processes may execute as normal while the

computing environment is in the execution state 608.

[0056] For respective throttled processes assigned a throttling classification, the

transition component 606 may restore execution functionality to a throttled process. For

example, an anti-virus process may have been throttled based upon a throttling schedule

15 while the computing environment was in the connected standby state 604 because the anti

virus process may have provided desirable limited runtime functionality (e.g., the anti

virus process may have checked data associated with write commands to storage at various

intervals so that incoming messages may be written to storage and/or available to the user

upon the computing environment transitioning into the execution state 608). In one

20 example, execution functionality may be restored by unapplying the throttling schedule

that was applied to the throttled process (e.g., if the throttled process is in a non-executing

suspended state, then the throttled process may be transitioned into an executing state).

[0057] In one example, the transition component 606 may be configured to restore

execution functionality to the throttled process before restoring execution functionality to

25 the suspended process because the suspended process may consume a resource from the

throttled process. For example, execution functionality may be restored to a throttled

storage access process before a suspended photo editing process because the suspended

photo editing process may crash if the throttled storage access process is not available to

provide the suspended photo editing process with access to storage. In another example,

30 execution functionality may be restored to a parent suspended process before execution

functionality is stored to a child suspended process because the child suspended process

may consume a resource from the parent suspended process.

[0058] It may be appreciated that one or more exempt processes may have been

allowed to execute within an execution state while the computing environment was in the

17

WO 2013/022464 PCT/US2011/055472

connected standby state 604 (e.g., a network packet processor process, a hardware event

processor process, an instant messenger process, a message notifier process, and/or other

processes may have been allowed to execute). Thus, such processes may be allowed to

continue processing when the computing environment transitions into the execution state

5 608. In this way, the computing environment may be seamlessly transitioned from the

connected standby state 604 into the execution state 608 by the transition component 606

in a responsive manner, which may provide a user with up-to-date information without

undue delay (e.g., a user may be able to view new messages within seconds of submitting

the exit connected standby request 602).

10 [0059] Fig. 7 illustrates an example 700 of a tablet device transitioning from a

connected standby state 704 to an execution state 708. The tablet device may have entered

connected standby state 704 to reduce power consumption by allowing some processes to

execute, while throttling and/or suspending other processes. For example, core system

processes relied upon by the tablet device for basic operation and/or other processes that

15 cannot be throttled or suspended without causing a computing system failure may be

allowed to execute in a normal manner. System service processes and/or other processes

that can be throttled without creating a computing system failure (e.g., failure of a process

and/or the tablet device) and/or provide desired limited runtime functionality may be

throttled. Throttling a process may conserve power because the throttled process may be

20 placed into a non-executing suspended state for significant periods of time. Thus, the

throttled process in the non-executing suspended state may not invoke resources (e.g., a

processor, hardware, etc.) to perform power consuming functionality. Additionally,

processes that can be suspended without creating a computing system failure and/or do not

provide desired limited runtime functionality may be suspended. Suspending a process

25 may conserve power because the suspended process may be placed into the non-executing

suspended state so that the suspended process may not invoke resources to perform power

consuming functionality. In one example of the connected standby state 704, a network

functionality process, a messaging service process, and/or other processes may be throttled

and/or allowed to fully execute. Accordingly, the tablet device in the connected standby

30 state 704 may continue to receive and/or process incoming messages 702. In this way, the

tablet device may operate in a low power consumption state, while continuing to provide

desired functionality.

[0060] The tablet device may be transitioned into the execution state 708. For

example, user input corresponding to an exit connected standby request 706 may be

18

WO 2013/022464 PCT/US2011/055472

received (e.g., a finger swipe on the tablet device may be detected). The tablet device may

be seamlessly transitioned into the execution state 708 by placing throttled and/or

suspended processes into an execution state. Because at least some functionality was

allowed to execute while the tablet device was in the connected standby state 704, up-to

5 date information may be provided and/or available to the user in a responsive manner. For

example, within short time span (e.g., a few seconds) of inputting the exit connected

standby request 706, the user may be presented with up-to-date information associated

with the incoming messages 702 processed while the tablet device was in the connected

standby state 704. For example, new messages, RSS feed updates, event invites, and/or a

10 plethora of other information may be available to the user upon the tablet device

transitioning into the execution state. Thus, the tablet device may provide significantly

improved battery life because of the connected standby state, while still providing the user

with a responsive and up-to-date experience while in the execution state.

[0061] Still another embodiment involves a computer-readable medium comprising

15 processor-executable instructions configured to implement one or more of the techniques

presented herein. An exemplary computer-readable medium that may be devised in these

ways is illustrated in Fig. 8, wherein the implementation 800 comprises a computer

readable medium 816 (e.g., a CD-R, DVD-R, or a platter of a hard disk drive), on which is

encoded computer-readable data 814. This computer-readable data 814 in turn comprises

20 a set of computer instructions 812 configured to operate according to one or more of the

principles set forth herein. In one such embodiment 800, the processor-executable

computer instructions 812 may be configured to perform a method 810, such as at least

some of the exemplary method 100 of Fig. 1, exemplary method 300 of Fig. 3, and/or

exemplary method 500 of Fig. 5, for example. In another such embodiment, the

25 processor-executable instructions 812 may be configured to implement a system, such as

at least some of the exemplary system 200 of Fig. 2, exemplary system 400 of Fig. 4,

and/or exemplary system 600 of Fig. 6, for example. Many such computer-readable media

may be devised by those of ordinary skill in the art that are configured to operate in

accordance with the techniques presented herein.

30 [0062] Although the subject matter has been described in language specific to

structural features and/or methodological acts, it is to be understood that the subject matter

defined in the appended claims is not necessarily limited to the specific features or acts

described above. Rather, the specific features and acts described above are disclosed as

example forms of implementing the claims.

19

WO 2013/022464 PCT/US2011/055472

[0063] As used in this application, the terms "component," "module," "system",

"interface", and the like are generally intended to refer to a computer-related entity, either

hardware, a combination of hardware and software, software, or software in execution.

For example, a component may be, but is not limited to being, a process running on a

5 processor, a processor, an object, an executable, a thread of execution, a program, and/or a

computer. By way of illustration, both an application running on a controller and the

controller can be a component. One or more components may reside within a process

and/or thread of execution and a component may be localized on one computer and/or

distributed between two or more computers.

10 [0064] Furthermore, the claimed subject matter may be implemented as a method,

apparatus, or article of manufacture using standard programming and/or engineering

techniques to produce software, firmware, hardware, or any combination thereof to control

a computer to implement the disclosed subject matter. The term "article of manufacture"

as used herein is intended to encompass a computer program accessible from any

15 computer-readable device, carrier, or media. Of course, those skilled in the art will

recognize many modifications may be made to this configuration without departing from

the scope or spirit of the claimed subject matter.

[0065] Fig. 8 and the following discussion provide a brief, general description of a

suitable computing environment to implement embodiments of one or more of the

20 provisions set forth herein. The operating environment of Fig. 8 is only one example of a

suitable operating environment and is not intended to suggest any limitation as to the

scope of use or functionality of the operating environment. Example computing devices

include, but are not limited to, personal computers, server computers, hand-held or laptop

devices, mobile devices (such as mobile phones, Personal Digital Assistants (PDAs),

25 media players, and the like), multiprocessor systems, consumer electronics, mini

computers, mainframe computers, distributed computing environments that include any of

the above systems or devices, and the like.

[0066] Although not required, embodiments are described in the general context of

"computer readable instructions" being executed by one or more computing devices.

30 Computer readable instructions may be distributed via computer readable media

(discussed below). Computer readable instructions may be implemented as program

modules, such as functions, objects, Application Programming Interfaces (APIs), data

structures, and the like, that perform particular tasks or implement particular abstract data

20

WO 2013/022464 PCT/US2011/055472

types. Typically, the functionality of the computer readable instructions may be combined

or distributed as desired in various environments.

[0067] Fig. 9 illustrates an example of a system 910 comprising a computing device

912 configured to implement one or more embodiments provided herein. In one

5 configuration, computing device 912 includes at least one processing unit 916 and

memory 919. Depending on the exact configuration and type of computing device,

memory 919 may be volatile (such as RAM, for example), non-volatile (such as ROM,

flash memory, etc., for example) or some combination of the two. This configuration is

illustrated in Fig. 9 by dashed line 914.

10 [0068] In other embodiments, device 912 may include additional features and/or

functionality. For example, device 912 may also include additional storage (e.g.,

removable and/or non-removable) including, but not limited to, magnetic storage, optical

storage, and the like. Such additional storage is illustrated in Fig. 9 by storage 920. In one

embodiment, computer readable instructions to implement one or more embodiments

15 provided herein may be in storage 920. Storage 920 may also store other computer

readable instructions to implement an operating system, an application program, and the

like. Computer readable instructions may be loaded in memory 919 for execution by

processing unit 916, for example.

[0069] The term "computer readable media" as used herein includes computer storage

20 media. Computer storage media includes volatile and nonvolatile, removable and non

removable media implemented in any method or technology for storage of information

such as computer readable instructions or other data. Memory 919 and storage 920 are

examples of computer storage media. Computer storage media includes, but is not limited

to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital

25 Versatile Disks (DVDs) or other optical storage, magnetic cassettes, magnetic tape,

magnetic disk storage or other magnetic storage devices, or any other medium which can

be used to store the desired information and which can be accessed by device 912. Any

such computer storage media may be part of device 912.

[0070] Device 912 may also include communication connection(s) 926 that allows

30 device 912 to communicate with other devices. Communication connection(s) 926 may

include, but is not limited to, a modem, a Network Interface Card (NIC), an integrated

network interface, a radio frequency transmitter/receiver, an infrared port, a USB

connection, or other interfaces for connecting computing device 912 to other computing

devices. Communication connection(s) 926 may include a wired connection or a wireless

21

WO 2013/022464 PCT/US2011/055472

connection. Communication connection(s) 926 may transmit and/or receive

communication media.

[0071] The term "computer readable media" may include communication media.

Communication media typically embodies computer readable instructions or other data in

5 a "modulated data signal" such as a carrier wave or other transport mechanism and

includes any information delivery media. The term "modulated data signal" may include a

signal that has one or more of its characteristics set or changed in such a manner as to

encode information in the signal.

[0072] Device 912 may include input device(s) 924 such as keyboard, mouse, pen,

10 voice input device, touch input device, infrared cameras, video input devices, and/or any

other input device. Output device(s) 922 such as one or more displays, speakers, printers,

and/or any other output device may also be included in device 912. Input device(s) 924

and output device(s) 922 may be connected to device 912 via a wired connection, wireless

connection, or any combination thereof. In one embodiment, an input device or an output

15 device from another computing device may be used as input device(s) 924 or output

device(s) 922 for computing device 912.

[0073] Components of computing device 912 may be connected by various

interconnects, such as a bus. Such interconnects may include a Peripheral Component

Interconnect (PCI), such as PCI Express, a Universal Serial Bus (USB), firewire (IEEE

20 1394), an optical bus structure, and the like. In another embodiment, components of

computing device 912 may be interconnected by a network. For example, memory 919

may be comprised of multiple physical memory units located in different physical

locations interconnected by a network.

[0074] Those skilled in the art will realize that storage devices utilized to store

25 computer readable instructions may be distributed across a network. For example, a

computing device 930 accessible via a network 929 may store computer readable

instructions to implement one or more embodiments provided herein. Computing device

912 may access computing device 930 and download a part or all of the computer readable

instructions for execution. Alternatively, computing device 912 may download pieces of

30 the computer readable instructions, as needed, or some instructions may be executed at

computing device 912 and some at computing device 930.

[0075] Various operations of embodiments are provided herein. In one embodiment,

one or more of the operations described may constitute computer readable instructions

stored on one or more computer readable media, which if executed by a computing device,

22

WO 2013/022464 PCT/US2011/055472

will cause the computing device to perform the operations described. The order in which

some or all of the operations are described should not be construed as to imply that these

operations are necessarily order dependent. Alternative ordering will be appreciated by

one skilled in the art having the benefit of this description. Further, it will be understood

5 that not all operations are necessarily present in each embodiment provided herein.

[0076] Moreover, the word "exemplary" is used herein to mean serving as an example,

instance, or illustration. Any aspect or design described herein as "exemplary" is not

necessarily to be construed as advantageous over other aspects or designs. Rather, use of

the word exemplary is intended to present concepts in a concrete fashion. As used in this

10 application, the term "or" is intended to mean an inclusive "or" rather than an exclusive

"or". That is, unless specified otherwise, or clear from context, "X employs A or B" is

intended to mean any of the natural inclusive permutations. That is, if X employs A; X

employs B; or X employs both A and B, then "X employs A or B" is satisfied under any of

the foregoing instances. In addition, the articles "a" and "an" as used in this application

15 and the appended claims may generally be construed to mean "one or more" unless

specified otherwise or clear from context to be directed to a singular form. Also, at least

one of A and B and/or the like generally means A or B or both A and B.

[0077] Also, although the disclosure has been shown and described with respect to one

or more implementations, equivalent alterations and modifications will occur to others

20 skilled in the art based upon a reading and understanding of this specification and the

annexed drawings. The disclosure includes all such modifications and alterations and is

limited only by the scope of the following claims. In particular regard to the various

functions performed by the above described components (e.g., elements, resources, etc.),

the terms used to describe such components are intended to correspond, unless otherwise

25 indicated, to any component which performs the specified function of the described

component (e.g., that is functionally equivalent), even though not structurally equivalent to

the disclosed structure which performs the function in the herein illustrated exemplary

implementations of the disclosure. In addition, while a particular feature of the disclosure

may have been disclosed with respect to only one of several implementations, such feature

30 may be combined with one or more other features of the other implementations as may be

desired and advantageous for any given or particular application. Furthermore, to the

extent that the terms "includes", "having", "has", "with", or variants thereof are used in

either the detailed description or the claims, such terms are intended to be inclusive in a

manner similar to the term "comprising."

23

H:\ixp\Interwoven\NRPortbl\DCC\IXP\I2359988I.docx- 19/12/2016

-23A

[0078] Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" and

"comprising", will be understood to imply the inclusion of a stated integer or step or group

of integers or steps but not the exclusion of any other integer or step or group of integers or

5 steps.

[0079] The reference in this specification to any prior publication (or information derived

from it), or to any matter which is known, is not, and should not be taken as an

acknowledgment or admission or any form of suggestion that that prior publication (or

information derived from it) or known matter forms part of the common general

10 knowledge in the field of endeavour to which this specification relates.

H: \mka\Interwoven\NRPortbl\DCC\MKA\3675927_2.doex-3/04/2017

- 24

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method comprising:

identifying a newly created process within a logical container;

in response to determining that the logical container is associated with a parent

logical container of a parent process, assigning a parent power management classification

assigned to the parent process to the newly created process as the power management

classification assigned to the process; and

otherwise, assigning a power management classification to the process, comprising:

determining if the process provides functionality upon which a core kernel

process depends, then assigning an exempt classification to the process;

determining if the process can be suspended without a computing system

failure and limited runtime functionality associated with the process is not desired,

then assigning a suspend classification to the process;

determining if the process can be cycled between an execution state and a

non-executing suspended state without a computing system failure and limited

runtime functionality associated with the process is desired, then assigning a

throttling classification to the process; and

determining if the process cannot be suspended or cycled between an

execution state and a non-executing suspended state without a computing system

failure, then assigning the exempt classification to the process; and

transitioning a computing environment into a standby state based upon the power

management classification assigned to the process.

2. The method of claim 1, the assigning a power management classification

comprising:

determining if the process provides functionality associated with a user defined

policy, then assigning a user defined power management classification to the process as the

power management classification assigned to the process.

H:\mka\Interwovn\NRPortbl\DCC\MKA\13675927_2.doex-3/04/2017

- 25

3. The method of claim 1 or 2, comprising:

if the process is associated with a user application, then determining the process

can be suspended and assigning the suspend classification to the process as the power

management classification assigned to the process.

4. The method of claim 3, comprising:

determining the process is associated with a user application by determining the

user application is associated with a user session.

5. The method of any one of claims 1-4, comprising:

if the process corresponds to at least one of a core kernel process and a device

driver, then determining the process cannot be suspended and assigning the exempt

classification to the process as the power management classification assigned to the

process.

6. The method of any one of claims 1-5, comprising:

consulting a dependency graph built from a core kernel process to one or more

support processes that provide functionality upon which the core kernel process depends;

and

if the process comprises a support process, then determining the process cannot be

suspended and assigning the exempt classification to the process as the power management

classification assigned to the process.

7. The method of any one of claims 1-6, comprising:

if the process comprises a service created within a system session that provides

desired state functionality, then determining the process can be cycled between an

execution state and a non-executing suspended state and assigning the throttling

classification to the process as the power management classification assigned to the

process.

H: \mka\Interwoven\NRPortbl\DCC\MKA\3675927_2.doex-3/04/2017

- 26

8. A system comprising:

a classification component configured to:

identify a newly created process as the power management classification assigned

to the process;

in response to determining that the logical container is associated with a parent

logical container of a parent process, assign a parent power management classification

assigned to the parent process, to the newly created process as the power management

classification assigned to the process; and

otherwise, assign a power management classification to the process, comprising:

assign a power management classification to a process, comprising:

determine if the process provides functionality upon which a core kernel

process depends, then assign an exempt classification to the process;

determine if the process can be suspended without a computing system

failure and limited runtime functionality associated with the process is not desired,

then assign a suspend classification to the process;

determine if the process can be cycled between an execution state and a

non-executing suspended state without a computing system failure and limited

runtime functionality associated with the process is desired, then assign a throttling

classification to the process; and

determine if the process cannot be suspended or cycled between an

execution state and a non-executing suspended state without a computing system

failure, then assign the exempt classification to the process; and

transition a computing environment into a standby state based upon the power

management classification assigned to the process.

9. The system of claim 8, the classification component configured to:

if the process provides functionality associated with a user defined policy, then

assign a user defined power management classification to the process as the power

management classification assigned to the process.

H: \mka\Interwoven\NRPortbl\DCC\MKA\3675927_2.doex-3/04/2017

- 27

10. The system of claim 8 or 9, the classification component configured to:

if the process is associated with a user application, then determine the process can

be suspended and assigning the suspend classification to the process as the power

management classification assigned to the process.

11. The system of any one of claims 8-10, the classification component configured to:

determine the process cannot be suspended without a computing system failure

based upon determining the process corresponds to at least one of a core kernel process

and a device driver.

12. The system of any one of claims 8-11, the classification component configured to:

consult a dependency graph built from a core kernel process to one or more support

processes that provide functionality upon which the core kernel process depends; and

if the process comprises a support process, then determine the process cannot be

suspended and assign the exempt classification to the process as the power management

classification assigned to the process.

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

