
USOO6900746B1

(12) United States Patent (10) Patent No.: US 6,900,746 B1
LOvell (45) Date of Patent: May 31, 2005

(54) ASYNCHRONOUS, DATA-ACTIVATED 6,518.895 B1 * 2/2003 Weiss et al. 341/67
CONCATENATOR FORWARIABLE LENGTH 6,580,378 B1 6/2003 Lovell
DATUM SEGMENTS 6,765,509 B2 * 7/2004 Jones et al. 341/51

(75) Inventor: William S. Lovell, Lincoln City, OR OTHER PUBLICATIONS
(US) U.S Appl. No. 10/462,868, filed Jun. 16, 2003, Lovell.

“Simulators Face Real Problems”. By Katie Green Science
(73) Assignee: Wend LLC, Lincoln City, OR (US) vol. 301,No. 5631pp. 301-302 (Jul. 18, 2003).

(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. Primary Examiner Jean Bruner Jeanglaude

(74) Attorney, Agent, or Firm William S. Lovell
(21) Appl. No.: 10/746,609 (57) ABSTRACT
(22) Filed: Dec. 23, 2003 7 An apparatus accepts randomly arriving blacks of parallel
(51) Int. C. - HO3M 9/00 digital data of Varying bit lengths termed datum Segments

(52) U.S. Cl. 341/100; 341/51; 34.1/95; that may have been generated by Stripping leading Zeros
341/63 from bytes of a fixed size, each having associated therewith

(58) Field of Search 341/100, 51, 63, a bit count code that expresses the bit length of each datum
341/67, 95, 106 segment in the form nnnnndddd . . . , the “n” being the bits

of the bit count code in Such number as to encompass the
(56) References Cited memory capacity of a receiving device to which the datum

U.S. PATENT DOCUMENTS Segments are to be Sent, and the “d” representing the actual
datum Segment bits. The apparatus concatenates the nnnnnd

4,122,440 A * 10/1978 Langdon et al. 341/51 ddd . . . expressions to form a continuous bit Sequence that
5,381,144. A * 1/1995 Wilson et al. 341/63 is Saved So that each nnnnndddd . . . expression is accessible
5,387.911 A * 2/1995 Gleichert et al. 34.1/95 thereafter through the computer address therefor, such use
5,644,306 A : 7/1997 Brent - 341/67 preferably being by a circuit of matching bit length, the

5,668.598 A 9/1997 Linzer et al. 375/240.15 format, however, allowing the original form of the data to be
5.941,938 A * 8/1999 Thayer 708/490 recovered if desired
6,081215. A 6/2000 Kost et al. 341/120
6,140.947 A * 10/2000 Livingston 341/106
6,208,275 B1 3/2001 Lovell 10 Claims, 7 Drawing Sheets

k010 OOOOOOOO
jLolololo

0.00110100011 11011
k-32b

101xxxxxx xxxxxx
its->

U.S. Patent May 31, 2005 Sheet 1 of 7 US 6,900,746 B1

Fig. 1

k00000010101001

joo 1110101

0.00110100011 1 01101xxxxxxxxxxxx
k- 32 bits->

10 Fig. 2 Yy 12 g

datum datum

Segment Segment

Olter distributor

0.0011010001111011010100000110101001
e- - -32bits->

US 6,900,746 B1 Sheet 5 of 7 May 31, 2005 U.S. Patent

10000='ssa Haqy

10001 – 'T
uuuuu

R
ZI

U.S. Patent May 31, 2005 Sheet 6 of 7 US 6,900,746 B1

From input
register 16

To output

register 32

11111100110110xxxxxxxxxxxx
From third
router 26 OOOOxxxxxxxxxxxxxxxxxxxx

58

US 6,900,746 B1 Sheet 7 of 7 May 31, 2005 U.S. Patent

I sp

puoðas uuou H.

US 6,900,746 B1
1

ASYNCHRONOUS, DATA-ACTIVATED
CONCATENATOR FORWARIABLE LENGTH

DATUM SEGMENTS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the priority of co-pending appli
cation Ser. No. 10/462,868 filed on Jun. 16, 2003.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to methods and apparatus for
improving the efficiency in the use of and data transmission
to, from and within the circuitry of computers, ASICs,
optical devices, and other devices that are adapted to accept
and operate on Serial and parallel binary digital data, and
Specifically to Such data in the form of datum Segments that
may vary in length and, among other forms, can be
expressed by the formula nnnnnddd . . . , where the n's
represent the binary code that expresses the bit length of the
datum Segment ddd . . . , the data So formed also providing
Security against the compromising of data.

2. Description of the Related Art
In the development of the computer art, data transfer has

long been a critical issue. The Speed of what would appear
to be the fastest computer at present, as noted by Katie
Greene in “Simulators Face Real Problems,” Science, Vol.
301, No. 5631, pp. 301-302 (18 Jul. 2003), is reported to be
35,860 gigaflops, but advances beyond that Speed are said to
be limited by the need to wait for data on which to operate.
Two of the patents previously issued to this inventor, i.e.,
U.S. Pat. Nos. 6,208,275 and 6,580,378, as well as appli
cation Ser. No. 10/462,868 filed on Jun. 16, 2003, have
addressed that data transfer process. Although that work was
addressed generally to the transfer of data to and from a
computer, the methods and apparatus described are equally
applicable to processes occurring entirely within a computer.
The present invention continues that development and Sets
out, in one aspect of Seeking faster computer operations,
another Step in the creation of Systems by which data can be
provided more efficiently, more rapidly, and with leSS waste
of bit space both to/from and within a computer or like
device. In this description, a "datum Segment' is simply an
amount of Sequential binary code that represents an item of
information.

U.S. Pat. No. 6,208,275, issued to this inventor on Mar.
27, 2001, shows a concatenator that accepts a Series of
datum Segments of a fixed size, Such as 8-bit bytes, and then
concatenates them together to form larger words of lengths
that would be an integral multiple of that fixed size, thereby
to yield words of 16, 24, 32 bits, etc. The reason for so doing
is that in a computer having, e.g., 32-bit data busses, it is
wasteful of Space to use Such a bus to transmit a datum
Segment only 8 bits long-24 bit Spaces are unused. The
275 concentrator serves to “string together' four 8-bit bytes
and then transmit the resultant 32-bit data String, thus to use
the full capacity of the bus So that one transmission does
what would otherwise have taken four. No data transmission
occurs during the actual concentration process, but that
gate-based process will ordinarily be much faster than the
data transfer, hence there is a net Saving of time. Of course,

15

25

35

40

45

50

55

60

65

2
the same principles will apply to other fixed byte or bus sizes
Such as 64-bit, 128-bit, etc.

U.S. Pat. No. 6,580,378, issued to this inventor on Jun. 17,
2003, Sets out a simple data enumerator that counts the bytes
on which the concentration process just noted is carried out,
and “tags” each such byte with an index number. Those
numbers will identify which positions within a destination
register will contain which datum Segments. When those
datum Segments are transmitted to a computer, those num
berS also aid in recovering the original datum Segments from
the longer, concentrated data Segments in the computer. The
nnnnn bit count code is used in the present invention to aid
in Specifying the Starting addresses of Successive datum
Segments in the output register of the apparatus and in the
computer or other device to which these data are to be sent,
Since, when treating variable length datum Segments, those
addresses will no longer be fixed in advance by a fixed
datum Segment size.

Application Ser. No. 10/462,868, filed Jun. 16, 2003,
describes another method by which bit space can be saved
in transmitting and using bit Strings, in part by Snipping
therefrom any leading Zeroes that take up Space but do not
convey any information. A Second aspect of the apparatus is
that it can treat datum Segments of varying length, that might
have come about either as a result of that Zero-Stripping
process, or Such datum Segments may have been provided to
the apparatus originally. Included is a general method of
forming and using datum Segments of varying length, by
way of variable length shift register that can yield versions
of all of the basic gates of digital electronics, e.g., AND, OR
XNOR, etc., that can also be of varying length. By a
“variable length” gate is meant that only those bit spaces in
a register that correspond in number to the bit length of a
datum Segment at hand need to be utilized, thus leaving
other adjacent bit spaces for other uses. It is one specific
purpose of the present invention, that would not otherwise
be available, to provide means by which datum Segments,
fixed-length bytes, identifiable bit Sequences or data in any
other form under whatever name, that could have been
Zero-Stripped to include only meaningful data bits, can then
be processed as Such, as a matter of routine, thereby to
maximize the data handling capabilities of Such a System
relative to any other System.
The processes of the Ser. No. 10/462,868 lead to a form

of encoding a datum Segment as nnnnnddd . . . , where
nnnnn, the “bit count code”, expresses the number of bits in
the datum Segment that immediately follows, and the ddd . . .
represent the actual bits of the datum Segment. That method
of expressing the nature of the datum Segment comes about
firstly by independently establishing the number of bits in
the datum Segment, which the apparatus of the XXX patent
carries out. The actual code of the datum Segment itself is
then established and concentrated onto the bit code nnnnn,
using 5 bits as an example. Concentration of this type could
be carried out in the apparatus of the XXX patent Since there,
as here, the number of bits “n” used to express the number
of bits in the datum Segment was fixed, and Since the datum
Segment ddd . . . is concentrated onto the Least Significant
Bit (LSB) end of the nnnnn code, the length of the datum
Segment itself does not affect the concentration process.
An initial address is used for placement of the bit count

code nnnnn, itself again having 4 bits, and the first bit of the
datum Segment is then placed at the address that immedi
ately follows the code nnnnn, i.e., in the example using the
5-bit nnnnn code at the 5' register position. It is then
necessary only to place that entire bit String into a register

US 6,900,746 B1
3

large enough to accommodate that entire nnnnnddd ... code.
The reason that the bit count code nnnnn is retained is to
permit Structuring of the circuitry within the computer to
which these data are to be sent.

However, it is not immediately possible in the apparatus
of the XXX patent to concentrate onto a first nnnnnddd . . .
code a Second Such code, Since the end point of that first
nnnnnddd . . . datum Segment will not be known, except
indirectly through knowledge of the nnnnn Value that is
asSociated with each datum Segment. What is needed is thus
a means by which the position of the last bit of a variable
length datum Segment can be established with the hardware
itself, So as not only to carry out concentrations of the form
nnnnn--dddddd=nnnnndddddd as is done by the apparatus of
the 275 patent, where here “+” means a concentration and
“=” means that the result of that concentration then follows,
but to concentrate those resultant terms, i.e., in concentration
of the form nnnnnddd . . . +nnnnnddd . . . +nnnnnddd . . .
=nnnnnddd . . . nnnnnddd . . . nnnnnddd . . . where the
number of data bits “d” and hence the length of the datum
Segment as a whole can vary, and of course the ellipses
would no longer be present, but the numbers of “dis” that
represent the actual number of bits in each datum Segment
would be shown instead.

For example, and for brevity using here a bit count code
of 4 bits, a resultant code for three datum Segments of
varying Size could come out to be as

01.00110111001001100101111001100110101,

which is an unambiguous encoding of the result of concat
enating a 4-bit and a 12-bit datum segment together, and
then concatenating a 9-bit datum Segment onto that result,
together with the content (selected arbitrarily) of each of
them. In the above code, the initial 0100 bit count code
identifies a following 4-bit datum Segment; the code 1101 is
the datum segment itself, the next bit count code 1100
identifies the 12-bit datum segment 100110010111, and the
following 1001 bit count code then identifies a 9-bit datum
segment which has been given the content 100110101. The
present invention will construct an extended Series of Such
variable and unpredictable length datum Segments to encom
pass as much as possible of a data transfer bus and of the
registers through which the datum Segments may pass.

SUMMARY OF THE INVENTION

A concatenator has as input at least one register that is
adapted to receive datum Segments of varying length, from
1 bit on up to the full size of the register. The data must either
arrive in, or be placed into, the form nnnnnddd ..., wherein
the n’s express the number of bits in the datum Segment
dS=ddd . . . that follows that nnnnn Sequence, and the
ellipsis represents a continuing Sequence of bits “d with the
bit count code nnnnn now Selected as an example containing
5 bits, So as to express any integer from 1 to 32. The
concatenator accepts a Series of distinguishable datum Seg
ments from within a data Stream and transferS those datum
Segments to a Series of pre-determined memory locations
within a computer or other data processing System. The
efficiency of that transfer is improved by concatenating
together as many datum Segments as may be, given the sizes
of the datum Segments that happen to have arrived and the
size of the bus on which the data are to be transferred, and
hence to transfer as much information as possible in each
transmission. These datum Segments may or may not have
been Zero Stripped, thus to be shorter in length than would
otherwise have been the case.

15

25

35

40

45

50

55

60

65

4
It would be of particular advantage as to data comprising

numbers having widely varying magnitudes, including
smaller numbers for which the binary code therefor would
contain many leading Zeroes, to Zero Strip Such numbers and
then concatenate together the results, thus Saving bit space
both by the Zero Stripping and by the concatenation. Such a
procedure as to both Zero Stripping and concatenation also
has a Security aspect, in that if the data were put into the
nnnnddd . . . Varying length form before transmission, and
those data were intercepted in transit or had otherwise fallen
into unauthorized hands, any effort to interpret those data
(perhaps as 8-bit bytes) in a computer not equipped with the
apparatus described herein would yield meaningleSS results,
and the data would remain Secure in spite of having been
intercepted.
The individual datum Segments can arrive Sequentially, or

two or more Such datum Segments may arrive
Simultaneously, from two or more data Streams into a
corresponding number of variable length registers. (A reason
for treating more than one data Stream at a time is that the
circuitry of the invention is expected to operate much faster
than data can be transmitted thereto, So the introduction of
a Second bit Stream would make better use of that circuitry
if it did not have to wait for data, and means could be
provided to “cycle through the several bit streams in the old
manner of time sharing on main frames.) In the case of the
arrival of two or more data Streams, the datum Segments
would still be treated in a pre-determined order, e.g., cycling
from left to right in an array of buffers into which the datum
Segments had been Stored on arrival. One of two datum
Segments, i.e., the first-arriving datum Segment if the two
datum segments arrived sequentially within a single bit
Stream, is placed to the left in a variable length output
register, and then the Second-arriving datum Segment, start
ing with the bit count code that expresses the length thereof,
is placed to the right of the last bit of the first datum Segment,
commencing at the position that immediately follows that
last or Least Significant Bit (LSB) of that first datum
Segment, as determined by the value of nnnnn for that first
datum segment. What is involved here is that since that first
datum Segment might have any length within Some particu
lar range, it will not be known in advance where that LSB
will arrive and hence where the first bit of the bit count code
for the Second datum Segment is to be placed, and to
accomplish that determination So as to place that Second and
of course all later datum Segments at proper places in a final
destination for the data as a whole is what this variable
length concatenator is to do.

In general, where ADDRESS is a starting address given
in Such number of bits as is needed to express the full size
of the registers into which the datum Segments are to be
placed, the address of the first bit of each later datum
Segment is given by the Sums of the lengths of the preceding
“full datum segments plus 1, where by a “full datum
Segment of length L is meant the length of the datum
Segment ds, itself plus the length of the code by which that
length is expressed. That is, the 5-bit length of the bit count
code nnnnn that expresses the length of each datum Segment,
that is then (nnnnn)), i.e., a code to the base 2 of the length
of the i' datum segment, has added thereto the actual value
of the datum Segment length So expressed, and the address
for the Start of that bit count code for each Such data Segment
ds, with respect to a series of concatenations, becomes
ADDRESS,-ADDRESS+XL+1, where the “i” refer to all
of the datum Segments of the Series up to but not including
that last ds. The length of the bit count code can be fixed
with respect to a given instance of the invention, or that code

US 6,900,746 B1
S

length can be made adjustable So as to be pre-Set to a desired
value based on the maximum length anticipated for a given
body of data to be treated, whereby that bit code length could
then be changed to accommodate another particular Series of
datum Segments. By “relevant memory' may mean a block
of memory Selected out of the full memory capacity of the
computer that has been Set aside for this data input function,
or it may be essentially all of that memory capacity.

“Look-ahead' means are provided for determining
whether or not sufficient bit space remains available in the
output register of the apparatus for each next datum
Segment, and if that Space turns out to be insufficient, the
register content as accumulated to that point will be trans
ferred out therefrom at that time. After that transfer, a new
concatenation Series is started with that new datum Segment
then becoming the first datum Segment of that new concat
enation Series, to be placed at the leftward end of that output
register.

Selection of the number of bits to be used in designating
the lengths of the datum Segments to be treated depends only
on the lengths of the datum Segments one expects to receive,
and has no relationship with the length of the output register
into which the incoming datum Segments are to be accumu
lated. That is, one could use an “nnnnn code that would
express datum Segment lengths only up to 32 bits, as will be
done herein, but the output register into which those datum
Segments are to be accumulated may be 128 bits, 256, or
whatever Size may be required for the intended uses. Even
So, in order to illustrate the case in which concatenation of
a next datum Segment would exceed the Size of the output
register, in the example employed herein the size of the
output register is also set at 32 bits. The purpose in carrying
out the concatenation, after all, is to permit the transfer of as
much information in one transmission as possible, hence the
register from which each Such transfer is to be carried out,
and of course the associated transmission means, would be
made as large as may be feasible. The register of the datum
Segment positioner to be seen later in this Specification
might well be 128 bits, the output registers could be 1 Kb,
and the relevant memory in the computer or the like could
be measured in Gb, or other examples could be cited as to
the needs of other particular cases.

The addresses to which these datum Segments are to be
Sent are calculated from the addresses of preceding datum
Segments, but if desired, as for example when it is known
that a Sequence of datum Segments to be received will relate
to different Subjects of interest (e.g., after Some known or
measurable number of datum Segments the data might
change from the names of company perSonnel to their phone
numbers, from accounts receivable to accounts payable,
from the genes within one chromosome to those in another,
etc.), means are provided for introducing a new starting
address to form a separate memory block when the datum
Segments that treat a new Subject classification are to begin.

Since the circuitry of the invention may need to treat bit
Streams arriving from a separate Source as through a modem,
or data arising from within the same computer, and in either
event this circuitry is to transmit its output to Some relevant
computer memory, the circuitry of the invention is prefer
ably placed physically at a location within the computer that
is conveniently near to both Such a modem or other input/
output device and to the relevant computer memory, and
preferably, if possible, on the same printed circuit board
(PCB) as that relevant memory, with the modem or like
device generally being on its own PCB, each such PCB to
be installed in the mother board of the computer in the usual
manner. In other words, this present concatenator might best

15

25

35

40

45

50

55

60

65

6
be utilized if fabricated as an enclosure within a large array
of memory locations, thereby to take maximum advantage
of the concentration of data within that memory that this
concatenator provides.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 (sheet 1) shows the use of a preferred embodiment
of the invention, a concatenator into which are fed a Series
of datum Segments i, j, k, . . . of varying bit length.

FIG. 2 (sheet 1) shows in broad outline the basic functions
of the concatenator as to the routing, location and distribu
tion of the incoming datum Segments of FIG. 1 in terms of
a datum Segment router and datum Segment distributor.
FIG.3 (sheet 2) shows the application of a first step in the

concatenation process to the datum Segment router of FIG.
2, in the entry of a first datum Segment into an input register.

FIG. 4 (sheet 3) shows in more detail a first router and an
adder as shown in the circuitry of FIG. 3.

FIG. 5 (sheet 3) shows in more detail a second router and
Subtractor as shown in FIG. 3.

FIG. 6 (sheet 3) shows in more detail the subtracter and
third router of FIG. 3.

FIG. 7 (sheet 4) shows the process set forth in FIG. 3,
except now as to a Second datum Segment, but that is also of
a size to be concatenated within the current Series.

FIG.8 (sheet 5) shows the process set forth in FIGS. 3 and
7, except now as to a third datum Segment that is too long
to be contained within the current concatenation Series, and
hence must be applied instead to start a new concatenation
SCCS.

FIG. 9 (sheet 6) shows a bit shifter as part of the datum
Segment distributor of FIG. 2 that places datum Segments
into the register locations required for output.

FIG. 10 (sheet 7) shows a datum segment positioner as
part of the datum segment distributor of FIG. 2 that accom
plishes the actual transfer of datum Segments.

DETAILED DESCRIPTION OF THE
INVENTION

The broad aspects of the invention as to function are
shown in FIG. 1, which depicts concatenator 10, which will
be seen to be an asynchronous gate circuit operating in
response to data as received, and into which are to be fed a
Series of datum Segments i, j, k, ... that may have varying
bit lengths and are generally expressed in the form
nnnnnddd . . . , where “nnnnn" is the binary code for the
number of bits (nnnnn) in the following datum Segment
“ddd . . . " If the datum segments to be treated are not
initially in the nnnnnddd . . . form, they can be put into that
form through the use, e.g., of an instance of the data
enumerator of U.S. Pat. No. 6,580,378 that has been con
figured to count bits rather than bytes, and the concatenator
of U.S. Pat. No. 6,208,275, both of which patents are hereby
incorporated herein by these references. For reasons of Space
in the drawings, in the main discussion of this invention
herein a register length of 32 bits is described, to which the
datum Segments must then conform, hence only 5 bits are
needed to indicate the bit lengths of those datum Segments.
Each “d” of the above formula represents a bit, and the
ellipsis signifies that more bits may follow after the “d' bit
Spaces than are actually shown. The bit size of each datum
segment could then vary from 1 bit up to 32 bits. As a
practical matter, however, those registers could be made as
large as may be feasible. That the lengths of the various

US 6,900,746 B1
7

datum Segments will not only vary but also are not known
in advance are the reasons why the concatenation of these
kinds of variable length datum Segments cannot be carried
out by the concatenator of the 275 patent, which is adapted
only to treat datum Segments of Some fixed, uniform size.

Concatenator 10 of the present invention thus adds the
ability, by way of datum Segment router 12 and datum
Segment distributor 14 as shown in FIG. 2, to concatenate
datum Segments of varying length. Datum Segment router 12
Serves the initial function of determining whether or not a
newly arrived datum Segment can be concatenated as a part
of a current series, based on whether or not sufficient bit
Space is available, or must instead be used to Start a new
Series. In the course of So doing, the precise bit locations
where one datum Segment ends and a new one can begin are
also determined, and then datum Segment distributor 14, that
will be seen to include a datum Segment shifter and a datum
Segment positioner, Serves to place each new datum Segment
into those locations. In the event a new datum Segment
cannot be fitted into a current concatenation Series, datum
Segment router 12 also serves to effect the transfer of the
content of an existing Series to external circuitry Such as a
computer, thereby to allow commencement of a new Series.
FIG.3 shows in block diagram the role of the bit count code
nnnnn in the operation of datum Segment router 12, and how
the datum Segment is prepared for transfer to datum Segment
distributor 14.

While concatenator 10 of the 275 patent shows registers
of fixed size into which are fed a Series of bytes b, b. . . .
, each of which are also of that same fixed size, as just Stated
concatenator 10 of this invention employs a variable length
input register 12 and a variable length output register 32.
“Full datum Segments containing the bit count code nnnnn,
and also the datum segment ds itself are placed into input
register 12 in the first position thereof; the address of each
additional datum Segment thereafter is established by cal
culation from the address of the last of the previous full
datum Segments, and the datum Segments as initially placed
in each case into the first positions of input register 12 will
ultimately be transferred to the addresses in output register
32 as had just been determined.

For example, for a first datum segment “i’ shown in FIG.
1 the “nnnnn" value in the bit count code for the length of
the associated datum segment “i” is (00011)=3. For a
next-arriving datum Segment “” the bit count code is
(00111)=7. Concatenation of those two datum segments
having different bit lengths in accordance with the invention
would yield 00011ddd00111ddddddd, where the d’s repre
sent particular “0” or “1” bit values. Onto that 20-bit string
00011ddd00111ddddddd it would be sought to concatenate
another datum segment “k” of 12 bits, that with the 5-bit
length of the bit count code nnnnn would form the 17-bit
datum segment 01100dddddddddddd to yield a complete
result of

00011ddd00111dddddddO1100dddddddddddd. (1)

The result of concatenating just those first two datum
Segments “i' and “” is shown in the output register at the
bottom of FIG. 1, the series of 12 “x’s” at the right end
positions of that register meaning that no data have been
entered therein. That is necessitated because the concat
enated result of formula (1) represents a total accumulation
of 37 bits, which is 5 bits more than the output register can
accommodate, as shown in the “32 bit bit count arrow of
the hypothetical register at the bottom of FIG. 2 that marks
off the 32 bits of the actual output register as shown in FIG.

1O

15

25

35

40

45

50

55

60

65

8
1. Concatenation of that "k datum Segment cannot then be
carried out, and only the first two datum segments “i” and “j”
can be concatenated together, leaving 12 bits unused in the
resultant transmission. These examples have been chosen to
show how newly arriving datum Segments may or may not
be able to be concatenated as part of an ongoing Series, as
it will be the function of datum segment router 12 of FIG.
2 to determine. Of course, one practical procedure here
would simply be to provide a larger output register, but of
course that would merely defer the problem to a different
register size. Even So, the result shown is still an improve
ment over Sending out these datum Segments individually
Since, for example, a transmission of the first full datum
segment of 8 bits by itself would leave 24 bits of the output
register unused in that transmission.
With concatenator 10 other purposes can be pursued

besides the orderly transfer of data, e.g., the data enumerator
of the 378 patent can be incorporated with the circuitry of
the invention to count the datum Segments as they enter. If
those datum Segments were words of text, for example, that
count could provide a word count of a document, or if those
data were the contents of individual Sales invoices, the count
would yield the number of such sales. Also, in the interest of
designing Self-testing circuitry, if that data enumerator were
accompanied by a clock signal, as would not ordinarily be
the case with an asynchronous gate circuit Such as concat
enator 10, the circuitry could also provide means for mea
Suring the Speed of operation of concatenator 10.
What the invention provides as an adjunct, in its ability to

place data into the most convenient locations within a
computer, is an acceptance and Subsequent distribution of
data in forms, and having logical structures, that would have
been established before those data had even reached the
computer, that would then Save time in executing READ and
WRITE commands or other operations within the computer,
rather than having Such data be entered into an amorphous
memory Structure for which the actual addresses that hap
pened to become used had no relationship to the data
content. Put another way, instead of allowing incoming data
just to Stack up in one huge “pile' as in ordinary, non
discriminatory memory Systems, this apparatus is adaptable,
through the use of a “ttt . . . address prefix, to carry out a
pre-Sorting of data Such that the incoming data can be
pre-directed as to destination. In Such case the data are
tagged for Storage in a manner that will be meaningful, with
each type of data then being placed in Structured Stacks or
hard drive addresses in a way Such as to be physically
juxtaposed as to type, and thus be accessible more rapidly
for further operations.

Since concatenator 10 accepts datum Segments of varying
length, the location in the output register into which is to be
placed the first bit of each new full datum Segment, i.e., the
first bit of the bit count code nnnnn of that datum Segment,
must be defined. That is done by pre-selection as to a first
datum Segment, but can be done thereafter either by pre
Selection or, through one major aspect of the invention, by
calculation as to later datum Segments, that calculation being
based on the sizes of Successive datum Segments as they
arrive and are accumulated within an output register. AS
noted earlier, datum Segments of varying length also require
a determination of whether or not an arriving datum Segment
can actually be accommodated by the bit locations left
unused in the output register, and both processes are carried
out by concatenator 10.
An initial ADDRESS, that may be the same as an address

in Some relevant block of computer memory or other cir
cuitry to which the datum Segment is to be sent, establishes

US 6,900,746 B1
9

the placement of the first bit of the bit count code nnnnn,
which then, following the 5 bits of that bit count code
nnnnn itself, defines the position for placement of the
corresponding datum Segment ds. Of course, given that the
length of the datum Segment is known, as is the length of the
bit count code nnnnn by which that length is expressed,
placement of the first bit of the bit count code automatically
fixes the locations of the rest of the bits in the full datum
Segment, as well as the Starting point for the next datum
Segment.
ADDRESS will then arbitrarily be taken to be 00001,

while for the corresponding computer address any accessible
value, including those that may have been assigned to
various nodes within the computer, can be used. That
address might be held either as a permanent entry for a
particular instance of the invention, or So as to be editable for
data classification purposes as noted above, but in either case
the value of ADDRESS is used to route that first datum
segment and then, by adding to ADDRESS the full length
Li of that first datum Segment, to have defined the address for
the bit count code and then the content of the next datum
Segment, and So on. Through use of that method, each datum
Segment will be placed in immediate contiguity with datum
Segments on either Side thereof, except, of course, for the
first and last datum Segments, although even then by rare
circumstance the first and last datum Segments may be
placed in contiguity one with the other, So that all datum
Segments would be in immediate contiguity with others, and
in Such case not even a Single bit location in the computer
would be left unused. In what follows, it is assumed that the
number of bits to be used for the bit count code, the value
for ADDRESS, the sizes of the registers, and other param
eters that characterize any particular instance of the inven
tion are held in non-volatile memory in the concatenator 10
circuitry, and that on Startup those values will be loaded into
the places required, Subject to any further editing thereof by
the user.

FIG. 3 shows datum segment router 12 in detail, within
which are contained the input register 16, a first router 18,
a first adder 20, a Second router 22, a Subtractor 24, and a
third router 26. (The present discussion treats the processes
of concatenator 10 that begin at the data input nnnnnddd . .
... into input register 16, with discussion of the preceding
circuit elements in FIG.3 being deferred to later.) It may be
noted in FIG. 3 that in input register 16, the first five
positions of the full datum Segment “i' shown therein, and
which constitute the nnnnn bit count code for the datum
Segment ds, connect directly to the A input terminal of first
router 18. The address for the next datum segment, which
will be ADDRESS for datum segment “i,” will be calcu
lated on the basis of the length of that bit count code itself,
together with the value of that first bit count code, through
the operation of first router 18 in placing the data necessary
therefor on first adder 20.

First adder 20 will carry out two additions with respect to
each new incoming datum Segment. For each of those
additions, there must also be two routings carried out by
router 18, which are (1) the Selection of the appropriat inputs
for first adder 20 for each addition; and (2) a routing of the
result of each addition. (As will be discussed below, two
Subtractions will also be carried out in Subtractor 24 with
respect to each datum Segment.) The operations that then
take place are described in terms of “0” and “1” “areas” in
first router 18 (and in the Subsequent circuit blocks), those
areas not designating distinct physical Structures but rather
what the operations will be when one or the other of the “0”
and “1” designations, which are in fact addition Selection

15

25

35

40

45

50

55

60

65

10
codes, is in effect. Thus, the four inputs that are shown as
being connected to first router 18 relate to the “0” and “1”
notations within first router 18 by way of their locations,
with the Single external input A Shown entering first router
18 within a “0” area, along with the B entry 00101 that
expresses the size of the nnnnn bit count code, those two
quantities participating in the first addition under a “0”
addition Selection code, and then the quantities L and
ADDRESS for this first datum segment ds similarly being
shown at the C and D terminals in the bottom half of first
router 18 that contains the “1” addition selection code that
brings about the second addition. In the top half of first
router 18 labeled “0, the two inputs shown entering that
upper half will be those two inputs that will be sent on to first
adder 20 on a “0” addition selection code for a first addition.
Similarly, when the addition selection code is “1,” the two
inputs coming from the lower half of first router 18 and
connecting to the lower half of first adder 20 will be those
that are sent to first adder 20 for a second addition. As will
be explained below, which addition Selection code is in
effect at a particular time is determined by first OR gate 28
and first toggle switch 30 that are also shown in FIG. 3.
These processes as to the first datum segment, ds, are
Summarized in Table I:

TABLE I

(First datum segment)
Addition processes in first adder 20

First router 18 inputs First adder 20 output

First addition

1(a) Length of ds. 1(a) + 1 (b) = L.
i.e., nnnnn-1 to line C of first
(line A) router 18
--

1(b) 5-bit length
of nnnnn
(line B)

Second addition

2(a) L ADDRESS to
(line C) second router 22
--

2(b) ADDRESS,
(line D)

The continued course of that process, i.e., as to what is
done with the value obtained for ADDRESS, lies in iden
tifying that particular datum Segment of the Sequence ds,
ds, ds, ds. . . . for which the corresponding full datum
segment lengths L. L. L. L. . . total more than the 32-bit
Size of output register 32. Concatenator 10 thus tests each
newly arriving datum Segment in that regard. If a newly
arrived datum Segment will fit into output register 32, it will
So be placed as part of the concatenation process then under
way, while if it will not So fit, a new concatenation Series will
be started. With L representing each of the full datum
Segment lengths, if XLS32, the last-arriving datum Seg
ment can be concatenated onto the pre-existing content of
output register 32, but otherwise not, and hence a new
concatenation must be started. (For reasons to be given
below, the test is not actually carried out on the basis of that
Sum, but rather on the calculated address for each new datum
Segment. Either test could be used, and both are deemed to
fall within the spirit and scope of the invention.)
A Second task of concatenator 10 is to determine the

address in the computer, for which ADDRESS in concat
enator 10 (a “register address”) will be a temporary

US 6,900,746 B1
11

corollary, to which each datum Segment will be sent. That
computer address will be the same whether or not a datum
Segment in question can be accommodated within the Series
of concatenations then being carried out or must be used to
Start a new Series of concatenations. That is, although the
location within output register 32 into which a datum
Segment will be placed for transfer will change when a new
concatenation is begun, and will always be the first position
on a new concatenation rather than a calculated register
address, the computer addresses are cumulative, and the
computer address for the next-arriving datum Segment must
remain the same even though the correlated register address
may change-the datum Segment will have a register
address either of ADDRESS, or some other value, depend
ing upon whether or not it was used to initiate a new
concatenation Series, but the computer address to which it
will be sent will be the same in either case. Successive
computer addresses will continue to increase through what
ever number of Series of concatenations as may be necessary
in order that all of the datum Segments will be placed in
juxtaposition within the computer as intended. Each datum
Segment will arrive at a pre-determined computer location,
whether into memory or as immediate input to a circuit,
regardless of how the concatenations that brought about
those transferS were carried out.
To clarify how that result is brought about, there will exist

a definable relationship between a particular location in
input register 16 and output register 32, with both of these
also being related to addresses in the computer. The rela
tionship between output register 32 addresses ADDRESS,
and the computer addresses will change, however, Since
while input register 16 and output register 32 are used over
and over again, as just indicated the ultimate locations in the
computer to which data will be sent are cumulative in nature
and will be fixed (as to a particular course of operations). In
being used over and over again, input register 16 conveys a
Single datum Segment at a time, and Starts each new con
catenation series at ADDRESS=00001. Output register 32,
on the other hand, although it starts its own set of concat
enated datum Segments at its own leftmost address, accu
mulates a number of Such datum Segments in each concat
enation Series, and then transmits Some number of those
accumulated datum Segments all at once.
AS previously noted, in the examples to be used below

datum Segment lengths were Selected Such that the first two
datum segments ds and ds (respectively parts of the full
datum segments “i” and “j” shown in FIG. 1) will become
concatenated together, but there was not Sufficient Space in
output register 32 for what would have been the third datum
Segment ds (a part of datum segment “k” in FIG. 1) of the
Series. Datum Segment ds is thus not concatenated onto the
content of output register 32, that content by then having
become ds and d, but becomes instead a new ds in a new
concatenation Series, and at that point only the prior ds and
ds, or more exactly, the full datum Segments “i' and "j,”
will be transmitted out of output register 32.

The formalism used is that the first bit location of input
register 16, i.e., ADDRESS, is correlated with the computer
address, and for ease of discussion as to the very first Series
of concatenations both the register address ADDRESS and
corresponding computer address, are given the address
00001. The second datum segment ds will have the register
address ADDRESS, which as it turns out will be 01001 for
which (01001)=9, hence the first bit of bit count code
nnnnn thereof will ultimately be located at that address in
output register 32, i.e., at the 9" bit location therein that
correlates with another specific computer address. Any pre

15

25

35

40

45

50

55

60

65

12
Sorting of these data Segments as was noted above would be
shown by the fact that if it were desired to store data into,
say, a “2000 block” in the computer, the register address of
00001 would correlate with a computer address of 2001, and
likewise the register address 9 would correlate with the
computer address 2009. More exactly, since the computer
addresses will increase continuously, those computer
addresses may be of a form even as large (in binary code) as
00000000000000000000000000000001 (4 Gb) or more,
etc., i.e., being expressed by a rather larger number of bits
So as to accommodate that larger capacity of the computer.
That process is not a part of the concatenation process,
however, and So is not discussed further here except to note
that Such proceSS is more naturally carried out by the
circuitry to which concatenator 10 connects rather than by
concatenator 10 itself. Upon completion of as many con
catenations as possible within a first Set of 32 bits, in a new
concatenation Series there will again be a register address
ADDRESS, ADDRESS, and so on, but the computer
addresses to which these addresses correlate will commence
where the previous Series left off, i.e., at an address that
follows the last bit of the last datum Segment already treated.
To determine whether or not output register 32 can accept

a next-arriving datum Segment, it will be necessary to
evaluate a Sum effectively of the form XL, as to each new
datum Segment, to determine whether or not 32-XL-0, i.e.,
whether th bit lengths of the data Segments add up to more
than the bit length of output register 32, and several different
ways of So doing might be used. One way would be to keep
a “running count” of the values Li, Li+L, Li+L+L, etc.,
and then Subtract each Such value from the 32-bit size of
output register 32. If that calculation yielded a result of <0,
the capacity of output register 32 would have been exceeded,
and the concatenation of that latest datum Segment being
considered could not be carried out. (A Sum result of XL=0
would show that Such capacity had been exceeded insofar as
a next ADDRESS is concerned, even though that for the
datum Segments alone had not, Since it is the bit address next
following the bit space taken up by XL, that the address test
actually to be used seeks to evaluate.)

It should be made clear, however, that a determination that
some ADDRESS can be accommodated within output
register 32 Says nothing about whether a corresponding
datum Segment ds that commences at that address could be
so accommodated. That ADDRESS can be accommodated
in output register 32 shows only that the preceding datum
Segment ds can be accommodated, since ds precedes
ADDRESS in order. To determine whether or not ds can be
fitted into output register 32 requires testing of the address
that derives from the next datum Segment, i.e., by testing
ADDRESS... which is established both as actual fact and x-1

by the test being carried out by the length of the datum
Segment ds.
A Second method of determining whether or not a new

datum Segment could be accommodated in output register 32
could be based on defining L=32 as the maximum number
of bits that output register 32 can accommodate, as in this
instance of concatenator 10, wherein the “i' datum Segment
of FIG. 1 will have the starting address ADDRESS, in the
series ADDRESS, datum segments “j” and “k” have the
addresses ADDRESS, ADDRESS, etc., and then test in
turn each of the successive addresses ADDRESS,
ADDRESS, etc., for each of the Subsequent datum Seg
ments “i,” “k,” etc., until that address was found that
exceeded L. Which of these or other similar methods to
adopt might be decided on the basis of which one requires
the least circuitry and hence the least time, or on Similar

US 6,900,746 B1
13

criteria, but as a practical matter, given the nature of
subtractor 24 as will be explained below, the method
adopted here corresponds to the Second of these methods,
having given ADDRESS the value 00001, and the L are
then Successively added thereto. In light of the general
principles Set out here, however, the use of any of these or
similar such methods would fall within the spirit and scope
of the invention, and are deemed to be encompassed by the
claims appended hereto.

Turning back now to FIG. 3, the interconnections that are
in effect when the addition selection code is a “0” or a “1”
bit, and the operations that will then be carried out, are
shown by the “0” or “1” designations within the respective
upper and lower parts of first router 18 and first adder 20. In
addition, FIG. 4 shows those connections in more detail,
Starting with the input connections to first router 18 under
each of the “0” or “1” addition selection codes, i.e., to lines
A and B for the “0” code and lines C and D for the “1” code,
the particular example shown being that for the “0” code.
For illustrative purposes only, the Vertical positions of lines
B and C have been reversed in FIG. 4 from what they were
in FIG. 3, so as to show more simply, by the mechanical
analog of a double pole, double throw or “DPDT” Switch 34,
the manner of operation of the Switching between the A-B
terminal pair for the first addition and the C-D terminal pair
for the second addition. The similar “0” and “1” designa
tions in second router 22 and Subtractor 24 in FIGS. 5 and
6, which are quite distinct from the addition Selection codes
in first adder 20, refer respectively to the subtractions to be
carried out by Subtractor 24 that will be described shortly,
and then as to third router 26 either to continuing a concat
enation then in process (routing code "0") or to transferring
out the content of output register 32 and Starting a new
concatenation (routing code “1”).

The addition Selection code designation for the first
addition has been arbitrarily selected to be “0,” and to start
the process for the “i” datum segment of FIG. 1, FIG. 3
shows the bit length nnnnn=0.0011 of the first datum
segment ds (wherein (0.0011)=3) in the leftward-most
positions of input register 16, followed by the actual 3-bit
datum Segment ds. So as to have an entry, dS has arbitrarily
been given the binary code 010, from which (010)=2, but
that actual content is irrelevant for purposes of the concat
enation operation.
AS noted earlier, that nnnnn=00011 value is placed on

input line A of first router 18. The length of the bit count
code nnnnn, Selected for this instance of the invention to be
5 bits and hence constituting a permanent input, is placed on
line B of first router 18. The Sum of those two values, i.e.,
3+5=8, is the length L of this first “full datum segment in
the general format nnnnnddd . . . , with the “full” datum
segment “i' itself being 00011010. The above summation is
the first addition to be carried out in first adder 20, and
comes about by (a) having the addition selection code of “0”
on first router 18; (b) the connections resulting therefrom
that put 00011 (the length of ds) on input line A of first adder
20 and 00101 (the length of the bit count code nnnnn by
which that length of ds, is expressed) on input line B of first
adder 20, and finally (c) the addition selection code “0” itself
on first adder 20 so as to bring about the desired addition.
Again, the addition of those two numbers yields the full
datum Segment length L. More generally, if L, is the bit
length of nnnnn, here set at 5-bits, then L=L+(nnnnn),
where the Subscript “2” merely means that the preceding
binary code is to the base 2.

Those 8 bits are to be placed into output register 32, but
it must first be determined whether or not output register 32

15

25

35

40

45

50

55

60

65

14
has Sufficient bit space to accommodate them. For this first
datum Segment there must necessarily be Sufficient Space,
but the determination thereof is carried through here even So,
Since it is indicative of the proceSS as to later datum
Segments, and in any event will So proceed on its own. For
that purpose, as seen in FIG. 3, the sum L=00101--00011=
01.000 is passed from first adder 20 back to line C of first
router 18 as one input for the second addition. That result of
that first addition is also passed from first adder 20 into 1-bit
first OR gate 28, as a result of which, since that sum code
must always contain at least one “1” bit (a method used in
the 275 and 378 patents and application Ser. No. 10/462,
868), a pulse will pass from first OR gate 28 into first toggle
Switch 30 so as, through the resultant “toggle” therein, to
provide a “1” addition selection code to first router 18 and
first adder 20. First router 18 will then Switch the connec
tions to first adder 20 to those that are needed to carry out
the Second addition.

For purposes of that second addition, ADDRESS for the
first datum segment ds is seen in FIG. 3 to be on line D of
first router 18. Using ADDRESS=00001 and the procedure
just described, this Second addition be comes
L+ADDRESS=8+1=9 or 01001, which will be the starting
address ADDRESS for the next datum segment. Whether or
not the Series of concatenations then underway can include
the next datum Segment (i.e., whether or not output register
32 has sufficient space therefor), the ADDRESS value just
determined is sent to line D of first router 18 to replace the
indicated ADDRESS value that was just noted to be there,
for later use in the Second addition as to the next datum
segment. That step is shown in FIG.3 by the “ADDRESS=
01001” notation on the line that extends down from the
bottom of first adder 20 towards line D of first router 18.
First adder 20 also sends the result of this second addition
into first OR gate 28, so that the pulse produced thereby will
again cause a “toggle” in first toggle Switch 30, So as now
to yield a “0” addition selection code. First router 18 will
then have been “cycled, i.e., to have been re-configured to
carry out the first addition as to the next datum Segment.
To determine whether or not output register 32 can

accommodate a particular datum Segment, a choice of pro
cedure is available. Two Subtractions are carried out in
Subtractor 24, that could be based either on the address of the
next-arriving datum Segment or on the Sum of all of the
previous datum Segment lengths. If a Subtraction test relative
to the first datum segment based on the value of ADDRESS
obtained for the Second datum Segment ds were used, a
positive result would indicate not only that the concatenation
(or in the case now being discussed of a first datum Segment
of a Series, simply a data transfer) could be carried out, but
also that there would remain in output register 32 at least one
more bit unused, that would be ADDRESS itself. A calcu
lation based on the total length of all preceding datum
Segments (at the moment only on L) would indicate with a
32-L=0 result (of course, that is not the present case) that
the last bit position of ds coincided with bit location 32 of
output register 32, i.e., there was just enough space in output
register 32 for ds, but not for ADDRESS. That would be
the most useful result, but the procedure to be adopted here
is the former, since the ADDRESS value that in any event
will be needed otherwise had just been calculated, is readily
available, and can also be correlated immediately with the
computer address to which the corresponding datum Seg
ment will be sent. Even So, which procedure is used, So long
as it is internally consistent, is again a matter of design
choice, So the use of either procedure would be deemed to
fall within the Spirit and Scope of the appended claims.

US 6,900,746 B1
15

The reasons for using the particular values in the Subtrac
tions now to be described will be set out below, but for the
present it is simply noted that Subtractor 24 is configured to
carry out two Subtractions, the first yielding the value of the
quantity ADDRESS-2 as the subtrahend for the second
Subtraction, and then the Second Subtraction L
(ADDRESS-2), where L is the number of bit positions
(32) in output register 32. The result of that second subtrac
tion determines whether or not the datum Segment being
tested will fit into output register 32. By the initial premise
that no incoming datum Segments would exceed in length
the 32-bit size of the concatenator 10 circuitry, there will
necessarily be space for datum Segment “i' in output register
32, and with the 3-bit length of the ds selected here as an
example that is clearly the case.
AS shown by the terminal designations A, B, C, and D in

FIG. 3, the value 01001 of ADDRESS (shown in FIGS. 4
and 5 as ADDRESS) that comes from first adder 20 is sent
through second router 22 onto terminal E of Subtractor 24.
Since the two Sums obtained in the two additions in first
adder 20 will appear at the same output of an ADD circuit
contained therein (of course at different times), but it is only
the result of the second addition that is sent to Subtractor 24,
Second router 22 turns out merely to be a simple Switch, i.e.,
address Switch 36 as shown in FIG. 5. That is, the result from
the first addition with the addition selection code of “0” is
disconnected from subtractor 24 by address Switch 36, but
the result of the second addition under the addition selection
code “1,” which is ADDRESS, is sent through address
Switch 36 of second router 22, and is transmitted to Sub
tractor 24 for the first Subtraction therein under a “0”
subtraction selection code.

The 00111 value on the H terminal of Subtractor 24 shown
in FIGS. 3 and 6 comes from the first Subtraction
ADDRESS-2=01001-00010-9-2=7=00111, with the “0”
Subtraction Selection code in effect, as depicted in the upper
part on the right in subtractor 24 of FIG. 6. By connection
to second OR gate 38, that first subtraction result will yield
therefrom a pulse that when Sent to Second toggle Switch 40
to which the output of second OR gate 38 connects will
cause Second toggle Switch 40 to change the Subtraction
Selection code from “0” to “1,” The second Subtraction that
follows is shown in the lower part of subtractor 24 on the
right in FIG. 6, i.e., 100000-00111=11001. Using the pro
cedure previously employed with respect to the additions in
first adder 20, the vertical order in which the inputs to
subtractor 24 are depicted has been changed in FIG. 6 to “E,
G, F, H” instead of the normal order “E, F, G, H shown in
FIG. 2, again in order to show the double pole, double throw
(“DPDT”) nature of second DPDT switch 42 in subtractor
24, the Simple mechanical version of that Switch again being
used for explanatory purposes only. What is Sought from
these Subtractions is a routing code that will determine
whether or not the concatenation Series then being carried
out can continue So as to include the datum Segment being
tested.

Since ds would precede ADDRESS in output register
32, if ADDRESS can be fit into output register 32 then so
can dS, but it is also desired that ds be transferred into
output register 32 whenever possible, even if there were no
space for ADDRESS. To define the test in that fashion,
there are two adjustments that need to be made. The first of
these derives from the fact just Stated, namely, that it is the
last bit of the datum Segment that must be fit into output
register 32, and not the next following bit that would be the
address of the next datum Segment. If that were the only
consideration, the test to determine whether or not output

15

25

35

40

45

50

55

60

65

16
register 32 could accommodate the datum Segment under
test would be to Subtract from L=32 the quantity
(ADDRESS-1). However, as will now be shown, it hap
pens that yet another bit must be subtracted from that
Subtrahend because of the nature of the test that Subtractor
24 carries out.

It is convenient here to use a 1's complement Subtractor
because of one feature that Such Subtractor type exhibits, the
operation of which will be known to those of ordinary skill
in the art. The circuitry of this type of subtractor is such that
besides the actual Subtraction result, it also provides a single
bit code, here called a “test bit,” that indicates whether or
not, in any given Subtraction, the minuend was larger than
the Subtrahend. The test to be applied is whether or not
minuend>Subtrahend, not minuend Subtrahend, and Subtrac
tor 24 is configured so as to yield a “0” routing bit if the
minuend is larger than the Subtrahend, i.e., the first expres
Sion just Stated is Satisfied, and a “1” routing bit if it is not,
i.e., that expression is not satisfied. The former “0” result
continues the concatenation Series then being carried out,
while a “1” routing code causes the concatenation Series to
terminate.
To account for the additional “1” value noted above that

will yield the number 2 in the first Subtraction, in a case in
which factually minuend=Subtrahend, then using a
minuende Subtrahend test together with a Subtrahend
(ADDRESS-1), the extreme of that test (in which the
calculation was also minuend-subtrahend=0) would identify
the last bit position of the preceding datum Segment rather
than the next-following position, which is ADDRESS. The
result would be affirmative since the resuit minuend
subtrahend=0 satisfies the minuend 2subtrahend test, thus to
indicate that the datum Segment under test would fit exactly
within the remaining bit locations of output register 32.
However, as just stated that is not the test that the 1's
complement Subtractor carries out, which is instead
minuenda Subtrahend. In order to have that test that the
Subtractor actually carries out yield that same result as just
noted, by the artifice of defining the subtrahend for the
Second Subtraction as (ADDRESS-2), or more generally as
(ADDRESSi-2), the resultant affirmative test will be that
desired, i.e., indicating that a datum Segment that has the
Same number of bits as the number of Spaces remaining in
output register 32 will indeed fit therein. With that test result
the transfer would be carried out as a continuation of the
concatenation Series then being conducted.
So as to enable that ADDRESS-2 subtraction to be

carried out as the first of the two Subtractions, with
ADDRESS=01001 on terminal E of subtractor 24 as shown
in FIGS. 2, 5, the quantity (0.0010)=2 is provided on input
line F of Subtractor 24, and with a “0” Subtraction selection
code in effect the first subtraction E-F=ADDRESS-2=9-
2=7 is carried out, with the 00111 result being placed on
input line H of subtractor 24. That ADDRESS-2=00111
value is then tested in a Second Subtraction against L=32=
(100000) that is provided on line G of subtractor 24 for the
G-H Subtraction. The test bit that derives from that second
subtraction serves as the “routing code” that will determine
whether or not the datum Segment then being tested will fit
into output register 32. (This routing code is not to be
confused with the “0” or “1” Subtraction selection code that
determines which of the two Subtractions is to take place in
Subtractor 24, and certainly not with the analogous addition
selection codes in first router 18.) What the actual numerical
result of the Second Subtraction happens to be is of no
interest, but only whether L (the minuend), or 32, is larger
than the subtrahend, i.e., the quantity (ADDRESS-2) or

US 6,900,746 B1
17

more generally (ADDRESSi-2). Of course, other subtractor
circuitry is also available for Such purpose and might have
been used in an analogous procedure, but any use thereof
instead of the 1's complement Subtractor type employed
here is deemed also to fall within the Spirit and Scope of the
claims appended hereto.

The result of the present G-H. Subtraction is L
(ADDRESS-2)=32–7=25 (11001), which is a positive
number that would clearly (and obviously) allow the first
datum Segment ds to be concatenated onto the content of,
or in the case of this first datum Segment merely entered into,
both input register 16 and output register 32. AS noted above,
in this embodiment of the invention Subtractor 24 is con
structed so that if the second Subtraction therein shows that
minuend>Subtrahend, i.e., LZ (ADDRESS-2) or equiva
lenty L-(ADDRESS-2)>0, subtractor 24 will yield a “0”
routing code and the concatenation Series will be continued,
while a result L-(ADDRESS-2)s O will yield a “1”
routing code and the concatenation Series then in proceSS
will be terminated, that last-received datum Segment being
used instead to Start a new concatenation Series.

To carify further the basis for these calculations, i.e., how
concate nator 10 might operate under different
circumstances, and Specifically to illustrate the case in which
a new and different third datum Segment ds would exactly
fit into the remaining bit positions in output register 32, Since
L+L=8+12=20, at that stage there remain 32-20=12 bit
spaces available in output register 32, wherein ADDRESS
for that third datum segment ds would still be 21. A full
12-bit datum segment “k” of 5 bits for the bit count code
nnnnn and 7 bits for the datum Segment ds itself should
then fit into output register 32, i.e., in addresses 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32. An entry into terminal C
of first router 18 of L=01100, wherein (01100)2=12, would
yield an ADDRESS=C+D=12+21=33, which lies one bit
beyond the length of output register 32 and hence could not
be used. However, when the procedure using the
(ADDRESS-2) Subtrahend in the second subtraction is
used, whereby the first subtraction in subtractor 24 is E-F=
ADDRESS-2=31 and that result is placed into terminal H
of subtractor 24, the second subtraction thereby becomes
G-H=L-(ADDRESS-2)=32-31=1, which is a positive
number to produce a “0” routing bit, thus to indicate that
while this new, hypothetical ADDRESS will not fit into
output register 32, the new, hypothetical full third datum
Segment ds having 12 bits that immediately precedes
ADDRESS will indeed so fit. Concatenation of that 12-bit
full datum Segment onto the two full datum Segments ds
and ds that were already present in output register 32 would
then proceed, which is the desired result (in this present
illustration) and confirms that the quantity (ADDRESS-2)
evaluated in the first Subtraction in Subtractor 24 is indeed
the proper Subtrahend for general use relative to the Second
Subtraction in Subtractor 24.

Those subtractions as to the 3-bit first datum segment
ds=010 are shown in detail in FIG. 6, along with the values
employed and the Switch locations involved. Since it is only
the test bit from the Second Subtraction that actually consti
tutes the desired routing code, the test bit value obtained
from the first Subtraction is not sent on to third router 24,
there being a second Switch shown in FIG. 6 near to the
center of subtractor 24, which is routing Switch 44, that
provides a subtraction test bit output to third router 24 only
when the Subtraction selection code is “1,” The Subtraction
Selection code shown to be in effect at the moment in
Subtractor 24 in FIG. 6 is “0”, both as to the Subtraction
being carried out and (by routing Switch 44) to transmission

15

25

35

40

45

50

55

60

65

18
of that test bit to third router 24, even though the “0” and “1”
boxes to the right of subtractor 24 of FIG. 6 show the nature
of both subtractions. That is, with routing Switch 44 in the
“0” position as shown, there is no connection from Subtrac
tor 24 to third router 26, since no line is shown to exit
subtractor 24 through the “0” portion thereof, but when the
Subtraction Selection code is changed to “1” for the Second
Subtraction, the resultant test bit, that now becomes the
routing code and may be either a “0” or a “1” bit, will be sent
on to third router 26 and have one or the other of the two
effects shown respectively in the upper “0” and lower “1”
boxes of third router 26. (As to third router 26 in both FIGS.
3 and 6, it is the “0” routing code that is shown to be in
effect, both by the positions of the second DPDT switch 42
and routing Switch 44 in third router 24, and by the slashes
across various lines in FIGS. 3 and 6 that will later be shown
to respond to a “1” routing code.)
With one of the Subtraction selection codes “0” or “1”

being in effect in Subtractor 24, the Subtractions are Self
executing once the required inputs are provided.
Consequently, with a “0” Subtraction Selection code in place,
as best seen in FIG. 6 but also in FIG. 3, the circuitry in
subtractor 24 is structured to perform the following for the
first Subtraction on this first datum Segment ds :

1. Accept ADDRESS, on line E of subtractor 24 as a
minuend;

2. Connect 00010 (where (00010)=2) to line F of sub
tractor 24 as a Subtrahend;

3. Connect the binary code output 00111 of subtracting
00010 (on line F) from ADDRESS=01001 (on line E)
to line H of subtractor 24,

4. Also connect the binary code output 00111 of subtract
ing 00010 from ADDRESS, to second OR gate 38
(shown in FIG. 3);

5. Have the test bit output of this first subtraction discon
nected by routing Switch 44 from the input to third
router 26; and

6. Following this first subtraction, respond to a “1”
Subtraction Selection code arriving from Second toggle
Switch 40 So as to enable a second Subtraction.

Upon receiving that “1” Subtraction Selection code, the
Second Subtraction in Subtractor 24 commences, for which
the routing circuitry therein will have been Switched over to
carry out th following:

1. Accept L=100000 (where (100000)=32) to line G of
Subtractor 24 as a minuend;

2. Connect the result 00111 of subtracting 00010 from
ADDRESS, that had been placed on line H of subtrac
tor 24 in step 3 of the first subtraction as a subtrahend;

3. Connect the routing code “0” deriving from the Sub
traction of (ADDRESS-2) on line H from L. on line
G to the input of third router 26 using routing Switch
44;

4. Connect the actual output of subtracting (ADDRESS
2) from L to Second OR gate 38 So as to cause a toggle
in Second toggle Switch 40; and

5. Following this second subtraction, respond to that “0”
Subtraction Selection code from Second toggle Switch
40 So as to enable any Subsequent first Subtraction.

The second subtraction L-(ADDRESS-2) yields a
positive result and hence a “0” routing code, since 32-75-0.
In accordance with step 3 of the second subtraction, that “0”
routing code is sent to third router 26 to establish that the
concatenation is to proceed, as shown in FIG. 6 by the line
from routing Switch 44 through the Subtraction Selection

US 6,900,746 B1
19

code “1” part of Subtractor 24 and then to the upper “0” part
of third router 26. That is also shown by the fact that the line
extending directly acroSS from the Subtraction Selection code
“1” part of subtractor 24 to third router 26, which pertains
only when the routing code “1” is in effect, has slashes
acroSS it meaning that at that time no connection there is
made. The full first datum segment shown in the “i” line of
FIG. 1 and also in input register 16 of FIGS. 3 and 6, as a
first datum Segment of a Series, is thus to be transferred
ultimately to the leftmost positions of output register 32 as
shown at the bottom of FIGS. 3 and 6. Datum segment
distributor 14 will be seen below both to effect that transfer
to output register 32 and, with respect to later datum
Segments of a concatenation Series, to place each datum
Segment in the correct positions within output register 32.

Turning back now to the general process, the manner by
which ADDRESS is obtained, and by extension an
ADDRESS, ADDRESS, etc., has been explained, but what
must still be shown specifically is how ADDRESS is
acquired. AS noted earlier that value is automatically loaded
into concatenator 10 at startup, but what must be shown is
how ADDRESS is acquired when a new concatenation
series is started. As shown in FIGS. 3 and 6, third router 26
has ADDRESS available in a buffer shown at the lower
right in third router 26. Upon receipt by third router 24 of a
“1” routing code from Subtractor 24, besides carrying out the
principal task of transferring the content then present in
output register 32 to Some circuitry that will transfer those
data to a computer, that ADDRESS value is also transferred
to line D of first router 18, as shown in FIG. 3 by the
rightward of the two lines that extend down from the “1”
part of third router 24 and then left and up to line D of first
router 18, and also in FIG. 6 by the line that points
downwardly from the “1” portion of third router 26, thus
permitting the initiation of the remainder of the processes
previously described. (The two lines just referred to in FIGS.
3 and 6 both have slashes across them, for that reason that
those particular drawings were made to illustrate the case of
a “0” routing code, while it is the “1” routing code that is
now in effect.)

In transferring the first datum Segment “if” from input
register 16 to output register 32, it might seem necessary to
ensure that only the bit String nnnnnds should be trans
ferred to output register 32, i.e., only the 8 bits that make up
“i'=00011010. To transfer any more of the content of input
register 16 to output register 32 of FIGS. 3, 6 would transfer
Superfluous X's therewith. However, as the concatenation
continues, those bits will be Successively replaced with the
bit count code for and content of each next incoming datum
Segment, i.e., nnnnnds, nnnn.nds, and Similarly
thereafter, before any data are actually transferred out of
output register 32. Except perhaps for Some few bits at the
end, whatever Superfluous bits may have been present tem
porarily in bit locations within output register 32 beyond
those of each datum Segments already concatenated would
be replaced by the following datum Segments before the data
transfer to a computer, and thus are quite immaterial. When
transmitted out from output register 32, Such bits would
likewise have no effect in the computer to which sent, Since
the ADDRESS value of each new datum segment is cor
related with computer addresses, all of the later transferS to
that computer will be immediately juxtaposed onto the final
LSB end of the previous transfer, again overwriting, but now

15

25

35

40

45

50

55

60

65

20
in the computer itself, any Superfluous X's, but perhaps again
leaving some few X's at the very end of the full data transfer
process to the computer as a whole.
To see further how that occurs, it may be recalled that

although the ADDRESS, values in concatenator 10
“recycle, i.e., each new concatenation Series Starts with
ADDRESS=00001 (in this example), the corresponding
addresses in the computer are cumulative and continue to
increase as more datum Segments are transferred in, without
regard to what may have been the particular concatenation
Series in which a given datum Segment had been contained.
The computer address for a new datum Segment is deter
mined from the last calculated ADDRESS, value, and the
last-arriving datum Segment will be sent precisely to that
Specific computer address, whether as a part of an ongoing
concatenation Series or as the first datum Segment of a new
concatenation Series. Thus, although particular transmis
Sions may contain Some Small number of unused bit Spaces,
there will be no Such gaps in circuit usage within the
computer, but only perhaps a Small number of bit locations
that are left unused after completion of all of the concat
enations and Subsequent data transferS would have Sought to
fill the memory of the computer completely. AS noted earlier,
upon the occurrence of a “1” routing bit, as shown in both
FIGS. 3 and 6, specifically by the lines in FIG. 6 that have
slashes across them (FIG. 6 having been drawn for the “0”
routing bit example), there is a line extending to the right
from the right end of output register 32 and then up to third
router 26 where a Switch, if in the “1” position (not as shown
in FIGS. 3 and 6), passes the content of output register 32 to
an “output line.

Further as to treating the data, it was noted earlier that the
present circuit provides means both for accepting pre
classified data and for counting the datum Segments, and the
means for so doing will now be discussed. The distribution
of data as to Subject matter requires that the desired classi
fications already be present in the datum Segments as
received, and that option is shown in FIG. 3 by the “(ttt)”
entry in the drawing, where preferably those bits would be
placed after the bit count code nnnnn in order to maintain the
method of operation described herein. The sorting of the
datum Segments in accordance with the classifications may
be included as one of the functions of datum Segment
distributor 14, left to be carried out by the circuitry (not
shown) that effects the actual datum transfer, or carried out
by the target computer. In the later discussion of datum
segment distributor 14, circuitry will be shown and
described that would carry out that proceSS as part of this
concatenator 10. Of course, if a “ttt code of that fixed size
of 3 bitS is included in the datum Segments as
“nnnnntttddd” either the value of nnnnn must include
those 3 bits or the size of nnnnnttt=8 must be used at line B
of first router 18 instead of the size of nnnnn alone, nnnnn
then giving only the size of ds.
AS to the counting of received datum Segments, as shown

in FIG. 3 concatenator 10 also includes data enumerator 46,
which is seen to be connected in Series on the data input line
and to include an input concatenator 48, third OR gate 50,
and counter 52. Connection is made initially to input termi
nals of both input concatenator 48 and third OR gate 50, the
output of third OR gate 50 then connecting to counter 52 that

US 6,900,746 B1
21

in turn connects to input concatenator 48. In operation, the
“1” bit output of third OR gate 50 that will be produced by
the arrival of a datum Segment passes into counter 52, the
count from which passes into input concatenator 48 in which
that count and the datum Segment that gave rise to that count
by way of that “1” bit from third OR gate 50 are concat
enated together. The result of that concatenation will be in
the form “yynnnnnddd” where “yy” is the count and is
termed herein an “index number” and “ddd is the ds,
datum Segment content. That concatenated result is shown in
FIG. 3 as an output of data enumerator 46 by the arrowed
line that extends upwardly therefrom, and can be used either
for other purposes or, as noted below, can be used in place
of the basic nnnnnddd . . . coding Scheme on which the
discussion herein has been based. For purposes of Space both
in FIG. 3 and herein, only two bits “yy” are shown to form
that index number, but many more bits might be required to
express a count of all of the datum Segments that may be
expected to be received. Just as is done with the bit count
code nnnnn, of concatenator 10, that index number will be
expressed using Some fixed and known number of bits, and
Since that index number will appear as the leftward compo
nent of the full, concatenated expression “yynnnnnddd . . .
even though the “nnnnnddd... component (the incoming

datum Segment itself) will be of unknown length, that
component will nevertheless have a known position in a
register used as the output of input concatenator 48, and can
be concatenated by using a concatenator of the type set out
in the 275 and 378 patents. That is, that earlier concatena
tor only requires prior identification of the Starting position
of the Second data entry thereto, and in concatenating only
two datum Segments at once the length of that Second datum
Segment is immaterial. That Starting position is established
in the circuitry by having allocated a fixed number of bits for
the first or leftward datum segment, and will be the “yyy.
... y Sequence of whatever fixed length as had been put into
the circuit design.

That yynnnnnddd . . . Sequence can also be used together
with the type code “ttt noted earlier that can be used to
identify the type or Subject matter of each particular type of
data being treated and, if reset for each ttt type of data, this
index number “yy” could be used to count out the number
of entries within each type. In the continuous addressing
used in the computer itself, the addresses for each data type
could also be compartmentalized, whereby MADDRESS’s
would be the first computer address within each memory
block as designated to accept data of the particular type ttt,
ultimately to yield a complete "yytttnnnnnddd code.
The particular order in which these various elements are
assembled is of course quite arbitrary, but the foregoing
order is adopted Since the assignment of type codes “ttt'
must already have been established at the time that the
datum Segments are received.

In FIG. 3, if it had been decided to use, say, a titt
classification code prior to the bit count code nnnnn as just
shown, the bracket on input register 16 by which the nnnnn
code is extracted would start not at the first position of input
register 16 as shown, but rather at the fourth position therein.
Similarly, if it were decided to use the complete “yyttt
nnnnnddd code throughout the operation of concat
enator 10, by entering that bit Sequence into input register 16

15

25

35

40

45

50

55

60

65

22
rather than the nnnnnddd . . . code as previously discussed
(and shown in the various figures), that bit count code nnnnn
would need to be extracted from whatever position was
defined by the total number of bits in the preceding Sequence
yyttt. It is important to note that this requirement would
apply also to the circuitry of, and the manner in which,
datum segment distributor 14 will later be shown to bring
about the actual datum Segment transfer into the output
register 32 of concatenator 10.
The purpose in adopting these practices, given the time

and commitment of the ALU and other computer circuitry
often required to carry out Sorting and Similar Such
operations, is to provide data to that computer that merely in
the course of being transmitted thereto will already have
been organized into logical Structures that will be most
convenient for use. All of the aforesaid coding variations can
be used in the present apparatus with the kinds of minor
circuit adaptations (for appending one code or the other, etc.)
just discussed, as will be known to perSons of ordinary skill
in the art, based on the concepts of the 275 and 378 patents,
application Ser. No. 10/462,868 and the present disclosure.
So as to track the course of these events, in the Steps to be

set out below in Table II for the first datum segment “i” it is
assumed that what would have occurred just prior to the first
event of this concatenation Series would have been either an
initial startup of the circuit or the transfer of a “1” bit from
third router 26. Recognizing that ADDRESS=00001 is
already present at input D of first router 18, as a result either
of a startup or that “1” bit, the circumstances that exist prior
to the full treatment of a new datum Segment in its path to
output register 32, and an initial sketch of what will then
transpire, are as follows:

a) upon a startup, the bit count code nnnnn will not be
known initially, but upon entry of the “i' datum Seg
ment will be found to be 00011, where (00011)=3, the
number of bits in that first datum Segment ds, and as
shown earlier will appear online A of first router 18 and
So remain until entry of the Second datum segment ds
(“j”). As an initial datum segment, however, the “i”
datum Segment will be concatenated in any event, Since
the premise here is that no datum Segments will be
received that exceed the size of the concatenator 10
registers. AS noted above and shown below in the
Enter-1 row of Table II, if a new concatenation series
has come about because of the termination of a previ
OuS Series, the bit count code for the datum Segment
then to be treated will already be known, since it would
have been the value of that code that determined
whether or not a new concatenation Series had to be
initiated.

b) the size of the bit count code nnnnn, where (00101)=5,
appears on line B* of first router 18, and will be fixed
at that value in this instance of the invention, or
possibly at an adjusted value if the classification code
“ttt” is used (for simplicity in this description that
adjustment is not made), wherein the asterisk “*” is
meant to indicate that columns in Table II So labeled
will have fixed values;

c) the combined length L of ds and its bit count code
nnnnn, i.e., the length of “i,” is not known initially, but
will be found in the first addition in first adder 20, for
which the addition selection code is shown in Col. Add.
as “0” to be A+B=3+5=8=(01.000) as shown in row
Add-1, Column C of Table II, to appear also on line C

US 6,900,746 B1
23

of first router 18 in FIG. 3, and will so remain until a
like addition is made as to the Second datum Segment
(“j”);

d) ADDRESS=00001 is already on line D of first router
18, having been placed there as noted above by third
router 26, either upon termination of a preceding con
catenation Series or upon initial Startup, as shown in
FIG. 3 in the line that extends down from the “1”
portion of third router 26 and then leftward across the
bottom of FIG. 3, and will so remain until replaced by
ADDRESS;

e) ADDRESS is not known initially, but upon comple
tion of the second addition in first adder 20, for which
the addition selection code is shown in the Add-2 row
of Table II in Col. Add. as “1,” besides appearing as
C+D=8+1=9=01001 on line D of first router 18 to
replace the ADDRESS=00001 value already there as
shown in the Add-2 row, col. D of Table II, upon being
routed by Second router 22 will also appear on line E of
Subtractor 24, and will So remain until replaced by
ADDRESS by way of a like calculation on the next
arriving datum Segment;

f) the fixed number (00010)=2 that as discussed earlier is
used to determine whether or not each new datum

A. B*

Initial: * * * * * 00101
Enter-1: OOO11 OO1O1
Add-1: OOO11 OO101
Add-2: OOO11 OO101
Sub-1: OOO11 OO101
Sub-2: OOO11 OO101

Segment can fit into output register 32 is on line F of
Subtractor 24 and will so remain;

g) the size of output register 32, which is L=(100000)
=32, used to calculate whether or not each new datum
Segment can fit within output register 32, is similarly
fixed for the particular instance of the invention, is on
line G of Subtractor 24 and will so remain;

h) the result of the first subtraction ADDRESS-2 in
Subtractor 24, for which the Subtraction selection code
of “O'” is shown in the Sub-1 row of Table II at the Sub.
column, is not initially known, but as shown in the
Sub-1 row, H column of Table II and also in FIGS. 3
and 6 will become (00111)=7, and will be placed on
line H of Subtractor 24, then the result of the second
Subtraction L-(ADDRESS-2)=32-7=25, not shown

A. B*

Enter-2: OO111 OO1O1
Add-1: OO111 OO1O1
Add-2: OO111 OO1O1
Sub-1: OO111 OO1O1
Sub-2: OO111 OO1O1

24
in FIG. 3 but shown in FIG. 6 and in the Sub-2 row of
Table II, col. H, and as shown in the Sub. column to
have the subtraction selection code “1,” will be placed
on line H of subtractor 24 to replace the first value just

5 entered therein, Since the same circuitry is used in both
Subtractions,

i) the premise of Table II is that the routing code will
initially be a “1” bit, having just started a new concat

1O enation Series using a new datum Segment, but after
completing the Second Subtraction thereon at row Sub-2
the routing code will become a “0” bit, indicating that
first datum Segment dS=010 will fit into output register
32, hence that “0” bit routing code is sent to third router

15 26 to bring about the desired consequences of that “0”
routing code, which is the transfer of the datum Seg
ment in question from input register 16 to output
register 32.

20. The foregoing course of events can be Summarized in the
following Table II in which the values referred to in the
preceding list have been entered in, and in particular the
point at which the value for ADDRESS is obtained is
marked:

TABLE II

First datum segment

C D E F: G* H. Add. Sub. Ro.

* * * * * OOOO1 * * * * * OOO10 100000 * * * * * O O 1.
* * * * * OOOO1 * * * * * OOO10 10OOOO * * * * * O O 1.
O1000 OOOO1 * * * * * OOO1O 10OOOO * * * * * O O 1.
O1000 01001 01001 OOO10 100000 * * * * * 1 O 1.
OOOO O1OO1 O1OO1 OOO1O 1 OOOOO OO111 O O 1.
OOOO O1OO1 O1OO1 OOO1O 1 OOOOO 11 OO1 O 1. O

Datum Segments beyond the first one, although they will
40 likewise arrive in the leftmost positions of input register 16,

must be repositioned before they are placed into output
register 32. Description of that process will be deferred,
however, until after it is shown how a second and then a third

45 datum Segment are treated in accordance with the same
procedure as was just described relative to the first datum
segment. Table III below is thus just like Table II except in
pertaining to the Second datum Segment "i,' and although
not discussed in as full detail as was Table II, the locations

50 therein where differences exist between the data in the two

tables will be briefly noted, the first of these differences
being that Table III has no “initial” row in it since it follows
after Table II, Table III then being as follows:

TABLE III

Second datum segment

C D E F: G* H. Add. Sub. Ro.

OOOO O1OO1 O1OO1 OOO1O 1 OOOOO 11 OO1 O O O
O1101 O1OO1 O1OO1 OOO1O 1 OOOOO 11OO1 O O O
O1100 10101 10101 OOO10 100000 11001 1 O O
O11OO 10101 10101 OOO1O 1 OOOOO 10011 O O O
O11OO 10101 10101 OOO1O 1 OOOOO 11OO1 O 1. O

US 6,900,746 B1
25

The foregoing distribution of these values is also shown in
FIG. 7.
From FIG. 1, it can be seen that the second or “” datum

segment has the nnnnn-bit count code 00111, where (00111)
=7, and hence that figure now appears in the enter-2 row,

col. A of Table III, and on the Aline of first router 18 in FIG.
7. The content of col. B will remain fixed, and the rest of
the columns in the enter-2 row will retain the respective
values previously left there. In the add-1 row, the first (A+B)
addition is 00111+00101=7+5=12=01100, which is L., and
appears as such on col. C and on line C of first router 18. Col.
D at the add-2 row will be ADDRESS=ADDRESS+L=
01001--01100–10101=9-12=21. In col. H in the Sub-1 row,
ADDRESS-2=21-2=19=10011. For the second subtrac
tion G-H=32-19=100000-10011=01101=13, and that posi
tive result will again yield a “0” routing code as shown in
row Sub-2, col. Ro., and the concatenation Series can con
tinue.

The following Table IV shows the same process as to the
third datum segment, which is “k” of FIG. 1, and shows how
it is determined that a datum Segment turns out to be too long
to be concatenated as part of a current Series, as is also
illustrated in FIG. 8.

TABLE IV

Third datum segment

A. B* C D E F: G*

Enter-3: O1100 00101 O1100 10101 O1OO1 OOO1O 1 OOOOO
Add-1: O11OO OO1O1 1 OOO1 10101 O1OO1 OOO1O 1 OOOOO
Add-2: O11OO OO1O1 1 OOO1 1 OO11O 100110 OOO1O 1 OOOOO
Sub-1: O11OO OO1O1 1 OOO1 1 OO110 10101 OOO1O 1 OOOOO
Sub-2: O11OO OO1O1 1 OOO1 1 OO110 10101 OOO1O 1 OOOOO

The bit count code nnnnn for the “k” datum Segment is
seen in FIG. 1 to be 01100, or 12, and that number is shown
in the Enter-3 row of Table IV at col. A, as well as on line
A of first router 18 in FIG.8. Again using th same B* value
of 00101, the first addition in the add-1 row yields the result
01100+00101=10001=17, which is La and appears both on
line C of first router 18 in FIG. 8 and in the add-1 row, col.
C of Table IV. Adding to that the previous ADDRESS value
on line D of first router 18 yields 10101--10001=21+17=
38=100110=ADDRESS, which as is already evident will
exceed the 32 bit location limit of output register 32. (The
number of bit locations allocated for the bit count code
nnnnn itself is of course fixed at 5, but in calculating other
values therefrom, first adder 20 may of course allow an
expansion to 6 bits in order to accommodate Such overruns.)
That ADDRESS=100110 value will nevertheless be carried
through the Subtraction processes of Subtractor 24 in order to
establish the course of events as established by the resultant
routing code, which will be “1.”
As shown in FIG. 8, ADDRESS=100110 is entered into

line E of Subtractor 24, and also appears at the add-2 row,
cols. D and E of Table IV, from which the Subtraction
ADDRESS-2 at the sub-1 row places the value 100100=36
in col. H thereof, and also on line H of Subtractor 24, and
then upon the second subtraction, or G-H=100000
100100=-00100=-4, i.e., a negative number, on the Sub-2
row at col. H. That negative result yields a “1” routing code
as shown in the Sub-2 row, “Ro.” col. of Table IV, meaning
that the concatenation then in process must be terminated,
those datum Segments that had already been concatenated

5

15

40

45

50

55

60

65

26
must be transferred out to output register 32, and the “k”
datum Segment on which the aforesaid calculations had just
been carried out must instead become the first datum Seg
ment of a new concatenation Series.
The explicit consequences of having acquired a “1”

routing bit can be seen in FIG.8. From the previous course
of events, line D of first router 18 is seen to contain the
results of the previous calculation on the Second datum
segment, i.e., ADDRESS=10101, and on the line extending
downward from the “1” portion of first adder 20, that
ADDRESS=100110 has been calculated and is being sent
to replace that ADDRESS value. What then follows from
having got that “1” routing code, however, is that
ADDRESS=00001 is sent from the “1” portion of third
router 26 to that line D of first router 18, and also to datum
segment distributor 14, so that the circuitry will now be
treating that "k’ datum Segment as a “new” ds that, as
shown near the bottom of FIG. 8, to have been transferred
as Such to output register 32.

Besides determining whether or not each new datum
Segment will fit into the Space remaining in output register
32, the Second major task noted earlier is that of positioning
the datum Segments So as to achieve proper concatenation,
wherein each datum Segment has its beginning immediately
after the end of a preceding datum Segment. Datum Seg

H Add. Sub.

11001
11001
11001

-O110

ments will all arrive initially in the leftmost positions of
input register 16, and the first datum Segment will be sent to
the leftmost positions of output register 32, but then each
Subsequent datum Segment must be placed at a different
address, where by the Second datum Segment has the address
ADDRESS, the third must arrive in output register 32 at
ADDRESS, and so on. It must now be explained is how that
shift in position of a datum Segment is brought about.
The method of So doing is to put the datum Segment into

a shift register and then bring about the number of shifts
necessary to place each datum Segment as received into the
numerical address that follows immediately after each pre
ceding datum Segment. Datum Segment distributor 14
accepts each new datum Segment, that would also be passing
through the aforesaid routing process, and based on whether
a “0” or a “1” routing bit had resulted therefrom, establish
that each particular datum segment is to be in an ADDRESS,
position as a continuation of a concatenation Series on a “0”
routing bit, or in the first ADDRESS position of output
register 32 as the first datum Segment of a new concatenation
series on a “1” routing bit. Datum segment distributor 14
includes circuitry to accomplish that bit shifting, shown in
FIG. 9, and also circuitry that will bring about the actual
datum Segment transfer, as will be described and shown
below with reference to FIG. 10.
To accomplish that bit shifting will first require determin

ing the number of bit shifts to be carried out. AS can be seen
from a review of Tables II-IV, and also by comparing the
data shown to be present at the D line of first router 18 in
FIGS. 3, 7 and 8, the number of bit shifts required for each

US 6,900,746 B1
27

new datum Segment, Since that number depends only on the
length(s) of the preceding datum segment(s), will be avail
able in every case from the calculations that had been carried
out on each of the preceding datum Segments. In particular,
given an initial ADDRESS and proper tabulation of datum
Segment lengths thereafter, the amount of bit shifting
required for each datum Segment will be known in advance,
and it is only necessary to extract that information.

Also, the datum Segment in question must have been
placed into a location in which it can be bit shifted in
accordance with that determination. For the latter purpose,
FIG. 9 shows datum segment distributor 14 to include both
a bit shifter 54 and a datum segment positioner 56, the latter
of which is seen to include holding register 58 and shifting
register 60, and into both of holding register 58 and shifting
register 60 there is placed a copy of each new datum
Segment. Shifting register 60 is in fact a shift register, the
content of which, as is well known to those of ordinary skill
in the art, will be shifted by one bit position therein upon
receipt at the MSB end thereof of each “1” bit. The copy of
the datum segment in holding register 58 is left in the form
as received, while the copy in shifting register 60 is bit
shifted by bit shifter 54 in a manner to be described below.
The “0” or “1” value of the routing code as determined by
Subtractor 24 for a particular datum Segment will Select one
or the other version of the datum Segment for use, i.e., either
by transferring the bit shifted datum Segment in shifting
register 60 into output register 32 as part of a continuing
concatenation proceSS on a “0” routing code, or by moving
the non-bit shifted datum segment from holding register 58
into output register 32 on a “1” routing code. An alternative
procedure, deemed also to fall within the spirit and scope of
the claims appended hereto, would have been to place the
datum Segment into a shift register only, and then either shift
that datum Segment or not, depending on whether a “0” or
“1” routing code was produced, but the use of two registers
as described above allows the bit shifting to be proceeding
even as the routing code is being determined. Also, it is
evident that in the case of a “1” routing code, the transfer of
the datum Segment from holding register 58 into output
register 32 must not take place until after the pre-existing
content of output register 32 has been transferred into the
circuitry that will transfer that content to the target computer.

Although it was noted above that every datum Segment
will be used to calculate a new ADDRESS, for each next
arriving datum Segment, from which the number of bit shifts
for that next datum Segment can be determined, that infor
mation actually comes more directly when the length Li of
the datum segment ds and its bit count code nnnnn, at hand
have been determined by the first addition in first adder 20.
It is thus that L value that is used to count out the number
of bit shifts required for a datum Segment that is to be
concatenated as part of a current concatenation Series.
Consequently, besides being used to determine the address
of the next datum Segment and the routing code for the
datum segment at hand, that L value is also copied into
datum Segment distributor 14 So as to determine the number
of bit shifts required.

There are two aspects of this bit shifting process that must
be carefully noted. The first of these is that the length L of
a particular datum Segment that has just arrived pertains not
to the bit shifting of that datum segment itself, but rather to
that of the next following datum Segment. Secondly, it is
only with respect to the bit shifting of a third datum Segment
in a Series that the length Li of the preceding datum Segment
alone will yield the proper number of bit shifts. That is, the
location of the third datum Segment depends only on the bit

15

25

35

40

45

50

55

60

65

28
shifting of the Second datum Segment, there having been no
bit shifting of the first datum segment. The fourth datum
Segment, however, must be placed at a location just after the
Sum of the bit shifts of the Second and third datum Segments,
and So on. Thus, in general the number of bit shifts appli
cable to the i' datum segment, i.e., the bit shift count bsc,
can be expressed as bSc=XL, i.e., the Sum of the lengths
of all of the preceding datum Segments and their bit count
codes (which of course is 5 in every case). Or put another
way, bSc. 2-bse, 2+L , i.e., to obtain the bit shift for the i'
datum Segment, the length of the immediately preceding
datum Segment and its bit count code is added on to the
number of bit shifts that had previously been carried out for
all of the preceding datum segment(s). The latter expression
above describes directly and exactly how the final bit shift
value is actually obtained.

Specifically, it can be seen in bit shifter 54 as shown in
FIG. 9 that an L value from first adder 20 is placed into bit
shift accumulator 62, Specifically into Second adder 64
therein, which then connects on to shift count register 66. On
the output Side of Second adder 64 there is a Second line
labeled “Xbsc,” which line turns back to serve as a second
input to Second adder 64. Using the lengths Li of the datum
segments “i,” “j,” and “k” of FIG. 1 and beginning with
“Zero” values on the two inputs to second adder 64, entry of
L=01000 into second adder 64 will place that same value
into shift count register 66, there having been a Zero value
on the second input to second adder 64, but by virtue of that
Xbsc line that 01000 value will also become a second input
to second adder 64. The second datum segment will then
need to undergo the indicated 8 bit shifts to be placed
properly in output register 32, i.e., starting at the 9" position
therein, just past the last bit of the first datum Segment, as
shown in shifting register 60 of FIG. 9. Upon the arrival of
the second datum segment “j” for which L=01100 or 12,
second adder 64 will yield the sum (01000)+(01100)=
(10100)=8+12=20, the number of bit shifts required for the
third datum segment "k,” thereby (if continued concatena
tion were possible) to place that third datum segment “k” So
as to Start at position 21, as is also marked in shifting register
60 of FIG. 9, and the same process will continue as to
Subsequent datum Segments So long as that concatenation
Series can be continued.
AS noted in the earlier discussion, however, the length of

the third datum Segment "k' precludes it from being
included in the concatenation Series that includes datum
Segments “i' and "j, with datum Segment "k” having a
length of 17 bits, it will fit into input register 16 and both
holding register 58 and shifting register 60 upon its arrival,
but upon being bit shifted 8+12=20 times in shifting register
60, the bits at the LSB end of datum segment “k' will be
“pushed off the LSB end of shifting register 60. That will
not matter, however, Since the fact that datum Segment "k'
will not fit into the Space remaining in output register 32 will
be signaled by a “1” routing bit from third router 26, and
hence it will not be that bit-shifted version of datum segment
“k” in shifting register 60 that is transferred to output
register 32 in any event, but rather the unshifted datum
segment “k” in holding register 58, and indeed, as will be
described below in the discussion pertaining to datum Seg
ment positioner 56, into the ADDRESS positions of output
register 32 to start a new concatenation Series.

However, that step alone will not resolve the matter of
proper treatment of the datum Segment that will be next to
follow. The several additions and Subtractions that occur in
the circuit path from first router 18 to third router 26 will
already have taken place when that “1” routing code is

US 6,900,746 B1
29

acquired, and the various values deriving from those
calculations, which are appropriate only to the case of a
continuing concatenation, will nevertheless have been
entered into the various terminals involved, and particularly
into bit shift accumulator 62. Those values derive from
calculations based on what would have been a third datum
segment of that series, with the number of bit shifts required
then pertaining, of course, to what would have been a fourth
datum Segment of that Series, when the situation actually
existing is that th putative "third datum Segment has instead
become a first datum Segment, and the putative fourth datum
Segment has become a Second datum Segment, with the
former Situation having present a number of accumulated bit
shifts that do not apply to what has become the real situation.

Specifically, upon the entry of datum Segment "k into
input register 16, the bit count code nnnnn-01100-12
thereof would have been entered into line A of first router 18,
the length of the bit count code itself, or 00110=5 would
have been added thereto in the first addition in first adder 20,
and an L value=10001 =17 would have been entered both
into line C of first router 18 and bit shift accumulator 62 to
establish in part the number of bit shifts to be applied to the
next datum segment. Moreover, the cumulative L values for
the first and Second datum Segments, or 8+12=20, would
have been added thereto in second adder 64 so as to yield a
total bit shift of 37 for the next (or fourth) datum segment.
However, when that third “k” datum segment comes to be
treated as it must-not as the third datum Segment of a
continuing Series but rather as the first of a new Series-and
is thus placed into ADDRESS, the number of bit shifts
appropriate to the next-received datum Segment, i.e., what
will now have become the second datum segment of that
new series, will be only the full length of that “k” datum
Segment So as to be concatenated onto the end thereof, i.e.,
only by those 17 bits and not by any prior accumulation of
earlier bit shifts. The appearance of that “1” routing bit must
then be applied also to the entry only of that 17-bit figure
into both shift count register 66, for purposes of counting out
the correct number of bit shifts, and into datum Segment
positioner 56 wherein only those 17 bit shifts will correctly
position that next-arriving datum Segment.

The means for accomplishing that Step is provided as a
part of the bit shifting process itself. It has been noted that
the correct bit shift value of 17 shifts for the next-following
datum Segment has already been placed, as usual, at terminal
C of first router 18 and at the input to bit shift accumulator
62. To avoid including in the bit shift count the number of
bit shifts that had already taken place, it is only necessary to
prevent the occurrence of that "Xbsc, addition in Second
adder 64, so that the correct 17 bit value will pass directly
into shift count register 66. For that purpose, it would be
possible to add another router to the circuit Such that Second
adder 64 was simply “routed around” on a “1” routing bit,
and that procedure would of course fall within the spirit and
Scope of the invention. However, as indicated above a more
Simple method of accomplishing that purpose can be found
within the bit shifting process itself, as will now be
described.
As shown in FIG. 9, bit shifter 54 contains therein XOR

gate 68, one input of which derives from shift count register
66, with the other input coming from second counter 70.
XOR gate 68 will provide a “1” bit at any time that the two
inputs thereto have different values, but a “0” bit if those
inputs are the same. The output from XOR gate 68 connects
to shifting register 60 and also to second counter 70. A “1”
bit from XOR gate 68 will cause a “1” bit shift in the content
of shifting register 60, and also a one count increment in

15

25

35

40

45

50

55

60

65

30
second counter 70, which process will continue until the
content of second counter 70 has passed from an initial
default value of 00000 to match the content of shift count
register 66 to produce then a “0” bit from XOR gate 68,
rather than a “1” bit, and the bit shifting process will have
ended. The 01000 value shown in shift count register 66 is
the L value from bit shift accumulator 62 expressing the
length of the full first datum Segment “i,' as then pertains to
the bit shifting of the Second datum Segment. At end of the
bit shifting, the content of shifting register 60 will be as
shown in FIG. 9, i.e., the Second datum Segment as received
(and as still shown in holding register 58) will still be present
in shifting register 60, but will have been shifted to the right
by 8 positions, thereby to commence at the 9" position as
required for proper transfer into output register 32.

In more detail, at Startup or on the completion of a
concatenation Series, both shift count register 66 and Second
counter 70 will have default values of 00000. That is brought
about by the fact that the end of a bit shifting process is
signaled by a “0” bit from XOR gate 68, that will cause a
reset of second counter 70 back to its 00000 reset value, and
the line extending from the “r” box on second counter 70
shows that the same 00000 value is sent to shift count
register 66. That is, a “0” bit will be produced from XOR
gate 68 both in having 00000 values in both shift count
register 66 and second counter 70 and (in this particular
case) in having 01000 values in both shift count register 66
and second counter 70. Or, more generally, a “0” bit from
XOR gate 68 will appear at the end of any bit shifting
process as to any datum Segment, at Such time as Second
counter 70 has counted out that number of bit shifts as shift
count register 66 had indicated was required. Bit shifting is
started by the entry of a bit shift count bsc, into shift count
register 66, and more specifically in the present case, as
shown in FIG. 9, by entry of bsc=01000, which again is the
value of L, the length of datum segment “i.' Given that the
default value of 00000 from second counter 70 is present on
the other input to XOR gate 68, a “1” bit will be produced
by XOR gate 68, a series of which are shown on the line that
extends downward and then to the left from the XOR gate
68 output, and that process will be repeated until, upon
repeated receipt of “1” bits from XOR gate 68, the count in
second counter 70 has passed from 00000 to 01000 and
those 8 bit shifts have been carried out as previously
described.

Besides the fact that a new concatenation Series begins
with a first datum Segment to which no bit shifting is applied,
it is also true that as to that concatenation Series there would
also have been no bit shifting of any preceding datum
Segments. The way in which that fact is reflected, i.e.,
wherein the various data entries previously mentioned that
would have been developed in the course of deriving a “1”
routing bit from third datum Segment "k” are not included in
Setting the bit shifts of the new concatenation Series, is not
by routing around the “Xbsc,” addition in second adder 64,
as was noted above as being one possibility, but rather by
resetting the input to Second adder 64 to reflect the actual
number of prior bit shifts that had already been carried out,
which of course is Zero when treating the Second datum
Segment of a new concatenation Series. The line from the “r”
portion of second counter 70 that resets the content of shift
count register 66 to 00000 is thus sent also to second adder
64.
The value of 17 bits as the length Li of datum segment

“k,” that has now become the first datum segment of the new
concatenation Series, Still remains as an input to bit shift
accumulator 62, but when passed through Second adder 64

US 6,900,746 B1
31

to have the value of Zero added thereto retains that Same,
correct value as to the number of bit shifts to be applied to
a next-arriving datum Segment, e.g., as to an “1” datum
Segment following after that "k” datum Segment. AS to
additional datum Segments that can be included within the
concatenation Series then being carried out, the number of
bit shifts for the third and later datum segments would derive
from the addition of the real bit shifts that would have been
carried out, e.g., as (L)+L, (L+L)+L+ . . . , etc., where
the term in parentheses would be the value brought back
around into second adder 64 by the “Xbsc,” line, to which
would be added the bit count comprising the length of each
immediately prior-received datum Segment, thus to place
each Successively new datum Segment immediately adjacent
the preceding one, i.e., at places further and further down
along output register 32 until as many datum Segments as
output register 32 could then accommodate had been
included.

While the bit shifting of a datum Segment is proceeding,
that datum Segment would also have been getting processed
through the circuitry of FIG. 3 to yield from third router 26
either a “0” or a “1” routing code that determines from
which of holding register 58 or shifting register 60 that
datum Segment will be copied into output register 32. AS
shown in FIG. 9, that routing code is passed into fourth
router 72 that connects to both of holding register 58 and
shifting register 60, the content of one or the other of which,
as will be determined by the “0” or a “1” value of the muting
code, is then passed by fourth router 72 into datum Segment
positioner 56. Since in the present example the Second
datum Segment “” will indeed fit within the remaining Space
of output register 32, fourth router 72 will receive a “0”
routing code from third router 26, the content of holding
register 58 is left undisturbed until replaced by the next
arriving datum Segment, while the bit shifted content of
shifting register 60 as shown in FIG. 9 will be passed into
datum segment positioner 56, the operation of which will
now be described.

Besides needing to determine the number of bit shifts
required to place a datum Segment into the desired end-to
end relationship with adjacent datum Segments and then to
bring about that bit shifting, both of which are done by bit
shifter 54 as just described, it is also necessary to effect that
actual placement of the datum Segment in output register 32,
and that is done by datum Segment positioner 56 shown in
detail in FIG. 10 (sheet 7). FIG.10 is drawn here to represent
the case in which a first datum Segment is being transferred,
for which there will be no bit shifting and it is the content
of holding register 58 that will be used. Across the bottom
of FIG. 10 there is shown a transfer register 74 into which,
in general, there will be transferred the content either of
holding register 58 or shifting register 60, depending upon
whether the routing code is “0” (shifting register) or “1”
(holding register). It would be possible not to use transfer
register 74, Such that the register shown across the bottom of
FIG. 8 was itself either holding register 58 or shifting
register 60, but by having transfer register 74 in the circuit,
the complex circuitry of FIG. 10 in which every bit position
is connected to a latch needs to be implemented only once,
rather than for both holding register 58 and shifting register
60. The use of transfer register 74 is adopted here also for
purposes of easier description, it being understood, of
course, that either way of discussing the procedure, and
whether or not transfer register 74 is used, would fall within
the Spirit and Scope of the claims appended hereto.

In the datum Segment transferS discussed So far, it would
have been the full content of a register that was moved into

15

25

35

40

45

50

55

60

65

32
Some other register. What must be accomplished by datum
Segment positioner 56, however, is the transfer of only a
portion of the content of a register, Specifically transfer
register 74, into output register 32, and in Such a way as not
to overwrite whatever datum Segment content might already
have been placed into output register 32. The method of So
doing is based on the ADDRESS, of the particular datum
segment. As will be seen further below, on a “0” routing
code datum Segment positioner 56 transferS out the data in
transfer register 74 that is located in positions Starting at a
particular ADDRESS, and then on to the right to the LSB
end of the register, but data lying on the MSB or left side of
ADDRESS, are untouched. The data present in those last
mentioned locations will in fact be a series of “1” bits that
would have arisen from the bit shifting that had placed the
datum segment of interest to commence at ADDRESS. The
data already contained in output register 32 on the MSB side
of ADDRESS, are necessarily also left untouched, which is
precisely the desired result Since those data would be made
up of one or more datum Segments that had already been
transferred into output register 32, and the data transfer that
actually does take place concatenates the new datum Seg
ment onto those already present, which is the basic purpose
of concatenator 10.

FIG. 10 illustrates the circumstances of transferring a first
datum segment “i” having ADDRESS=00001, so datum
segment positioner 56 must also be provided with that
address. AS can be seen in the upper left hand corner of FIG.
10, and also in one of the lines in FIG. 3 that extends down
from the “1” portion of third router 26 to datum segment
distributor 14, in the case of the first datum Segment address
register 76 within datum segment positioner 56 will receive
ADDRESS from third router 26. (It may be recalled that the
“0” and “1” portions of third router 26 are not structures, but
instead show what occurs when either the “0” or “1” routing
code is in effect; the two lines from respective “0” and “1”
portions of third router 26 being in fact the same line, and
will transmit either the “0” or the “1” routing code as can be
seen to be entering third router 26 from Subtractor 24.) As
will be described further below, a datum segment that yields
a “1” routing code from subtractor 24, that is sent to third
router 26 at the termination of a concatenation Series just
prior to the condition now being described, will also have
put ADDRESS=00001 onto that address register 76.
Together with the transfer of previously concatenated datum
Segments out of output register 32 and the placement of
ADDRESS=00001 also on line D of first router 18, it is that
entry of ADDRESS=00001 onto address register 76 of
datum Segment positioner 56 that brings about the transfer of
data from output register 32 to an external computer or other
Such destination.

For reasons of space in FIG. 10, and to able to show the
individual connections from transfer register 74 to corre
sponding positions in output register 32, output register 32
is set out in Separate parts at Several places within the
drawing of datum Segment positioner 56, it being
understood, however, that in its actual physical form, output
register 32 will preferably be the usual Single contiguous
unit in the Same manner as is input register 16, transfer
register 74, or any other register. Datum Segment positioner
56 itself is shown in two parts, with a middle part of the full
range thereof from 1 to 32 that is not directly involved in
treating first datum Segment “i' not being shown.
The Structure of datum Segment positioner 56 centers

firstly on an array of 32 datum release latches 78-140
through Selected ones of which are to pass the respective
contents of the 32 bit locations in transfer register 74 that

US 6,900,746 B1
33

connect to respective D terminals of datum release latches
78-140, with the 32 Q output terminals of datum release
latches 78-140 then connecting respectively to the 32 bit
locations of output register 32. Secondly, the Selection of the
bits actually to be transferred is accomplished by an array of
XNOR gates 142-204, the outputs of which connect respec
tively to the G terminals of datum release latches 78-140.
The inputs to XNOR gates 142-204 consist of a common
5-bit address bus 206 as one input thereto, and a second
input comprising an array of 5-bit address buffers 208-270
that contain in order the respective 5-bit binary codes for the
integers 1-32 and connect individually and respectively to
each of the XNOR gates 142-204. A“1” bit will be produced
directly at the output of any XNOR gate 142-204 into which
address bus 206 provides a 5-bit code input that matches th
value in an address buffer 208-270 that connects to that
same XNOR gate.

Additional connections between the output Sides of
XNOR gates 142-204 and the G terminals of datum release
latches 78-140 are such that upon entry onto address bus
206 of the binary code for any one of the numbers 1-32, a
“1” bit will appear on the output side not only of the XNOR
gate to which was connected the same binary code as was
present on a corresponding one of the address buffers
208-270, but also on the output sides of every other XNOR
gate for which the binary numbers Serving as one input
thereto are larger than the binary number that had been
entered. Thus, it can be seen in FIG. 10 that the outputsides
of XNOR gates 142-204 are numbered from 1 to 32, and
when the binary code for any one of those integers 1 to 32
is entered onto address bus 206, a “1” bit will appear not
only on the output side of that XNOR gate which has that
Same integer number 1 to 32, but in addition, because of the
one-directional closed circuit provided by diodes 272 that
connect rightwardly from each XNOR gate output to the
output of each adjacent XNOR gate output, on the output
sides of such of those XNOR gates that have integer
numbers larger than that one integer. Those “1” bits will
appear on the G terminals of the corresponding array of
datum release latches 78-140, thereby permitting transfer of
data bits from corresponding positions in transfer register 74
to Similarly corresponding positions in output register 32.
Transfer of the data from transfer register 74 only into those
desired positions within output register 32, i.e., So as not to
disturb the desired data already present on output register 32,
is brought about by the fact that, because of the direction
ality of diodes 272, and as opposed to XNOR gates having
integer values larger than that which was entered onto
address bus 206, that “1” bit does not appear on the outputs
of the XNOR gates that have smaller integer values than the
value entered. Consequently, the bit on the one Selected
position of transfer register 74, and all data at positions to the
right thereof in FIG. 10, will be transferred to output register
32, but no data at positions to the left of that selected
position in FIG. 8 will be transferred.

To See more specifically how that result is achieved,
attention may first be drawn to the horizontal line in FIG. 10
extending from just below XNOR gate 142 (XNOR gate no.
1 in terms of the number designations) all the way over to
the right side of FIG. 10. Between the G terminals of the first
through sixth datum release latches 78, 88 there are solid
connections, hence a “1” bit on the output of XNOR gate
142 would appear in the same fashion on the G terminals of
all of datum release latches 78,80, ... 88 in the left center
of the drawing. Entry of the 00001 code (or in fact any code
in the range 00001-00110 or 1-6) on address bus 206 will
thus place that “1” bit onto the G terminals of the first six

15

25

35

40

45

50

55

60

65

34
datum release latches 78-88 that individually interconnect
Specific locations along transfer register 74, shown acroSS
the bottom of FIG. 10, with corresponding locations in
output register 32, the relevant parts of which are shown in
the lower left part of FIG. 10.

That procedure clearly accomplishes transfer of the 5 bit
nnnnn, bit count code for the first datum segment, but it may
be wondered why connection is also made to the 6" posi
tion. That is answered by considering what is the lowest
possible address that could be used for the Second datum
Segment. In order to have a Second datum Segment, there
must first have been a first datum Segment, which must
contain therein at least one bit. That one bit would occupy
the 6" position, which then establishes the limitation that
ADDRESSs 7. (Since the first datum segment in this
example has 3 bits, it turns out actually that ADDRESS=
01001=9.) Moreover, because of the right-ward pointing
diodes 272 that interconnect respective positions 6–7, 7-8;
8-9, etc., a “1” bit at the 1-6 positions will also appear at all
of the rest of the positions to the right therefrom, i.e., at
positions 7-32 (the outputs of XNOR gates 144-204). As to
the first datum segment “i” in particular, FIG. 10 shows the
eight bits 00011010 thereof to have been transferred into the
first eight positions of output register 32, as is desired, and
as also shown in a complete representation of output register
32 at the bottom of FIG. 3.

Proper placement of later datum Segments, however, will
require not only having both rightward reaching and elec
trically conductive lines leading from each XNOR gate
output to the next adjacent outputs of the XNOR gates
located at higher numbered positions, but also means for
ensuring that whatever may be written into an ADDRESS
in output register 32 does not write over what might previ
ously have been written therein for the previous datum
Segment starting at ADDRESS, and likewise for any
earlier datum Segments. Both of those tasks are accom
plished by that array of diodes 272 that connect between all
adjacent XNOR gate outputs beyond the first six, since
diodes 272 have a directional orientation that will permit the
transfer of a “1” bit to the right in FIG. 10 So as to encompass
all of the higher numbered datum release latches, but to
block any transfer to the left, that if allowed to occur would
encompass the lower numbered datum release latches. The
exclusion of that “1” bit from those lower numbered datum
release latches prevents any overwriting of previous datum
Segments that had already been placed in output register 32.
The manner just described in which the locations for the

bit count code nnnnn and the consequent placement of the
datum Segment are treated is thus unique to the first datum
Segment of a concatenation Series. Again, in this example the
number of Spaces required for that bit count code will always
be five, Since the instance of concatenator 10 Selected here
as an example was given that size, and of course a corre
sponding Size for input, output registers 16, 32 of 32 bits,
given that a 5-bit code can express the integers from 1 to 32.
The actual implementation of that 5-bit limitation is pre
cisely at this point, i.e., in the fixed connections to those
datum release latches 78-88 that control the inputs to the 61
ft-most positions of output register 32.

In the transfer of later datum Segments of a concatenation
series for which the routing code will be “0,” each such
datum segment will have its own ADDRESS, that must be
correctly placed within datum Segment positioner 56 in
order to yield the proper positioning within output register
32. The required ADDRESS, value to be applied to transfer
register 74 for the datum Segment at hand is obtained in the
Same way as was the number of bit shifts that were required

US 6,900,746 B1
35

to place that Same datum Segment in proper condition for
such transfer into transfer register 74. That is, there will be
no bit shifting of a first datum segment, but then the bit
shifting of the Second datum Segment is based on the length
Li of the first datum Segment, as described with reference to
FIG. 9. It is thus convenient to derive the required
ADDRESS, value from the same context of FIG. 9 as was
the number of bit shifts, thereby ensuring that there will be
no interference with other usage of such ADDRESS, values,
i.e., in determining routing codes. It is further shown in FIG.
9 that each Successive bit shift count, upon adding the
number “1” (or more exactly, ADDRESS=00001) thereto,
will yield the correct ADDRESS, value that at the particular
time is to be used in transferring that Same bit shifted datum
Segment out of transfer register 74 into output register 32-it
is the length L of the immediately preceding datum Segment
that controls both processes, such that ADDRESS derives
from L, ADDRESS derives from L (or more exactly, from
L+L), etc. The address Source for the unique case of
ADDRESS, that is shown in FIG. 10 to be third router 26,
for the ADDRESS, of all other datum segments will instead
be bit shift accumulator 62. Since shift accumulator 62
contains not addresses, however, but datum Segment lengths
Li, the actual ADDRESS, for the subsequent datum seg
ments must be obtained by adding “1” to that accumulated
datum Segment length value, and that is accomplished by
third adder 274 in datum segment positioner 56 that con
nects between bit shift accumulator 62 and address register
76. (For example, the bit shifting that must be applied to the
second datum segment is 8 in number, but ADDRESS=9.)

To illustrate how a first datum Segment that had previ
ously been transferred into output register 32 will be left
undisturbed by later transmissions thereto, an input on
address bus 206 of the address 00111, wherein (00111)=7.
would cause a “1” bit to appear at the output of the XNOR
gate that connects to that 7" position address bus 206, i.e.,
XNOR gate 144. That could occur, of course, only if the first
datum segment had but one bit, and hence with its 5-bit bit
count code (00001)=1 had filled only the first 6 positions of
input register 16. Appearance of the aforesaid “1” bit on the
G terminal of datum release latch 90, that is directly con
nected to that output of XNOR gate 144, would then cause
the content of the 7" position on transfer register 74, which
connects to the D terminal of datum release latch 90, to
appear on the Q output of datum release latch 90 that
connects to the 7" position of output register 32. Because of
the rightward connection from the output of XNOR gate 90
to the right-oriented diode 272 and thence to the output of
the adjacent XNOR gate 92, that “1” bit will also appear on
the G terminal of datum release latch 92, thereby allowing
the content of position 8 on transfer register 74 to pass
through datum release latch 92 to the 8' position on output
register 32. Similarly, the continuing rightward connection
of diodes 272 to successively next adjacent XNOR gate
outputs then causes all of the remaining rightward content of
transfer register 74 to be transferred to output register 32.

However, because of the rightward orientation of diodes
272, and especially the diode 272 that lies between positions
6 and 7, that “1” bit at position 7 is not felt on the G terminal
of datum release latch 88 that connects to position 6 (and
thence to positions 1-5) of transfer register 74, so there will
be no change in the content of the 6" position of output
register 32, nor of the content of the 1'-5" positions.
Whatever may be the content of a new datum Segment, given
the bit shifts that would have occurred on the content of
transfer register 74 for all datum Segments other than the
first, the Second datum Segment will be transferred into those

15

25

35

40

45

50

55

60

65

36
positions in output register 32 that commence with the 7"
position. The same will apply to the entry of any ADDRESS,
larger than 7 (either in lieu of or following thereafter), i.e.,
if transfer is to occur at all, those data bits that are held at
or in higher numbered positions in transfer register 74 than
any particular ADDRESS, will be transferred therefrom to
output register 32, and none will be transferred to any
lower-numbered positions, whose previously transferred
content in output register 32 will remain intact.
With Specific reference now to the Second datum Segment

“j,” the first 8 positions in transfer register 74 would have
contained the first datum segment 00011010, but after bit
shifting and transfer, Second datum Segment “” will instead
appear in transfer register 74 as 11111111001111011101,
having been bit shifted past those first eight positions into
which would have been placed instead the eight “1” bits
from the bit shifting process. That is, the full content of
output register 32 will appear S
00011010001111011101XXXXXXXXXXXX, where the x's may
either be left over from a previous concatenation Series or
may be a default entry of a zero-string 000000000000 upon
Startup. The content of the first datum Segment will remain,
and will not be replaced by those 8 “1” bits arising from the
bit shifting process, because the transfer of the Second datum
segment only begins at ADDRESS=9.

Alternatively, an ADDRESS and later such ADDRESS,
values can be obtained for use in datum Segment positioner
56, for the aforesaid datum Segment positioning purposes,
from the output of the second addition in first adder 20, as
these are established as each new datum Segment arrives as
shown in FIGS. 3 (ADDRESS), 7 (ADDRESS) and 8
(ADDRESS), etc. This option is shown in FIG. 10 by the
dashed lines leading into address bus 206.

Although the invention has been described in terms of
ordinary electronic digital gates embodied in Semiconductor
technology (but Substituting mechanical Switches for pur
poses of illustration when that seemed to make a description
more clear), it should be recognized that the circuit struc
tures and overall architecture of the invention do not depend
upon any specific technology. Implementation of the inven
tion could as well be based on other kinds of hardware to
form the necessary binary logic, even including, for
example, carbon nanotube transistors as described by Ali
Javey, Jing Guo, Qian Wang, Mark Lundstrom & Hongjie
Dai, "Ballistic Carbon Nanotube Field-Effect Transistors.”
NATURE, Vol. 424, Issue No. 6949, pp. 654–657 (7 Aug.
2003); the kind of gates formed of magnetoresistive ele
ments as described in A. Ney, C. Pampuch, R. Koch & K. H.
Ploog, “Programmable Computing With a Single Magne
toresistive element,” NATURE, Vol. 425, Issue No. 6957, pp.
485-487 (2 Oct. 2003); semiconductor light sources and
fiber optics using photon transmissions, or, in a quantum
computing context, controllable quantum dot interchanges
using electron spin for the “0” and “1” bits. Implementation
of the invention using these or other technologies, whether
presently known or yet to be conceived and demonstrated,
are deemed also to fall within the Spirit and Scope of the
present invention and of the claims appended hereto. More
particularly, in lieu of datum Segment positioner 56 as
described and shown herein for purposes of placing datum
Segments into desired positions in an output register there
might be used the data selector 40 and data release latch 42
of U.S. application Ser. No. 10/462,868, filed by the present
inventor on Jun. 16, 2003, having the title “Gate-Based
Zero-Stripping and Varying Datum Segment Length and
Arithmetic Method and Apparatus,” and which is incorpo
rated herein by this reference and Serves the purpose, as does

US 6,900,746 B1
37

datum Segment positioner 56, of placing datum Segments
that have undergone Some previous processing into Some Set
of previously identified register addresses. (In lieu of the
System in datum Segment positioner 6 that employs diodes
272 to Separate those datum release latches that are to pass
data therethrough from those that are not, data selector 40
and data release latch 42 of U.S. application Ser. No.
10/462,868 uses selectable direct connections through an
array of datum release latches between input and output
registers.) That datum Segment distribution procedure, and
other variations of other particular methods and apparatus
described herein that in Such cases would be known to a
perSon of ordinary skill in the art, are similarly deemed to
fall within the Spirit and Scope of the present invention,
which must be interpreted only by the claims appended
hereto.

It should also be noted that the data produced by concat
enator 10 will be unreadable by any computer or other data
processing System that has not been adapted to treat variable
length datum Segments, e.g., by transforming Such data as
derive from concatenator 10 into some predetermined fixed
length as may be used by a particular computer or data
processing System. The reason is that Standard data process
ing systems use Central Processing Units (CPUs) or at least
processors, that are designed to accommodate “bytes' of
Some fixed size. From concatenator 10, however, instead of
receiving bit Strings of a corresponding length Such proces
SorS could receive within, Say, one 16- or 32-bit address, a
number of datum Segments other than one, one datum
Segment and part of a Second, just a part of one datum
Segment, and So on, and any attempt to interpret those data
by fixed size means would generally yield only gibberish.
Concatenator 10 can thus function also a hardware-based
computer Security device.

The design and construction of other variations in the
forms of the electronic, light or other components than those
already mentioned herein, and in the particular Selection of
components, could easily be carried out by a perSon of
ordinary skill in the art, based on the present description of
the manner of So doing and the functions being
accomplished, hence all Such variations are deemed to fall
within the Spirit and Scope of the invention and of the claims
appended hereto. Other arrangements and dispositions of the
aforesaid or like components, the descriptions of which are
intended to be illustrative only and not limiting, may also be
made without departing from the Spirit and Scope of the
invention, which must be identified and determined only
from the following claims and the equivalents thereof.

I claim:
1. A concatenator adapted to receive and proceSS datum

Segments of varying bit lengths, comprising:
an input register having a predetermined bit length and

having defined therein an initial input register address,
means for receiving within Said input register one or more

datum Segments that may have varying bit lengths,
means for determining the full bit length of one or more

received datum Segments,
an output register having a predetermined bit length and

having defined therein an initial output register address,
transfer means for transferring a first datum Segment from

Said input register to Said initial output register address
as a first Step of a concatenation Series,

address calculation means for calculating respective
addresses for one or more datum Segments other than
Said first datum Segment;

concatenation means for transferring, as further Steps of a
concatenation Series, one or more additional datum

5

15

25

35

40

45

50

55

60

65

38
Segments from Said input register into locations within
Said output register that are in immediate juxtaposition
with respective datum Segments just previously trans
ferred thereto;

means for determining whether or not a received datum
Segment can be fit within Said predetermined bit length
of Said output register at locations not occupied by any
prior transferred datum Segments, and

concatenation initiation means for initiating a new con
catenation Series upon one of Said additional datum
Segments exceeding in length an amount of Said pre
determined length of Said output register not occupied
by one or more prior transferred datum Segments,

whereby said output register can be filled to near Said
predetermined bit length by concatenating together a
Series of datum Segments.

2. The concatenator of claim 1 wherein each of Said datum
Segments has appended thereto a bit count code that is of a
predetermined bit length and expresses the bit length of Said
datum Segment, and Said means for determining the full bit
length of one or more received datum Segments comprises
means for reading Said bit count code and adding together
Said predetermined bit length of Said bit count code and Said
bit length of Said datum Segment.

3. The concatenator of claim 1 wherein said address
calculation means comprises address addition means
wherein a full bit length of a received datum Segment is
added to an immediately preceding output register address.

4. The concatenator of claim 1 wherein Said means for
determining whether or not a received datum Segment can be
fit within said predetermined bit length of said output
register at locations not occupied by any prior transferred
datum Segments comprises Subtraction means in which a
calculated output register address is Subtracted from Said
predetermined bit length of Said output register.

5. The concatenator of claim 1 further comprising bit
counting means for determining the length of a datum
Segment and appending thereto a bit count code that
expresses Said length of Said datum Segment.

6. The concatenator of claim 1 further comprising bit
shifting means for positioning a datum Segment and bit
count code at a predetermined address in a register.

7. The concatenator of claim 5 wherein said bit shifting
means comprises a shift register.

8. A datum Segment positioner adapted to accept variable
length datum Segments each having associated therewith a
Specific register address to which Said datum Segment is to
be sent, and to place individual ones of Said datum Segments
into respective ones of Said Specific register addresses,
comprising:

address identification means, wherein as to each Said
datum Segment Said datum Segment positioner identi
fies Said Specific register address that is associated with
each Said individual datum Segment; and

datum Segment transfer means wherein each said indi
vidual datum Segment is transferred to corresponding
ones of Said Specific register addresses that are associ
ated with each Said individual datum Segment.

9. A method of concatenating a Series of datum Segments
comprising the following Steps:

a) in a first transfer, transferring from a first register
having a predetermined length, into an initial address
within a Second register having a predetermined length,
a first datum Segment having a predetermined length as
defined by an end bit location that is less than said
predetermined length of Said first register, together with
the full remaining content of Said first register;

US 6,900,746 B1
39

b) in a Second transfer, transferring from Said first register
a Second datum Segment, together with the full remain
ing content of Said first register, into a Second address
that begins within Said Second register at a bit location
immediately following said end bit location of said first
datum Segment, whereby a portion of Said first full
remaining content as had been transferred into Said
Second register in Said first transfer is over-written by
Said Second transfer,

40
c) repeating Steps a) and b) until Said Second register is

essentially filled with consecutively concatenated
datum Segments.

10. The method of claim 9 wherein said second address is
determined by adding to Said initial address the predeter
mined length of Said first datum Segment.

