

DOMANDA DI INVENZIONE NUMERO	102021000026762
Data Deposito	19/10/2021
Data Pubblicazione	19/04/2023

Classifiche IPC

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
F	16	L	11	12
G .				
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo

Titolo

TUBO MULTISTRATO FLESSIBILE PER SISTEMI DI RAFFREDDAMENTO, PER SISTEMI FRENANTI E PER SISTEMI ANTINCENDIO TUBO MULTISTRATO FLESSIBILE PER SISTEMI DI RAFFREDDAMENTO, PER SISTEMI FRENANTI E PER SISTEMI ANTINCENDIO

DESCRIZIONE

Il presente trovato ha per oggetto un tubo multistrato flessibile per sistemi di raffreddamento, per sistemi frenanti e per sistemi antincendio.

Tale tubo trova applicazione, ad esempio, come convogliatore pneumatico per sistemi frenanti, in particolare di veicoli e di mezzi ferroviari.

Per la sicurezza e per un adeguato livello di efficienza dei sistemi frenanti, è necessario che tale tipologia di tubo, oltre che flessibile, sia anche resistente al fuoco più a lungo possibile mantenendo la sua capacità di convogliare l'aria in pressione.

Ad esempio, secondo la normativa EN 50553, nota come "running capability", che definisce i requisiti delle attrezzature per applicazioni ferroviarie in caso di incendio, deve essere previsto il superamento di una prova di 15 minuti sotto fiamma a 800°C secondo il metodo ISO 15540,

al termine del quale il tubo deve resistere senza presentare perdite, per due minuti, ad una pressione statica doppia rispetto a quella nominale. Ad oggi è quindi sentita l'esigenza di migliorare i livelli di resistenza al fuoco, aumentando il livello di protezione contro il calore affinché il tubo possa resistere alle alte temperature e alle fiamme libere per almeno 15 minuti.

Ad oggi sono noti tubi per convogliare fluidi in pressione nei sistemi frenanti che comprendono una serie di strati tra cui un sottostrato in gomma sintetica a cui sono sovrapposti strati di tessuto, altri strati rinforzo in in sintetica e di materiali resistenti al calore e alla fiamma che sono realizzati con fibre a base di silice, ed uno strato esterno in sintetica. Talvolta gli strati di rinforzo sono alternati con altri strati in gomma e gli strati resistenti al calore coincidono con quelli rinforzo.

Inoltre, questi tubi vengono abitualmente raccordati tramite l'applicazione di collari esterni e/o fascette metalliche che possono

incidere/lacerare lo strato esterno di gomma o anche dividere gli strati sottostanti di silice, compromettendo in maniera significativa le performance del tubo.

tubo oggetto del trovato può trovare applicazione anche in sistemi antincendio, esempio nelle acciaierie e nelle fonderie. In tali contesti, i tubi flessibili multistrato attualmente presenti nel mercato sono ricoperti da quaine ignifughe per la protezione da scintille e picchi di temperatura. Inoltre, i da antincendio comprendono strati di rinforzo tessuto di poliestere o nylon, generalmente poco performanti dal punto di vista della resistenza meccanica se soggetti a picchi di temperatura esterna maggiori di 200°C, temperatura per la quale mostrano una tendenza a degradare.

Il tubo oggetto del trovato può trovare applicazione anche in sistemi di raffreddamento per motori endotermici, settore nel quale le normative di riferimento richiedono che il tubo sia in grado di operare in condizioni di temperatura esterna elevata. Ad esempio, nel caso dello standard SAE J20, la temperatura esterna

considerata è maggiore di 125°C. Lo stato dell'arte comprende tubi in EPDM o in silicone per resistere rispettivamente fino a 150°C e fino a 175°C. In caso di temperature più elevate i tubi non sarebbero in grado di sostenere in sicurezza, adeguatamente e per lungo tempo, il sistema di raffreddamento. Infatti, all'aumentare della temperatura la velocità di degradazione di questi materiali aumenta.

Il compito del presente trovato è quello di realizzare un tubo multistrato flessibile per sistemi di raffreddamento, per sistemi frenanti e per sistemi antincendio, che sia in grado di migliorare la tecnica nota in uno o più degli aspetti sopra indicati.

Nell'ambito di tale compito, uno scopo del trovato è quello di realizzare un tubo multistrato con un più alto livello di protezione al calore rispetto ai tubi ad oggi noti nei citati settori.

Un altro scopo del trovato è quello di proporre un tubo che, oltre a presentare maggiore resistenza al calore e alla fiamma, presenti anche maggiore resistenza agli sforzi di taglio/lacerazione dello strato di copertura,

affinché le sue caratteristiche di resistenza al calore ed alla fiamma non possano essere compromesse dalle operazioni di raccordatura.

Un ulteriore scopo del trovato è quello di proporre un tubo multistrato che, rispetto ai tubi di tipo noto, in particolare quelli diffusi nel settore antincendio, presenti maggiore resistenza al fuoco, termica e meccanica nelle condizioni di esercizio.

Un altro scopo del trovato è quello di proporre un tubo multistrato che nei sistemi di raffreddamento risulti in grado di garantirne l'operatività anche in caso di picchi di temperatura.

Inoltre, la presente invenzione si prefigge lo scopo di superare gli inconvenienti della tecnica nota in modo alternativo ad eventuali soluzioni esistenti.

Non ultimo scopo del trovato è quello di realizzare un tubo multistrato che sia di elevata affidabilità, di relativamente facile realizzazione e a costi competitivi.

Questo compito, nonché questi ed altri scopi che meglio appariranno in seguito, sono raggiunti da un tubo multistrato flessibile per sistemi di raffreddamento, per sistemi frenanti e per sistemi antincendio, del tipo comprendente:

- almeno uno strato interno in gomma, definente il condotto di passaggio per un fluido,
 - almeno due strati di rinforzo,
- almeno uno strato per la resistenza al calore ed alla fiamma,
 - uno rivestimento esterno,

detto tubo multistrato caratterizzandosi per il fatto che detto rivestimento esterno presenta almeno caratteristiche di resistenza al taglio ed al calore.

Ulteriori caratteristiche e vantaggi del trovato risulteranno maggiormente dalla descrizione di una forma di esecuzione preferita, ma non esclusiva, del tubo multistrato secondo il trovato, illustrato, a titolo indicativo e non limitativo, negli uniti disegni, in cui:

- la figura 1 illustra una sezione trasversale del tubo multistrato secondo il trovato in una prima variante;
- la figura 2 illustra ancora la prima variante di tubo multistrato, parzialmente

sezionato longitudinalmente;

- la figura 3 illustra una seconda possibile variante del tubo multistrato come mostrato in figura 2.

Con riferimento alle figure citate, il tubo multistrato secondo il trovato, indicato globalmente con il numero di riferimento 10, comprende:

- almeno uno strato interno 11 in gomma sintetica, definente il condotto di passaggio per un fluido,
 - almeno due strati di rinforzo 12,
- almeno uno strato per la resistenza al calore ed alla fiamma 13,
 - un rivestimento esterno 14.

Vantaggiosamente, il rivestimento esterno 14 presenta caratteristiche di resistenza al taglio ed al calore ed anche all'abrasione.

In particolare, tale rivestimento esterno 14 è composto da almeno uno strato di tessuto in fibra aramidica antitaglio, ad esempio il tessuto noto con il nome commerciale Nomex, che è anche gommata per conferire una maggiore resistenza meccanica, una superficie esterna più liscia

rispetto al solo tessuto, una compattezza degli strati inferiori migliore e più uniforme, oltre ad una più facile marcatura. Inoltre, a differenza di altre tipologie che utilizzano solamente uno strato di gomma superficiale, la gommatura sul tessuto aramidico antitaglio permette di ridurre lo spessore del tubo, riducendo nel contempo il quantitativo di materiale combustibile soggetto alla fiamma.

Lo strato di rinforzo 12 è costituito da un tessuto in fibra aramidica resistente alla trazione, ad esempio il noto tessuto Kevlar. Questo tessuto è gommato per migliorare l'adesione degli strati di tessuto con gli strati adiacenti del tubo.

Il tubo multistrato 10 comprende anche almeno uno strato intermedio 15 in gomma sintetica che costituisce con lo strato interno 11 una pluralità di strati in gomma, tra ogni coppia di tali strati in gomma è compreso uno strato di rinforzo 12.

In particolare, la gomma di tali strati, sia intermedi che quello interno, può essere costituita ad esempio da neoprene o da CSM (polietilene clorosolfonato), idonea al fluido

convogliato per la sua resistenza chimica.

Negli esempi illustrati, sono presenti due varianti di tubo multistrato 10, che differiscono esclusivamente per il diametro conseguente al diverso numero di strati intermedi 15 e di strati di rinforzo 12. Nel primo caso (figure 1 e 2) sono presenti due strati intermedi 15 e due strati di rinforzo 12, nel secondo caso (figura 3) sono presenti quattro strati intermedi 15 e quattro strati di rinforzo 12. Per diametri di dimensioni differenti è presente un numero diverso dei suddetti strati.

Gli strati di rinforzo 12 sono avvolti tra strati in gomma e possono essere tessuti, come sopra, e/o fili metallici.

Per quanto riguarda gli strati per la resistenza al calore e alla fiamma 13, di cui ne sono presenti due, essi sono costituiti da un tessuto in fibre a base di silice e gommato. Tale tessuto è gommato da ambo i lati, con gomma sintetica, ad esempio del tipo neoprene o CSM, e successivamente applicato in due strati (o in numero differente, a seconda delle esigenze) in sovrapposizione ad uno strato intermedio 15. Su di

essi è quindi applicato il rivestimento esterno 14, in questo caso uno strato in fibra aramidica antitaglio (ad esempio il Nomex) gommato.

La sovrapposizione dei vari strati che costituiscono il tubo 10 avviene preferibilmente per nastratura su mandrino rigido.

Il tubo, dopo essere stato avvolto su mandrino, viene vulcanizzato. La gommatura degli strati di rinforzo e dei tessuti a base silice permette di migliorare l'adesione tra i vari strati durante la vulcanizzazione.

 $\mathbf{E}^{\, \mathbf{r}}$ da notare come la presenza del rivestimento esterno 14 in fibra aramidica antitaglio, ad esempio Nomex, gommata, permetta di incrementare il livello di protezione contro il calore, il confinamento e il contenimento degli strati per la resistenza al calore e alla fiamma 13 e al contempo di incrementare la resistenza all'abrasione e alla lacerazione dell'ultimo strato, che deve proteggere gli strati sottostanti.

Il rivestimento esterno 14 è, infatti, normalmente quello soggetto allo sforzo di taglio generato nell'applicazione di collari e fascette

durante le raccordature.

Lo strato del rivestimento risulta quindi in grado di migliorare la resistenza del tubo multistrato al taglio e al calore, per le caratteristiche intrinseche del tessuto che lo compone e per la gommatura, che ne migliora ulteriormente le performance.

Il rivestimento esterno 14 offre una parziale resistenza alle fiamme libere, potendo resistere a temperature fino a circa 250-300° C, oltre le quali si degrada disgregandosi. In caso di esposizione del tubo alla fiamma, Il rivestimento esterno 14 si può degradare ma, grazie allo strato 13 resistente alla fiamma, vengono comunque protetti gli strati sottostanti, permettendo al tubo 10 di operare temporaneamente.

E' anche da notare che gli strati di rinforzo 12, essendo realizzati in tessuto sintetico resistente alla trazione, ad esempio Kevlar, risultano particolarmente resistenti agli sforzi di trazione a cui può essere soggetto il tubo durante il suo impiego in pressione, per la tensione a cui è sottoposto durante il passaggio del fluido al suo interno.

I materiali utilizzati nel tubo multistrato 10 sono adeguati per aumentare l'indice di ossigeno, ridurre la densità dei fumi emessi in fase di combustione del tubo e ridurre la tossicità dei gas emessi. Tali valori devono sottostare a richieste stringenti delle normative di settore, come ad esempio la EN 45545.

Ιl funzionamento del tubo multistrato, secondo il trovato, è evidente da descritto e, in particolare, risulta evidente come la sua composizione di strati e la composizione degli strati stessi lo rendano idoneo all'impiego sistemi di raffreddamento, nei sistemi nei frenanti e nei sistemi antincendio, oltre che essere performante, con un livello di protezione dal calore e dagli sforzi di taglio maggiore rispetto rispetto ai tubi di tipo noto.

Il tubo multistrato 10, grazie alla combinazione dei vari strati che in sé presentano caratteristiche di resistenza al calore e alla fiamma, risulta in grado di soddisfare ad esempio i requisiti di resistenza al calore definiti dalla normativa vigente (EN 50553) nel settore delle applicazioni ferroviarie.

Inoltre, nei sistemi antincendio, un'accurata scelta dei tessuti permette al presente trovato, attraverso l'utilizzo di un unico prodotto non accoppiato ad una guaina esterna ignifuga, il miglioramento delle prestazioni dal punto di vista della resistenza al fuoco, termica e meccanica nelle condizioni di esercizio.

Ancora, con il tubo multistrato secondo il trovato, si ha una tubazione funzionante anche in caso di picchi di temperatura elevata, senza che venga meno l'operatività del sistema di raffreddamento.

Si è in pratica constatato come il trovato raggiunga il compito e gli scopi preposti realizzando un tubo multistrato più performante rispetto ai tubi di tipo noto, per la maggiore resistenza al calore e alla fiamma e per la maggiore resistenza agli sforzi, almeno di taglio e di trazione.

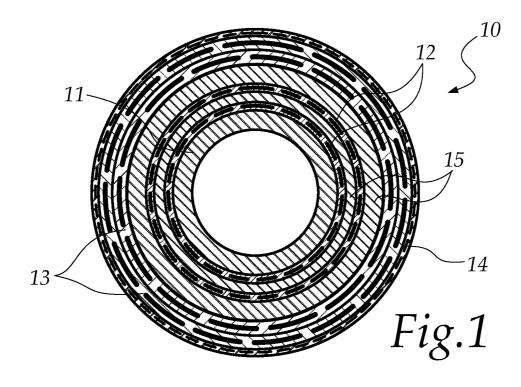
Il trovato, così concepito, è suscettibile di numerose modifiche e varianti, tutte rientranti nell'ambito del concetto inventivo; inoltre, tutti i dettagli potranno essere sostituiti da altri elementi tecnicamente equivalenti.

In pratica, i materiali impiegati, purché compatibili con l'uso specifico, nonché le dimensioni e le forme contingenti, potranno essere qualsiasi a seconda delle esigenze e dello stato della tecnica.

Ove le caratteristiche e le tecniche menzionate in qualsiasi rivendicazione siano seguite da segni di riferimento, tali segni sono stati apposti al solo scopo di aumentare l'intelligibilità delle rivendicazioni e di conseguenza tali segni di riferimento non hanno alcun effetto limitante sull'interpretazione di ciascun elemento identificato a titolo di esempio da tali segni di riferimento.

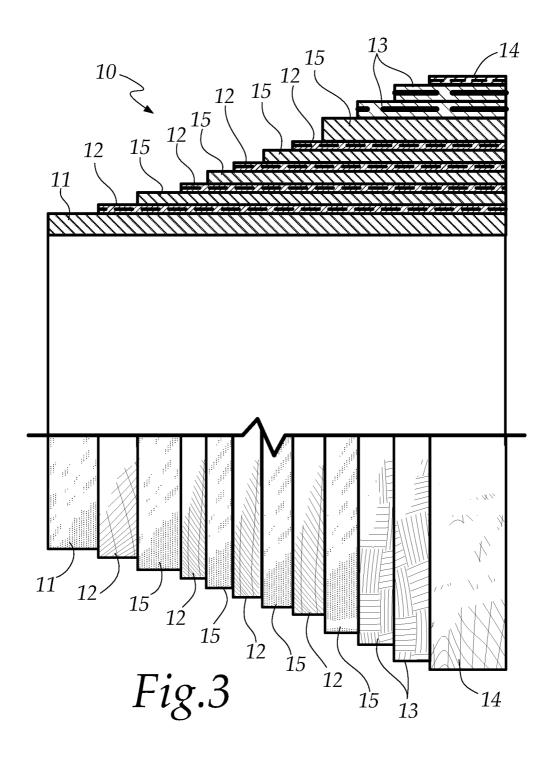
RIVENDICAZIONI

- 1. Tubo multistrato flessibile per sistemi di raffreddamento, per sistemi frenanti e per sistemi antincendio, del tipo comprendente:
- almeno uno strato interno (11) in gomma, definente il condotto di passaggio per un fluido,
 - almeno due strati di rinforzo (12),
- almeno uno strato per la resistenza al calore ed alla fiamma (13),
 - un rivestimento esterno (14),


detto tubo multistrato (10) caratterizzandosi per il fatto che detto rivestimento esterno (14) presenta almeno caratteristiche di resistenza al taglio ed al calore.

- 2. Tubo multistrato, secondo la rivendicazione 1, che si caratterizza per il fatto che detto rivestimento esterno (14) è composto da almeno uno strato di tessuto in fibra aramidica antitaglio.
- 3. Tubo multistrato, secondo una o più delle rivendicazioni precedenti, che si caratterizza per il fatto che la fibra aramidica antitaglio di detto rivestimento esterno (14) è gommata.
 - 4. Tubo multistrato, secondo una o più delle

rivendicazioni precedenti, che si caratterizza per il fatto che detto almeno uno strato di rinforzo (12) è costituito da un tessuto in fibra aramidica resistente alla trazione.


- 5. Tubo multistrato, secondo una o più delle rivendicazioni precedenti, che si caratterizza per il fatto di comprendere almeno uno strato intermedio (15) in gomma che costituisce con detto strato interno (11) una pluralità di strati in gomma, tra ogni coppia di detti strati in gomma è compreso almeno un detto strato di rinforzo (12).
- 6. Tubo multistrato, secondo una o più delle rivendicazioni precedenti, caratterizzato dal fatto che detto almeno uno strato per la resistenza al calore e alla fiamma (13) è costituito da un tessuto in fibre a base di silice gommato.
- 7. Tubo multistrato, secondo una o più delle rivendicazioni precedenti, caratterizzato dal fatto che detto tessuto in fibre a base di silice è gommato da ambo i lati.

M346099 Tav. I

M346099 Tav. II

