a2 United States Patent
Chung

US006363067B1

(10) Patent No.:
5) Date of Patent:

US 6,363,067 B1
Mar. 26, 2002

(549) STAGED PARTITIONED COMMUNICATION
BUS FOR A MULTI-PORT BRIDGE FOR A
LOCAL AREA NETWORK

(75) Inventor: David Chung, Sunnyvale, CA (US)

(73) Assignees: Sony Corporation, Tokyo (JP); Sony
Electronics, Inc., Park Ridge, NJ (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/272,829
(22) Filed: Mar. 19, 1999
Related U.S. Application Data

(63) Continuation-in-part of application No. 09/050,750, filed on

Mar. 30, 1968.
(60) Provisional application No. 60/059,171, filed on Sep. 17,
1997.

(51) Int. CL7 oo HO04L. 12/50
(52) US. CL 370/364; 370/408; 370/402
(58) Field of Searchc.cccoceuvveiine. 370/364, 401,
370/402, 274, 315, 407, 408, 425

(56) References Cited

U.S. PATENT DOCUMENTS
3,735,357 A 5/1973 Mabholick et al. 340/172.5
4,213,201 A 7/1980 Gagnier et al. 370/62
4,589,120 A 5/1986 Mendala 375/117
4,597,078 A 6/1986 Kempfccccovvvrivinnnn 370/94
4,627,052 A 12/1986 Hoare et al.c.c........ 370/88
4,706,081 A 11/1987 Hart et al. 340/825.03
(List continued on next page.)
FOREIGN PATENT DOCUMENTS

EP 0597789 Al 5/1994 HO4L/12/46
EP 0642246 A2 3/1995 ... HO4L/29/06
EP 0785698 A2 7/1997 HO4Q/11/04
WO WO 96/13922 5/1996 ... HO4L/12/44
WO WO 96/21302 7/1996 .. H04L/12/46
WO WO 97/18657 5/1997 HO04L/12/18

LAN LAN
Segment#1 Segment #2

OTHER PUBLICATIONS

Weik, Martin. “Communications Standard Dictionary”,
Third Edition, Chapman & Hall, 1996.*

William Stallings, “Internetworking: A Guide for the Per-
plexed,” Telecommunications, North American Edition,
Sep. 1989, pp. 25-30.

Bob Stewart and Bill Hawe, “Local Area Network Appli-
cations,” Telecommunications, North American Edition,
Sep. 1984, pp. 96f-96j, and 96u.

(List continued on next page.)

Primary Examiner—Chau T. Nguyen
Assistant Examiner—D. Trinh
(74) Attorney, Agent, or Firm—Haverstock & Owens LLP

(7) ABSTRACT

A staged partitioned communication bus for interconnecting
the ports of a multi-port bridge for a local area network. The
communication bus is partitioned into a plurality of data bus
segments. Each data bus segment is coupled to one or more
ports of the multi-port bridge and includes a same number of
signal lines. A multiplexer is coupled to each data bus
segment and to a memory device. A bus controller is coupled
to each port and to the multiplexer. Each port requests access
to the memory device from the bus controller for storing
packets in the memory device and for retrieving packets
therefrom. In response, the bus controller conditions the
multiplexer to provide a signal path between the memory
device to and the data bus segment which includes the
requesting port. The memory device temporarily stores
packets undergoing communication between the ports.
Accordingly, a source port for a packet transfers the packet
to the memory device via the multiplexer and, then, a
destination port for the packet retrieves the packet from the
memory device via the multiplexer. If the source port and the
destination port are on a same data bus segment and the
destination port is not currently busy, the destination port
receives the packet directly from the source port as the
source port stores the packet in the memory device. A
look-up bus can be included, which is operable indepen-
dently of the staged partitioned bus, for correlating destina-
tion addresses for packets to identifications of destination
ports.

26 Claims, 22 Drawing Sheets

600

e

LAN LAN
Segment #3 Segment #4

LAN LAN
Segment#5 Segment #6

LAN LAN
Segment#7 Segment #8

US 6,363,067 Bl

Page 2
U.S. PATENT DOCUMENTS 5,598,161 A 1/1997 Yamadacccouveneens 341/159
5,598,278 A 1/1997 Tanaka et al. 386/96
4,707,827 A 11/1987 Bione et al.ccouvveennne. 370/85 5,598,391 A 1/1997 MuKawaocoeevevnnnn 369/54
4,710,769 A 12/1987 Friedman et al 340/825.03 5,598,581 A 1/1997 Daines et al. 395/872
4,715,030 A 12/1987 Kochetal. 370/85 5,600,664 A 2/1997 Hayashiooeevenrvrenes 371/43
4,718,060 A 1/1988 Oguchi et al. 370/85 5,602,851 A 2/1997 Terashita et al. 370/403
4,723311 A 2/1988 Moustakas et al. .. 455/612 5,608,730 A 3/1997 Osakabe et al. 370/471
4,727,537 A 2/1988 Nichols 370/85 5,608,879 A 3/1997 Cooke 395/290
4,727,538 A 2/1988 Furchtgott et al. . 370/85 5,617,421 A 4/1997 Chin et al. oo 3707402
4,737,953 A 4/1988 Koch et al. 370/94 5,621,725 A 4/1997 Kawamura et al. 370/43
4,744,078 A 5/1988 Kowalczyk ... 370/85 5,640,399 A 6/1997 Rostoker et al. 370/392
4,797.879 A 1/1989 Habbab et al. . 370/3 5,680,622 A 10/1997 Even 395/709
H586 H 2/1989 Kun 370/94 5,721,927 A 2/1998 Baraz et al. 395/705
4,823338 A 4/1989 Chanetal. 370/85 5,761,435 A 6/1998 Fukuda et al. 395/200.68
4,849,962 A 7/1989 Morimoto et al. .. 370/29 5,764,805 A 6/1998 Chung 395/700.8
4878216 A 10/1989 Yunoki 370/60 5,802,047 A 9/1998 Kinoshita 370/359
4,901,308 A 2/1990 Deschaine . . 370/58.1 5,805,816 A 9/1998 Picazo, Jr. et al. 395/200.53
4,905,219 A 2/1990 Barr et al. .o 370/4 5844903 A 12/1998 Terashita et al. 370/403
4,933,937 A 6/1990 Konishi 370/85.13 5,852,607 A 12/1998 Chincccevvvvrrevinnnnns 370/401
4,935922 A 6/1990 Wicklund et al. 370/60 5,857,075 A 1/1999 Chung 395/200.53
RE33426 E 11/1990 Sugimoto et al. .. 370/85.14 5,859,837 A 1/1999 Crayfordcooee.... 370/230
5,016,159 A 5/1991 Maruyama 364/200 5,878,028 A 3/1999 ROy et al. .ovevrvererrrnnn. 370/235
5,020,052 A 5/1991 DePrycker et al. ... 370/60 5,884,040 A 3/1999 Chungccoveeen. 395/200.57
5,027,350 A 6/1991 Marshall 370/85.13 5,917,821 A 6/1999 Gobuyan et al. 370/392
5,048,014 A 9/1991 Fischer 370/85.5 5,923,654 A 7/1999 Schrell 370/390
5,050,165 A 9/1991 Yoshioka et al. .. 370/401 5,923,660 A 7/1999 Shemla et al. 370/402
5,107,489 A 4/1992 Brown et al. 370/58.2 5,926,473 A 7/1999 Gridleyoverernrereenn. 370/389
5,119,367 A 6/1992 Kawakatsu et al. ... 370/54 5,940,596 A 8/1999 Rajan et al. .. 395/200.72
5,140,585 A 8/1992 Tomikawa 370/60.1 5,940,597 A 8/1999 Chungcove.eeen. 395/200.72
5,151,897 A 9/1992 SuzUKi ..o 370/85.13 5,949,788 A 9/1999 Friedman et al. 370/431
5,151,994 A 971992 Wille et al. 395/800 5,951,651 A 9/1999 Lakshman et al. 709/239
5,166,926 A 11/1992 Clsnerf)s et al. .ooeeveennene 370/60 5,978,378 A 11/1999 Van Seters et al. 370/401
5,184,346 A 2/1993 Kozaki et al. 370/60 5,991,305 A 11/1999 Simmons et al. 370/422
5,229,993 A 7/1993 Foudriat et al. . 370/85.3 6,018,526 A 1/2000 Liu et al. 3707401
5,241,550 A 8/1993 Kl.lsano 371/71 6,044,080 A 3/2000 Antonov 3707401
5,243,699 A 9/1993 Nickolls et al. 395/275 6,067,300 A 5/2000 Baumert et al. 370/413
5,274,631 A 12/1993 Bhardwaj ... 370/60 6,070,205 A 5/2000 Kato et al. 710/100
5,307,345 A 4/1994 Lozowick et al. 370/61 6,075,773 A 6/2000 Clark et al. 370241
5,339,316 A 8/1994 Diepstraten 370/85.13 6,081,532 A 6/2000 Fiammante 370/401
5353353 A 10/1994 Vijeh et al. ... 380729 6,084,877 A 7/2000 Egbert et al. ...oco.ovenee. 370/389
5,379,289 A 1/1995 DeSouza et al. 370/85.13 6,088,356 A 7/2000 Hendel et al. 370/392
5,379,296 A 1/1995 Johnson et al. 370/60 6,091,725 A 7/2000 Cheriton et al. 370/392
5,386,413 A 1/1995 McAuley et al. ... 370/54 6,094,434 A 7/2000 Kotzur et al. 3707401
5,404,459 A 4/1995 Gulick et al. 395/275 6,098,110 A 8/2000 Witkowski et al. 709/249
5,410,754 A 4/1995 Klotzbach et al. 370/85.13 6,108,345 A 8/2000 Zhang 370/445
5,430,762 A 7/1995 Vije.h e.t al. 375211 6,111,874 A 8/2000 Kerstein 370/389
5432511 A 7/1995 Sadjadian et al. 341/61 6,122277 A 9/2000 Garmire et al. 370/390
5,434,861 A 7/1995 Pritty et al. 370/85.8 6,130,891 A 10/2000 Lam et al. 370/401
5,442,578 A 8/1995 Hattori 364/746.1 6,137,797 A 10/2000 Bass et al.c.c.......... 370/392
5,446,726 A 8/1995 Rostoker et al. 370/17
5,448,565 A 9/1995 Chang et al. 370/85.13 OTHER PUBLICATIONS
3,457,446 A 10/1995 Yamamolo . 340/825.24 Bob Stewart, Bill Hawe, and Alan Kirby, “Local Area
5,457,679 A 10/1995 Engetal.cccocorrnnnnn. 370/16 N G on.” Tol S North Ameri
5481540 A 1/1996 Huangooo..coo........ 370/85.13 etwork Connection,” lelecommunications, Nort erl-
5487067 A 1/1996 Matsushige 370/85.7 ~ can Edition, Sep. 1984, pp. 54-55,58-59 and 66.
5,502,748 A 3/1996 WilKinson 375/354 National Semiconductor, databook, “DP83934 Sonic™-T
5,506,902 A 4/1996 Kubotaccceeevveennenne 380/9 Systems—Oriented Network Interface Controller with
5,515,376 A 5/1996 Murthy et al. 370/402 Twisted Pair Interface” pp. 1-457 to 1-458, 1-468 to 1-477,
5515513 A 5/1996 Metzger et al. 395/200.15 1-480, 1-512, 1-527-to 1-529.
22%‘9‘?‘3‘ 2 gﬁggg Green P 7307/%68 NEC Data Sheet, MOS Integrated Circuit uPD4516421,
5522050 A 5/1996 Marushima et al. 395/476 zltgégszl, 4516161 16M-bit Synchronous DRAM, Nov.
5,530,434 A 6/1996 Kanda 340/825.04 Printout of i bsite hito: . d
5541923 A 7/1996 . 370/85.1 rlntoutg internet website http://www.ti.com/sc/docs/net-
5550,826 A 81996 Tanaka et al. 370/85.8 Work/tswitch/product.htm#3150al, ThunderSWITCH Prod-
5,559,796 A 9/1996 Edem et al.c.cocooee... 370/60 uct Information, “ThunderSWITCH Product Descriptions,”
5,560,038 A 9/1996 Haddock 395/800 Feb. 1997.
5,565,929 A 10/1996 Tanakacccceeen.nn.. 348/565 Texas Instruments Product Preview SPWS027,
5,568,476 A 10/1996 Sherer et al. 370/60 “TNETX3150 ThunderSWITCH™ 15—Port 10—/
5568643 A 10/1996 Tanaka 100-MBIT/S Ethernet™ Switch,” pp. 1-85, Sep. 1996.
5570330 A 10/1996 Okawa
5,570,466 A 10/1996 Oechsle * cited by examiner

U.S. Patent Mar. 26,2002 Sheet 1 of 22 US 6,363,067 B1

11

-~ 15

Fig. 1
(Prior Art)

U.S. Patent Mar. 26,2002 Sheet 2 of 22 US 6,363,067 B1
40
Ny
Dest. | Source |Le
Preamble | Dest | aurce | Length Data Fleld Frame
J l ¢ ¢
41 42 43 44 is :‘)6
Fig. 2

(Prior Art)

U.S. Patent Mar. 26,2002 Sheet 3 of 22 US 6,363,067 B1

100

N 152 || 154 || 156

Memory 150
Bus MPU Memory Lookup
Control Port and Control Control E-Stat
Mailbox
114 116 118 120 122
I —W 4 L

= =)

10Mb 10Mb 10Mbps 100Mb; 100Mbps :
Port #1 Port#2 | . . . |Port#24 Port#5| |Port #26 Timing
104 106 108 110 112 124

|

Segment#1 Segment #2 Segment #24 Segment #25 Segment #26 ?tfg"':‘% 33%2:)'3

Fig. 3

U.S. Patent Mar. 26,2002 Sheet 4 of 22 US 6,363,067 B1
()
Address Triplet
Latch Buffer
220 206
A
Rx T« Registers 202
Buffer Buffer
204 203
Port Control 200
216 218
to bus control 114 (Fig. 3)
Rx Tx
— FSM FSM
212 214
Tranceiver]\ r

208

]

to LAN segment

Fig. 4

U.S. Patent Mar. 26,2002 Sheet 5 of 22 US 6,363,067 B1

Triplet

N\

Source Port | Dest. Port Memory
Identification | Identification | Address

250 252 254

Fig. 5

U.S. Patent Mar. 26, 2002

Pkt

clock—s{ Buffer
310

=
clock ging
_—1 308

|

2
ssin
cIockﬁ X 069

|

Bus]
clock—>]{ Staging
304

T

RX
clock—>{ FIFO
302

|

from LAN segment

Fig. 6A

Sheet 6 of 22

US 6,363,067 B1

Pkt
clock—>{ Buffer
320

l

Bus]
clock—>| Staging
322

1

I(B)us .
clock—e] rossing
324

FIFO

clock—>{ Staging
326

X
clock—>] FIFO
328

l

to LAN segment

Fig. 6B

U.S. Patent Mar. 26,2002 Sheet 7 of 22 US 6,363,067 B1

: Bus :
s > Staging 5 304
¢ | [P 304B|
Bus s | E
clock—s>{ Staging I:D clock— ;
304 : :
: Bus ‘
. Ls|Staging |
¢ [A 304a]|

Fig. 7

U.S. Patent Mar. 26, 2002

Sheet 8 of 22 US 6,363,067 B1

306

Bus clock |Bus
L{Crossing| L_s]Crossing
A 306A B 3068

P R R R e e R Lk R Ry Sy ——

T

Bus
clock —>i Crossingﬂ

clock |Bus clock |Bus

Ly Crossing L/ Crossing
306C D' 306D

306

T

Fig. 8

U.S. Patent Mar. 26,2002 Sheet 9 of 22 US 6,363,067 B1

400
N at0| | 412
Memory 406
MPU Bus

Timing E-Stat Port and Control Mermo
Mailbox Co ry

430 432 424 414 ntrol
'T 422

< IT /T\ Data Bus 402 >

<» Look-Up Bus 404 >
I I A2 I Memory

Port #1 Port #2 Port #N Bus Control
« o Control 428
416 418 420 426
1 I I Look-up
Tables
LAN LAN LAN 408
Segment #1 Segment #2 Segment #N ==

Fig. 9

US 6,363,067 B1

Sheet 10 of 22

Mar. 26, 2002

U.S. Patent

> time

- wwmwww- -w

data
transfer

) o
E £
A A
74 f
b @
m S
8 8
..... M. ------4------.%------.
sl it
2 e
% Q
2 2
K 3
© D
m S
8 8
g 2
st L o
3 L
& ®
o Q
a 8
.- 255
QL S 2¢
80 mas
89 28c8

T4

T3

T1

Fig. 10

U.S. Patent Mar. 26,2002 Sheet 11 of 22 US 6,363,067 B1

< Data Bus ﬂ>
< Look-Up Bus 404 >

4

Triplet Rx
Address Buffer Vectors
Latch
460 462
474 —
Registers Bus I/F
458 452
Rx Tx :
Rx Vector Triplet
| Buffer Buffer FSM 456| |FSM 454
Port Control 450
470 472 .
to bus control 414 (Fig. 9)
Rx Tx
FSM FSM
466 468
Tranceiver
464
to LAN segment

Fig. 11

U.S. Patent Mar. 26,2002 Sheet 12 of 22

US 6,363,067 B1

470
M\
packet (i) pointer
]
ket (i
fetching pointer > packet (1)
- packet (i+1) pointer
packet (i+1)
packet (i+2) pointer
packet (i+2)
packet (i+3) pointer >1
i+
loading pointer packet (i+3)

Fig. 12

U.S. Patent Mar. 26,2002 Sheet 13 of 22 US 6,363,067 B1

; ,\/462
start 5 .
packet vector (i)
packet vector (i+1)
packet vector (i+2)
end packet vector (i+3)

Fig. 13

U.S. Patent Mar. 26,2002 Sheet 14 of 22 US 6,363,067 B1
Packet Vector\l
valid look-up table triplet receive packet | optional
flag operations pointer information
¢ 0 ¢ ¢ ¢
502 504 506 508 510

Fig. 14

U.S. Patent Mar. 26,2002 Sheet 15 of 22 US 6,363,067 B1

LAN LAN LAN LAN
Segment #1 Segment #2 Segment #3 Segment #4
Port #1 Port #2 Port #3 Port #4

e SRR

558a ® 554a @ n} 1 @ 558b
n 552a 552b
s566ajl—m = " S S =
Vee Transparent
Bus Control
Vee
550

556¢ Jn ! g nL
n = :l §62¢ 552d | =
558¢ 554¢c = n. 1" 554d 558d

(n) (n)
a=) ¢
I ¥,

)

Port #5 Port #6 Port #7 Port #8
LAN LAN LAN LAN
Segment #5 Segment #6 Segment #7 Segment #8

Fig. 15

U.S. Patent Mar. 26,2002 Sheet 16 of 22 US 6,363,067 B1

L R R e L i
ol Bl T PV

: : apply data to input bus data available on
‘ re-charge ! segment and replicate
: P 9 ‘ to remaining bus segments all bus segments
: : > time
' TA ¢ 1B TC .
bus cycle bus cycle
ends

begins

Fig. 16

U.S. Patent Mar. 26, 2002

Sheet 17 of 22

US 6,363,067 B1

410'| | 412
Memory 406'
/ 600
Memory
Control
422')
LAN LAN LAN LAN
Segment #1 Segment #2 Segment #3 Segment #4
I I Staging I
Port #1 Port #2 MUX Port #3 Port #4
602
< 402a" > < 402b'>
n -
n n
A 2
< 402¢' > < 402d" >
Bus
, Control
Port #5 Port #5 414 Port #7 Port #8
LAN LAN LAN LAN
Segment #7 Segment #38

Segment#5 Segment #6

Fig. 17

U.S. Patent Mar. 26,2002 Sheet 18 of 22 US 6,363,067 B1

4107 | 412
Memory 406'
/
Memory
Control
422'
Bus . 600"
ing
Control a‘f}?(
414']
602

M | -

S — S —

A A y s 4
Port #1 Port #2 Port #4 Port #5 Port #6 Port #8
] I Memory I I
LAN LAN Control LAN LAN
Segment #1 Segment #2 428" Segment #5 Segment #8
— LAN
Segment #6
Look-up
Tables
408’}

Fig. 18

U.S. Patent Mar. 26,2002 Sheet 19 of 22 US 6,363,067 B1

< Data Bus ﬂ2j>

< Look-Up Bus 404 ﬁ’>
Triplet Rx
édtcirrtlass Buffer Vectors
2 460 462
474
Registers Bus I/F
458 452
Rx Tx -
Rx Vector Triplet
Buffer Buffer ESM 456 FSM 454
Broadcast
470 652 Control g50
Port Control 450

to bus control 414 (Fig. 9)

Rx Tx
FSM FSM
466 468

Tranceiver

|

to LAN segment

Fig. 19

U.S. Patent Mar. 26,2002 Sheet 20 of 22 US 6,363,067 B1

652

N

tx packet pointer

9
tx loading pointer

tx packet store 654
fetching pointer P A%

broadcast packet pointer;

9]

broadcast loading pointe;

broadcast packet store N\ 656

Fig. 20

U.S. Patent Mar. 26,2002 Sheet 21 of 22 US 6,363,067 B1
Look-Up Tables
408
428
: Memory E
: Arbiter :
; 710
: Look-Up Leaming f
' Control Control :
: 706 708|
E Look-Up Learning ‘
' Address Queue Address Queue ‘
: 702 04|
< Look-Up Bus 404 >

Fig. 21

U.S. Patent

Mar. 26, 2002

Sheet 22 of 22

to Memory Arbiter 710 (Fig. 22)

- = - = = e e e e e e e -

T

i - ' Leaming
: Count Reg|sterm : Control
¢ decrement S t : 108
! (%Y ¢
: ecrementor 720 P T
E leam on
f Statistical this paCK&
: Leaming -
: Logic Address Staging
: 0 Register 714
‘ 716 bit-1 of dest. —
‘ address
SRS S
Learning
Address Queue
704
< Look-Up Bus 404 >

Fig. 22

US 6,363,067 B1

US 6,363,067 B1

1

STAGED PARTITIONED COMMUNICATION
BUS FOR A MULTI-PORT BRIDGE FOR A
LOCAL AREA NETWORK

This application is a continuation-in-part of U.S. patent
application Ser. No. 09/050,750, filed on Mar. 30, 1998,
which claims the benefit of U.S. Provisional Application No.
60/059,171, filed Sep. 17, 1997.

FIELD OF THE INVENTION

The invention relates to a multi-port bridge for a local area
network. More particularly, the invention relates to a staged
partitioned communication bus for interconnecting the ports
of a multi-port bridge for a local area network.

BACKGROUND OF THE INVENTION

Nodes of a local area network (LAN) are typically inter-
connected by a shared transmission medium. The amount of
data traffic that the shared transmission medium can
accommodate, however, is limited. For example, only one
node at a time can successfully transmit data to another node
over the shared transmission medium. If two or more nodes
simultaneously attempt to transmit data, a data collision
occurs, which tends to corrupt the data being transmitted.
Thus, nodes that share a transmission medium are consid-
ered to be in a same collision domain.

A multi-port bridge allows simultaneous communication
between nodes of the LAN by segmenting the LAN into
multiple collision domains (also referred to as network
segments or LAN segments), each segment having a corre-
sponding transmission medium.

FIG. 1 illustrates a conventional local area network
including a multi-port bridge 10. The multi-port bridge 10
has eight ports A—H, though the number of ports can vary.
Each port A-H is connected to a segment 11-18 of the LAN.
Each segment 11-18 typically includes one or more nodes
19-34, such as a workstation a personal computer, a data
terminal, a file server, a printer, a facsimile, a scanner or
other conventional digital device. Each of the nodes 19-34
has an associated node address (also referred to as a medium
access control (MAC) address) which uniquely identifies the
node. The nodes 19-34 are configured to send data, one to
another, in the form of discrete data packets.

When the LLAN operates according to Ethernet standards,
such as the Institute of Electrical and Electronics Engineers
(IEEE) 802.3 standard, data is communicated in the form of
discrete packets. FIG. 2 illustrates a conventional IEEE
802.3 data packet 40. The data packet 40 includes an eight
byte long pre-amble 41 which is generally utilized for
synchronizing a receiver to the data packet 40. The pre-
amble 41 includes seven bytes of pre-amble and one byte of
start-of-frame. Following the pre-amble 41, the data packet
40 includes a six-byte-long destination address 42, which is
the node address of a node which is an intended recipient for
the data packet 40. Next, the data packet 40 includes a
six-byte-long source address 43, which is the node address
of a node which originated the data packet 40. Following the
source address 43 is a two-byte length field 44. Following
the length field 44 is a data field 45. The data field 45 can be
up to 1500 bytes long. Finally, the data packet 40 includes
a two-byte frame check field 46 which allows a recipient of
the data packet 40 to determine whether an error has
occurred during transmission of the data packet 40.

When a node (source node) sends data to another node
(destination node) located on its same segment of the LAN
(intra-segment communication), the data is communicated

10

15

20

25

30

35

40

45

50

55

60

65

2

directly between the nodes without intervention by the
multi-port bridge 10 and is known as an intra-segment
packet. Therefore, when the multi-port bridge 10 receives an
intra-segment packet, the multi-port bridge 10 does not
bridge the packet (the packet is filtered). When a node
(source node) sends a data packet to another node
(destination node) located on a different segment (inter-
segment communication), the multi-port bridge 10 appro-
priately forwards the data packet to the destination node.

Problems can arise, however, when the capabilities of the
multi-port bridge 10 are exceeded by network demand.
When data packets 40 are received by the multi-port bridge
10 at a rate that is higher than the rate at which the multi-port
bridge 10 can appropriately forward each packet 40, the
multi-port bridge 10 becomes a source of network conges-
tion. This problem is exacerbated as network users place
increasing demands On the network.

Therefore, what is needed is improved technique for
increasing the data packet handling capacity in a multi-port
bridge for a local area network.

SUMMARY OF THE INVENTION

The invention is a staged partitioned communication bus
for interconnecting the ports of a multi-port bridge for a
local area network. The communication bus is partitioned
into a plurality of data bus segments. Each data bus segment
is coupled to one or more ports of the multi-port bridge and
includes a same number (n) of signal lines. A staging
multiplexer is coupled to each data bus segment and to a
memory device. A bus controller is coupled to each port and
to the multiplexer. Each port requests access to the memory
device from the bus controller for storing data packets in the
memory device and for retrieving data packets therefrom. In
response to such requests, the bus controller conditions the
multiplexer to provide a signal path between the memory
device and the data bus segment which includes the request-
ing port.

The memory device is utilized for temporarily storing
data packets undergoing communication between the ports.
Accordingly, a source port for a data packet transfers the
data packet to the memory device via the multiplexer and,
then, a destination port for the data packet retrieves the data
packet from the memory device via the multiplexer. If the
source port and the destination port are on a same data bus
segment and the destination port is not currently busy, the
destination port preferably receives the data packet directly
from the source port simultaneously as the source port stores
the data packet in the memory device.

A look-up bus included in the multi-port bridge, which is
operable independently of the staged partitioned bus, is
preferably coupled to each port of the multi-port bridge and
to a look-up table. The look-up table correlates destination
addresses for data packets to identifications of destination
ports. When a packet is received by a port of the multi-port
bridge, the destination port for the packet is identified by
communicating a destination address for the data packet to
the look-up table via the look-up bus. The destination port
for the packet is notified of its status as a destination port for
the packet via the look-up bus.

Because each bus segment is coupled to fewer than all of
the ports, the signal lines of each bus segment can be
physically shorter in length and less heavily loaded than if
coupled to all of the ports. Accordingly, the transparently
partitioned bus can transfer data in accordance with a
significantly higher frequency clock signal than would oth-
erwise be the case.

US 6,363,067 B1

3

In accordance with an embodiment of the present
invention, an apparatus having a staged partitioned bus for
transferring data includes: a first bus segment having a first
plurality of (n) signal lines; a second bus segment having a
second plurality of (n) signal lines; multiplexer means
coupled to the first bus segment and to the second bus
segment; and memory means coupled to the multiplexer
means for temporarily storing data undergoing communica-
tion between the first bus segment and the second bus
segment

In accordance with another embodiment of the present
invention, a multi-port bridge having a staged partitioned
bus for transferring data between ports of the multi-port
bridge includes: a first data bus segment having a first
plurality of (n) signal lines; a first port coupled to the first
data bus segment; a second data bus segment having a
second plurality of (n) signal lines; a second port coupled to
the second data bus segment; a multiplexer having a first
input coupled to the first data bus segment, a second input
coupled to the second data bus segment and an output; and
a memory device coupled to the output of the multiplexer
whereby data is selectively communicated between the first
port and the memory device and between the second port
and the memory device according to a condition of the
multiplexer.

In accordance with yet another embodiment of the present
invention, a multi-port bridge having a staged partitioned
bus for transferring data between ports of the multi-port
bridge includes: a first data bus segment having a first
plurality of (n) signal lines; a first plurality of ports coupled
to the first data bus segment; a second data bus segment
having a second plurality of (n) signal lines; a second
plurality ports coupled to the second data bus segment; a
multiplexer coupled to the first data bus segment and to the
second data bus segment; a memory device coupled to the
multiplexer wherein data is selectively communicable
between the first data bus segment and the memory device
and between the second data bus segment and the memory
device according to a condition of the multiplexer, a look-up
bus coupled to each of the first plurality of ports and to each
of the second plurality of ports; and a look-up table coupled
to the look-up bus to store node addresses in association with
a port identifications.

In accordance with a further embodiment of the present
invention, a method of transferring data between ports of a
multi-port bridge includes steps of: receiving a first data
packet into a source port for the first data packet; condition-
ing a multiplexer to provide a signal path from the source
port to a memory device; transferring the first data packet
from the source port to the memory device; conditioning the
multiplexer to provide a signal path from the memory device
to a destination port for the first data packet; and transferring
the first data packet from the memory device to the desti-
nation port.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a conventional local area network
(LAN) including a multi-port bridge.

FIG. 2 illustrates a conventional IEEE 802.3 data packet.

FIG. 3 illustrates a block schematic diagram of a first
embodiment of a multi-port bridge according to the present
invention.

FIG. 4 illustrates a port of the multi-port bridge illustrated
in FIG. 3.

FIG. 5 illustrates a “triplet” according to the present
invention, including a first field containing an identification

10

15

20

25

30

35

40

45

50

55

60

65

4

of a source port, a second field containing an identification
of a destination port and a third field containing a memory
address.

FIG. 6A illustrates a serial receive data path in the
multi-port bridge illustrated in FIG. 3 for receiving data
packets from a LAN segment and for loading the received
data packets into the packet buffers.

FIG. 6B illustrates a serial transmit data path in the
multi-port bridge illustrated in FIG. 3 for retrieving data
packets from the packet buffers and transmitting the
retrieved data packets to an appropriate LAN segment.

FIG. 7 illustrates serial subdivision of a data path stage
according to the present invention.

FIG. 8 illustrates parallel subdivision of a data path stage
according to the present invention.

FIG. 9 illustrates a block schematic diagram of a multi-
port bridge according to the present invention having a data
packet transfer bus and a look-up bus.

FIG. 10 illustrates a timing diagram for packets received
by the multi-port bridge illustrated in FIG. 9.

FIG. 11 illustrates a block schematic diagram of a port of
the multi-port bridge illustrated in FIG. 9.

FIG. 12 illustrates a diagram of a receive buffer illustrated
in FIG. 11.

FIG. 13 illustrates a diagram of a receive packet vector
buffer illustrated in FIG. 11.

FIG. 14 illustrates a receive packet vector according to the
present invention.

FIG. 15 illustrates a transparently partitioned bus accord-
ing to the present invention.

FIG. 16 illustrates a timing diagram for transferring data
via the transparently partitioned bus illustrated in FIG. 185.

FIG. 17 illustrates a multi-port bridge according to the
present invention having a staged partitioned bus.

FIG. 18 illustrates a multi-port bridge having a staged
partitioned data bus and a look-up bus.

FIG. 19 illustrates a block schematic diagram of a port in
accordance with the present invention for improving cut-
through of broadcast and multi-cast packets.

FIG. 20 illustrates a diagram of a transmit buffer illus-
trated in FIG. 20.

FIG. 21 illustrates a detailed block diagram of a memory
controller in accordance with the present invention for
de-coupling table look-up operations from learning opera-
tions.

FIG. 22 illustrates a statistical learning controller in
accordance with the present invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

In the preferred embodiment, the present invention is
utilized for appropriately directing data packets through a
multi-port bridge for an Ethernet LAN. It will be apparent,
however, that other devices in an Ethernet LAN, such as a
switch or a router, or devices in a network operating accord-
ing to another networking standard, can utilize the advan-
tages of the present invention.

Triplet Architecture

FIG. 3 illustrates a block schematic diagram of a multi-
port bridge 100 in accordance with the present invention. A
high speed communication bus 102 provides an intercon-
nection for each of the functional blocks 104-124 of the

US 6,363,067 B1

5

multi-port bridge 100. The communication bus 102 prefer-
ably includes five command lines and thirty-two data lines,
though it will be apparent that other bus configurations can
be utilized. Twenty-four 10 Mbps ports 104—108 and two
100 Mbps ports 110-112 are each coupled to the commu-
nication bus 102 and can be coupled to a respective LAN
segment, each LAN segment having one or more nodes.
Each of the twenty-four 10 Mbps ports 104—108 transmit
and receive data packets at a rate of 10 Mbps, half-duplex,
whereas, the two 100 Mbps ports 110-112 transmit and
receive data packets at a rate of 100 Mbps, full-duplex. It
will be apparent, however, that other numbers of ports and
other port configurations can be utilized.

A bus control module 114 controls access to the commu-
nication bus 102 by collecting requests from the ports
104-112 and from the other modules. Based upon the
requests, the bus control module 114 grants access to the
communication bus 102 according to an appropriate priority.
The bus control module 114 also controls access to a
memory device 150 by an external processor (MPU)(not
shown). An MPU port and mailbox module 116 provides an
interface between the multi-port bridge 100 and the external
processor for performing various functions, including load-
ing data into registers of the multi-port bridge 100, fetching
data from registers of the multi-port bridge 100 and trans-
ferring data packets between the external processor and the
ports 104-112 of the multi-port bridge 100.

A memory control module 118 provides an interface
between the memory device 150 and the communication bus
102 and also provides an interface between the memory
device 150 and a look-up control module 120. The memory
device 150 includes mailboxes 152 for exchanging infor-
mation between the external processor and the multi-port
bridge 100. In addition, the memory device includes look-up
tables 154. The look-up tables 154 include entries which
indicate which port of the multi-port bridge 100 is associated
with each node of the LAN. The look-up tables 154 are
utilized for appropriately directing data packets received by
the multi-port bridge 100 among the ports 104-112.

The look-up control module 120 receives addresses of
nodes and associated port identifications from the commu-
nication bus 102. These addresses and identifications are
stored in the look-up tables 154. The look-up control module
120 facilitates utilizing the look-up tables 154 for directing
packets among the ports 104—112 based upon the destination
address of each packet. The memory device 150 also
includes packet buffers 156 for temporarily storing data
packets that are being directed through the multi-port bridge
100. The memory device 150 is preferably an SDRAM
device, though other types of memory devices can be
utilized, such as DRAM, SRAM, RAM or EDO. In the case
of dynamic memory, the memory control module 118
refreshes the memory device 150 as required.

An E-stat module 122 collects data packet routing statis-
tics and provides them to the external processor for per-
forming analysis and network management functions. A
timing module 124 provides timing signals to the ports
104-112 and to the other modules 114-122 of the multi-port
bridge 100. Preferably, a primary clock signal cycles at 40
MHz. Other clock signals at 10 MHz and 25 MHz are
derived from the primary clock signal.

Preferably, the modules 114—124 are each implemented as
a finite state machine, though the modules 114-124 can
alternately be implemented as one or more processors oper-
ating according to stored software programs. Finite state
machines are preferred as they can generally perform the

10

15

20

25

30

35

40

50

55

60

65

6

necessary operations faster, thus, resulting in a higher packet
handling bandwidth for the multi-port bridge 100.

FIG. 4 illustrates a block schematic diagram of one of the
ports 104-112 of the multi-port bridge 100. A port controller
200, including a bus interface 202, a triplet Finite state
machine 203, and registers 204, provides control for the port
and an interface between the port and the communication
bus 102. The port controller 200 monitors the communica-
tion bus 102 for commands and data directed to the port and
also provides commands to the communication bus 102 at
times when the port has control of the communication bus
102. The registers 204 contain data for initializing the port
upon start-up and for collecting status information for the
port. The port also includes a triplet FIFO buffer 206 coupled
between the communication bus 102 and the port controller
200. The triplet buffer 206 stores memory pointers
(“triplets”—illustrated in FIG. 5 and explained in more
detail herein) for data packets being queued in the packet
buffers 156 (FIG. 3) of the memory device 150 (FIG. 3).
Preferably, the triplet buffer 206 holds 128 triplets, each
triplet preferably being four bytes long.

The port also includes a medium access control (MAC)
transceiver 208 which accesses a LAN segment associated
with the port for transmitting and receiving data packets to
and from the LAN segment. Coupled to the transceiver 208
are a receive finite state machine 212, for controlling the
transceiver 208 during packet reception, and a transmit finite
state machine 214, for controlling the transceiver 208 during
packet transmission. The receive finite state machine 212
and the transmit finite state machine 214 are each coupled to
the bus control module 114 (FIG. 3) for requesting access to
the communication bus 102 therefrom.

Packets received from the associated LAN segment by the
transceiver 208 are directed to the communication bus 102
through a receive FIFO buffer 216, while packets to be
transmitted over the LAN segment 210 are directed from the
communication bus 102 to the transceiver 208 through a
transmit FIFO buffer 218. Preferably, the receive buffer 216
holds 128 bytes while the transmit buffer 218 holds 256
bytes. Note that an IEEE 802.3 data packet can include up
to 1500 bytes of data in addition to the source address, the
destination address and the frame check field. Thus, in the
preferred embodiment of the multi-port bridge 100, neither
the receive buffer 216, nor the transmit buffer 218 is capable
of storing an entire IEEE 802.3 data packet of the maximum
size. An address latch 218 is also included in the port for
latching addresses from the communication bus 102 and
providing them to the transceiver 208.

Serial Packet Bridging

Referring to FIGS. 3-5, assume a data packet, such as an
IEEE 802.3 data packet, originating from a node (source
node) in a segment of the LAN is received by a correspond-
ing one of the ports 104-112 (source port) of the multi-port
bridge 100. The receive buffer 216 in the source port
receives the data packet as the packet is being received by
the transceiver 208 in the source port from the LAN segment
associated with the source port. After the first twelve bytes,
corresponding to the source address and the destination
address for the packet, are received, the receive finite state
machine 212 requests a look-up operation (cycle) from the
bus control module 114 by raising an interrupt request line
coupled to the bus control module 114. The bus control
module 114 monitors such requests and grants each request
according to an appropriate priority. Upon granting the
request the bus control module 114 notifies the source port

US 6,363,067 B1

7

by placing a bit pattern identifying a bus grant on the
command lines of the communication bus 102 and a bit
pattern uniquely identifying the source port on the data lines
of the communication bus 102.

The first four bytes of the destination address for the
packet are then placed from the receive buffer 216 of the
source port onto the data lines of the communication bus
102, while a corresponding bit pattern is placed on the
command lines of the communication bus 102 by the bus
interface 202 of the source port. The look-up control module
120 (FIG. 3) receives the first four bytes of the destination
address. Then, the source port places the last two bytes of the
destination address for the packet and the first two bytes of
the source address for the packet on the data lines of the
communication bus 102 and places a corresponding bit
pattern on the command lines of the communication bus
102. The look-up control module 120 receives these four
bytes. Finally, the source port places the last four bytes of the
source address for the packet on the data lines of the
communication bus 102 and places a corresponding bit
pattern on the command lines. The look-up control module
120 also receives these four bytes. Thus, the destination
address and source address arc transferred over the commu-
nication bus 102 in segments that are each four bytes long
as this corresponds to the width (32 bits) of the data lines of
the communication bus 102. It will be apparent however,
that the communication bus 102 can have a different number
of data lines in which case, a different number of bytes can
be transferred at a time.

Once the look-up control module 120 has received the
destination address and the source address for the packet, the
look-up control module 120 so notifies the memory control
module 118 (FIG. 3). The memory control module 118 then
updates the look-up tables 154 (FIG. 3) by ensuring that the
source address for the packet is stored in the look-up tables
154 in association with the identification of the source port
for the packet. This ensures that the look-up tables 154
accurately reflect any changes that may have occurred in the
LAN (referred to as a learning operation or cycle). The
information stored during the learning operation is utilized
for directing subsequent packets.

Once the learning operation is complete, the memory
control 118 module utilizes the look-up tables 154 to deter-
mine which port (destination port) is associated with the
destination address for the packet (referred to a look-up
operation). As a result of performing the look-up operation,
the memory control module 118 forms a bit pattern referred
to as a “triplet”. FIG. § illustrates the triplet which includes
three fields: a first field 250 containing the identification of
the source port, a second field 252 containing the identifi-
cation of the destination port, and a third field 254 contain-
ing a starting address assigned to the incoming packet in the
packet buffers 156 of the memory device 150. The first field
250 and the second field 252 are each preferably one byte
long, while the third field 254 is preferably two bytes long.
It will be apparent, however, that the ordering of the fields
of the triplet and the size of each field can be altered. If the
source port and the destination port identified by the triplet
are the same, this indicates that the source and destination
nodes are on the same segment of the LAN (intra-segment
communication) and, therefore, the packet does not need to
be bridged. In such case, no further action is taken relative
to the packet (the packet is filtered).

Otherwise, the memory control module 118 places the
triplet on the data lines of the communication bus 102 and
places a bit pattern indicating that an “initial triplet” is ready
on the command lines. Each port monitors the communica-

10

15

20

25

30

35

40

45

50

55

60

65

8

tion bus 102. It the port identified as the destination port in
the triplet is not currently busy transmitting or receiving
another packet, the destination port configures itself to
receive the packet directly from the source port (cut-
through). Alternately, if the triplet buffer 206 in the port
identified as the destination port in the triplet is nearly full,
the bus controller 202 of the destination port applies a jam
request signal to the command lines of the communication
bus 102. The source port receives the jam request and, in
response, discards the incoming packet and also sends a jam
signal over its associated LLAN segment. The jam signal
causes the node (source node) which is the source of the
packet to discontinue sending the packet and attempt to
resend the packet after a waiting period.

As 1illustrated in FIG. 5, the triplets are preferably of a
uniform size. Therefore, the exact number of triplets that can
be accommodated by a triplet buffer 206 of a port can be
determined from the amount of space available in the triplet
buffer 206 of the port. Accordingly, unlike prior
arrangements, extra space does need to be provided in the
port to accommodate a data packet having an unknown
length. According to the present inventions however, the jam
request is preferably generated by a destination port for a
packet when the triplet buffer 206 in the port has space
available to store several triplets (e.g. ten triplets). This
provides the destination port an ability to store triplets for
packets which are in the process of being loaded into the
packet buffers 156. The triplet buffer 206 in each port is
preferably sized relative to the associated packet buffers 156
in the memory device 150 such that there is little or no
possibility that the packet buffers 156 will become full
before any triplet buffer 206 becomes full.

Once the triplet has been placed on the communication
bus 102, the source port initiates a series of memory write
cycles for loading the packet from the receive buffer 216 of
the source port into the packet buffers 156 in the memory
device 150 starting at the memory address identified by the
third field of the triplet. Preferably, the packet buffers 156
include a space allocated to each port for storing packets
received by the port. Alternately the space is allocated to
each port for storing packets to be transmitted by the port;
it should be noted however, that only one and not both types
of allocated space need be provided. Packets are written into
the space allocated to the port in the packet buffers 156 in a
circular fashion each new packet will overwrite portions of
the oldest packet in the allocated space.

The packet is preferably loaded into the packet buffers
156 a predetermined offset from the assigned address. This
provides a location for storing a header for the packet once
the packet has been completely loaded into the packet
buffers 156. For example, the header can include an iden-
tification number assigned to the packet, the triplet for the
packet and a receive status for the packet. The receive status
indicates whether or not the entire packet has been success-
fully received and loaded into the packet buffers 156.

Multiple memory write cycles are generally needed to
transfer the entire packet into the packet buffers 156 as the
remaining portions of the packet will generally include more
than thirty-two bits (the number of data lines in the com-
munication bus 102). Writing of the packet into the packet
buffers 156 preferably occurs as the remainder of the packet
is still being received into the receive buffer 216 of the
source port. For this reason, the receive buffer 216 for each
port need not be capable of storing an entire data packet. In
addition, if the destination port is configured for cut-through,
the destination port will receive the packet into its transmit
buffer 218 directly from the communication bus 102 simul-

US 6,363,067 B1

9

taneously with the write cycles for loading of the packet into
the packet buffers 156. During such a cut-through operation,
the packet is received into a transmit buffer 218 of the
destination port for immediate transmission to the LAN
segment associated with the destination port.

Once the entire packet has been loaded into the packet
buffers 156, the memory control module 118 again places
the triplet on the data lines of the communication bus 102
and places a bit pattern on the command lines identifying
this as the “final triplet.” It should be noted that the initial
triplet and the final triplet are preferably identical, while the
bit patterns placed on the command lines of the communi-
cation bus 102 for identifying each of the initial and final
triplet are distinct. The destination port will then store the
final triplet in the triplet buffer 206 (FIG. 4) located within
the destination port. Thus, the packet is queued for trans-
mission by the destination port.

When the destination port is no longer busy, the destina-
tion port retrieves the packet from the packet buffers 156.
This is accomplished by the destination port requesting
access to the communication bus 102 from the bus control
module 114. When the request is granted, the bus control
module 114 places a bit pattern indicating a bus grant on the
command lines of the communication bus 102 and a bit
pattern identifying the port on the data lines. Once the
destination port gains control of the communication bus 102,
the destination port then initiates a series of read operations
over the communication bus 102 by placing the starting
address in the packet buffers 156 of the packet (from the
third field of the triplet for the packet) on the data lines of
the communication bus 102 and places a bit pattern identi-
fying a memory read operation on the command lines. In
response, the memory control module 118 accesses the
packet in the packet buffers 156. Preferably, the destination
port checks the receive status for the packet. If the receive
status indicates that the packet was not received
successfully, the memory read operation is preferably halted
and no further action is taken relative to the packet.

In addition, in the event that a cut-through operation was
initiated but was unsuccessful, the packet will need to be
retransmitted by the destination port. For example, the
cut-through operation may have been unsuccessful if a data
collision occurred during its transmission over the LAN
segment associated with the destination port. In such case,
the packet is retrieved from the packet buffers 156 as
described above.

While the destination port is receiving the packet into its
transmit buffer 218 from the packet buffers 156 or directly
from the source port (as during cut-through), the destination
port begins transmitting the packet to the LAN segment
associated with the destination port under control of the
transmit finite state machine 214. For this reason, the
transmit buffer 218 for each port need not be capable of
storing an entire data packet. The packet is then received
from the LAN segment associated with the destination port
by the destination node for the packet.

Bandwidth Criteria

In accordance with the present invention as illustrated in
FIGS. 3-5, each incoming data packet is processed in two
principal sequential steps: (1) table look-up and learning
operations; and (2) transfer of the data packet from the
source port to the destination port(s). Each of these principal
sequential steps includes several smaller steps.

For example, when cut-through is not performed, the
second principal step includes transferring the data packet

10

15

25

40

45

50

55

60

65

10

from the source port for the packet to the packet buffers 156
(FIG. 3) and, then, transferring the data packet from the
packet buffers 156 to the destination port for the packet. FIG.
6A illustrates a serial receive data path in the multi-port
bridge 100 for receiving data packets from a LAN segment
and loading the received data packets into the packet buffers
156. A data packet received from a LAN segment is received
by the receive buffer 216 (FIG. 4) at a stage 302. Then,
access to the communication bus 102 (FIG. 3) for transfer-
ring the packet is obtained at a stage 304. Next, the data
packet is transferred across the communication bus 102 at a
stage 306. Then, the packet buffers 156 (FIG. 3) are accessed
at a stage 308. Finally, the data packet is loaded into the
packet buffers 156 at a stage 310. As can be observed from
FIG. 6A, the receive data path includes a number of stages
arranged in a serial path. Each packet received is processed
in accordance with the receive data path, one packet after
another. Progression through each stage is in accordance
with the bus clock signal. Accordingly, an equal amount of
time is generally taken to progress a data packet through
each stage of the receive data path. Longer packets will
generally take longer to it progress than shorter packets. It
will be apparent, however, that portions of a data packet can
be in different stages of the receive data path at the same
time. For example, portions of a data packet can be loaded
into the packet buffers 156 (FIG. 3) while subsequent
portions of a still be received by the source port.

FIG. 6B illustrates a serial transmit data path in the
multi-port bridge 100 for retrieving data packets from the
packet buffers 156 and transmitting the retrieved data pack-
ets to an appropriate LAN segment. A data packet stored in
the packet buffers 156 (FIG. 3) is accessed at a stage 320 for
retrieving the data packet. Then, the memory controller 118
(FIG. 3) obtains access to the communication bus 102 (FIG.
3) in a stage 322. Next, the packet is retrieved from the
packet buffers 156 and transferred across the bus 102 at a
stage 324. Then, the data packet is loaded into the transmit
buffer 218 (FIG. 4) of the destination port and prepared for
communication to a LAN segment associated with the
destination port at a stage 326. Finally, the data packet is
transmitted to the LAN segment by the destination port at
the stage 328. Note that for a cut-through packet, the packet
is passed directly from the stage 306 illustrated in FIG. 6A
(bus crossing) to the stage 326 illustrated in FIG. 6B
(transmit buffer staging). As can be observed from FIG. 6B,
the transmit data path includes a number of stages arranged
in a serial path. Each packet to be transmitted is processed
by the transmit data path, one packet after another. Progres-
sion through each stage is in accordance with the bus clock
signal. Accordingly, an equal amount of time is generally
taken to progress a data packet through each stage of the
transmit data path, though longer packets generally progress
more slowly than shorter packets. It will be apparent,
however, that portions of a data packet can be in different
stages of the transmit data path at the same time. For
example, portions of a data packet can be transmitted by a
destination port for the packet while subsequent portions are
still being retrieved from the packet buffers 156 (FIG. 3).

The amount of bandwidth required by the multi-port
bridge 100 so as to successfully perform the second princi-
pal step of transferring the data packets between the ports
104-112 under worst-case conditions can be calculated as a
sum of the receive and transmit capacity for all the ports
104-112:

Data Bandwidth=2(receive and transmit capacity for each port)

Thus, for a multi-port bridge 100 having two 100 Mbps
full-duplex ports and twenty-four 10 Mbps half-duplex

US 6,363,067 B1

11

ports, the required bandwidth for transferring the data pack-
ets can be calculated as:

Data Bandwidth=2(2)(100 Mbps)+24(10 Mbps)=640 Mbps

The bandwidth required by the multi-port bridge 100 for
overhead operations, such as table look-up and learning, and
other operations, such as placing packets on the communi-
cation bus 102 a second time in the event of a collision, is
estimated by the inventor to be as high as fifty percent (50%)
of the required data bandwidth calculated above. Thus, the
maximum required bandwidth, including overhead, can be
estimated as:

Max. Bandwidth (incl. overhead)=640 Mbps*150%=960 Mbps

The maximum bandwidth of the multi-port bridge 100 is
also equal to the width of the data path (e.g. the communi-
cation bus 102) multiplied by the clock rate:

Max. Bandwidth (incl. overhead)=bus width*clock rate

Thus, for a communication bus that is 32 bits wide
(excluding the command lines), the required clock rate can
be calculated as:

clock rate=960 Mbps+32 bits=30 MHz

Accordingly, in the embodiment of the multi-port bridge
100 illustrated in FIG. 3 and having two 100 Mbps full-
duplex ports and twenty-four 10 Mbps half-duplex ports, the
bus clock rate should be 30 MHz or higher. Assume,
however, that a multi-port bridge is desired having one 1
Giga-bit per second (1 Gbps) full-duplex port and eight 100
Mbps full-duplex ports. In which case, the maximum band-
width for data transfer and overhead can be estimated as:

Max. Bandwidth=150% [2(1 Gbps)+2(8)(100 Mbps)]=5.4 Gbps

Assuming a 32-bit-wide communication bus 102 (FIG. 3)
the required clock rate can be estimated as:

clock rate=5.4 Gbps+32 bits=170 MHz

However, each portion of a packet bridged by the multi-
port bridge 100 illustrated in FIG. 3 must pass from one data
path stage to another data path stage before the next packet
can be similarly processed. For example, a first packet must
have crossed the communication bus 102 (FIG. 3) in stage
306 (FIG. 6A) before a next packet can cross the commu-
nication bus 102. The clock rate, however, can only be
increased to level commensurate with the slowest stage in
the data path. Accordingly, the clock rate cannot be
increased such that an insufficient amount of time is allowed
time for any stage in the receive or transmit data paths
illustrated in FIGS. 6A and 6B to perform its associated
function. Thus, the maximum clock rate can be given as:

Max. Clock Rate 1/slowest stage delay

Accordingly, the bus clock rate and, hence, the maximum
rate at which data packets can be bridged by the multi-port
bridge 100 illustrated in FIG. 3, is limited by the slowest one
of the stages illustrated in FIGS. 6A and 6B. In accordance
with the present invention, a technique is provided for
increasing the speed at which data packets are processed by
a multi-port bridge by serial or parallel subdivision of a
selected stage in the receive or transmit data path so as to
increase the rate at which data packets are processed by the
selected stage.

10

15

20

25

30

35

40

50

55

60

65

12

FIG. 7 illustrates serial subdivision of a data path stage
according to the present invention. As illustrated in FIG. 7,
the bus staging stage 304 is subdivided into two serial stages
304A and 304B. Because fewer steps are expected to be
required for each serially subdivided stage 304A and 304B,
each subdivided stage is expected to be able to process data
packets at a higher rate than the original, undivided, stage
304. A trade-off, however, is that the latency of the data path
is expected to generally increase. Thus, although this tech-
nique results in an increased bandwidth for the multi-port
bridge 100 because packets can be passed from one stage to
another at a higher rate, each packet is expected to generally
take longer to pass through the multi-port bridge 100 since
there are now more stages through which each packet must
pass. Although the bus staging stage 304 is illustrated in
FIG. 7 as the stage selected for serial subdivision, it will be
apparent that any processing stage in the multi-port bridge
100 can be selected. In the preferred embodiment, the stage
selected for serial subdivision is the slowest stage.

This trade-off in which latency and bandwidth are both
increased is desirable because local area networks are gen-
erally latency tolerant. That is, a recipient of data commu-
nicated via the local area network can tolerate slight delays
in receiving the data. The local area network is expected to
operate more efficiently, however, by avoiding delays due to
congestion and lost packets caused by a multi-port bridge
having insufficient bandwidth.

FIG. 8 illustrates parallel subdivision of a data path stage
according to the present invention. As illustrated in FIG. 8,
the bus crossing stage 306 is subdivided into four parallel
stages 306A, 306B, 306C and 306D. Because fewer steps
are expected to be required for each parallelly subdivided
stage 306A, 306B, 306C and 306D, each subdivided stage is
expected to be able to process packets at a higher rate than
the original stage. A trade-off, however, is that the complex-
ity of the hardware required to implement the parallel stages
and the integrated circuit chip area occupied by the parallel
stages are generally increased. Although the bus crossing
stage 306 is illustrated in FIG. 8 as the stage selected for
parallel subdivision, it will be apparent that any processing
stage in the multi-port bridge 100 can be selected. In the
preferred embodiment, the stage selected for parallel sub-
division is the slowest stage.

De-Coupling of Table Operations from Data
Transfer Operations

Returning to the example of a multi-port bridge having
one 1 Gbps full-duplex port and eight 100 Mbps full-duplex
ports, a time criterion for the look-up and learning operation
can be calculated. Assume that it is desired to have zero
packet loss during a worst-case scenario where each port is
simultaneously receiving (and transmitting) data at its maxi-
mum rate. Further, because a series of data packets of the
minimum length will require a maximum number of look-up
and learning operations per unit of time, assume that each
data packet is of the minimum length of 64 bytes. The time
required to receive a 64-byte packet at 100 Mbps, including
the inter-packet gap of 960 ns, can be calculated:

Receive Time @ 100 Mbps=(64 bytes)(8 bits/byte)(10 ns/bit)+960
ns=6,720 ns

Similarly, the time required to receive a 64-byte packet at 1
Gbps. including, the inter-packet gap of 96 ns, can be
calculated:

Receive Time @ 1 Gbps=(64 bytes)(8 bits/byte)(1 ns/bit)+96 ns
672 ns

US 6,363,067 B1

13

Thus, within a single time period of 6,720 ns, the multi-port
bridge having one 1 Gbps full-duplex port and eight 100
Mbps full-duplex ports can receive up to eight packets at 100
Mbps and ten packets at 1 Gbps. Accordingly, such a
multi-port bridge must be capable of performing eighteen
look up and learning operations within a 6720 ns period. On
average, each look-up and learning operation must take less
than 372 ns:

Max. Ave. Look-Up Time=6720 ns+18 packets=372 ns/packet

Thus, it is desired to increase the data handling, band-
width of a multi-port bridge and to minimize the amount of
time required to perform look-up and learning operations.
FIG. 9 illustrates a block schematic diagram of a multi-port
bridge 400 according to the present invention having a data
packet transfer bus 402 and a look-up bus 404. The multi-
port bridge 400 illustrated in FIG. 9 differs from the multi-
port bridge 100 illustrated in FIG. 3 in that the communi-
cation bus 102 illustrated in FIG. 3 is replaced with two
independent buses, the data bus 402 and the look-up bus
404. In addition, the memory device 150 illustrated in FIG.
3 is replaced with a memory device 406 coupled to the data
bus 402 and a memory device 408 coupled to the look-up
bus 404. The memory device 406 includes mailboxes 410
and packet buffers 412 while the memory device 408 pro-
vides storage for look-up tables. The multi-port bridge 400
interconnects a number of LAN segments, where each LAN
segment is coupled to a corresponding one of the ports
416420 of the multi-port bridge 400. Each port 416—420 is
coupled to both the data bus 402 and to the look-up bus 404.

The data bus 402 is utilized primarily for transferring data
packets between the ports 416—420 and the packet buffers
412 and for transferring data packets among the ports
416—420. A bus control module 414 is coupled to the data
bus 402 for controlling access to the data bus 402 by
collecting requests from the ports 416—420 and from the
other modules coupled to the data bus 402. Based upon the
requests, the bus control module 414 grants access to the
data bus 402 according to an appropriate priority. A memory
controller 422 provides an interface between the memory
device 406 and the data bus 402. The packet buffers 412 are
utilized for temporarily storing data packets undergoing
transfer between the ports 416-420. An MPU port and
mailbox module 424, in conjunction with the mailboxes 410,
provides an interface between the multi-port bridge 400 and
an external processor (not shown) for performing various
functions. These functions include loading data into regis-
ters of the multi-port bridge 400, fetching data from registers
of the multi-port bridge 400 and transferring data packets
between the external processor and the ports 416—420 of the
multi-port bridge 400.

The look-up bus 404 is utilized for performing look-up
and learning operations and additional overhead operations,
as necessary. The look-up tables of the memory device 408
include entries which indicate which port of the multi-port
bridge 400 is associated with each node of the LAN. A bus
controller 426 collects requests for look-up and learning
operations from the ports 416—420 and, in response to those
requests, grants access to the look-up bus 404 in an appro-
priate priority. The bus controller 426 also facilitates storing
addresses of nodes and associated port identifications in the
look-up tables and facilitates utilizing the look-up tables for
directing packets among the ports 416—420 based upon the
destination address of each packet. A memory controller 428
provides an interface between the memory device 408 and
the look-up bus 404.

A timing module 430 provides timing signals to the ports
416—420 and to the other modules of the multi-port bridge

10

15

20

25

30

35

40

45

50

55

60

65

14

400. An E-stat module 432 collects data packet routing,
statistics and provides them to the external processor for
performing analysis and network management functions.

Preferably, the modules 414, 422-432 are cach imple-
mented as a finite state machine, though the modules 414,
422432 can alternately be implemented as one or more
processors operating according to stored software programs.
Finite state machines are preferred as the can generally
perform the necessary operations faster, thus, resulting in a
higher packet handling bandwidth for the multi-port bridge
400. In the preferred embodiment, the ports 416—420 include
one 1 Gbps full-duplex port and eight 100 Mbps full-duplex
ports. It will be apparent, however, that other numbers of
ports and other port configurations can be utilized.

The arrangement illustrated in FIG. 9 allows data packet
transfer operations to be performed via the data bus 402 at
the same that look-up and learning operations are performed
via the look-up bus 404. By performing these operations in
parallel, as opposed to serially (as in FIG. 3 where a single
bus is time-division multiplexed for both data packet trans-
fer operations and for look-up and learning operations), the
packet handling capacity of the multi-port bridge 400 is
enhanced. For example, by incorporating this improvement
along with others discussed herein, the portion of the band-
width of the data transfer path consumed by overhead
operations can be dramatically reduced.

FIG. 10 illustrates a timing diagram for packets received
by the multi-port bridge 400 illustrated in FIG. 9. Reference
is also made to FIG. 9 for the following discussion of FIG.
10. During a time period T1, a first packet (packet #1) is
traversing the data bus 402 between a source port for the
packet #1 and a destination port (cut-through) or between
the source port and the packet buffers 412. During the same
time period T1, a look-up and learning operation for a
second packet (packet #2) can be performed via the look-up
bus 404. In addition, a third packet (packet #3) can be
received from a LAN segment into a source port for the
packet #3 during the time period T1. Note that additional
packets can be simultaneously received by other ports of the
multi-port bridge 400.

When transfer of the packet #1 via the data bus 402 is
completed, the packet #2 can then be transferred via the data
bus 402. This occurs during a time period T2. Also during
the time period T2, a look-up and learning operation for the
packet #3 is performed via the look-up bus 404. A fourth
packet (packet #4) can also be received into a source port for
the packet #4 during the time period T2.

Similarly, during a next time period T3, the packet #3 can
be transferred via the data bus 402, while a look-up and
learning operation for the packet #4 is performed via the
look-up bus 404 and while yet another packet (packet #5) is
being received into a source port for the packet #5. This
process continues as additional packets are received, look-
up and learning operations are performed and packet data is
transferred.

As will be apparent from the above discussion, the
multi-port bridge 400 illustrated in FIG. 9 achieves greater
packet handling capacity in comparison with the multi-port
bridge 100 illustrated in FIG. 3 through increased parallel-
ism in the processing of each packet. This is because data
transfer and table look-up operations can be performed
simultaneously via the data bus 402 and the look-up bus 404.

Receive Packet Vector FIFO in the Ports

FIG. 11 illustrates a block schematic diagram of one of the
ports 416420 of the multi-port bridge 400 illustrated in
FIG. 9. A port controller 450, including a bus interface 452,

US 6,363,067 B1

15

a triplet finite state machine 454, a receive vector finite state
machine 456 and registers 458, provides control for the port
and an interface between the port and the buses 402, 404.
The port also includes a triplet FIFO buffer 460, coupled
between the look-up bus 404 and the port controller 450, and
a receive packet vector buffer 462 coupled between the
look-up bus 404 and the port controller 450.

The port controller 450 monitors the data bus 402 and the
look-up bus 404 for commands and data directed to the port
and also provides commands and data to the buses 402, 404
as appropriate. Under control of the triplet finite state
machine 454, the triplet buffer 460 stores a queue of memory
pointers (“triplets”—illustrated in FIG. 5) for data packets
being stored in the packet buffers 412 (FIG. 9) of the
memory device 406 (FIG. 9). Under control of the receive
vector finite state machine 456, the receive vector buffer 462
stores information (“receive vectors”—illustrated in FIG. 14
and explained in more detail herein) relating to the routing
of packets received by the port. The term “vector” as used
herein means a data structure in which information relating
to the routing of a single packet through the multi-port
bridge 400 (FIG. 9) is stored. Thus, unless otherwise
indicated, the term “vector” includes a data structure having
an, as yet, empty field for storing an identification of the
destination port for the packet and also includes a data
structure having a field which presently contains the iden-
tification of the destination port for the packet. The registers
458 contain data for initializing the port upon start-up and
for collecting status information for the port.

The port also includes a medium access control (MAC)
transceiver 464 which accesses a LAN segment associated
with the port for transmitting data packets to, and receiving
data packets from, the LAN segment. Coupled to the trans-
ceiver 464 arc a receive finite state machine 466, for
controlling the transceiver 464 during packet reception, and
a transmit finite state machine 468, for controlling the
transceiver 464 during packet transmission. The receive
finite state machine 466 and the transmit finite state machine
468 are each coupled to the bus control module 414 (FIG. 9)
for requesting access to the data bus 402 therefrom.

Packets received from the associated LAN segment by the
transceiver 464 are directed to the packet data bus 402
through a receive FIFO buffer 470, while packets to be
transmitted over the associated LAN segment are directed
from the data bus 402 to the transceiver 464 through a
transmit FIFO buffer 472. An address latch 474 is also
included in the port for latching addresses from the data bus
402 and providing them to the transceiver 464.

FIG. 12 illustrates a diagram of the receive buffer 470
illustrated in FIG. 11. As shown in FIG. 12, a packet (i) is
stored in successive locations of the receive buffer 470
starting at an address in the buffer 470 identified by a packet
(i) pointer. A packet (i+1), received subsequently to the
packet (i), is stored the receive buffer 470 following the
packet (i). The packet (i+1) is stored in successive locations
of the buffer 470 starting at an address identified by a packet
(i+1) pointer. Similarly, a packet (i+2) and a packet (i+3) are
stored in successive locations of the receive buffer 470
starting at locations identified by a packet (i+2) pointer and
a packet (i+3) pointer, respectively.

As also shown in FIG. 12, a fetching pointer identifies a
current location in the receive buffer 470 from which the
packet (i) is currently being read and placed on the data bus
402 (FIGS. 9 and 11). Thus, once a packet is conditioned for
transfer via the data bus 402 to the packet buffers 412 (FIG.
9) or directly to the destination port, the fetching pointer

10

15

20

25

30

35

40

45

50

55

60

65

16

points at the starting address for the packet, and is then
incremented as the packet is read from the buffer 470 and
placed on the data bus 402. In addition, a loading pointer
identifies a current location in the receive buffer 470 into
which the packet (i+3), currently being received from the
LAN segment associated with the port, is written. The
loading pointer is incremented as the incoming packet is
stored in successive locations of the receive buffer 470.

Unlike the receive buffer 216 illustrated in FIG. 4, the
receive buffer 470 illustrated in FIGS. 11-12 can store more
than one packet, preferably two to four packets of the
minimum size specified by the IEEE 802.3 standard. It will
be apparent, however, that the size of the receive buffer 470
can be altered while achieving the advantages of the present
invention.

FIG. 13 illustrates a diagram of the receive packet vector
buffer 462 illustrated in FIG. 11. The vector buffer 462 stores
one receive packet vector (FIG. 14) for each packet stored
in the receive buffer 470. Thus, a packet vector (i) stored in
the vector buffer 462 corresponds to the packet (i) illustrated
in FIG. 12. Similarly the vector buffer 462 stores a packet
vector (i+1), a packet vector (i+2) and a packet vector (i+3),
corresponding to the packet (i+1), the packet (i+2) and the
packet (i+3) illustrated in FIG. 3, respectively.

FIG. 14 illustrates a receive packet vector according to the
present invention. The packet vector includes a first field 502
in which a vector valid flag is stored. The logic level of the
vector valid flag indicates whether the remaining fields of
the packet vector are valid. Next, the packet vector includes
a field 504 in a which information relating to look-up table
operations for the packet are stored. For example, informa-
tion in the field 504 can indicate whether a learning opera-
tion needs to be performed for the packet and can also
indicate whether a look-up operation for the packet is
complete. The packet vector includes a field 506 for storing
a triplet for the packet, including the source port, destination
port and starting address in the packet buffers 412 assigned
to the packet. In addition, the field 506 can store the length
of the packet and a receive status for the packet. A field 508
of the packet vector stores a receive packet pointer for the
packet. As mentioned, the receive packet pointer identifies a
starting location in the receive buffer 470 for the packet.
Finally, the packet vector optionally includes a field 510 for
storing additional information about the packet. For
example, the field 510 can store a virtual-LAN (v-LAN) tag
for the packet or an indication of a priority assigned to the
packet.

As discussed herein, the arrangement of the port illus-
trated in FIG. 11, including the receive buffer 470, which can
preferably store two or more packets, and including the
receive packet vector buffer 462, achieves an advantage over
the arrangement of the port illustrated in FIG. 4, in that
operations for multiple data packets received by the port can
be performed simultaneously (in parallel), thus, increasing
the packet handling capacity of the multi-port bridge.

Parallel Operations for Packet Bridging

For the following discussion, reference is made to FIGS.
9-14. As a packet is received by a source port for the packet,
such as is illustrated in FIG. 11 the packet is loaded into the
receive packet buffer 470 (FIGS. 11-12) under control of the
receive finite state machine 466 (FIG. 11). The packet is
loaded in the packet buffer 470 starting at a next location in
the buffer 470 following a previous packet. This is shown in
FIG. 12 where the packet (i+3) is being written to the receive
buffer 470 following the packet (i+2) in accordance with the

US 6,363,067 B1

17

loading pointer. The starting address in the receive buffer
470 is identified by a packet pointer assigned to the packet.
As the packet is received and stored in successive locations
of the receive buffer 470, the loading pointer is incremented.
Once the loading process for a packet commences, a packet
vector is assigned to the packet and initialized under control
of the receive vector finite state machine 456 (FIG. 11). The
packet vector is initialized by conditioning the field 502
(FIG. 14) of the packet vector to indicate that the packet
vector is valid, conditioning the field 504 to indicate that a
look-up operation needs to be performed and by storing the
packet pointer in the field 508 (FIG. 14).

Then, once the source address and destination address for
the packet have been received from the segment of the LAN
associated with the source port for the packet, look-up and
learning operations are performed for the packet. The port
requests access to the look-up bus 404 for this purpose. Once
access to the look-up bus 404 is granted, look-up and
learning operations are performed for the packet. During the
learning operation, the look-up tables are updated in the
memory device 408 (FIG. 9). During the look-up operation,
the destination port for the packet is identified. In addition,
a starting address in the packet buffers 412 (FIG. 9) is
assigned to the packet. Accordingly, a triplet (FIG. 5) for the
packet is formed. The triplet is then placed on the look-up
bus 404 (FIGS. 9, 11). The port that is receiving the packet
then stores the triplet in the field 506 (FIG. 14) of the packet
vector for the packet. In addition, the field 504 is conditioned
to reflect that the look-up and learning operations are
complete.

The look-up and learning operations for the packet can be
performed while the packet is still being received into the
receive buffer 470 (FIG. 11), however, the look-up and
learning operations can also be postponed until after the
packet is entirely loaded in the receive buffer 470 in the
event that access to the look-up bus 404 is not immediately
granted. For example, if not already completed, look-up and
learning can be performed for the packet (i+1) or the packet
(i+2) while the packet (i+3) is being loaded into the receive
buffer 470. As illustrated in FIG. 12, these packets are
completely loaded into the receive buffer 470.

Once the look-up and learning operations for a packet are
complete, as indicated in the field 504 (FIG. 14) of the
packet vector for the packet, and assuming the packet has
been queued for transfer from the receive buffer 470 (FIGS.
11, 12) for the longest time (or has the highest priority, as
indicated in the field 510 for the packet), then the receive
finite state machine 466 (FIG. 11) requests access to the data
bus 402 (FIGS. 9, 11). Once access is granted, the packet is
transferred from the receive buffer 470 to the packet buffers
412 (FIG. 9). If not currently busy transmitting another
packet, the destination port for the packet receives the packet
from the data bus 402 into its transmit buffer 472 (FIG. 11)
while the packet is being loaded into the packet buffers 412
(cut-through). Otherwise, the destination port retrieves the
packet from the packet buffers 412 once it is no longer busy.

In addition, while look-up and learning operations are
being performed for a packet, a data transfer operation can
be simultaneously performed for a prior packet. For
example, while a look-up operation is being performed for
the packet (i+3), a packet vector previously completed for
the packet (i) can be utilized to transfer the packet (i) to the
packet buffer 412 (FIG. 9) and, if the destination port is
available, directly to the destination port for the packet (i)
(cut-through).

The arrangement of the port illustrated in FIG. 11, includ-
ing the receive buffer 470, which can preferably store two or

10

15

20

25

30

35

40

45

50

55

60

65

18

more packets, and the receive packet vector buffer 462, is
preferably utilized in a multi-port bridge 400 having a data
bus 402 and a look-up bus 404 which operate independently.
It will be apparent, however, that a port having a receive
buffer 470 which can store two or more packets and having
a receive packet vector buffer 402, can be utilized in a
multi-port bridge having a single, time-division multiplexed
bus, such as the bus 102 (FIGS. 34).

The receive buffer 470 should be large enough to store
two or more relatively small packets, such as packets of the
minimum size specified by the IEEE 802.3 standard, as these
small packets require the most overhead operations, such as
for look-up and learning, in comparison to the amount of
data transferred by the packet (i.e. these packets have a high
ratio of overhead to payload). Because the arrangement of
the port illustrated in FIG. 11 improves packet handling
capacity of the multi-port bridge 400 (FIG. 9) by eliminating
overhead operations from the data transfer path through the
multi-port bridge 400, the performance of the multi-port
bridge 400 is improved dramatically, though the size of the
receive buffer 470 need not be increased dramatically. This
minimizes the amount of silicon space required to imple-
ment the port illustrated in FIG. 11 as a portion of an
integrated circuit. It will be apparent, however, that the size
of the receive buffer 470 can be altered while still achieving
the principle advantages of the present invention. For
example, the receive buffer 470 can be sized to hold two or
more relatively large packets, such as a packet of the
maximum size specified by the IEEE 802.3 standard.

Transparent Bus Partition

FIG. 15 illustrates a transparently partitioned bus accord-
ing to the present invention. FIG. 15 differs from FIG. 9 in
that the data bus 402 of FIG. 9 is partitioned into four bus
segments 402a, 402b, 402¢ and 4024 in FIG. 15. Each bus
segment 402a, 402b, 402¢ and 4024 includes a same number
(n) of signal lines; preferably, thirty-two data lines in addi-
tion to command lines. One or more ports is coupled to each
bus segment 402a, 402b, 402¢ and 402d. For example, Port
#1 and Port #2 are coupled to the bus segment 402a; Port #3
and Port #4 are coupled to the bus segment 402b; Port #5 and
Port #6 are coupled to the bus segment 402¢ and Port #7 and
Port #8 are coupled to the bus segment 402d. In addition, a
packet buffer memory 412 (illustrated in FIG. 9) can be
coupled to one of the bus segments 4024, 402b, 402¢ or
402d of FIG. 15 for temporarily storing data packets being
bridged from one port to another. The packet buffer memory
412 (FIG. 9) can replace one or more of the ports coupled
to its bus segment or can be coupled to the bus segment in
addition to the corresponding ports.

Because each bus segment 402a, 402b, 402¢ and 4024 is
coupled to fewer than all of the ports, the signal lines of each
bus segment 402a, 402b, 402¢ and 402d can be physically
shorter in length than if the signal lines were coupled to all
of the ports, as is the case for the data bus 402 illustrated in
FIG. 9. Because the signal lines are shorter in length, each
has lower resistance and capacitance and, thus, R-C time
constants associated with the signal lines of each bus seg-
ment 4024, 402b, 402¢ and 402d are lower than would be the
case for a non-partitioned bus. For example, because the
resistance and capacitance associated with a signal line each
increases approximately linearly with length, assuming the
bus segment 4024 is one-fourth of the length of the data bus
402 (FIG. 9), then the R-C time constants for the signal lines
of the bus segment 4024 are approximately one-sixteenth the
value of the R-C time constants for the signal lines of the
data bus 402 (FIG. 9). In addition, the signal lines of the bus

US 6,363,067 B1

19
segments 402a, 4025, 402¢ and 402d are less heavily loaded
because there are fewer ports coupled to each bus segment.
These lower R-C time constants and lighter loading allow
the partitioned bus illustrated in FIG. 15 to transfer data in
accordance with a significantly higher frequency clock sig-
nal than the data bus 402 (FIG. 9).

A transparent bus controller 550 is coupled each bus
segment 402a, 402b, 402¢ and 402d via pluralities of (n)
sense lines 552a, 552b, 552¢ and 552d, respectively. Each
group of (n) sense lines 552a, 552b, 552¢ and 5524 includes
one sense line coupled to each signal line of the correspond-
ing bus segment. The sense lines 552a, 552b, 552¢ and 552d
provide an indication to the transparent bus controller 550 of
the logic level of each signal line of each bus segment 4024,
402b, 402¢ and 402d.

In addition, groups of (n) transistors 554a, 554b, 554¢ and
5544, one transistor for each signal line of each bus segment
402a, 402b, 402¢ and 402d, respectively, are coupled
between the respective signal line and ground. For illustra-
tion purposes, only a single transistor is shown coupled
between each bus segment 402a, 402b, 402¢ and 402d and
ground, though it will be understood that a plurality of (n)
transistors are coupled between each bus segment and
ground, one transistor coupled to each signal line. The gate
of each of the transistor of each group 5544, 554b, 554¢ and
554d is coupled to be independently controlled by the
transparent bus controller 550 such that any signal line, or
any combination of signal lines, of the bus segments 4024,
402b, 402¢ and 4024 can be selectively shunted to ground.

Further, a transistor 5564, a transistor 556b, a transistor
556¢ and a transistor 5564, are each coupled between a logic
high voltage (V) and anodes of groups of (n) diodes 5584,
558b, 558¢c and 5584, respectively. Thus each of the four
transistors 556a, 556b, 556¢ and 556d, one for cach bus
segment 402a, 402b, 402¢ and 4024, respectively, is coupled
to the anodes of (n) diodes. For illustration purposes, a single
diode is shown for each bus segment though it will be
understood that a plurality of (n) diodes, one for each signal
line are coupled to each of the transistors 556a, 556b, 556¢
and 556d. A cathode of each diode of each of the groups
558a, 558b, 558¢ and 5584 is coupled to a respective one of
the signal lines of each bus segment 402a, 402b, 402¢ and
402d. The gate of each of the four transistors 556a, 556b,
556¢ and 556d is coupled to be controlled by the transparent
bus controller 550 such that all the signal lines of each bus
segment 402a, 402b, 402¢ and 402d, can be simultaneously
shunted to V.

FIG. 16 illustrates a timing diagram for transferring data
via the partitioned bus illustrated in FIG. 15. A single bus
cycle for transferring data from one port to another port (or
to a packet buffer) includes three time periods TA, TB and
TC. Because each bus segment 402a, 402b, 402¢ and 4024
(FIG. 15) preferably includes 32 data lines, 32 bits of data
can be transferred during each bus cycle.

During the time period TA, the transparent bus controller
550 (FIG. 15) pre-charges each signal line of each bus
segment 4024, 402b, 402c and 4024 (FIG. 15) to a logic high
voltage level (V) by activating the four transistors 5564,
556b, 556¢ and 556d (FIG. 15), respectively. Current flows
from the voltage supply V.. to each signal line through the
transistors 556a, 556b, 556¢ and 5564 and the respective
groups of diodes 558a, 558b, 558¢ and 558d. Because the
pre-charging operation includes all the signal lines of each
bus segment 4024, 402b, 402¢ and 402d, no combinational
logic operations are required to be performed during the
time period TA with respect to individual signal lines. In the

10

15

20

25

30

35

40

45

50

55

60

65

20

preferred embodiment, the transistors 556a, 556b, 556¢ and
556d are formed of sufficient size to rapidly pre-charge all
the signal lines. As such, pre-charging of all the signal lines
can be accomplished in a relatively short time period. Upon
completion of pre-charging, the transistors 556a, 556b, 556¢
and 556d are deactivated.

The ports request access to the partitioned bus from the
transparent bus controller 550 which grants access to the
partitioned bus according to an appropriate priority. During
the time period TB, a port having previously been granted
access to the partitioned bus applies the data to be commu-
nicated to its associated bus segment by applying an appro-
priate logic level to each signal line of its associated bus
segment. The transparent bus controller 550 then senses the
data applied by the port via the sense lines 5524, 552b, 552¢
or 552d coupled to the appropriate bus segment. In the
preferred embodiment, sensing of the signal lines is per-
formed by the transparent bus controller 550 simultaneously
as the port having access to the transparent bus places data
on its associated bus segment. Then, the transparent bus
controller 550 replicates this data to each other bus segment
by discharging appropriate ones of the signal lines of each
other bus segment via appropriate ones of the transistors
554a, 554c, 554c and 554d. This is accomplished by the
transparent bus control logic 550 monitoring the sense lines
of bus segment coupled to the port having control of the
transparent bus, and once the voltage level of a signal line
falls below a predetermined threshold, the corresponding
signal lines of the other bus segments are immediately
discharged. This technique results in the data being repli-
cated to the other bus segments in a relatively short period
of time.

For example, assume Port #4 (FIG. 15) is granted access
to the partitioned bus. During the time period TB, Port #4
applies the data to be communicated, such as a 32-bit portion
of an IEEE 802.3 data packet, to its associated bus segment
4025 (FIG. 15). The transparent bus control logic 550 (FIG.
15) simultaneously monitors the bus segment 402b via the
sense lines 552b (FIG. 15). Once the bus control logic 550
determines the logic levels of the signal lines of the bus
segment 402b, the bus control logic 550 replicates these
logic levels on the bus segments 402a, 402¢ and 4024, by
activating appropriate ones of the transistors 554a, 554¢ and
554d, thereby discharging the appropriate signal lines to a
logic low voltage. No action is taken relative to signal lines
of the bus segments 4024, 402¢ and 402d which are a logic
high voltage as these signal lines simply remain charged by
the pre-charging operation performed during the time period
TA.

During the time period TC, the identical data is available
from any of the bus segments 402a, 402b, 402¢ and 402d.
Accordingly, the recipient of the data receives the data
during the time period TC. Upon conclusion of the bus cycle
at the end of the time period TC, a subsequent bus cycle
commences, starting with the time period TA.

Accordingly, the bus is “transparently” partitioned such
that the bus segments 402a, 402b, 402c and 402d, in
conjunction with the transparent bus controller 550, form a
single logical bus by which the ports communicate data. A
principle advantage of this aspect of the present invention is
that the entire bus cycle, including the time periods TA, TB
and TC, can be made shorter than a bus cycle for a
non-partitioned bus. Although four bus segments 4024,
402b, 402¢ and 402d, each having two ports, are illustrated
in FIG. 15, it will be apparent that the number of bus
segments, and the number of ports coupled to each bus
segment, can be altered. In addition, a look-up bus 404 (FIG.

US 6,363,067 B1

21

9) can be coupled to each of the ports illustrated in FIG. 15
for performing look-up and learning operations utilizing an
associated memory device 408 (FIG. 9).

Staged Partitioned Bus

FIG. 17 illustrates a multi-port bridge 600 having a staged
partitioned bus according to the present invention. The
multi-port bridge 600 illustrated in FIG. 17 differs from that
illustrated in FIG. 9 in that the data bus 402 of FIG. 9 is
partitioned into four bus segments 402a', 402b', 402¢' and
4024d' in FIG. 17. Each bus segment 4024', 4020', 402¢' and
402d' is operable independently of the others and includes a
same number (n) of signal lines; preferably, thirty-two data
lines in addition to command lines. One or more ports are
coupled to each bus segment 402a', 402b', 402¢' and 402d'.
For example, Port #1 and Port #2 are coupled to the bus
segment 402a'; Port #3 and Port #4 are coupled to the bus
segment 402b'; Port #5 and Port #6 are coupled to the bus
segment 402¢' and Port #7 and Port #8 are coupled to the bus
segment 4024'. Though four bus segments 402a', 402b',
402¢' and 4024 are illustrated in FIG. 17, each having two
ports, it will be apparent that a different number of bus
segments can be provided and that each bus segment can be
coupled a different number of ports.

Each bus segment 4024', 4020', 402¢' and 4024' is coupled
to a staging multiplexer (MUX) 602 and to a bus control
module 414'. In addition, the staging MUX 602 is coupled
to the bus control module 414', to a memory controller 422!
and to a memory device 406'. The memory controller 422'
provides an interface between the memory device 406' and
the staging MUX 602. The memory device 406' includes
mailboxes 410" for exchanging information between an
external processor (not shown) and the multi-port bridge 600
and also includes a packet buffer memory 412' for tempo-
rarily storing data packets undergoing bridging from one
port to another.

The bus control module 414' receives requests from the
ports for access to the memory device 406' and grants such
requests according to an appropriate priority. In addition to
notifying a port when that port is granted access to the
memory device 406', the bus control module 414' conditions
the staging MUX 602 so as to provide a signal path to the
memory device 406' for the port. Accordingly, a
bi-directional communication path is formed between the
port and the memory device 406' via the associated one of
the bus segments 402a', 402b', 402¢' and 402d' and through
the MUX 602. This bi-directional signal path can be utilized
for storing data packets and other information in the memory
device 406' and for retrieving data packets and other infor-
mation from the memory device 406'.

Similarly to the transparently partitioned bus illustrated in
FIG. 15, because each bus segment 4024', 402b', 402¢' and
402d' of the staged partitioned bus illustrated in FIG. 17 is
coupled to fewer than all of the ports, the signal lines of each
bus segment 402a', 4025, 402¢' and 402d' can be physically
shorter in length than the signal lines of the data bus 402
illustrated in FIG. 9. This results in lower R-C time con-
stants for the bus segments 402a', 4025, 402¢' and 4024'. In
addition, the signal lines of the bus segments 402a', 402b',
402¢' and 4024 are less heavily loaded than those illustrated
in FIG. 9 because there are fewer ports coupled to each bus
segment. These lower R-C time constants and lighter load-
ing allow the staged partitioned bus illustrated in FIG. 17 to
transfer data in accordance with a significantly higher fre-
quency clock signal than the data bus 402 illustrated in FIG.
9.

10

15

20

25

30

35

40

45

50

55

60

65

22

The bus arrangement illustrated in FIG. 17 differs from
that illustrated in FIG. 15 in that no provision is made in the
preferred embodiment of the arrangement illustrated in FIG.
17 for cut-through of data packets from one of the bus
segments 402a', 402b', 402¢’ or 402d' to another. Thus,
according to the invention illustrated in FIG. 17, data
packets cannot be communicated directly from one bus
segment to another without first being temporarily stored in
the memory device 406'. This is because in the preferred
embodiment, the staging MUX 602 only provides a com-
munication path between one of the bus segments 4024,
402b', 402¢' or 402d', and the memory device 406' for
storing or retrieving packets, but does not provide a com-
munication path directly between any two or more of the bus
segments 402a', 402b', 402¢' or 402d'. However, it will be
apparent that cut-through can be accomplished for commu-
nicating packets directly between ports coupled to a same
one of the bus segments 4024a', 4020', 402¢' or 402d'. It will
also be apparent that the staging MUX 602 can be modified
to provide a communication path directly between any two
or more of the bus segments 402a', 402b', 402¢' or 402d'.
The arrangement illustrated in FIG. 17 provides an advan-
tage over that illustrated in FIG. 15 in that fewer circuit
elements as required. For example, the transistors
554a-554d, the transistors 556a—556d and the diodes
558a-558d illustrated in FIG. 15 are unnecessary in the
arrangement of FIG. 17.

In addition, a look-up bus 404' (FIG. 18), an associated
memory device 408' (FIG. 18) and memory controller 428'
(FIG. 18) can be included for performing look-up and
learning operations simultaneously as data packets are trans-
ferred via the staged partitioned bus in accordance with the
present invention. For example, FIG. 18 illustrates a multi-
port bridge 600" having a staged partitioned data bus, includ-
ing two bus segments 402a' and 402b', and a look-up bus
404'.

Assume a data packet is received by a port, for example,
the port #4 coupled to the data bus segment 4024" illustrated
in FIG. 18. The port #4 identifies an appropriate destination
port for the packet via the look-up bus 404' by looking up the
destination address for the packet in the look-up tables 408'.
Assume the destination port identified for the packet is the
port #6, which is coupled to the data bus segment 4025'
illustrated in FIG. 18. A result of the look-up operation is a
triplet (FIG. 5) which is stored in a triplet buffer 206 (FIG.
4) of the port #6. Then, the port #4 requests access to the
memory device 406 from the bus control module 414'. The
bus control module 414' grants access to the port #4 by
conditioning the staging multiplexer 602 to provide a signal
path from the port #4 (and the bus segment 402b") to the
memory device 406' through the multiplexer 602. The port
#4 then stores the data packet in the packet buffers 412' of
the memory device 406'.

When the port #6 is available for transmitting the data
packet, the port #6 requests access to the memory device
406' from the bus control module 414'. When such access is
granted, the memory control module 414' conditions the
multiplexer 602 so as to provide a signal path from the port
#6 (and the bus segment 402¢") to the memory device 406'
through the multiplexer 602. The port #6 then retrieves the
data packet from the packet buffers 412' and transmits the
packet to its associated segment of the LAN.

Assume, however, that the destination port for the data
packet is the port #2, rather than the port #6. The port #2 is
coupled to same data bus segment 402a' as the port #4.
Accordingly, if the port #2 is not currently busy transmitting
when the port #4 stores the data packet in the packet buffers

US 6,363,067 B1

23

412', the port #2 preferably receives the packet directly from
the port #4 via the data bus segment 402' (cut-through).

Optimized Cut-Through for Broadcast and Multi-
cast Packets

Abroadcast packet is one that is intended by its originat-
ing node to be received by every other node of the LAN.
Accordingly, when a multi-port bridge receives a broadcast
packet, the packet is preferably directed to every port of the
multi-port bridge (except the port that received the packet).
Typically, a broadcast packet is identified by a destination
address which is a series of logic ones (e.g., hexadecimal: FF
FF FF FF FF FF). An example of a broadcast packet is a
“keep alive” packet. In accordance with the IEEE 802.3
standard, each node periodically broadcasts a “keep alive”
packet which informs the other nodes of the LAN of the
continued presence of the sending node in the LAN.

A multi-cast packet is one that is intended to be received
by each of a selected group of nodes of a LAN. For example,
a virtual LAN (VLAN) may include a subset of nodes of a
larger LAN. When a node included in the VLAN group
sends a packet, the packet can be multi-cast to each other
member of the VLAN group. Typically, a multi-cast packet
is identified when the first bit of its destination address is a
logical one. The source address of a multi-cast packet
identifies the originating node which can then be utilized to
identify the VLAN group of which the originating node is a
member.

A uni-cast packet is one which is intended to be received
by a single destination node. Typically, a uni-cast packet is
identified by the first bit of the destination address for the
packet being a logical zero. The destination node for the
uni-cast packet is identified by the remaining bits of the
destination address included in the packet.

Referring to FIG. 3, during the look-up operation for a
packet received by a port (source port) of the multi-port
bridge 100, the packet is examined to determine whether the
packet is intended to be broadcast to all nodes of the LAN,
whether the packet is intended for a VLAN group and
whether the packet is intended for a single destination node.
If the packet is intended to be broadcast to all the nodes of
the LAN, the packet is directed to all the ports of the
multi-port bridge 100 (or to all the ports other than the
source port). If the packet is intended for a VLAN group, the
packet is a multi-cast packet. In which case, the source node
address for the packet is utilized to access an appropriate
entry in a VLAN portion of the look-up tables 154. Each
entry in the VLAN portion of the look-up tables 154
identifies the destination ports for the packet according to
the source node address for the packet. If the packet is
intended for a single destination node, information stored in
the look-up tables 154 during learning operations for prior
packets is utilized to identify an appropriate destination port
for the packet. If the look-up tables 154 do not identify the
appropriate port, the packet is treated as a broadcast packet
or a multi-cast packet depending upon how the multi-port
bridge 100 is pre-conditioned.

According to an embodiment of the present invention, if
a destination port for a broadcast or a multi-cast packet is not
currently busy when the packet is stored in the packet buffers
156, the packet is also received by the destination port
directly from the source port (i.e. the packet is cut-through).
If a destination port is busy transmitting another packet,
however, that port will retrieve the packet from the packet
buffers 156 (FIG. 3) later, when the port is no longer busy.
Accordingly, if multiple destination ports are busy when the

10

15

20

25

30

35

40

45

50

55

60

65

24

packet is stored in the buffers 156, each of these ports
retrieves the packet from the packet buffers 156 later, when
it is no longer busy. Thus, the packet will appear on the
communication bus 102 (FIG. 3) several times, once when
the packet is transferred to the packet buffers 156 and an
additional time for each destination port that was unable to
receive the packet directly from the source port. Similarly,
when a broadcast or multi-cast packet is received by a source
port of the multi-port bridge 400 (FIG. 9), the packet may
appear on the data bus 402 (FIG. 9) several times, once for
each destination port which was unable to receive the packet
directly from the source port.

These multiple appearances of the same packet on the
communication bus 102 (FIG. 3 or on the data bus 402 (FIG.
9) tend to consume valuable bandwidth capacity of the
respective bus. This is especially true of broadcast packets
since broadcast packets are always directed to multiple
destination ports and are required by the IEEE 802.3 speci-
fication to be sent throughout the LAN with regularity.

In accordance with another embodiment of the present
invention, a memory store is provided in each port for
receiving and storing broadcast and multi-cast packets, even
when the port is busy transmitting another packet. Then,
when the port is no longer busy, the broadcast or multi-cast
packet is transmitted by the port without the port first having
to retrieve the broadcast packet from a location apart from
the port. Bandwidth is conserved because appearance of the
broadcast or multi-cast packet on a bus which interconnects
the ports is minimized.

FIG. 19 illustrates a block schematic diagram of a port of
a multi-port bridge in accordance with the present invention.
The port illustrated in FIG. 19 is preferably utilized in the
multi-port bridge 400 illustrated in FIG. 9 but can also be
utilized in the multi-port bridge 100 illustrated in FIG. 3,
with appropriate modifications. The port illustrated in FIG.
19 is preferably identical to the port illustrated in FIG. 11
except as described herein. For example a port controller
450" of the port illustrated in FIG. 19 includes a broadcast
packet controller 650 which is not illustrated in FIG. 11. In
addition, the transmit buffer 472 illustrated in FIG. 11 is
replaced in FIG. 19 with a transmit buffer 652.

FIG. 20 illustrates a diagram of the transmit buffer 652
illustrated in FIG. 19. As shown in FIG. 20, a packet, such
as a uni-cast packet, a broadcast packet or a multi-cast
packet, can be stored in a transmit packet store 654 which is
a portion of the transmit buffer 652 allocated for this
purpose. A transmit packet pointer marks a first location of
a packet being stored in the transmit packet store 654. A
transmit loading pointer keeps track of a current location
into which the packet is currently being written to, while a
fetching pointer keeps track of a current location from which
the packet is being read from. The transmit finite state
machine 468 (FIG. 19) controls writing data to, and reading
data from, the transmit packet store 654. In the preferred
embodiment, each packet written to the transmit packet store
654 is also read out from the transmit packet store 654 and
transmitted to a LAN segment associated with the port while
the packet is still be written to the transmit packet store 654.
For this reason, the transmit packet store 654 need not be
capable of storing an entire IEEE 802.3 data packet of the
maximum size.

In addition, the transmit buffer 652 includes a broadcast
packet store 656 for storing broadcast and multi-cast packets
when a such a packet is received while the port is busy
transmitting another packet from the transmit packet store
654. In the preferred embodiment, the broadcast packet

US 6,363,067 B1

25

controller 650 (FIG. 19) is normally dormant and becomes
active only when: (1) the transceiver 464 (FIG. 19) of the
port is currently busy transmitting a packet; (2) a broadcast
or multi-cast packet is being received by another port
(source port); and (3) the broadcast packet store 656 is
empty. When these conditions are all present, the broadcast
packet controller 650 writes the broadcast packet into the
broadcast packet store 656 of the port (destination port)
when the packet appears on the data bus 402 (FIG. 19) as it
is being written to the packet buffers 412 (FIG. 9) by the
source port. Thus, the broadcast or multi-cast packet is
“cut-through” to the destination port even if the destination
port is busy transmitting another packet. It is expected that
this aspect of the present invention will result in a greater
number of ports receiving the broadcast or multi-cast packet
when it appears on the data bus 402 (FIG. 19) a first time,
thereby reducing the total number of times such a packet
appears on the data bus 402 (FIG. 19).

A broadcast packet pointer marks a first location of a
packet stored in the broadcast packet store 656 while a
broadcast loading pointer keeps track of a current location
into which a packet is currently being written under control
of the broadcast packet controller 650 (FIG. 19). Assuming
the entire broadcast or multi-cast packet is successfully
stored in the broadcast packet store 656, an appropriate
triplet corresponding to the packet is stored in the triplet
buffer 460 (FIG. 19) by the controller 650. The triplet
includes an indication that the packet is located in the
broadcast packet store 656 of the port. Note that the broad-
cast packet store 656 is preferably reserved for broadcast
and multi-cast packets. Thus the broadcast packet stored 656
preferably does not receive uni-cast packets.

Once the port is available to transmit the packet stored in
the broadcast packet store 656, the fetching pointer is
initialized to the starting address of the packet and the packet
is read from the broadcast packet store 656 and transmitted
to the LAN segment associated with the port.

Because broadcast “keep alive” packets are typically
smaller than the maximum size IEEE 802.3 packet and occur
relatively infrequently in comparison to other types of
packets, the principle advantages of this aspect of the present
invention can be achieved by sizing the broadcast packet
store 656 so as to be capable of storing one entire IEEE
802.3 packet of at least the minimum size. The broadcast
packet store 656, can alternately be sized to accommodate an
IEEE 802.3 packet of the maximum size or can even be sized
to accommodate several packets.

Assuming that the broadcast or multi-cast packet which
appears on the data bus 402 (FIG. 9) as it is being loaded into
the packet buffers 412 is not successfully stored in the
broadcast packet store 656 of the port, then an appropriate
triplet corresponding to the packet is stored in the triplet
buffer 460. In such case, the triplet includes an indication
that the packet is to be retrieved from the packet buffers 412
(FIG. 9). Once the port is available to transmit the packet,
the packet is retrieved from the buffers 412 into the transmit
packet store 654 from which it is transmitted to the LAN
segment associated with the port. Alternately, if it is deter-
mined that the broadcast packet was received in error, no
triplet is stored in the triplet buffer 460 (FIG. 19) corre-
sponding to such broadcast packet. In either case, the
contents of the broadcast packet stored 656 are not utilized
and, thus, can be cleared or overwritten.

This aspect of the present invention conserves bandwidth
of the bus which interconnects the ports because appearance
of the broadcast or multi-cast packet on the bus is mini-
mized.

15

20

30

35

40

45

50

55

60

65

26

De-Coupling Table Look-up Operations from
Learning Operations

Referring to the multi-port bridge 100 illustrated in FIG.
3, each port 104-112 is coupled to a LAN segment which
can include one or more nodes. For each data packet
received by the multi-port bridge 100, the look-up table 154
(also referred to as a dynamic filtering database) stored by
the memory device 150 is utilized to determine whether the
packet is to be filtered (when the source node and the
destination node are on a same LAN segment), and if the
packet is not to be filtered, to determine which is the
appropriate destination port to which the packet is to be
directed.

Table 1 shows an example of the look-up table 154,
including sample entries, that can be utilized for appropri-
ately filtering and forwarding data packets within the multi-
port bridge 100. As shown by Table 1, each entry in the
look-up table 154 includes the node address (also referred to
as MAC address) for each node of the LAN stored in
association with an identification of the port of the multi-
port bridge 100 which is coupled to the LAN segment which
includes the node. Additional data is stored in the look-up
table 154 in association with the node address, such as a time
stamp, a VLAN identification, a priority and other associ-
ated data.

TABLE 1
Other
MAC Address Time Associated
(node address) Port ID Stamp VLAN ID Priority Data
00112333445 4 0461 4 0
01A234F111B6 15 1247 0 1
0A2C72A8D9 8 0723 3 0

So that the look-up table 154 accurately correlates each
node address to the appropriate port 104-112 of the multi-
port bridge 100 even when nodes are added or removed from
the LAN, the look-up table 154 is continuously updated.
Preferably, in accordance with the IEEE 802.3 specification,
every entry in the look-up table 154 is updated at least every
five minutes, and if any node fails to send a packet for five
minutes the entry for that node is deleted from the look-up
table 154. In accordance with the IEEE 802.3 standard, each
node periodically broadcasts a “keep alive” packet which
informs the other nodes of the LAN and the multi-port
bridge 100 of the continued presence of the sending node in
the LAN. By periodically sending a “keep alive” packet,
each node avoids being deleted from the look-up table 154
in the event the node does not transmit another type of
packet for five minutes.

As mentioned herein, for each packet received by the
multi-port bridge 100, the source port requests a look-up
operation from the bus control module 114 by raising an
interrupt request line coupled to the bus control module 114.
Once the request is granted, the memory control module 118
then updates the look-up tables 154 by ensuring that the
source address for the packet is stored in the look-up tables
154 in association with the identification of the source port
for the packet (learning operation). In addition, the destina-
tion address from each packet received by the multi-port
bridge 100 is utilized to look-up the identification of the
appropriate destination port for the packet in the look-up
table 154 (look-up operation). Then, the identification of the

US 6,363,067 B1

27

destination port is placed in the triplet (FIG. 5) and the triplet
is placed on the communication bus 102 where it is available
to the ports of the multi-port bridge 100.

Because the look-up operation identifies the destination
port for the packet the look-up operation is in the critical
path of the packet in that it must be completed before the
packet can be forwarded to the appropriate destination port.
In accordance with the embodiment illustrated in FIG. 3, the
learning operation is performed in conjunction with the
look-up operation. Thus, the learning operation is placed in
the critical path of the packet and must also be completed
before the packet can be directed to the appropriate desti-
nation port. The result of the learning operation (updating
the look-up table 154), however, has no effect on the
direction of the current packet. Rather, the learning opera-
tion is utilized for appropriately directing subsequent pack-
ets through the multi-port bridge 100.

In accordance with an aspect of the present invention,
learning operations by which a look-up table is updated are
performed independently of look-up operations which iden-
tify an appropriate destination port for the packet. This
allows the learning operations to be removed from the
critical path of the packet thereby avoiding delay of the
packet’s progress caused by performance of such a learning
operation.

FIG. 21 1illustrates a detailed block diagram of a memory
controller 428 (also shown in FIG. 9) in accordance with the
present invention for de-coupling table look-up operations
from learning operations. The memory controller 428
includes a look-up address queue 702 and a learning address
queue 704 which are each coupled to the look-up bus 404
(also shown in FIG. 9). A look-up controller 706 is coupled
to the look-up address queue 702 while a learning controller
708 is coupled to the learning address queue 704. A memory
arbiter 710 is coupled to each of the look-up controller 706,
the learning controller 708, and the memory device 408 (also
shown in FIG. 9). In the preferred embodiment, the look-up
address queue 702 and the learning address queue 704 are
each implemented as first-in, first-out (FIFO) buffers, while
the look-up controller 706, the learning controller 708 and
the memory arbiter 710 are each implemented as a finite
state machine.

A source port for a packet received by the multi-port
bridge 400 (FIG. 9) makes a request for a look-up operation
from the look-up bus controller 426 (FIG. 9). When the
request is granted, the source port transfers the destination
and source addresses for the packet via the look-up bus 404
to the memory controller 428. The destination and source
addresses for the packet are simultaneously stored in both
the look-up address queue 702 and in the learning address
queue 704. When the look-up controller 706 is available for
performing a next look-up operation, the destination and
source address next in the look-up queue 702 are transferred
to the look-up controller 706. The look-up controller 706
then requests permission to access the memory device 408
from the memory arbiter 710. Upon being granted access to
the memory 408, the look-up controller 706 accesses the
look-up table for determining whether the received packet is
to be filtered, or if not filtered, to identify the appropriate
destination port for the packet (look-up operation). The
results of the look-up operation (e.g. a triplet) are then
returned to the look-up bus 404 where they are available to
the source port and the appropriate destination port for
appropriately directing the packet through the multi-port
bridge 400 (FIG. 9).

Similarly, when the learning controller 708 is available for
performing a next learning operation, the destination and

10

15

20

25

30

35

40

45

50

55

60

65

28

source address next in the learning queue 704 are transferred
to the learning controller 708. The learning controller 708
then requests permission to access the memory device 408
from the memory arbiter 710. Upon being granted access to
the memory 408, the learning controller 706 updates the
look-up table (learning operation).

In the preferred embodiment, the memory arbiter 710
grants the look-up controller 706 a higher priority for
accessing the memory 408 relative to the learning controller
708. Thus, look-up operations are given precedence over
learning operations. For example, when several packets are
received by the multi-port bridge 400 and queued for
look-up and learning operations, the look-up operations can
be performed first, while the learning operations are delayed
until after all the queued look-up operations have been
completed. Alternately, a learning operation can be per-
formed for each packet after a look-up operation for the
packet has been completed and while the results of the
look-up operation are being returned via the look-up bus
404.

Thus, according to this aspect of the present invention, the
results of the look-up operation for an incoming packet are
available without first having to wait for a learning operation
to be performed for the packet.

Statistical Learning Technique

A conventional technique for updating a look-up table in
a multi-port bridge is to execute a learning operation for
every packet received by the multi-port bridge. During such
a learning operation, an entry is stored in the look-up table
which includes the source address (node address) from the
packet in association with the identification of the source
port for the packet. In addition, a time stamp is stored with
the entry such that the age of the entry can be determined
later for deleting stale entries. If an entry already exists for
a particular node, the time stamp is simply updated.

When a learning operation is performed for every packet
received by the multi-port bridge, as is the case for such a
conventional technique, this can result in the performance of
a significant number of redundant operations which merely
confirm information that has already been obtained. For
example, when data packets are communicated between
nodes of a multi-port bridge, they are typically communi-
cated as part of a session consisting of many packets being
sent between the same nodes during a relatively short time
period. Thus, the time stamp for an entry in the look-up table
may be updated many times within a five minute interval. To
the prevent the entry from being deleted, however, the time
stamp need only be updated once during each five minute
interval. Thus, conventional techniques can result in the
needless performance of redundant learning operations.

In accordance with an aspect of the present invention, a
learning operation is not performed for every packet
received by the multi-port bridge 400 (FIG. 9). Instead, a
learning operation is performed only for selected packets
received by the multi-port bridge 400 so as to minimize the
number of redundant operations performed. This minimizes
the need to preoccupy the memory device 408 (FIG. 9) with
interactions required for performing learning operations and,
thus, increases the availability of the memory device 408 for
performing look-up operations. A look-up operation, which
identifies an appropriate destination port for a packet
received by the multi-port bridge 400 is, however, preferably
performed for every packet received by the multi-port bridge
400.

FIG. 22 illustrates a statistical learning controller 712 in
accordance with the present invention. In the preferred

US 6,363,067 B1

29

embodiment, the statistical learning controller 712 forms a
portion of the memory controller 428 (FIGS. 9, 21) and is
coupled between the learning address queue 704 (FIGS.
21-22) and the learning controller 708 (FIGS. 21-22). The
statistical learning controller 712 includes an address staging
register 714 coupled to the learning address queue 704.
When the destination and source addresses for an incoming
data packet are received by the multi-port bridge 400 (FIG.
9), the source port requests access to the look-up bus 404
(FIGS. 9, 22) from the bus controller 426 (FIG. 9). Once
access to the look-up bus 404 is granted, the source port
transfers the destination and source addresses for the packet
into the learning address queue 704.

When the address staging register 714 is available to
accept a next entry, a destination address for a next packet
stored in the learning queue 714 is transferred from the
learning queue 704 into the address staging register 714.
Statistical learning logic 716 is coupled to the address
staging register 714. The first bit of the destination address
stored in the address staging register 714 is passed to the
statistical learning logic 716. If the first bit is a logic one,
then this indicates that the packet is a broadcast packet, such
as a “keep alive” packet, or a multi-cast packet. If the first
bit is a logic zero, then this indicates that the packet is a
uni-cast packet.

The learning controller 708 (FIGS. 21-22) is coupled to
the address staging register 714 and to the statistical learning
logic 716. In the preferred embodiment, if the statistical
learning logic 716 determines that the first bit is a logic one
(the current packet is a broadcast or multi-cast packet), then
the statistical learning logic 716 instructs the learning con-
troller 708 to update the look-up table based upon the current
packet whose destination address is stored in the address
staging register 714 and whose source address is stored in
the learning address queue 704. The destination and source
address are then transferred to the learning controller 708 for
updating the look-up table. The learning controller 708 is
also coupled to the memory arbiter 710 (FIG. 21) for
requesting access to the memory 408 (FIGS. 9, 21). When
such a request is granted by the memory arbiter 710, the
learning controller 708 updates the look-up table stored in
the memory 408 (learning). A next destination address is
then transferred from the learning address queue 704 into the
staging address register 714.

A count register 718 is preconditioned to store a count
(m-1) of uni-cast packets that are to be received prior to
performing a learning operation on a next uni-cast packet.
Thus, only every (m)th uni-cast packet is utilized for updat-
ing the look-up table. In the preferred embodiment, every
sixteenth uni-cast packet is utilized for updating the look-up
table. The count register 718 is coupled to initialize a
decrementor 720 with the count (m-1). The decrementor
720 receives a decrement input from the statistical learning
logic 716 which instructs the decrementor 720 to decrement
the count by one. The decrementor provides a current count
to the statistical learning logic 716.

Assuming the first bit of the destination address indicates
that the packet is a uni-cast packet, the statistical learning
logic 716 reads the current count from the decrementor 720.
If the count is one or more, the current packet is ignored in
regard to learning operations and the statistical learning
logic instructs the decrementor 720 to decrement the current
count by one. A next destination address is then transferred
to the address staging register 714 from the learning queue
704. Upon receiving a (m-1)th uni-cast packet without the
multi-port bridge 400 having performed a learning operation
on a uni-cast packet, the current Count reaches zero.

10

15

20

25

30

35

40

45

50

55

60

65

30

Then, upon receiving a next uni-cast packet, the statistical
learning logic 716 instructs the learning controller 708 to
perform a learning operation. The destination and source
addresses for the packet are transferred to the learning
controller 708 for this purpose. The decrementor 720 is then
re-initialized with the count (m-1) from the count register
718. Then, a next destination address is transferred from the
destination and source address queue into the address stag-
ing register 714. This process continues for each packet
received by the multi-port bridge 400.

In this way, learning is performed for every broadcast and
multi-cast packet and for every (m)th uni-cast packet. By
updating the look-up table for every broadcast packet, each
“keep alive” packet is utilized for updating the look-up table.
This ensures that entries in the look-up table for nodes which
have not transmitted other types of data packets within the
last five minutes, but which are still present in the LAN, are
not erroneously deleted from the look-up table. By also
updating the look-up table upon every (m)th uni-cast packet,
entries in the look-up table for nodes which are engaging in
a communication session will be ensured to be current, even
if a “keep alive” packet for such a node was not correctly
received within the previous five minutes.

It will be apparent that modifications can be made while
achieving the principle advantages of this aspect of the
present invention. For example, the frequency with which
learning operations are performed can be made relatively
high upon powering on the multi-port bridge 400 and, then,
reduced after the look-up table is substantially complete.
Accordingly, a learning operation can be performed for
every packet received upon power-on and, after a few
minutes of operation, learning can be reduced to every (m)th
uni-cast packet. Alternately, learning operations can be
eliminated for uni-cast packets and performed only for
broadcast and multi-cast packets.

The present invention has been described in terms of
specific embodiments incorporating details to facilitate the
understanding of the principles of construction and opera-
tion of the invention. Such reference herein to specific
embodiments and details thereof is not intended to limit the
scope of the claims appended hereto. It will be apparent to
those skilled in the art that modifications can be made in the
embodiment chosen for illustration without departing from
the spirit and scope of the invention. Specifically, it will be
apparent to one of ordinary skill in the art that the device of
the present invention could be implemented in several
different ways and the apparatus disclosed above is only
illustrative of the preferred embodiment of the invention and
is in no way a limitation.

What is claimed is:

1. An apparatus having a staged partitioned bus for
transferring data, the apparatus comprising:

a. a first bus segment having a first plurality of (n) signal
lines and coupled to a first plurality of ports;

b. a second bus segment having a second plurality of (n)
signal lines and coupled to a second plurality of ports;

c. a multiplexer coupled to the first bus segment and the
second bus segment;

d. memory means coupled to the multiplexer for tempo-
rarily storing data undergoing communication between
the first bus segment and the second bus segment

e. a first port among the first plurality of ports;
f. a second port among the second plurality of ports; and

g. a control means coupled to the multiplexer wherein the
control means selectively conditions the multiplexer to

US 6,363,067 B1

31

provide access to the memory means by the first port
and by the second port.

2. The apparatus according to claim 1 wherein the first
port and the second port are respectively configured to
request access to the memory means from the control means.

3. A multi-port bridge having a staged partitioned bus for
transferring data between ports of the multi-port bridge, the
multi-port bridge comprising:

a. a first data bus segment having a first plurality of (n)

signal lines;

b. a first plurality of ports coupled to the first data bus
segment;

c. a second data bus segment having a second plurality of
(n) signal lines;

d. a second plurality of ports coupled to the second data
bus segment;

e. a multiplexer having a first input coupled to the first
data bus segment, a second input coupled to the second
data bus segment and an output;

f. a memory device coupled to the output of the multi-
plexer whereby data is selectively communicated
between a first select port within the first plurality of
ports and the memory device and between a second
select port within the second plurality of ports and the
memory device according to a condition of the multi-
plexer and

g. a controller coupled to the multiplexer to condition the
multiplexer.

4. The multi-port bridge according to claim 3 wherein
data packets are communicable between the first select port
and the second select port by temporary storage of the data
packets in the memory device and retrieval therefrom.

5. The multi-port bridge according to claim 4 wherein
data packets are communicated between the first select port
and the one or more additional ports coupled to the first data
bus segment via the first data bus segment without the data
packets having to be temporarily stored in, and retrieved
from, the memory device.

6. The multi-port bridge according to claim 3 further
comprising a look-up bus coupled to the first select port,
wherein the first select port is configured to send the look-up
table destination addresses of data packets received by the
first select port.

7. The multi-port bridge according to claim 6 wherein the
look-up table correlates destination addresses for packets to
identifications of destination ports.

8. The multi-port bridge according to claim 7 wherein the
multi-port bridge is configured to transmit data received
from the look-up table to the first select port.

9. The multi-port bridge according to claim 7 wherein the
multi-port bridge is configured to transmit a first information
packet to a source port in response to a look up operation
initiated by the source port.

10. The multi-port bridge according to claim 9 wherein
the multi-port bridge is configured to transmit a second
information packet to a destination port in response to the
look-up operation initiated by the source port.

11. The multi-port bridge according to claim 10 wherein
the second information packet transmitted to the destination
port comprises a triplet, and wherein the destination port is
configured to store the information packet in a request
queue.

12. A multi-port bridge having a staged partitioned bus for
transferring data between ports of the multi-port bridge, the
multi-port bridge comprising:

a. a first data bus segment having a first plurality of (n)

signal lines;

10

15

20

25

30

35

40

45

50

55

60

32

b. a first plurality of ports coupled to the first data bus
segment;

c. a second data bus segment having a second plurality of
(n) signal lines;

d. a second plurality ports coupled to the second data bus
segment;

e. a multiplexer coupled to the first data bus segment and
to the second data bus segment;

f. a memory device coupled to the multiplexer wherein
data is selectively communicable between the first data
bus segment and the memory device and between the
second data bus segment and the memory device
according to a condition of the multiplexer;

g. a look-up bus coupled to each of the first plurality of
ports and to each of the second plurality of ports; and

h. a look-up table coupled to the look-up bus to store node
addresses in association with port identifications.

13. The multi-port bridge according to claim 12 wherein

a destination port for a data packet received by the multi-port
bridge is identified by a source port for the data packet, the
destination port looking up a destination address for the data
packet in the look-up table via the look-up bus.

14. The multi-port bridge according claim 13 wherein
when the source port for the data packet is included in the
first plurality of ports and the destination port for the data
packet is included in the second plurality of ports the data
packet is stored in the memory device by the source port and
retrieved from the memory device by the destination port.

15. The multi-port bridge according to claim 13 wherein
when the source port for the data packet is included in the
first plurality of ports and the destination port for the data
packet is also included in the first plurality of ports, the
destination port receives the data packet from the source port
via the first data bus segment.

16. The multi-port bridge according to claim 15 wherein
the destination port receives the data packet from the source
port simultaneously as the source port stores in the data
packet in the memory device.

17. The multi-port bridge according to claim 12 wherein
a source port is configured to access the look-up table via the
look-up bus during a look-up operation to identify a desti-
nation port identification associated with a destination node
address.

18. The multi-port bridge according to claim 17 wherein
the multi-port bridge is configured to transmit a first infor-
mation packet to the source port in response to the look-up
operation initiated by the source port.

19. The multi-port bridge according to claim 18 wherein
the multi-port bridge is configured to transmit a second
information packet to the destination port in response to the
look-up operation initiated by the source port.

20. The multi-port bridge according to claim 19 wherein
the second information packet comprises a triplet, and
wherein the destination port is configured to store the second
information packet in a ready-to-receive queue.

21. A method of transferring data between ports of a
multi-port bridge, the method comprising steps of:

a. receiving a first data packet into a source port for the

first data packet;

b. conditioning a multiplexer to provide a first signal path
from the source port to a memory device, wherein the
first signal path is common to the first plurality of ports
including the source port;

c. transferring the first data packet from the source port to
the memory device;

d. conditioning the multiplexer to provide a second signal
path from the memory device to a destination port for

US 6,363,067 B1

33

the first data packet, wherein the second signal path is
common to a second plurality of ports including the
destination port; and

e. transferring the first data packet from the memory
device to the destination port.

22. The method according to claim 21 further comprising
a step of identifying a destination port for the first data
packet wherein the step of identifying the destination port
for the first data packet comprises a step of communicating
a destination address for the first data packet to a look-up
table via a look-up bus.

23. The method according to claim 22 further comprising
a step of notifying the destination port of its status as a
destination port for the first data packet via the look-up bus.

24. The method according to claim 21 further comprising
steps of:

a. receiving a second data packet into a source port for the
second data packet wherein the source port for the first

10

15

34

data packet is included in the ports coupled to the first
data bus segment; and

b. transferring the second data packet to a destination port

for the second data packet wherein the destination port
for the second data packet is also included in the ports
coupled to the first data bus segment wherein the step
of transferring is performed via the first data bus
segment.

25. The method according to claim 21 further comprising
a step of requesting access to the memory device by the
source port.

26. The method according claim 25 further comprising a
step of granting access to the memory device wherein the
step of granting access is performed in response to the step
of requesting access and wherein the step of transferring the
first data packet to the memory device is performed in
response to the step of granting access.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,363,067 B1 Page 1 of 1
DATED : March 26, 2002
INVENTOR(S) : David Chung

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page,
Item [63], Related U.S. Application Data, delete “1968” and insert -- 1998 --.

Column 14
Line 17, delete “that” and insert -- time --.

Signed and Sealed this

Twenty-fourth Day of September, 2002

Attest:

JAMES E. ROGAN
Attesting Officer Director of the United States Patent and Trademark Office

