

(21) Application No 8029259
 (22) Date of filing 10 Sep 1980

(30) Priority data

(31) 79129

(32) 26 Sep 1979

(33) United States of America (US)

(43) Application published 13 May 1981

(51) INT CL³

C07H 15/22
 A61K 31/35 31/42
 C07H 17/00 //
 C07D 209/48

(52) Domestic classification

C2C 1344 1372 1672 213
 215 220 221 225 226 22Y
 247 250 251 253 255 25Y
 281 28X 29X 29Y 305 30Y
 310 313 31Y 321 322 328
 32Y 339 340 342 34Y 351
 352 355 360 362 364 366
 368 36Y 387 450 45X 45Y
 491 509 50Y 601 610 628
 62X 633 634 635 637 640
 647 650 65X 660 662 670
 672 678 699 70Y 71Y 72Y
 761 763 801 80Y AA KA
 KB KH LH TP

(56) Documents cited

GB 2012751 A
 GB 2011893 A
 GB 2010842 A
 GB 2010825 A
 GB 2010805
 GB 1473356
 GB 1462805

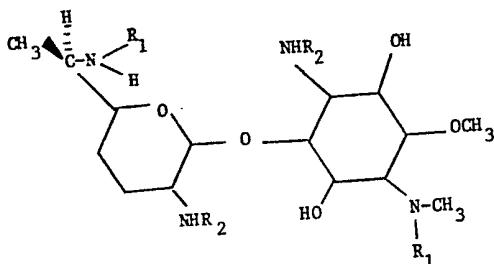
(58) Field of search

C2C

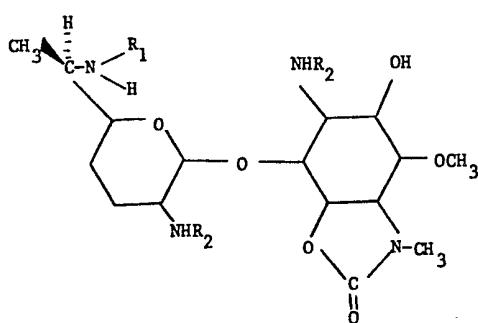
(71) Applicants

Abbot Laboratories,
 14th Street & Sheridan
 Road,
 North Chicago,
 Illinois 60064,
 United States of America.

(72) Inventors


John Solomon Tadanier,
 Robert Hallas,
 Jerry Roy Martin.

(74) Agents


Lloyd Wise, Tregear &
 Co.,
 Norman House,
 105-109 Strand,
 London, WC2R 0AE.

(54) 6'-Modified fortimicin compounds and improved method for preparation

(57) Described is a method for the preparation of 6'-modified fortimicin compounds including 6'-epi fortimicin by converting 1,2'-di-N-protected fortimicin B into 4,6'-di-N-substituted-1,2'-di-N-protected fortimicin B(I) which is further converted to 1,2'-di-substituted fortimicin B-4,5-carbamate (II), a compound whose substitution pattern is particularly suited to modification at the 6'-amino group. Compounds (I) and (II) have the formula:-

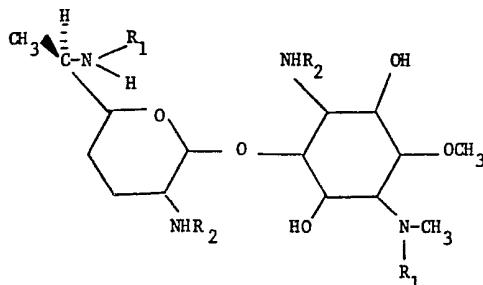
and

respectively, R₁ being hydrogen or a protecting group and R₂ being an optionally substituted alkoxy carbonyl or aryloxy carbonyl group.

50 700 1 200 1 100 1 000

SPECIFICATION

6'-modified fortimicin compounds and improved method for preparation

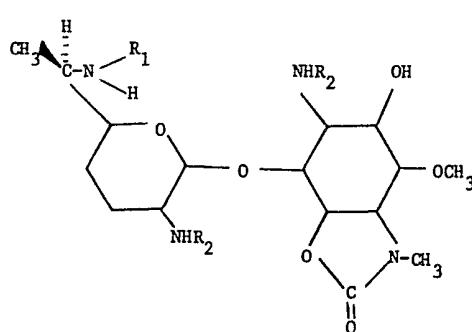

5 This invention relates to fortimicin compounds.

5

6'-modified fortimicin compounds such as 6'-epi fortimicin A and B and derivatives thereof such as described in commonly assigned U.S. patent application, Serial No. 863,004, filed December 21, 1977 are useful as antibiotics, can be incorporated into antibacterial scrub solutions and are further useful as intermediates in preparing other useful fortimicin derivatives of this invention are represented by:

10

10


20

20

wherein R is an *N*-protecting group and R₂ is a substituted alkoxy carbonyl group, and

25

25

35

35

40 wherein R₁ is hydrogen or an *N*-protecting group and R₂ is a substituted alkoxy carbonyl group, and

40

pharmaceutically acceptable acid addition salts thereof. The term "*N*-protecting group" is well recognized in the art and includes such groups as substituted and unsubstituted acyl and substituted and unsubstituted alkoxy carbonyl and aryl alkoxy carbonyl.

45

The term "pharmaceutically acceptable salts" as used herein refers to the nontoxic acid addition salts

45 which are generally prepared by reacting the compounds of this invention which a suitable organic or inorganic acid. Representative salts include the hydrochloride, hydrobromide, sulfate, disulfate, acetate, oxalate, valerate, oleate, laurate, borate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, napsylate and the like.

45

The compounds are useful as systemic antibiotics when administered parenterally in dosages of from 50 1-100 mg./kg. daily to mammalian or avian patients with infections caused by susceptible organisms. The compounds can also be administered orally to combat infections.

50

Briefly, the improved method of this invention for the preparation of 6'-modified fortimicin compounds including 6'-epi fortimicin comprises converting 1,2-di-*N*-protected fortimicin B into 4,6-di-*N*-substituted alkoxy carbonyl-1,2-di-*N*-protected fortimicin B which is further converted to 1,2-di-*N*-substituted fortimicin

55

55 B-4,5-carbamate, a compound whose substitution pattern is particularly suited to modification at the 6'-amino group.

1,2-di-*N*-benzyloxycarbonyl fortimicin B (prepared as disclosed in commonly assigned U.S. patent application, Serial No. 863,018, filed December 21, 1977 (5) is converted to the 1,4-di-*N*-(2,2,2-trichloroethoxycarbonyl) derivative (6) with *N*-(2,2,2-trichloroethoxycarbonyloxy)phthalimide (15), prepared

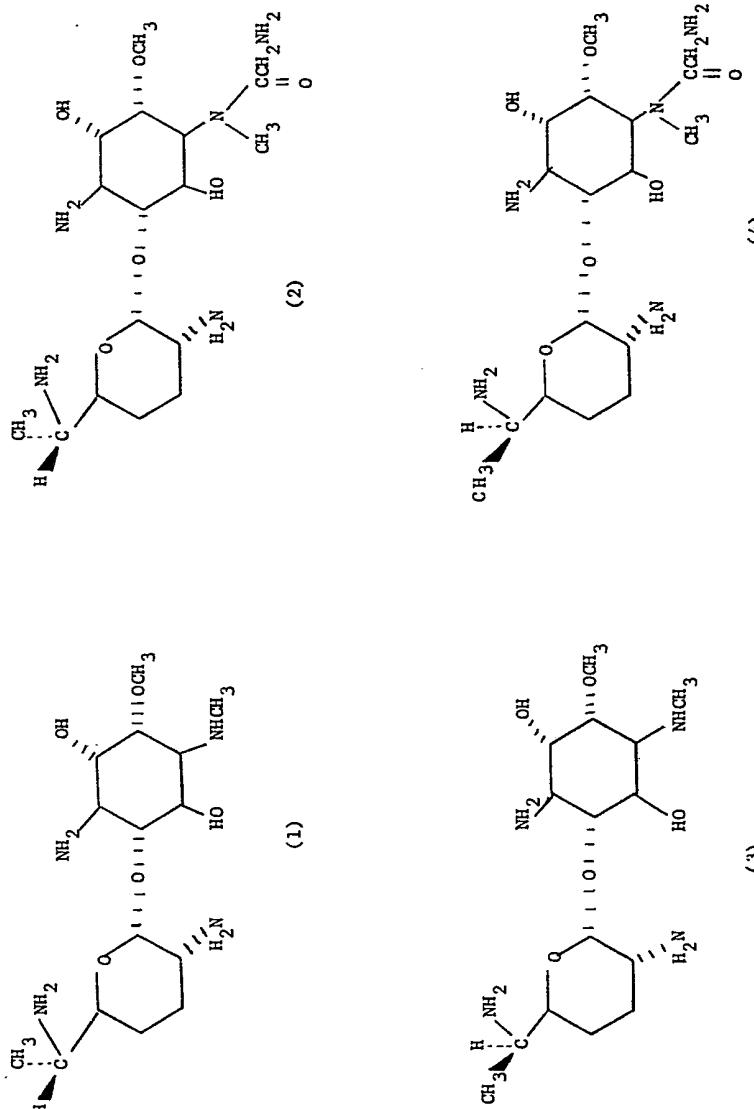
60

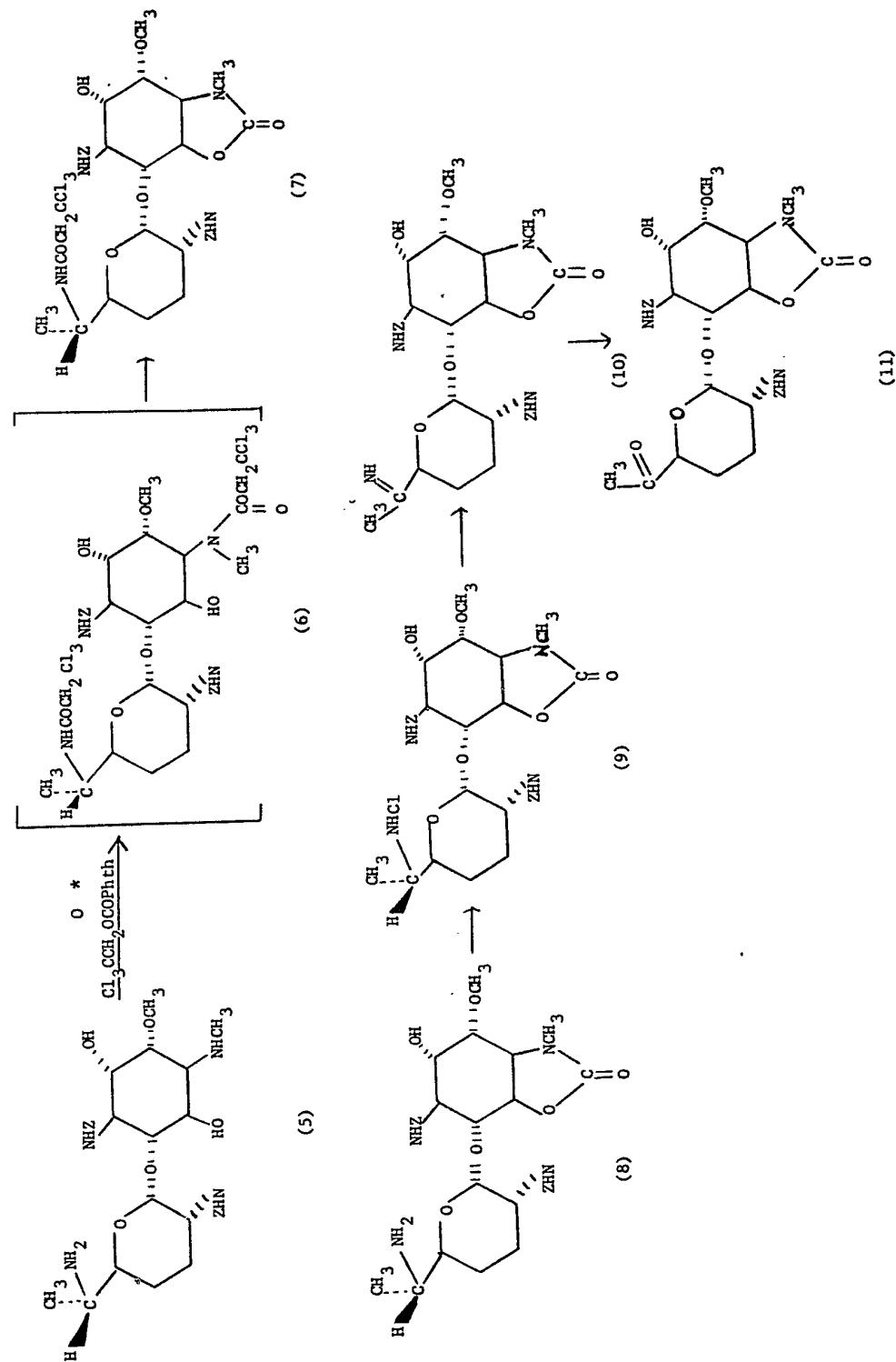
60 as in Example 12. Alternately, (6) may be prepared with 2,2,2-trichloroethoxycarbonyl chloride (Cl₃CH₂O-COCl), in which case it is preferable to carry out the reaction in the presence of sodium bicarbonate.

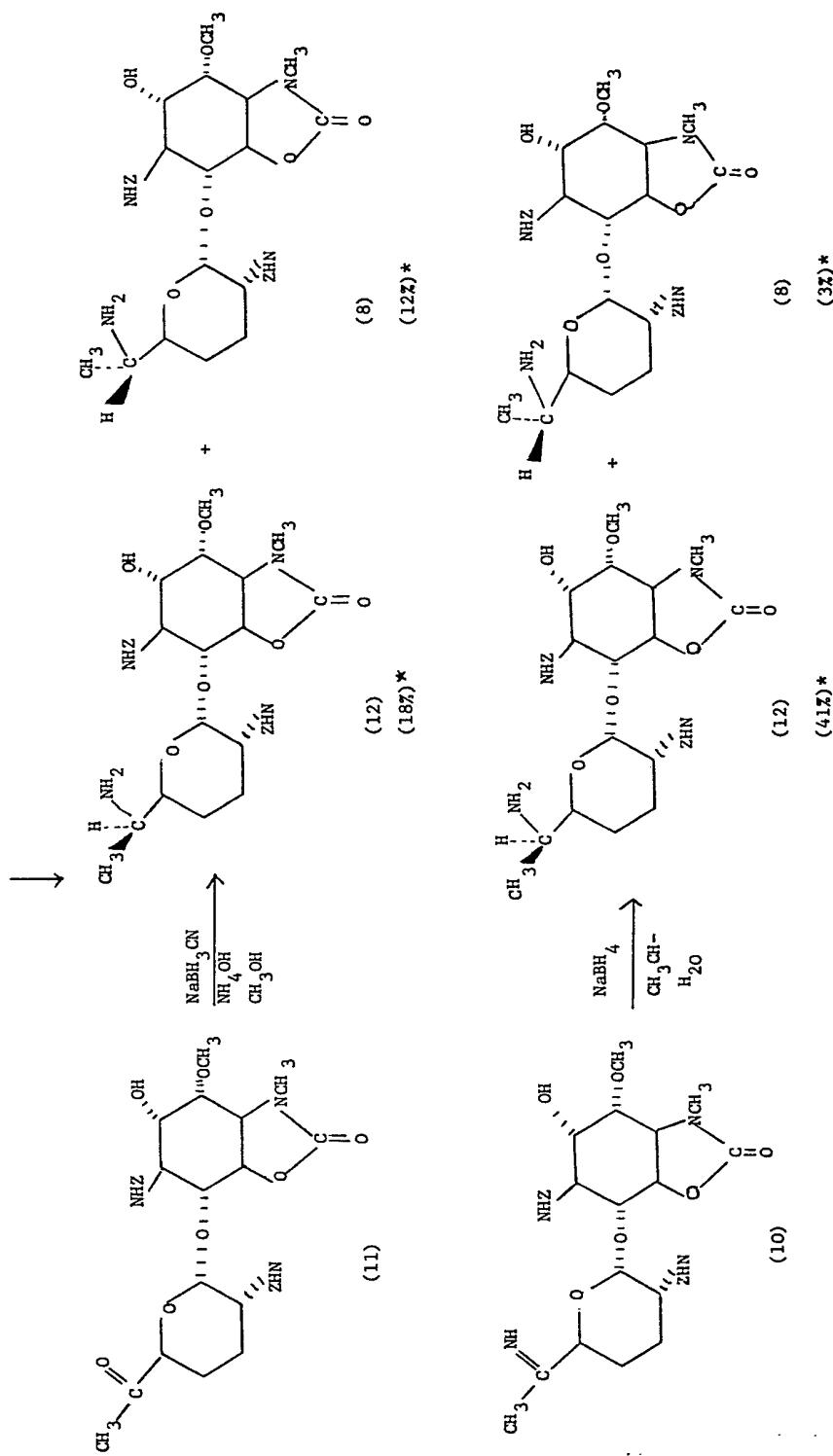
The product (6), detected by thin layer chromatography, is converted, without isolation, to 6'-*N*-(2,2,2-trichloroethoxycarbonyl)-1,2-di-*N*-benzyloxycarbonyl fortimicin B 4,5-carbamate (7). Treatment of the latter with zinc in acetic acid cleaves the trichloroethoxycarbonyl group of (7) to give 1,2-di-*N*-benzyloxycarbonyl fortimicin B-4,5-carbamate (8). The latter (8) is converted to the 6'-*N*-chloro compound (9)

65

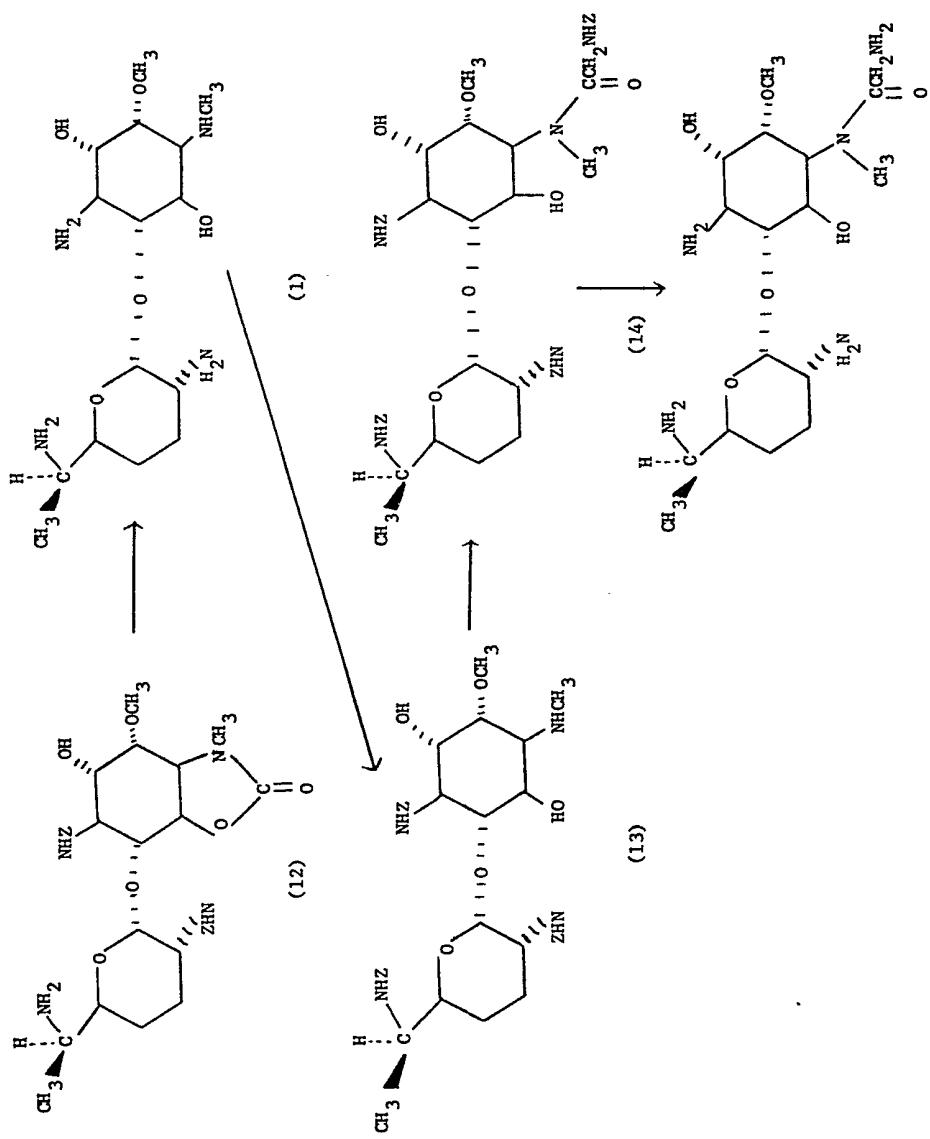
65

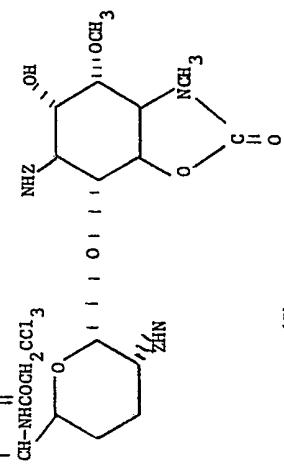
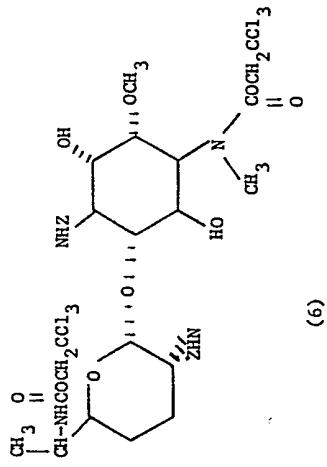

which is dehydrohalogenated with triethylenediamine to give the imine (10). Mild acid-catalyzed hydrolysis of (10) gives the 6'-oxo derivative (11).


Reductive amination of the 6'-oxo derivative (11) with sodium cyanoborohydride (NaBH_3CN) and ammonium acetate (NH_4OAc) gives a mixture of 1,2'-di-*N*-benzyloxycarbonyl-6'-*epi*-fortimicin B-4,5-5 carbamate (12) and 1,2-di-*N*-benzyloxycarbonylfortimicin B-4,5-carbamate (8) which were readily separated by chromatography to give 18% of (12) and 12% of (8) based on (5).


Alternatively, reduction of the imine (10) with NaBH_4 gave 41% of the 6'-*epi* compound (12) and 3% of the 6'-normal derivative (8), isolated by chromatography.

Alkaline hydrolysis of (12) gave 6'-*epi*-fortimicin B (1) which was converted to 1,2',6',2"-tetra-*N*-benzyloxycarbonyl-6'-*epi*-fortimicin A (14). Catalytic hydrogenolysis of (14) in the presence of hydrochloric acid gave 6'-*epi*-fortimicin A (2) isolated as the tetrahydrochloride salt (2a). The latter was converted to the disulfate salt (2b).


Although all intermediates, with the exception of (6) and (9) have been purified for analysis, a particular 15 advantage of the process is that 6'-ketone (11) and 6'-imine (10) may be prepared from (5), without purification of satisfactory purity for subsequent steps.

*Yields based on 1,2-di-N-benzylxycarbonyl fortimycin B (5)

(2a) Tetrahydrochloride Salt (.4HCl)
 (2b) Disulfate Salt (.2H₂SO₄)

EXAMPLE 1

1,2'-Di-N-benzyloxycarbonyl-6'-N-(2,2,2-trichloroethoxycarbonyl)fortimicin B-4,5-carbamate (7)

A magnetically stirred solution of 6.2 g. of 1,2-di-N-benzyloxycarbonylfortimicin B (5), 10.2 g. of *N*-(2,2,2-trichloroethoxycarbonyloxy)phthalimide and 120 ml. of CHCl_3 is kept at ambient temperature 5 overnight. The resulting solution is shaken with a mixture of 500 ml. of 5% aqueous NaHCO_3 and 300 ml. of CHCl_3 . The CHCl_3 solution is separated, and the CHCl_3 is evaporated leaving 1,2'-di-N-benzyloxycarbonyl-4,6-di-N-(2,2,2-trichloroethoxy)fortimicin B (6) as a light yellow oil. The latter is heated under reflux for 1.5 hours in a solution prepared from 100 ml. of CH_3CH_2 , 20 ml. of water, and 8.5 g. of NaHCO_3 . The resulting solution is shaken with a mixture of 600 ml. of 5% aqueous NaHCO_3 and 250 ml. of CHCl_3 . The CHCl_3 solution is 10 separated, and the aqueous solution is washed with two 250 ml. portions of CHCl_3 . The CHCl_3 solutions are combined and dried (MgSO_4). Evaporation of the CHCl_3 under reduced pressure leaves 10.3 g. of crude 1,2'-di-N-benzyloxycarbonyl-6'-N-(2,2,2-trichloroethoxycarbonyl)fortimicin B-4,5-carbamate (7) as a glass.

The crude product (7) (12.0 g.) prepared as described above was chromatographed on a column of 400 g. of silica gel packed and eluted with a solvent system composed of 1,2-dichloroethane/methanol/ammonium 15 hydroxide [17.2:2.8:0.1 (v/v/v)] to yield 8.4 g. of pure (7): $[\alpha]_D^{24} + 0.19^\circ$ (C 1%, CH_3OH); IR (CDCl_3): 3457, 3435, 3332, 1760, 1717 cm^{-1} ; NMR (CDCl_3): δ 0.989d ($J = 6.6$ Hz) ($\text{C}_6\text{-CH}_3$), 2.84 (NCH_3), 3.46 (OCH_3).

Anal. Calcd. for $\text{C}_{35}\text{H}_{43}\text{N}_4\text{O}_{12}\text{Cl}_3$: C, 51.38; H, 5.30;

20 Found: C, 51.40; H, 5.49; N, 6.82; Cl, 12.41.

EXAMPLE 2

1,2'-Di-N-benzyloxycarbonylfortimicin B-4,5-carbamate (8)

To a magnetically stirred solution of 10.3 g. of crude 1,2'-di-N-benzyloxycarbonyl-6'-(2,2,2-trichloroethoxycarbonyl)fortimicin B-4,5-carbamate (7), prepared from 6.2 g. of pure 1,2'-di-N-benzyloxycarbonylfortimicin B (5), in 150 ml. of glacial acetic acid, is added 22 g. of zinc dust. The resulting 30 suspension is stirred overnight at ambient temperature. After removal of the zinc by filtration the filtrate is poured into water and the resulting suspension is extracted with CHCl_3 . The CHCl_3 extract is washed to neutrality with 5% aqueous NaHCO_3 and dried (MgSO_4). Evaporation of the CHCl_3 leaves 7.20 g. of crude 1,2'-di-N-benzyloxycarbonylfortimicin B-4,5-carbamate (8). Chromatography of 12.0 g. of the product, 35 prepared as described above, on a column of 400 g. of silica gel, packed and eluted with a solvent system composed of 1,2-dichloroethane/methanol/concentrated ammonium hydroxide [17.2:2.8:0.1 (v/v/v)] gives 8.35 g. of pure (8): $[\alpha]_D^{23} + 33.2^\circ$ (C 1%, CH_3OH), IR (CDCl_3): 3440, 1750, 1704 cm^{-1} ; NMR (CDCl_3): δ 0.863 ($J = 6.2$ Hz) ($\text{C}_6\text{-CH}_3$), 2.83 (NCH_3), 3.43 (OCH_3);

Anal. Calcd. for $\text{C}_{32}\text{H}_{42}\text{N}_4\text{O}_{10}$: C, 59.80; H, 6.59; N, 8.72

Found: C, 59.41; H, 6.74; N, 8.96

EXAMPLE 3

1,2'-Di-N-benzyloxycarbonyl-6'-imino-fortimicin B-4,5-carbamate (10)

A magnetically stirred solution of 2.56 g. of pure 1,2'-di-N-benzyloxycarbonylfortimicin B-4,5-carbamate (8), 1.56 g. of *N*-chlorosuccinimide, and 100 ml. of methylene chloride is kept at room temperature for 1 hour.

5 The methylene chloride is evaporated under reduced pressure leaving the crude 1,2'-di-N-benzyloxycarbonyl-6'-*N*-chlorofortimicin B-4,5-carbamate (9) as a white glass: NMR (CDCl₃): δ 1.06d (J = 3.2 Hz) (C_{6'}, (CH₃), 2.95 (NCH₃); 3.55 (OCH₃); IR (CDCl₃): 3553, 3439, 1754, 1713 cm⁻¹.

The latter (9) is dissolved in 200 ml. of a solution of 1% triethylenediamine in ethanol, dried over 3A molecular sieve, and the resulting solution is kept at ambient temperature for 80 minutes and then shaken

10 with a mixture of 200 ml. of CHCl₃ and 500 ml. of 5% aqueous NaHCO₃. The CHCl₃ solution is separated and washed with 500 ml. of 5% aqueous NaCl solution. The aqueous solutions are washed in series with four 200 ml. portions of CHCl₃. The CHCl₃ solutions are combined and dried (MgSO₄). Evaporation of the CHCl₃ under reduced pressure leaves 3.0 g. of crude 1,2'-di-N-benzyloxycarbonyl-6'-iminoftimicin B-4,5-carbamate (10) as a white glass. The product (3.0 g.) in 5 ml. of CH₃OH was applied to a column of 50 ml of AG-2-X8(OH)

15 resin packed and washed with CH₃OH. Elution of the column with CH₃OH gave 2.54 g. of (10), free of *N*-chlorosuccinimide and succinimide. Chromatography of the latter on a column of 250 g. of silica gel packed and eluted with 1,2-dichloroethane/methanol [18.5:1.5 (v/v)] gave 1.2 g. of pure (10): [α]_D²³ + 14.9° (C 1%, CH₃OH); IR (CDCl₃): 3556, 3434, 1758, 1712, 1616 w; NMR (CDCl₃): δ 2.05 s (NH=C-CH₃); 3.86 (NCH₃); 3.44 (OCH₃).

20 Anal. Calcd. for C₃₂H₄₀N₄O₁₀.0: 35CHCl₃: C, 56.92; H, 5.95;
N, 8.21; Cl, 5.45

25 Found: C, 57.09; H, 5.89;
N, 8.01; Cl, 5.54

EXAMPLE 4

30 *1,2'-Di-N-benzyloxycarbonyl-6'-oxo-fortimicin B-4,5-carbamate (11)*

A solution of 0.910 g. of crude 1,2'-di-N-benzyloxycarbonyl-6'-imino-fortimicin B-4,5-carbamate (10), prepared from 1,2'-di-N-benzyloxycarbonylfortimicin B (5), without purification of any intermediats, 20 ml. of 0.4 *N* hydrochloric acid and 60 ml. of tetrahydrofuran is kept at ambient temperature overnight. The resulting solution is shaken with a mixture of 200 ml. of CHCl₃ and 500 ml. of 5% aqueous NaHCO₃. The CHCl₃ solution

35 is separated and washed with 250 ml. of water. The aqueous solutions are washed in series with 200 ml. of CHCl₃. The CHCl₃ solutions are combined, and dried (MgSO₄). Evaporation of the CHCl₃ leaves 0.794 g. of crude 1,2'-di-N-benzyloxycarbonyl-6'-oxo-fortimicin B-4,5-carbamate (11). Chromatography of the latter (11) on a column (1.6 x 71 cm) of silica gel, packed and eluted with a solvent system composed of 1,2-dichloroethane/methanol [18.5:1.5 (v/v)], gave 0.396 g. of pure (11): [α]_D²³ + 8.6° (C 1%, CH₃OH), IR (CDCl₃): 3559, 3439, 1760, 1713 cm⁻¹; NMR (CDCl₃): δ 2.06 s (O=C-CH₃); 2.86(NCH₃); 3.45(OCH₃);

40 Anal. Calcd. for C₃₂H₃₉N₃O₁₁: C, 59.89; H, 6.13; N, 6.55

Found: C, 59.81; H, 6.40; N, 6.62

EXAMPLE 5

1,2'-Di-N-benzyloxycarbonyl-6'-*epi*-fortimicin B-4,5-carbamate (12)

A solution of 0.6459 g. of 1,2'-di-N-benzyloxycarbonyl-6'-oxofortimicin B-4,5-carbamate (11), prepared from 0.939 g. of 1,2'-di-N-benzyloxycarbonylfortimicin B (5), without purification of any intermediates,

5 0.0852 g. of sodium cyanoborohydride, 0.945 g. of ammonium acetate, and 12.5 ml. of CH₃OH is stirred at ambient temperature for 18 hours. The resulting solution is shaken with a mixture of 100 ml. of CHCl₃ and 200 ml. of 5% aqueous NaHCO₃. The CHCl₃ solution is separated and washed with 200 ml. of water. The aqueous solutions are washed in series with three 80 ml. portions of CHCl₃. The CHCl₃ solutions are combined and dried (MgSO₄). Evaporation of the CHCl₃ leaves 0.5698 g. of white glass. Chromatography of the latter on a column of 40 g. of silica gel packed and eluted with a solvent system composed of methylene chloride/ethanol/methanol/concentrated ammonium hydroxide [18:1:1:0.1 (v/v/v/v)] gives 0.122 g. of 10 1,2'-di-N-benzyloxycarbonylfortimicin B-4,5-carbamate (8) in the early fractions, followed by 0.180 g. of 1,2'-di-N-benzyloxycarbonyl-6'-*epi*-fortimicin B-4,5-carbamate (12), as a white glass" [α]_D²³ + 36.7° (C 1%, CH₃OH); IR (CDCl₃): 3437, 1750, 1702 cm⁻¹, NMR(CDCl₃): δ1.02d (J=5.6 Hz) (C₆-CH₃), 2.82 (NCH₃); 3.44 15 (OCH₃).

Anal. Calcd. for C₃₂H₄₂N₄O₁₀.H₂O: C, 58.17; H, 6.71;

N, 8.48

20 Found: C, 58.36; H, 6.68;

N, 8.55

25 EXAMPLE 6

1,2'-Di-N-benzyloxycarbonyl-6'-*epi*-fortimicin B-4,5-carbamate (12)

To a magnetically stirred solution of 5.41 g. of crude 1,2'-di-N-benzyloxycarbonyl-6'-iminoftimicin B-4,5-carbamate (10), prepared from 5.01 g. of pure 1,2'-di-N-benzyloxycarbonylfortimicin B-4,5-carbamate (8), 120 ml. of CH₃OH and 24 ml. of water, cooled in an ice bath is added, portionwise, 5.8 g. of NaBH₄. After 30 the addition is complete, stirring is continued with cooling for 2 hours. The resulting solution is shaken with a mixture of 400 ml. of 5% aqueous NaHCO₃ and 250 ml. of CHCl₃. The CHCl₃ solution is separated and washed with 400 ml. of saturated aqueous NaCl. The aqueous solutions are washed in series with four 200 ml. portions of CHCl₃. The CHCl₃ solutions are combined and dried (MgSO₄). Evaporation of the CHCl₃ under reduced pressure leaves 4.91 g. of white glass. Chromatography of the latter on a column of 400 g. of silica 35 gel, packed and eluted with a solvent system composed of methylene chloride/ethanol/methanol/concentrated ammonium hydroxide [18:1:1:0.1 (v/v/v/v)], gives 0.276 g. of 1,2'-di-N-benzyloxycarbonylfortimicin B-4,5-carbamate (8) in the early fractions, followed by 2.73 g. of 1,2'-di-N-benzyloxycarbonyl-6'-*epi*-fortimicin B-4,5-carbamate (12) as a white glass identical with that described in Example 5.

40

EXAMPLE 7

6'-*epi* Fortimicin B (1)

A magnetically stirred solution of 17.8 g. of pure 1,2'-di-N-benzyloxycarbonyl-6'-*epi*-fortimicin B-4,5-carbamate (12) in a solution prepared with 125 ml. of 6N KOH and 250 ml. of ethanol is purged with nitrogen and heated in an oil bath at 80° overnight under nitrogen. The resulting solution is cooled in an ice bath and brought to pH 7 by addition of 2N hydrochloric acid. The solvent is evaporated under reduced pressure, and residual water is removed by co-distillation with ethanol under reduced pressure. The residue was triturated several times with CH₃OH and the CH₃OH supernatant is separated from insoluble salt by filtration. The CH₃OH is evaporated from the filtrate under reduced pressure. The residue (11.9 g.) is chromatographed on a 50 column of 550 g. of silica gel packed and eluted with a solvent system composed of the lower phase of a mixture prepared from methylene chloride/methanol/water/concentrated ammonium hydroxide [2:2:1:1 (v/v/v/v)] to yield 8.10 g. of pure 6'-*epi*-fortimicin B (1): [α]_D²³ + 28.4° (C 1%, CH₃OH); NMR (D₂O, pH 11.02): δ1.544 d (J=7.5 Hz) (C₆-CH₃); 2.86 (NCH₃), 3.94 (OCH₃), 5.55 d (J=3.6 Hz) (C₁-H).

EXAMPLE 8

1,2',6'-Tri-N-benzyloxycarbonyl-6'-epi-fortimicin B (13)

To a magnetically stirred solution of 8.88 g. of pure 6'-*epi*-fortimicin B (1), 260 ml. of CH₃OH and 130 ml. of water, cooled in an ice bath, is added 21.0 g. of *N*-[benzyloxycarbonyloxy]succinimide. Stirring is continued 5 with cooling for 3 hours, and then at ambient temperature overnight. The resulting solution is poured into 1 liter of 5% aqueous NaHCO₃, and the aqueous suspension extracted three times with 500 ml. portions of CHCl₃. The CHCl₃ extracts are combined and dried (MgSO₄). Evaporation of the CHCl₃ leaves 20.7 g. of crude 1,2',6'-tri-*N*-benzyloxycarbonyl-6'-*epi*-fortimicin B (13). Chromatography of the latter on a column of 750 g. of silica gel packed and eluted with a solvent system composed of 1,2-dichloroethane/ethanol/concentrated 10 ammonium hydroxide [18:2:0.1 (v/v/v)] yields 13.8 g of pure (13): [α]_D²³ + 24.7° (C 1%, CH₃OH); IR (CDCl₃): 3554, 3334, 1708 cm⁻¹. NMR (CDCl₃): δ 1.018 d (J=6.4 Hz) (C_{6'}-CH₃), 2.34 (NCH₃), 3.42 (OCH₃).

Anal. Calcd. for C₃₉H₅₀N₄O₁₁: C, 62.39; H, 6.71; N, 7.46

15 Found: C, 62.13; H, 6.77; N, 7.37

15

EXAMPLE 9

1,2',6',2"-Tetra-N-benzyloxycarbonyl-6'-epi-fortimicin A (14)

A magnetically stirred solution of 12.8 g of 1,2',6'-tri-*N*-benzyloxycarbonyl-6'-*epi*-fortimicin B (13), 5.75 g. 20 of *N*-(benzyloxycarbonylglycyloxy)succinimide and 450 g. of tetrahydrofuran is kept at ambient temperature overnight. An additional 0.85 g. of *N*-(benzyloxycarbonylglycyloxy)succinimide is added and stirring is continued for overnight. The solvent is evaporated under reduced pressure. The residue is taken up in 500 ml. of CHCl₃ and the CHCl₃ solution is washed with two 250 ml. portions of 5% aqueous NaHCO₃ and dried (MgSO₄). The CHCl₃ is evaporated under reduced pressure leaving 17.1 g. of crude 1,2',6',2"-tetra-*N*- 25 benzyloxycarbonyl-6'-*epi*-fortimicin A (14). Chromatography of the latter on a column of 750 g. of silica gel packed and eluted with ethyl acetate yields 11.8 g. of pure (14): [α]_D²³ + 74.1° (C 1%, CH₃OH); IR (CDCl₃): 3552, 3415, 1713, 1637 cm⁻¹. NMR (CDCl₃): δ 1.78 d (J=3.9 Hz) (C_{6'}-H); 2.82 (major), 2.98 (minor) (NCH₃ rotamers), 3.26 (OCH₃).

30 Anal. Calcd. for C₄₉H₅₉N₅O₁₄: C, 62.48; H, 6.31; N, 7.43

30

Found: C, 62.32; H, 6.30; N, 7.34

EXAMPLE 10

6'-epi-Fortimicin A tetrahydrochloride (2a)

A solution of 2.83 g. of 1,2',6',2"-tetra-*N*-benzyloxycarbonyl-6'-*epi*-fortimicin A (14) in 240 ml. of 0.2 N 35 hydrochloric acid in CH₃OH is hydrogenated under 3 atmospheres of hydrogen for 4 hours in the presence of 2.8 g. of 5% Pd/C. The catalyst is removed by filtration, and solvent is separated under reduced pressure. Residual water is removed by co-distillation with CH₃OH under reduced pressure leaving 1.70 g. of 40 6'-*epi*-fortimicin A tetrahydrochloride (2a): [α]_D²³ + 77.7° (C 1%, CH₃OH); IR (KBr): 1646 cm⁻¹, NMR (D₂O, pH 2.39): δ 1.78 d (J=7.8 Hz) (C_{6'}-CH₃); 3.60 (NCH₃), 3.96 (OCH₃).

M⁺¹: Calcd. for C₁₇H₃₅N₅O₆: 405.2587

Meas: 405.2584

Cyclitol: Calcd. for C₁₀H₂₂N₃O₅: 264.1559

Meas: 264.1558

Diaminosugar: Calcd. for C₇H₅N₂O: 143.1184

Meas: 143.1209

EXAMPLE 11

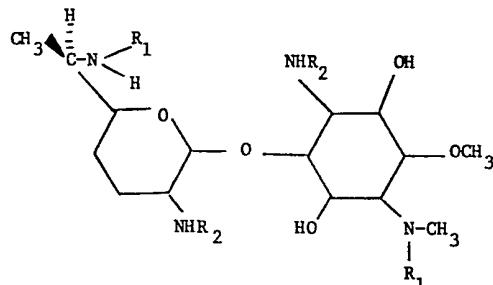
6'-*epi*-Fortimicin A Bis-dihydrogen sulfate (2b)

A solution of 6.61 g. of 6'-*epi*-fortimicin A tetrahydrochloride (2a) in 25 ml. of deionized water is applied to a column (2.5 cm x 32 cm) of AG2-X1(SO₄²⁻) resin. Elution with deionized water yields 7 g. of 6'-*epi*-fortimicin A bis-dihydrogen sulfate (2b): [α]_D²³ +72° (C 1%, H₂O); IR (KBr): 1646 cm⁻¹, NMR (D₂O, pH 4.2); δ 1.75 d (J= 6.9 Hz) (C₆-CH₃); 3.58 (NCH₃); 3.94 (OCH₃).

Anal. Calcd. for C ₁₇ H ₃₉ N ₅ O ₁₄ S ₂ :	C, 33.94;	H, 6.53;	
10	N, 11.64		10
Found:	C, 31.67;	H, 6.65;	
	N, 11.47		
15	MS: M ⁺ : Calcd. for C ₁₇ H ₃₅ N ₅ O ₆ :	405.2587	15
	Meas:	405.2596	
20	Cyclitol: Calcd. for C ₇ H ₁₅ N ₂ O:	143.1184	20
	Meas:	143.1209	
25	Diaminosugar: Calcd. for C ₁₀ H ₂₂ N ₃ O ₅ :	264.1559	25
	Meas:	264.1553	

EXAMPLE 12

N-(2,2,2-Trichloroethoxycarbonyl)phthalimide (15)


30 A magnetically stirred solution of 16.3 g. of N-hydroxyphthalimide in 150 ml. of pyridine, cooled in an ice bath, is added slowly, dropwise 15.2 ml. of 2,2,2-trichloroethoxycarbonyl chloride. Stirring is continued with cooling for 0.5 hours, and then at ambient temperature for two days. The resulting solution is poured into 700 ml. of ice water and the crystallized solid which forms is separated by filtration and washed with cold water. The product is dissolved in 500 ml. of CHCl₃ and the CHCl₃ solution is washed with three 300 ml. 35 portions of 5% aqueous NaHCO₃, and dried (MgSO₄). Evaporation of the CHCl₃ under reduced pressure leaves a yellow oil which is crystallized on trituration with hexane. After cooling in a cold room for several hours the product is collected by filtration and washed with hexane and dried at 50° under vacuum overnight to yield 30.7 g. of N-(2,2,2-trichloroethoxycarbonyl)phthalimide (15): m.p. 98-100°, IR (CDCl₃): δ 4.93 s (CH₂), 7.76-7.98 m (aromatic).

Anal. Calcd. for C ₁₁ H ₆ NO ₅ Cl ₃ :	C, 39.02;	H, 1.79;	N, 4.14
Found:	C, 38.92;	H, 1.80;	N, 4.08

CLAIMS

1. A compound of the formula

5

5

10

10

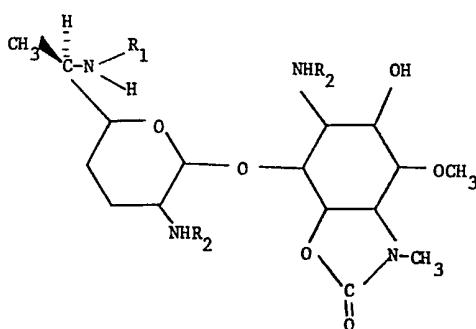
15

15

wherein R₁ is an *N*-protecting group and R₂ is a substituted or unsubstituted alkoxy carbonyl or aryloxy carbonyl group.

20 2. The compound of Claim 1 wherein R₂ is benzyloxycarbonyl. 20
 3. The compound of Claim 1 wherein R₁ is 2,2,2-trichloroethoxycarbonyl.
 4. The compound 4,6'-di-*N*-(2,2,2-trichloroethoxycarbonyl)1,2'-di-*N*-benzyloxycarbonyl fortimicin B.
 5. A compound of the formula

25


25

30

30

35

35

wherein R₁ is hydrogen or an *N*-protecting group and R₂ is a substituted or unsubstituted alkoxy carbonyl or aryloxy carbonyl group.

40 6. The compound of Claim 5 wherein R₂ is benzyloxycarbonyl. 40
 7. A compound of Claim 5 in which R₁ is 2,2,2-trichloroethoxycarbonyl.
 8. The compound 6'-*N*-(2,2,2-trichloroethoxycarbonyl)-1,2'-di-*N*-benzyloxycarbonyl fortimicin B-4,5-carbamate.
 9. A method of preparing a selected 1,2'-di-*N*-protected fortimicin B-4,5-carbamate which comprises
 45 reacting an appropriate 1,2'-di-*N*-protected fortimicin B with an alkoxy carbonyl alkylating agent, converting the resulting 4,6'-di-*N*-alkoxy carbonyl-1,2'-di-*N*-substituted fortimicin B-4,5-carbamate by reacting with a suitable base, and removing the alkoxy carbonyl group to obtain the desired 1,2'-di-*N*-protected fortimicin B-4,5-carbamate.
 10. The compound prepared substantially according to any one of Examples 1 to 12 herein.