发明名称
离子源

摘要
提供能够除去不需要的离子的离子源。靶材(2)配置在被排气成真空的真空容器(1)内，且通过激光的照射而产生多个价数的离子。加速电极(4)被施加电压，以使由靶材(2)产生的离子加速。中间电极(5)设置在靶材(2)与加速电极(4)之间，且被施加与施加于加速电极(4)的电压反向的电压。
1. 一种离子源，其特征在于，具备：
真空容器，被排气成真空；
靶材，配置在上述真空容器内，通过激光的照射而产生多个价数的离子；
加速电极，被施加电压，以使由上述靶材产生的离子加速；以及
中间电极，设置在上述靶材与上述加速电极之间，且被施加与施加于上述加速电极的电压反向的电压。

2. 根据权利要求1所述的离子源，其特征在于，
在与由上述靶材产生的多个价数的离子中的预先确定的价数的离子的飞行速度相应的定时，对上述中间电极施加脉冲驱动电压，以将上述预先确定的价数的离子朝上述加速电极输送。

3. 根据权利要求1或2所述的离子源，其特征在于，
还具备辅助电极，该辅助电极设置在离子输送方向上的上述加速电极的下游，
对上述辅助电极施加脉冲驱动电压，以将在上述加速电极中被加速后的离子中的上述预先确定的价数的离子朝上述辅助电极的下游输送。
离子源

技术领域
[0001] 本发明涉及通过激光的照射而产生离子的离子源。

背景技术
[0002] 通常，作为在离子源中产生离子的方法，例如已知有通过在气体中引发放电来得到离子的方法。在该情况下，为了引发放电，能够利用微波或者电子束。
[0003] 另一方面，现有使用激光产生离子的技术（例如参照专利文献1以及2）。在这样使用激光产生离子的离子源中，将激光聚焦照射至固体靶材，利用激光的能量使靶材所含的元素蒸发、离子化从而生成等离子体，将等离子体中所含的离子以等离子体的状态输送，并在引出时进行加速，由此能够制作出离子束。
[0004] 根据这种离子源，能够通过朝固体靶材照射激光来产生离子，有利于产生多价离子。
[0005] 专利文献1：日本特许第3713524号公报
[0006] 专利文献2：日本特开2009-037764号公报
[0007] 然而，如上所述那样的离子源中产生的离子中混杂有多个价数的离子。
[0008] 在该情况下，例如能够通过在离子源的后级使用高频加速的直线加速器来选择性地仅输送所需要的价格的离子，但是，在离子源单体中，无法除去不需要的价格的离子。

发明内容
[0009] 因此，本发明的目的在于提供一种能够除去不需要的离子的离子源。
[0010] 根据本发明的一个实施方式的离子源，其特征在于，具备真空容器，被排气成真空，靶材，配置在上述真空容器内，通过激光的照射而产生多个价数的离子；加速电极，被施加电压，以使由上述靶材产生的离子加速，以及中间电极，设置在上述靶材与上述加速电极之间，且被施加与施加于上述加速电极的电压反向的电压。
[0011] 发明效果
[0012] 本发明能够提供能够除去不需要的离子的离子源。

附图说明
[0013] 图1是示出本发明的第一实施方式所涉及的离子源结构的概要的剖视图。
[0014] 图2是示出射至中间电极的离子的特性图。
[0015] 图3是示出对中间电极施加了正电场的情况下的离子的特性图。
[0016] 图4是示出本发明的第二实施方式所涉及的离子源结构的概要的剖视图。
[0017] 标号说明
具体实施方式

[0019] 以下，参照附图对本发明的各实施方式进行说明。

[0020] 由于实施方式所涉及的离子源进行说明。本实施方式所涉及的离子源例如是将激光会聚照射至靶材，利用激光的能量使靶材所含的元素蒸发、离子化从而产生离子的激光离子源。

[0021] 如图 1 所示，离子源具备真空容器 1、靶材 2、准直器 3、加速电极 4 以及中间电极 5。

[0022] 真空容器 1 例如为不锈钢制，在真空容器 1 内配置有靶材 2。另外，真空容器 1 内侧射示的排气系统被排气成真空。

[0023] 通过在真空容器 1 内朝靶材 2 会聚照射激光 10，靶材 2 产生多个价数的离子。具体而言，例如使用真空容器 1 内所配备的聚光透镜(未图示)会聚的激光 10 照射至靶材 2，由此生成激光烧蚀等离子体(以下仅记为等离子体)11。在该等离子体 11 中包含在上述的离子源中作为目标的靶材物质的多价离子。另外，靶材 2 例如是碳系的板状部件。

[0024] 准直器 3 设置在靶材 2 以及加速电极 4 之间，从中朝朝靶材 2 照射激光 10 而生成的等离子体 11 排除不需要的等离子体。

[0025] 在加速电极 14 施加有电压，以便使经由准直器 3 输送的等离子体 11 所含的离子加速。由此，在加速电极 4 上生成用于使等离子体 11 所含的离子加速、聚焦的电场，从而离子被加速。另外，由加速电极 4 加速后的离子最终作为离子 12 由离子源射出。

[0026] 中间电极 5 设置在准直器 3 与加速电极 4 之间，且被施加与施加于加速电极 4 的电压方向的电压。

[0027] 其次，对本实施方式所涉及的离子源的动作进行说明。另外，在本实施方式所涉及的离子源中产生的离子是源自靶材 2 所含的元素的离子，混杂有多个价数的离子。作为靶材 2 例如包含碳靶等。

[0028] 首先，对配置在真空容器 1 内的靶材 2 照射使用聚光透镜会聚后的激光。在该情况下，在靶材 2 生成等离子体 11。当靶材 2 为碳靶的情况下，在等离子体 11 中例如混杂有 Cn～Cm 的离子。另外，等离子体 11 中的不需要的等离子体借助准直器 3 而被除去，并在射至中间电极 5。

[0029] 此外，在中间电极 5 之上如上所述施加有与施加于加速电极 4 的电压方向的电压，将所施加的电压值设定为在上述离子源中作为目标的靶材物质的多价离子对应的电压值。

[0030] 由此，等离子体 11 中所含的多个价数的离子中的例如离子团等速度慢的离子无法通过中间电极 5。因而，能够避免不需要的离子流入离子输送方向上的下游。

[0031] 另外，通过将中间电极 5 的形状以及电压设定成最适合离子的聚焦的方式，能够控制离子的轨迹，也能够提高离子的收集率。

[0032] 通过中间电极 5 后的离子在加速电极 4 中被加速。另外，在加速电极 4 中被加速后的离子作为离子 12 被从离子源射出而例如被输送至线条加速器等离子源的外部。

[0033] 另外，等离子体 11 所含的多个价数的离子的飞行速度分别不同。因此，例如在中间电极 5 中观测到等离子体 11 所含的多个价数的离子中的各离子的时间不同。

[0034] 利用该特性，例如在与离子源中作为目标的靶材物质的多价离子(即，在离子源中
作为目标的价数的粒子的飞行速度相应的定时，对中间电极 5 施加脉冲驱动电压（即，对中间电极 5 进行脉冲驱动）。

【0036】通过朝中间电极 5 施加脉冲驱动电压，能够仅使等离子体 11 所含的多个价数的离子（即，在靶材 2 中产生的多个价数的离子）中的，在该离子源中作为目标的价数的离子通过（即，朝加速电极 4 输送）。

【0037】此处，图 2 例示示出入射至中间电极 5 的离子。如图 2 所示，在入射至中间电极 5 的离子中包含在离子源中作为目标的靶材物质的价数离子以及不需要的离子等。

【0038】图 3 例示出当对中间电极 5 施加了与在加速电极 4 上施加的电压反向的电压（例如正电场）的情况下下的离子。

【0039】如图 3 所示，通过对中间电极 5 施加与在加速电极 4 上施加的电压反向的电压，图 2 所示的不需要的离子被除去。

【0040】并且，如图 3 所示，当靶材 2 为碳靶的情况下，在中间电极 5 观测到的离子中例如混杂有 C^6+ ~ C^1+。

【0041】该 C^6+ ~ C^1+ 如上所述飞行速度分别不同，因此，如图 3 所示，在中间电极 5 观测到 C^6+ ~ C^1+ 的时间不同。

【0042】在这种情况下，当假定在离子源中作为目标的价数的离子为 C^6+ 时，以使得仅在 C^6+ 通过的期间使电压降低的方式对中间电极 5 进行脉冲驱动，且在除此以外的期间以使得离子无法通过的方式施加电压，由此，在中间电极 5 处，能够仅使 C^6+ 通过。

【0043】另外，此处以 C^6+ 为在离子源中作为目标的价数的离子的情况进行了说明，但即便例如为 C^6+ 以外，通过在与作为目标的价数的离子的飞行速度相应的定时对中间电极 5 进行脉冲驱动，能够仅使作为目标的价数的离子通过。

【0044】如上所述，在本实施方式中，形成为具备如下部件的结构：真空容器 1，被排气成真空，靶材 2，配置在真空容器 1 内，且通过激光的照射而产生多个价数的离子；加速电极 4，在该加速电极 4 上施加有电压，以使由靶材 2 产生的离子加速；以及中间电极 5，设置在靶材 2 与加速电极 4 之间，且被施加与施加于加速电极 4 的电压反向的电压。

【0045】通过对中间电极 5 施加上述反向的电压，离子团等速度慢的离子无法通过中间电极 5，因此能够排除不需要的离子。

【0046】并且，在本实施方式中，通过在与在离子源中作为目标的预先确定的价数的离子的飞行速度相应的定时对中间电极 5 施加脉冲驱动电压，能够仅使作为目标的价数的离子通过加速电极 4。

【0047】另外，在本实施方式中，也能够形成为在与在上述的离子源中作为目标的价数的离子的飞行速度相应的定时，以仅对作为目标的价数的离子进行加速的方式对加速电极 4 施加脉冲驱动电压（对加速电极 4 进行脉冲驱动）的结构。

【0048】（第二实施方式）

【0049】其次，参照图 4 对本发明的第二实施方式所涉及的离子源进行说明。图 4 例示出本实施方式所涉及的离子源结构的概要。另外，在图 4 中，对与上述的图 1 相同的部分赋予同一参照标号并省略其详细说明。

【0050】如图 4 所示，本实施方式所涉及的离子源与上述的第一实施方式的不同点在于，在离子输送方向上的相比加速电极 4 靠下游的位置具备辅助电极 6。
在本实施方式中，以输送利用加速电极4被加速后的离子中的预先确定的价数的离子（即，在离子源中作为目标的价数的离子）的方式对辅助电极6施加脉冲驱动电压（即，辅助电极6被脉冲驱动）。由此，能够仅将目标价数的离子朝下游输送。

另外，通过调整辅助电极6所被设置的位置以及对辅助电极6施加的电压，也能够延长辅助电极6中的脉冲驱动的脉冲宽度。由此，能够降低作为目标的价数的离子以外的离子的混杂率。

如上所述，在本实施方式中，具备设置在离子输送方向上的加速电极4的下游的辅助电极6，以输送在加速电极4中被加速后的离子中的预先确定的价数的离子的方式对辅助电极6施加脉冲驱动电压，由此能够仅输送在离子源中作为目标的价数的离子。

另外，本申请发明并不原样限定于上述各实施方式，在实施阶段能够在不脱离其主旨的范围内对构成要素进行变形而具体化。并且，能够通过上述各实施方式中公开的多个构成要素的适当组合来形成各种发明。例如，也可以从各实施方式所示的所有构成要素中删除几个构成要素。此外，也可以将不同实施方式所涉及的构成要素适当组合。
图3

图4