

United States Patent [19]

Kuhlmann-Schäfer

[11] **3,809,145**[45] **May 7, 1974**

[54]	PROCESS FOR THE PRODUCTION OF PERMANENT MAGNETS	2,380,616 7/1945 Snoek et al
[75] [73]		2,398,018 4/1946 Linley et al. 164/49 2,773,923 12/1956 Smith. 164/251 X 3,163,523 12/1964 Porter et al. 164/51 X 3,246,373 4/1966 Lyman. 164/49 3,322,183 5/1967 Johnston et al. 164/49 FOREIGN PATENTS OR APPLICATIONS
[22] [21]	Filed: June 15, 1972 Appl. No.: 264,399	90,563 2/1897 Germany 164/50 979,695 12/1950 France 164/49
[30]	Foreign Application Priority Data June 15, 1971 Germany	Primary Examiner—R. Spencer Annear Attorney, Agent, or Firm—Molinare, Allegretti, Newitt & Witcoff
[52] [51] [58] [56]	U.S. Cl	[57] ABSTRACT Permanent magnets having high coercivity forces and remanence are produced by melting and cooling a charge of magnetic material in a strong magnetic field.
3,464,	812 9/1969 Utech et al 164/49 X	9 Claims, 1 Drawing Figure

PROCESS FOR THE PRODUCTION OF PERMANENT MAGNETS

BACKGROUND OF THE INVENTION

The invention relates to a process for the production 5 of permanent magnets.

It is known to sinter Co₅R magnets from fine particles of magnetic material in the production of these materials. This production is carried out in various stages, namely, the mixing of the raw materials in a fluid, and 10 filtering, drying, pre-sintering, grinding, pressing, final sintering, and forming the resultant product. This sintering process is relatively complicated.

When carrying out the sintering process, it is known to produce a magnetic field in the charge during the 15 pressing part of the operation in order to obtain more favorable magnetic properties. The purpose of said magnetic field is to substantially align the axes of easiest magnetizability of individual powder particles with the magnetic field. In order to permit this, the powder 20 must be introduced into the mold either in a very dry state or in a suspension in water, which further increases the production costs involved. It is also known that optimum values can be achieved when using a sintering process in a magnetic field if each powder parti- 25 cle is a single crystal of suitable size. Therefore, extremely fine grinding is a prerequisite if optimum values are to be achieved. (See A. I. Stuijts et al., Phil. Tech. Rev. 16, page 141, 1954, the teachings of which are incorporated herein by reference.)

To improve the magnetic properties, and particularly to produce a preferred direction of magnetization, it is known in the case of ferrites containing Co additives to cool the charge after final sintering in a magnetic field between the Curie temperature and about 150°C. (See 35 rounding atmosphere, it is expedient to conduct the M. Kornetzki et al., Siemens-Zeitung 29, page 434, 1955, the teachings of which are incorporated herein by reference.)

It is also known to grow monocrystals in order to improve magnetic properties. But, in fact, the Weiss do- 40 mains usually have no specific association with the geometry of the monocrystal, so that an effective improvement in magnetic properties cannot be achieved thereby.

SUMMARY OF THE INVENTION

The object of the invention is to provide a simple process for the production of permanent magnets having improved magnetic properties, particularly, magnets having high coercivity forces or high remanences.

The object of this invention is achieved by a process for the production of permanent magnets wherein a charge of magnet material is melted and cooled in a strong magnetic field. It is particularly convenient and preferred to effect the melting of the charge in a migrating zone, the transition from the liquid phase to the rigid phase occurring in the center of the strong magnetic field.

With the process of the present invention, the aligning of the Weiss zones is effected by a magnetic field when the individual molecules of the magnet material exhibit their maximum mobility, i.e., when the material is in the melted, fluid state. After cooling and consolidation of the material, the material is given a preferred direction of magnetization in the direction of the lines of flux of the applied magnetic field, so that the magnetic properties are substantially improved. At worst,

the Weiss domains are at a small angle relative to one another and are usually uniformly aligned. As a result, the magnetic properties are at an optimum.

A further development in the process of this invention is that there is conducted through the charge a current of such intensity that it is capable of heating the charge to a temperature above the melting point. The charge is then cooled, after passing through the melting zone, to a temperature below the melting point. Thus, because of the effectiveness of the cooling of the charge, the envelope about the charge can be kept particularly thin so that the inner diameter of an electromagnet, preferably a superconductive magnet, can be correspondingly small and the field intensity in the charge particularly great. Preferably, the charge is surrounded in the region before the melting zone by a heat-insulating envelope.

Prior to this invention, high coercivity forces of the order of magnitude of 200 kilogauss have been only sporadically found with small particles of Co₅R (R is a radical). With particles of larger dimension, it has been impossible to produce permanent magnets from Co₅R. The process of the present invention facilitates the transformation of large Co₅R particles into permanent magnets, thus providing an economical means of producing large magnets with coercivity forces of the order of magnitude of 200 kilogauss and with high remanences. These properties afford considerable advantages in electric motors, frictionless suspensions, magnetic pads, magnetic separators, elementary particle accelerators, quadripole systems and the like.

Since, depending on the type of magnet material used, a reaction may take place with the gas of the surmelting and particularly the zone melting operation under an inert gas atmosphere. Naturally, the process also permits the production of magnetic monocrystals.

DESCRIPTION OF PREFERRED EMBODIMENT

The invention will be explained in detail with reference to the attached drawing.

The drawing shows, in principle, a device for carrying 45 out zone melting. Between two electrodes 1 and 2, there is a charge 3 which is, for example, in the form of a Co₅R rod which is to be subjected to zone melting. The electrodes 1 and 2 can move with the charge 3 in the direction of arrows 5 through an envelope 4 cooled with water. In the drawing, the direction of movement is vertical and the other parts are arranged correspondingly. It is possible to have this direction with cruciblefree zone melting, wherein the charge is brought to a liquid state only over a short region, and is held together by the surface tension of the liquid. However, the charge may also be held in a concentric ceramic tube 6 made of, for example, Y2O3 in the case of CO5R, so that it can be brought to the liquid state over a longer region. In the device shown in the drawing, the 60 ceramic tube 6 is surrounded by a second ceramic tube 7. The intervening space between the two ceramic tubes 6 and 7 is filled with heat-insulating ceramic powder 8. Between the ceramic tube 7 and the envelope 4, there is ceramic wool 9 for further heat insulation. It will be noted that the envelope 4 is widened internally in the region of the ceramic tubes 6 and 7 to provide space for the ceramic tubes.

The envelope 4 is surrounded by a superconductive magnet 10, the center of which is in the region of the transition from the liquid phase to the solid phase, said region lying in the direction of movement of the charge 3 as it moves in the direction of the arrows 5, and be- 5 tween the ends of the ceramic tubes 6 and 7 and the casing 4. Subsequently, the casing 4 is again narrowed. This means that the center of the superconductive magnet is situated in the transition region between heat insulation and heat dissipation.

The superconductive magnet 10 consists of a plurality of superconductors 11 (so-called pan cakes), consisting, for example, of Nb₃Sn or VGa₃, which are cooled by a radiation shield 12 and a helium bath 13.

To carry out the process of the present invention, an electric current of sufficient intensity is sent through the charge so that the charge 3 is liquefied within the heat-insulated zone, represented substantially by the ceramic tubes 6 and 7. The amount of charge required 20 is dependent upon the exact material and/or amount treated and is readily determined by those trained in the art. In the aforesaid heat-insulated zone, the strong magnetic field of the superconductive magnet 10 efgives them a parallel form. Since this alignment is particularly important when the re-solidification is effected in the region between the downstream end of the ceramic tubes 6 and 7 and the beginning of the nargion is located in the center of the superconductive magnet 10. After solidification, the permanent magnet thus produced is given a preferred direction of magnetization in the direction of the lines of flux of the superconductive magnet 10. Therefore, the magnetic prop- 35 erties obtained are good, with especially high coercivity force and remanence.

As used herein, R in Co₅R refers to a rare earth. See for example, 1971 Intermag Conference; IEE Transactions on Magnetics, The Preparation of RCo₅ 40 netic material is Co₅R. Permanent Magnet Alloys, page 423 (1971) the teachings of which are incorporated by reference herein. Further, the strong magnetic field used in producing

the permanent magnets is held at a value of about 50-250 kilogauss and is maintained at that value until solidification occurs.

I claim:

1. A process for production of a permanent magnet from a charge of magnetic material comprising the steps of:

heating said charge to provide a melting zone along a portion of the length of said charge, said melting zone having a liquid-to-solid interface;

causing said melting zone to pass through said charge; and

continuously subjecting said interface of said melting zone to a magnetic field.

2. A process as claimed in claim 1 wherein said liquid-to-solid interface is positioned in the center of said magnetic field.

3. A process as claimed in claim 1 wherein said heating step includes passing a current through said charge to heat said charge to a temperature above the melting point of said magnetic material and cooling a portion of said charge to a temperature below the melting

4. A process as claimed in claim 3 wherein said heatfects substantial alignment of the Weiss domains, or 25 ing step further includes insulating a second portion of said charge with a heat-insulating envelope, said melting zone substantially aligning with said heat-insulating envelope.

5. A process as claimed in claim 4 wherein said causrowed portion of the envelope used for cooling, this re- 30 ing step includes moving said charge relative to said envelope.

> 6. A process as caimed in claim 1 further comprising the steps of placing said charge in an air-tight container and filling said container with an inert gas.

7. A process as claimed in claim 1 wherein said magnetic material of said charge is Co₅R, wherein R is a rare earth metal.

8. A process as claimed in claim 1 wherein said charge is contained in a crucible of Y₂O₃ and said mag-

9. A process as claimed in claim 1 where the strength of said magnetic field is at least 50 kilograms.

50

55