The present invention concerns an anhydrous composition, in particular in the form of anhydrous dispersion, for caring for and/or making up keratin materials comprising, in a physiologically acceptable medium, a) at least one oily phase comprising at least one non-volatile oil and/or at least one volatile oil; and b) at least microcapsules comprising: - an inner core comprising at least a dispersion of at least one reflective agent, in particular bismuth oxychloride, in at least one oil, and - at least one outer shell formed of a wall-forming polymeric material surrounding the said core, the said outer shell comprising i) at least one wall-forming polymer, and ii) optionally at least one plasticizer and/or at least one opaque substance and/or at least one fatty acid salt.

The present invention concerns also a cosmetic process for caring for and/or making up keratinic materials, comprising application on said keratinic materials in particular on the skin of a composition as above defined.
Anhydrous composition for caring for and/or making up keratin materials comprising microcapsules encapsulating an oily dispersion of at least one reflective agent

The present invention concerns an anhydrous composition, in particular in the form of anhydrous dispersion, for caring for and/or making up keratin materials comprising, in a physiologically acceptable medium,
a) at least one oily phase comprising at least one non-volatile oil and/or at least one volatile oil; and
b) at least microcapsules comprising:
   - an inner core comprising at least a dispersion of at least one reflective agent, in particular bismuth oxychloride, in at least one oil, and
   - at least one outer shell formed of a wall-forming polymeric material surrounding the said core, the said outer shell comprising
   i) at least one wall-forming polymer, and
   ii) optionally at least one plasticizer and/or at least one opaque substance and/or at least one fatty acid salt.

The present invention concerns also a cosmetic process for caring for and/or making up keratinic materials, comprising application on said keratinic materials in particular on the skin of a composition as above defined.

Consumers are looking for new skin care and/or make up products to improve the appearance of keratin materials and especially the skin, in particular the surface appearance (visible and/or tactile) and/or skin tone including brightness or a light effect to the skin with a natural glow and advantageously a healthy glow. The consumers increasingly reject the makeup products that, when applied to the face, leading to a dull and bland results. They want, instead, a bright makeup that gives luster. It is important also to find a good balance between the lightness and the coverage, dullness and color given by the pigments and fillers to cover, smooth and/or unifying skin dyschromias, relief imperfections such as pores, wrinkles and/or fine lines and/or scarring.
By 'light' or 'light effect' is meant according to the invention the reflection characteristic of light, diffuse reflection and continues on the skin. Indeed, the skin naturally reflects part of the incident light. The "light effect" according to the invention can increase this reflection, which provides the makeup rendering brighter, more sparkle.

For 'healthy glow', a natural skin coloring means, with an improvement of dull complexion (desaturating or chromatic effect and anti-dull completion).

The use of reflective agents as bismuth oxychloride (CI 77163) in cosmetic formulations is well-known and notably described in WO 2004/041234 and US7033614.

The use of reflective agents as bismuth oxychloride (CI 77163) as a powder or agglomerates is known in foundations as a charge to bring some sensory (soft). This compound can also bring a punctual and discontinuous satin effect, which in products such as fluids, or even compact powders can be perceived as a pearly shine. However, because of its capacity to absorb moisture and oils, bismuth oxychloride under powder form or agglomerate has a tendency to render white and to affect the final visual rendering of the product after application on the skin and the sensory properties such as freshness. In addition, the powder form requires industrial constraints of grinding to a finer particle size in order to obtain more bright, more sparkle.

To remedy these problems of whitening of final visual rendering and of particle size industrial constraint, it has been proposed to use bismuth oxychloride (CI 77163) as a bismuth oxychloride dispersion in a polar oil as for instance, in U.S. Patent Application having Publication No. 2012/0269752.

However, this oily dispersion used in anhydrous oily dispersions has a tendency to alter the texture and rheology of the composition, to increase the greasy feeling and to give a too pearly shine in the mass in high amounts which is undesirable for greasy skins and dark skins. Consequently, the concentration of the oily bismuth oxychloride dispersion has to be limited. The oily dispersion used in in anhydrous
oily dispersions has a tendency to alter the thinness on the skin and the homogeneity of the colour.

In the prior art, in particular in the documents US2010095868, US7622132, WO09079135, EP1518903B1, it has been proposed to use a reflective agent in microcapsule as nacres pigments containing bismuth oxychloride or bismuth oxychloride.

In cosmetic formulations it is generally highly desirable to retain a cosmetically active agent that provides a visual effect within capsules before application thereof. Encapsulation of such agent is thought for in order to maintain a long term visual effect of the cosmetic formulation; to protect the encapsulated agent from interacting with other agents in the formulation; to mask the visual effect of the active agent before application; to maintain the stability of the active agent in a formulation and/or to release the encapsulated active agent only upon application. The effectiveness of protection/masking by single-layer microencapsulation depends on the chemical structure, molecular weight and physical properties of the microencapsulated ingredient.

Microparticles encapsulating a variety of cosmetically active agents, including colorants and/or pigments and other agents that provide a visual effect, have been described in the art.

U.S. Patent Nos. 5,320,835 and 5,382,433 disclose "activatable" dormant colored particles or pigments and cosmetic formulations comprising them and further comprising a colored base phase, and colorant entrapping substrate particles dispersed in said base phase. The encapsulated colorants are said to be released into the base phase when mechanical action is applied to the cosmetic formulation, and produce an intense shade in the color of the base phase, whereas the colorant entrapping substrate particles entrap the released colorants and produce a subtle shade in the color of the base phase. The encapsulated pigments are made by a coacervation method.

WO 98/5002 discloses similar color-sustainable base cosmetic formulations, further including volatile solvents to minimize the gritty feel of the microencapsulated
material. The color obtained from the released encapsulated pigments is exactly the same as the color of the composition itself. Releasing provides renewed intensity of the original base color.

U.S. Patent No. 5,380,485 discloses colored cosmetic compositions, comprising particulate fillers coated with polymer that is combined with colorants, and their application in decorative cosmetics.

U.S. Patent Application having Publication Nos. 2005/0031558 and 2005/0276774 disclose a personal care or cosmetic composition containing microparticles comprising a shatter resistant blend of distinct colorants microencapsulated within a polymer matrix, preferably a cross-linked polymer matrix that does not allow any of the entrapped colorant to be released even under prolonged use. The matrix polymer is preferably transparent or translucent such that the blend of encapsulated colorants provides the coloring of the cosmetic product itself and of the skin upon application of the cosmetic composition. The microparticles disclosed in U.S. Patent Application having Publication No. 2005/0276774 further contain secondary particles (i.e. hydrophobic polymers different from those of the matrix polymer) that are distributed throughout the matrix.

U.S. Patent No. 4,756,906 discloses decorative cosmetic compositions containing a first colorant and microcapsules containing a solvated second colorant, different from the first colorant. Upon rupture of the microcapsules, the coloration of the encapsulated pigment is added into the composition thereby altering its color characteristics.

WO 2004/075679 discloses rigid, non-rupturable microcapsules containing a blend of at least two coloring agents and compositions comprising them, which do not change their color upon application onto the skin. The microcapsules are non-rupturable due to the use of cross-linked polymeric matrix comprising polymers that have a glass transition temperature (Tg) higher than 80 °C.

U.S. Patent No. 6,932,984 discloses single- and double-layer microcapsules and a method for microencapsulation of substances by the solvent removal method using
non-chlorinated solvents. The method is based on physical processes which do not cause any change of original physical and/or chemical properties, biological activity, and safety of raw materials during the process.

U.S. Patent No. 7,838,037 discloses double-layer and/or triple-layer microcapsules, designed to rupture by a slight mechanical action such as rubbing or pressing on the skin, and thereby immediately release their encapsulated content. These microcapsules are prepared by the solvent removal method using non-chlorinated solvents. This method affords physical stability to the microcapsules, high ability to entrap the active agents, protection of the active agents inside the microcapsules, and prevention of the diffusion of the microencapsulated active agents to the external water phase in a water-based preparation.

WO 2009/138978 discloses cosmetic compositions for dermal/topical application comprising double-layer, rupturable microcapsules which contain one or more microencapsulated colorants. When applied to the skin, such compositions produce an immediate color change effect indicating the delivery to the skin of the active substances contained in said compositions.

There is thus a need to find new anhydrous compositions, in particular anhydrous dispersions based on a reflective agent which do not have the drawbacks mentioned above.

There is also the need to use in the said compositions of a reflective agent in an appropriate encapsulated form which may efficiently mask the visual effect of the reflective agent before application and/or release the encapsulated active agent only upon application.

The applicant has surprisingly discovered that this objective can be achieved with an anhydrous composition, in particular in the form of anhydrous dispersion, for caring for and/or making up keratin materials comprising, in a physiologically acceptable medium,
a) at least one oily phase comprising at least one non-volatile oil and/or at least one volatile oil; and
b) at least microcapsules comprising:
- an inner core comprising at least a dispersion of at least one reflective agent, in particular bismuth oxychloride, in at least one oil, and
- at least one outer shell formed of a wall-forming polymeric material surrounding the said core, the said outer shell comprising
  i) at least one wall-forming polymer, and
  ii) optionally at least one plasticizer and/or at least one opaque substance and/or at least one fatty acid salt.

The microcapsules of the invention as described below, contain at least a dispersion of a reflective agent, in particular bismuth oxychloride, in at least one oil, and allow to encapsulate the said dispersion in high load (e.g., higher than 50 %, 60 % and even higher than 70 %, of the total weight of the microcapsule. The said microcapsules, are stable during the manufacturing and storage processes, maintain the encapsulated oily dispersion of reflective agent inside the capsules with minimal or nullified leakage, and are rupturable under mild shear forces, thus enabling an immediate release of the encapsulated agent upon application of the microcapsules to the skin. The obtained microcapsules provided herewith may further provide a masking effect of the light reflectance of the reflective agent before rupture, if desired.

This discovery is the basis of the invention.

The present invention concerns with an anhydrous composition, in particular in the form of anhydrous dispersion, for caring for and/or making up keratin materials comprising, in a physiologically acceptable medium,
a) at least one oily phase comprising at least one non-volatile oil and/or at least one volatile oil ; and
b) at least microcapsules comprising:
- an inner core comprising at least a dispersion of at least one reflective agent, in particular bismuth oxychloride, in at least one oil, and
- at least one outer shell formed of a wall-forming polymeric material surrounding the said core, the said outer shell comprising
  i) at least one wall-forming polymer, and
ii) optionally at least one plasticizer and/or at least one opaque substance and/or at least one fatty acid salt.

The present invention concerns also a cosmetic process for caring for and/or making up keratinic materials, comprising application on said keratinic materials in particular on the skin of a composition as above defined.

Definitions

"Physiologically acceptable medium" means any medium compatible with the keratin materials, which has a color, a smell and a pleasant feel and which does not generate unacceptable discomfort (stinging, tautness or redness) liable to put the consumer from using this composition.

In the context of the present invention, the term "keratin materials" means the skin and especially areas like the face, cheeks, hands, body, legs and thighs, around the eyes, the eyelids and the lips.

« Oily phase » means an organic liquid phase (without any structuring agent) at room temperature (20-25°C). Generally, the liquid organic phase is non-miscible in water and comprises at least one volatile oil and/or volatile oil.

The term "anhydrous composition" is intended to mean a composition containing less than 2% by weight of water relative to the total weight of the composition, indeed less than 1% of water, more particularly less than 0.5% by weight and better devoid of water, the water not being added during the preparation of the composition but corresponding to the residual water contributed by the mixed ingredients.

In the context of the present invention, the term "anhydrous dispersion" means an anhydrous oil wherein the microcapsules as above defined are dispersed in the oily phase and optionally additives which are water-insoluble as additional fillers, coloring agents.

MICROCAPSULES
The microcapsules provided by the present embodiments are particles (e.g., generally spherical particles), which are generally closed structures containing at least an encapsulated (enveloped, entrapped) oily dispersion of a reflective agent, in particular bismuth oxychloride. The microcapsules generally have a core-shell structural feature, namely each microcapsule is comprised of a polymeric shell and a core that comprises at least one oily dispersion of reflective agent enveloped by the shell.

The shell of the microcapsule is typically applied as a wall-forming material and serves as a membrane for the encapsulated substance. In some embodiments, the outer shell exhibits some opacity, or otherwise a masking effect of the reflective agent, by virtue of inclusion of an opaque substance in the shell, optionally in combination with a fatty acid salt.

The outer shell may further comprise a plasticizer to control its hardness, and is designed such that the microcapsules are rupturable upon rubbing or pressing on the skin.

In some of any of the embodiments described herein, the microcapsules are single-layer microcapsules, comprising a single outer shell enveloping the inner core. In some other embodiments, the microcapsules are double-layer, or triple-layer, or multi-layer microcapsules, comprising additional one or more layers enveloping the shell that envelopes the inner core.

A multi-layer microcapsule is featured as comprising an inner core microcapsule comprising a core which comprises an oily dispersion of bismuth oxychloride, as described herein, being enveloped by a first shell comprised of a first wall-forming material, and at least one additional shell comprised of a second wall forming material enveloping said first shell, which can be regarded as enveloping a single-layer microcapsule as described herein (comprising the reflective agent-containing inner core and a first shell of a first wall-forming material).
Each shell in the multi-layered microcapsules is typically and independently applied as a wall-forming material (e.g., a first, second, third and so forth wall-forming materials forming the first, second, third, and so forth, outer shells, respectively), and serves as a membrane for the encapsulated substance. In some embodiments, one or more, or each, of the outer shells in the multi-layered microcapsules according to these embodiments is optionally opaque by virtue of an opaque substance comprised therein, and/or further contains a fatty acid salt, as described herein.

The microcapsules of the present embodiments, among other uses, are suitable for inclusion in topical, e.g., cosmetic, cosmeceutical and pharmaceutical (e.g., dermatological), applications. When applied to the skin, the microcapsules are capable of being ruptured upon application of shear forces such as rubbing and pressing on the skin, but they remain intact in the formulation itself before application. The microcapsules are hard enough to avoid destruction of the shells and realization of the content during production processes such as isolation/filtration, drying, sieving, etc., and/or during storage.

In some embodiments, the microcapsules encapsulating an oily dispersion of bismuth oxychloride as described herein are prepared by a solvent removal method, as described hereunder and exemplified in the Examples section that follows.

In some embodiments, a mean size of the microcapsules as described herein is within a range of from 10 µm to 400 µm, more preferably from 50 µm to 350 µm, more particularly from 50 µm to 250 µm, advantageously from 90 µm to 250 µm, more advantageously from 100 µm to 200 µm.

Herein throughout, a "mean" size means an average size of the microcapsules. The size of the microcapsules may be measured by a Laser distribution size method and particularly by measuring the values D[50] and D[90].

D50 means the size of which 50% of the microcapsules do not exceed, and D90 means the size of which 90% of the microcapsules do not exceed.
In some of any of the embodiments described herein, the outer shell comprises, in addition to the wall-forming material, a fatty acid salt, and an opaque substance, as described herein.

According to some of any of the embodiments of the present invention, the microcapsules described herein exhibit masking of the luminous effect of the oily dispersion of bismuth oxychloride, as reflected by a positive shift (delta) of the lightness value (L*) determined in X-rite measurements.

According to some of any of the embodiments of the invention, a microcapsule as described herein is rupturable or breakable when applied to the skin; that is, a microcapsule as described herein remains intact in a formulation containing same and during industrial processes, but readily breaks when pressed or rubbed on the skin. The non-breakability of the microcapsules before topical application thereof is routinely assessed by monitoring (e.g., using a light microscope) the ability of the microcapsules in a basic cream or lotion to sustain their size and shape when subjected to low shear mixing at e.g., 40-600 (or 80-100) rpm for 5-10 minutes at room temperature and at 40 °C. A change of less than 10 % in the microcapsule size is indicative of the non-breakability of the microcapsules upon routine industrial processes.

THE INNER CORE:

The inner core in the microcapsules described herein comprises at least a dispersion of at least one reflective agent in at least one oil.

a) Reflective agent(s)

As used herein, a "reflective agent" describes an agent which increases the diffuse light reflection of a substrate onto which it is applied. A reflective agent as described herein is typically intended to increase the light reflection of keratinous substrates, particularly the skin, and more particularly facial skin.
According to some embodiments of the invention, a reflective agent may comprise, or be in a form of, particles, whereby the particles are characterized by dimensions and arrangement (e.g., a layered structure), and other physical and chemical features, which, when applied to a surface, cause reflection of incident light with a sufficient intensity that is visible to the naked eye. As a result, a reflective agent provides the substrate onto which it is applied points of brightness that contrast with their surroundings by appearing to shine.

In some embodiments, the reflective agent provides for a continuous diffuse reflection over the skin, and imparts a light effect or luminosity to facial skin when applied thereon.

A "light reflection" or "light effect" or "luminosity" or "luminous effect" as described herein, can be determined as described in the Examples section that follows.

An exemplary reflective agent is bismuth oxychloride.

Other exemplary reflective agents include, but are not limited to, inorganic nacres, particles with metallic glint, micas and other inorganic pigments, and combination thereof.

Inorganic pigments that are usable in the context of these embodiments of the present invention include, but are not limited to, titanium oxides, zirconium oxides, cerium oxides, zinc oxides, iron oxides, chromium oxides, ferric blue, manganese violet, ultramarine blue and chromium hydrate.

Additional pigments that are usable in the context of these embodiments of the present invention include, but are not limited to, pigment structures of the sericite/brown iron oxide/titanium dioxide/silica type, or of BaS0₄/TiC₂/FeSO₃ type, of silica/iron oxide type, or silica microspheres containing iron oxide.

The term "nacres" describes iridescent or non-iridescent colored particles, either of a natural origin (e.g., produced by certain molluscs in their shell) or synthesized, which
exhibit a color effect by featuring optical interference. The term "nacres" is also referred to herein as "nacreous pigments".

Exemplary nacreous pigments include, but are not limited to, titanium mica coated with an iron oxide, titanium mica coated with bismuth oxychloride, titanium mica coated with chromium oxide, titanium mica coated with an organic dye and also nacreous pigments based on bismuth oxychloride. These may also be mica particles at the surface of which are superposed at least two successive layers of metal oxides and/or of organic colorants.

Additional exemplary nacres include, but are not limited to, natural mica coated with titanium oxide, with iron oxide, with natural pigment or with bismuth oxychloride.

Commercially available nacres include, for example, the Timica, Flamenco and Duochrome (mica-based) nacres sold by the company BASF, the Timiron nacres sold by the company Merck, the Prestige mica-based nacres sold by the company Eckart, the following nacres based on natural mica: Sunpearl from the company Sun Chemical, KTZ from the company Kobo and Sunprizma from the company Sun Chemical, the Sunshine and Sunprizma nacres based on synthetic mica sold by the company Sun Chemical, and the Timiron Synwhite nacres based on synthetic mica sold by the company MERCK.

More particular examples include gold-colored nacres sold especially by the company BASF under the name Brilliant gold 212G (Timica), Gold 222C (Cloisonne), Sparkle gold (Timica), Gold 4504 (Chromalite) and Monarch gold 233X (Cloisonne); the bronze nacres sold especially by the company Merck under the names Bronze fine (17384) (Colorona) and Bronze (17353) (Colorona) and by the company BASF under the name Super bronze (Cloisonne); the orange nacres sold especially by the company BASF under the names Orange 363C (Cloisonne) and Orange MCR 101 (Cosmica) and by the company Merck under the names Passion orange (Colorona) and Matte orange (17449) (Microna); the brown-tinted nacres sold especially by the company BASF under the names Nuquantique copper 340XB (Cloisonne) and Brown CL4509 (Chromalite); the nacres with a copper tint sold especially by the company BASF under the name Copper 340A (Timica); the nacres with a red tint sold
especially by the company Merck under the name Sienna fine (17386) (Colorona); the nacres with a yellow tint sold especially by the company BASF under the name Yellow (4502) (Chromalite); the red-tinted nacres with a golden tint sold especially by the company BASF under the name Sunstone G012 (Gemtone); the pink nacres sold especially by the company BASF under the name Tan opale G005 (Gemtone); the black nacres with a golden tint sold especially by the company BASF under the name Nu antique bronze 240 AB (Timica); the blue nacres sold especially by the company Merck under the name Matte blue (17433) (Microna); the white nacres with a silvery tint sold especially by the company Merck under the name Xirona Silver; and the golden-green pinkish-orange nacres sold especially by the company Merck under the name Indian summer (Xirona), and mixtures thereof.

Exemplary particles with a metallic glint which are usable in the context of the present embodiments include, but are not limited to, particles of at least one metal and/or of at least one metal derivative, particles comprising a single-material or multi-material organic or inorganic substrate, at least partially coated with at least one layer with a metallic glint comprising at least one metal and/or at least one metal oxide, metal halide or metal sulfide, and mixtures of said particles.

Exemplary metals that may be present in such particles include, but are not limited to, Ag, Au, Cu, Al, Ni, Sn, Mg, Cr, Mo, Ti, Zr, Pt, Va, Rb, W, Zn, Ge, Te and Se, and mixtures or alloys thereof, preferably Ag, Au, Cu, Al, Zn, Ni, Mo and Cr and mixtures or alloys thereof.

Exemplary particles with metallic glint include, but are not limited to, aluminum particles, such as those sold under the names Starbrite 1200 EAC® by the company Siberline and Metalure® by the company Eckart; particles made of metal powders of copper or of alloy mixtures such as the references 2844 sold by the company Radium Bronze, metallic pigments, for instance aluminium or bronze, such as those sold under the names Rotosafe 700 from the company Eckart, silica-coated aluminium particles sold under the name Visionaire Bright Silver from the company Eckart, and metal alloy particles, for instance the silica-coated bronze (alloy of copper and zinc) powders sold under the name Visionaire Bright Natural Gold from the company Eckart.
Other particles are those comprising a glass substrate such as those sold by the company Nippon Sheet Glass under the names Microglass Metashine, Xirona from the company Merck, Ronastar from the company Merck, Reflecks from the company BASF and Mirage from the company BASF.

Additional exemplary reflective agents include, goniochromatic coloring agents such as, for example, multilayer interference structures and liquid-crystal coloring agents.

Other reflective agents would be readily recognized by those skilled in the art.

According a preferred embodiment of the invention, reflective agent is bismuth oxychloride.

b) Oil(s) used in the dispersion

According to the present invention, the term "oil" means a water-immiscible non-aqueous compound that is liquid at room temperature (25°C) and at atmospheric pressure (760 mmHg).

According to a preferred embodiment, the oil is a polar oil.

The term "polar oil", as used herein, refers to any oil having, at 25°C, a solubility parameter $\delta_d$ characteristic of dispersive interactions of greater than 16 and a solubility parameter $\delta_p$ characteristic of polar interactions strictly greater than 0. The solubility parameters $\delta_d$ and $\delta_p$ are defined according to the Hansen classification. For example, these polar oils may be chosen from esters, triglycerides and ethers.

The definition and calculation of the solubility parameters in the Hansen three-dimensional solubility space are described in the paper by CM. Hansen: "The three dimensional solubility parameters", J. Paint Technol. 39, 105 (1967).

According to this Hansen space:
- $\delta_D$ characterizes the London dispersion forces derived from the formation of dipoles induced during molecular impacts;
- $\delta_\rho$ characterizes the Debye interaction forces between permanent dipoles and also the Keesom interaction forces between induced dipoles and permanent dipoles;
- $\delta_h$ characterizes the specific interaction forces (such as hydrogen bonding, acid/base, donor/acceptor, etc.); and
- $\delta_a$ is determined by the equation: $\delta_a = (\delta_\rho^2 + \delta_h^2)^{1/2}$.

The parameters $\delta_\rho$, $\delta_h$, $\delta_D$ and $\delta_a$ are expressed in $(J/cm^3)^{1/2}$.

The polar oils will preferably be chosen from oils having $\delta_a > 6$.

These polar oils may be of plant, mineral or synthetic origin.

The polar oils will preferably be chosen from non-volatile polar hydrocarbon-based oils.

The term "polar hydrocarbon-based oil" means a polar oil formed essentially from, or even constituted by, carbon and hydrogen atoms, and optionally oxygen and nitrogen atoms, and not containing any silicon or fluorine atoms. It may contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.

The term "non-volatile oil" means an oil that remains on the skin or the keratin fiber at room temperature and atmospheric pressure for at least several hours, and that especially has a vapour pressure of less than $10^{-3}$ mmHg (0.13 Pa).

The non-volatile polar hydrocarbon-based oil may be chosen especially from the following oils:
- hydrocarbon-based polar oils such triglycerides consisting of fatty acid esters of glycerol, in particular the fatty acids of which may have chain lengths ranging from $C_4$ to $C_{36}$, and especially from $C_8$ to $C_{36}$, these oils possibly being linear or branched, and saturated or unsaturated; these oils may especially be heptanoic or octanoic triglycerides, wheatgerm oil, sunflower oil, grapeseed oil, sesame seed oil (820.6 g/mol), corn oil, apricot oil, castor oil, shea oil, avocado oil, olive oil, soybean oil, sweet almond oil, palm oil, rapeseed oil, cottonseed oil, hazelnut oil, macadamia oil,
jojoba oil, alfalfa oil, poppy oil, pumpkin oil, marrow oil, blackcurrant oil, evening primrose oil, millet oil, barley oil, quinoa oil, rye oil, safflower oil, candlenut oil, passionflower oil or musk rose oil; or alternatively caprylic/capric acid triglycerides, for instance those sold by the company Stearineries Dubois or those sold under the names Miglyol 810®, 812® and 818® by the company Dynamit Nobel;

- synthetic ethers containing from 10 to 40 carbon atoms, such as dicaprylyl ether;
- hydrocarbon-based esters of formula RCOOR' in which RCOO represents a carboxylic acid residue comprising from 2 to 40 carbon atoms, and R' represents a hydrocarbon-based chain containing from 1 to 40 carbon atoms, such as cetostearyl octanoate, isopropyl alcohol esters, such as isopropyl myristate or isopropyl palmitate, ethyl palmitate, 2-ethylhexyl palmitate, isopropyl stearate or isostearate, isostearyl isostearate, octyl stearate, 2-ethylhexylhydroxysterate, disopropyl adipate, heptanoates, and especially isostearyl heptanoate, alcohol or polyalcohol octanoates, decanoates or ricinoleates, for instance propylene glycol dioctanoate, cetyl octanoate, tridecyl octanoate, 2-ethylhexyl 4-dieheptanoate and palmitate, polyethylene glycol dieheptanoate, propylene glycol 2-diethyl hexanoate, hexyl laurate, neopentanoic acid esters, for instance isodecyl neopentanoate, isotridecyl neopentanoate, isostearyl neopentanoate and 2-octyldecyl neopentanoate, isononanoic acid esters, for instance isononyl isononanoate, isotridecyl isononanoate and octyl isononanoate, oleyl erucate, isopropyl lauroyl sarcosinate, diisopropyl sebacate, isocetyl stearate, isodecyl neopentanoate, isostearyl behenate, and myristyl myristate;
- fatty alcohols containing from 12 to 26 carbon atoms, for instance octyldecanol, 2-butylcdecanol, 2-hexyldecanol, 2-undecylpentadecanol and oleyl alcohol;
- higher C12-C22 fatty acids, such as oleic acid, linoleic acid and linolenic acid, and mixtures thereof;
- fatty acids containing from 12 to 26 carbon atoms, for instance oleic acid;
- dialkyl carbonates, the two alkyl chains possibly being identical or different, such as dicaprylyl carbonate sold under the name Cetiol CC® by Cognis; and
- aromatic esters such as tridecyl trimellitate, C12-C15 alcohol benzoate, 2-phenylethyl benzoate, and butyloctyl salicylate,
- hydroxylated esters such as polyglycerol-2 triisostearate,
- esters of C24-C28 branched fatty acids or fatty alcohols such as those described in patent application EP-A-0 955 039, and especially triisoarachidyl citrate,
pentaerythritol tetraisononanoate, glyceryl triisostearate, glyceryl tris(2-decyl)tetradecanoate, pentaerythritol tetraisostearate, polyglyceryl-2 tetraisostearate or pentaerythritol tetrakis(2-decyl)tetradecanoate, esters and polyesters of dimer diol and of monocarboxylic or dicarboxylic acid, such as esters of dimer diol and of fatty acid and esters of dimer diol and of dimer dicarboxylic acid, such as Lusplan DD-DA5® and Lusplan DD-DA7® sold by the company Nippon Fine Chemical and described in patent application US 2004-1 75338, the content of which is incorporated into the present application by reference, and mixtures thereof.

In a preferred embodiment, the oil is selected from 2-ethylhexyl hydroxystearate, (or octyl hydroxystearate), ethylhexyl ethylhexanoate, castor oil, or any combination thereof, and more particularly is 2-ethylhexyl hydroxystearate, (or octyl hydroxystearate).

In a preferred embodiment for the oily dispersion of reflective agent used for making the inner core of the microcapsule, the amount of reflective agent in the dispersion ranges from 50% to 90% by weight, more preferably from 60% to 80% by weight, more particularly from 65% to 75% by weight of the total weight of the dispersion. The amount of the oil is therefore in the range of from 10% to 50% by weight, more preferably from 20% to 40% by weight, more particularly, from 25% to 35% by weight relative to the total weight of the dispersion, respectively.

In a preferred embodiment, the weight ratio of the reflective agent particles to the oil(s) ranges from 1.5/1 to 5/1, more preferably from 1.5/1 to 3/1, particularly from 2/1 to 4/1, and more particularly from 2/1 to 3/1.

According to a particular form of the invention, the oily dispersion dispersion of reflective agent is a dispersion of bismuth oxychloride in ethylhexyl hydroxystearate, more particularly a dispersion containing from 68% to 72% by weight of bismuth oxychloride in 28% to 32% by weight of 2-ethylhexyl hydroxystearate relative to the total weight of the dispersion,
Such a dispersion is particularly sold under the commercial name Biron Liquid Silver® or Timiron® Liquid Silver, by the company MERCK.

According to a preferred embodiment of the present invention, the amount of the inner core of the microcapsules constituted by the oily dispersion of reflective agent, is within a range of from 20 % to 90 %, by weight., more preferably from 30 % to 90 %, by weight, in particular from 40 % to 90 % by weight, more particularly from 50 % to 90 % by weight, more better from 60 % to 90%, by weight, more advantageously from 70 % to 90 %%, by weight., more advantageously from 70 % to 80 %, by weight, more particularly advantageously from 60 % to 80 %, by weight relative to the total weight of the microcapsule.

In some of any of the embodiments described herein, the microcapsule contains only one type of a reflective agent or a mixture of two or more reflective agents, either encapsulated individually, and/or one or more blends of reflective agents may be encapsulated within the inner core of the microcapsules. A person skilled in the art will know how to choose reflective agent and combinations of reflective agents to produce a desired effect on the skin.

THE WALL-FORMING MATERIALS

a) Wall-forming polymer

The wall-forming material forms the outer shell(s) of the microcapsules of the present embodiments, and serves as a membrane for the encapsulated substance (the reflective agent). According to embodiments of the present invention, the wall forming material forming the outer shell(s) comprises a wall-forming polymer or co-polymer. In some of any of the embodiments of the present invention, one or more of the outer shells further comprise at least one opaque substance and/or at least one fatty acid salt, and may optionally further comprise at least one plasticizer.

The phrase "wall-forming polymer", which is also referred to herein as "wall-forming polymeric material" refers to a polymeric material (e.g., a polymer or copolymer) or a combination of two or more different polymeric materials, as defined herein, which
form a component of the external wall or layer or shell of single-layer microcapsules, or, in the case of multi-layer microcapsules, additionally of the one or more intermediate shells between the inner core and the external (outer most) layer. In the context of single-layer microcapsules, the term "polymer shell" refers to a polymer layer comprised of the wall-forming polymer(s), which envelopes the inner core. In the context of multi-layer microcapsules, the term "polymer shell" refers to any of the polymer layers which envelopes the inner core, or which envelopes the preceding polymer layer.

In some embodiments, the wall-forming polymer is selected so as to sustain shear forces applied while being compounded in industrial processes, but, nevertheless, so as to provide microcapsule which are rupturable when applied (e.g., rubbed or pressed) on the skin.

In some embodiments, the wall-forming polymeric material comprises a polymer containing a sufficient amount of functional groups which are capable of forming hydrogen bonds.

In some embodiments, the polymeric material forming the one or more outer shells independently comprises hydrogen bond-forming functional groups featuring 4-40 weight percents of total polymer weight. Hydrogen bond-forming functional groups include, but are not limited to, functional groups which comprise one or more electron-donating atom(s) such as oxygen, sulfur and/or nitrogen.

In some embodiments, the hydrogen bond-forming groups include carboxylic acid, carboxylate, hydroxy, or any combination thereof.

In some embodiments, one or more, or each, of the wall-forming polymeric materials forming the outer shell(s) comprises a polyacrylate, a polymethacrylate, a cellulose ether or ester, or any combination thereof.

Exemplary wall-forming polymeric materials include, but are not limited to, polyacrylates, polymethacrylates, low molecular weight poly(methyl methacrylate)-co-(methacrylic acid) (e.g., 1:0.16), poly(ethyl acrylate)-co-(methyl methacrylate)-co-
(trimethylammonium-ethyl methacrylate chloride) (e.g., 1/2/0.1 ) (also known as Eudragit® RSPO), poly(butyl methacrylate)-co-(2-dimethylaminoethyl methacrylate)-co-(methyl methacrylate) (e.g., 1/2/1 ), poly(styrene)-co-(maleic anhydride), copolymer of octylacrylamide, cellulose ethers, cellulose esters, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), PLA (poly(lactic acid), PGA (poly(glycolide), PLGA (poly(lactide)-co-poly(glycolide) or any combination thereof.

Any combination of polymers and co-polymers as described herein is contemplated for a wall-forming material, as described herein.

In some embodiments, the wall-forming polymeric material of an outer shell comprises a cellulose ether or ester such as, but not limited to, methyl cellulose, ethyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate butyrate and hydroxypropyl methyl cellulose acetate phthalate. When a cellulose ether or ester is used in the polymeric material, it preferably contains 4-20 % hydroxyl groups which are free to form hydrogen bonds (e.g., hydroxyl groups which are not alkylated or acylated).

In some of any of the embodiments described herein, the wall-forming material of an outer shell comprises an acrylate/ammonium methacrylate copolymer such as, for example, Eudragit® RSPO. In some of any of the other embodiments of the present invention, the wall-forming material of an outer shell comprises a combination of the above-mentioned polymers such as, but not limited to, combinations of acrylate/ammonium methacrylate copolymer (e.g., Eudragit® RSPO) with either poly(methyl methacrylate), poly(methacrylate), poly(methyl methacrylate)-co-(methacrylic acid) or cellulose acetate.

When two polymeric materials are used as a wall-forming material, a weight ratio therebetween can range from 10/1 to 1/1 , and can be, for example, 5/1 , 4/1 , 3/1 , 2/1 , or 3/2.

In some of any of the embodiments described herein, the wall forming material is or comprises poly(methyl methacrylate (PMMA).
In some of any of the embodiments described herein, the wall forming material is or comprises a poly(methyl methacrylate)-co-(methacrylic acid) (PMMA/MA).

In some of any of the embodiments described herein, the wall forming material is or comprises an acrylate/ammonium methacrylate copolymer (e.g., Eudragit® RSPO).

In some of any of the embodiments described herein, the wall forming material is or comprises cellulose acetate.

The amount (weight/weight) of the wall-forming polymer(s) of the outer shell relative to the total microcapsule weight can be within a range of from 5% to 30% by weight, more preferably from about 5% to 20% by weight, particularly from about 5% to about 15% by weight, more particularly from about 5% to about 10% by weight.

In some embodiments, when the wall-forming material is a cellulose ester such as cellulose acetate, and the outer shell may not comprise a fatty acid salt, as described herein. In some such embodiments, the outer shell comprises an opaque substance, such as TiO2, in an amount higher than 10% by weight, for example, in an amount ranging from 20% to 40% by weight, more preferably from 30% to 40% by weight relative to the total weight of the microcapsule.

In embodiments when the wall-forming material is cellulose acetate, the amount of the cellulose acetate can be, for example, from 5% to 10% by weight, more preferably from 5% to 8% by weight, and in particular 5% by weight relative to the total weight of the composition.

In embodiments related to multi-layer microcapsules, the wall-forming material in each of the outer shells in the microcapsules described herein (e.g., a first wall-forming material of the inner core, a second wall-forming material of a first outer shell enveloping the inner core, and optionally a third wall-forming material of a second outer shell enveloping the first outer shell, and so forth) can be the same or different.
b) **Opaque substance:**

The outer shell of the single-layer microcapsules described herein can be opaque, semi-opaque or non-opaque (transparent). In some embodiments, the outer shell is opaque, and thus masks the light reflectance imparted by the reflective agent.

In some embodiments, one or more of the outer shells of multi-layer microcapsules as described herein can be opaque, semi-opaque or non-opaque (transparent). In some embodiments, one or more of the outer shells (e.g., the most outer shell) is opaque, and thus masks the light reflectance imparted by the reflective agent.

In some embodiments of the present invention, opacity of the outer shell of the microcapsules is obtained by an inclusion of an opaque substance.

As used herein, an "opaque substance" is a substance which is non-transparent and blocks at least 70% of the light passing therethrough.

Thus, an opaque outer shell blocks 70% to 100% of the light. Semi-opaque outer shell blocks up to 50% of the light. Non-opaque or transparent outer shell blocks no more than 30% of the light passing therethrough.

The terms "opacity" and "opaque" refer to herein to UV-vis light, such as, for example, daylight.

Exemplary opaque substances include, but are not limited to, TiO₂, zinc oxide, alumina, boron nitride, talc, mica and any combination thereof.

The total amount of opaque substance(s) in the outer shell is within a range of from 1% to 50% by weight, more preferably from 1% to 40% by weight, more particularly from 10% to 40% by weight, relative to the total weight of the microcapsule.

In some of any of the embodiments described herein, the opaque substance is, or comprises, TiO₂, and in some embodiments, an amount of TiO₂ is within a range of
from 1 % to about 30 % by weight, preferably from 10 % to 40 %, by weight, of the total weight of the microcapsule.

In some of any of the embodiments described herein, the opaque substance is, or comprises, TiO₂, and in some embodiments, an amount of TiO₂ is about 10 % by weight relative to the total weight of the microcapsule.

In some of any of the embodiments described herein, the opaque substance is, or comprises, TiO₂, and in some embodiments, an amount of TiO₂ is about 35 % by weight relative to the total weight of the microcapsule.

In some embodiments, the outer shell does not comprise an opaque substance as described herein.

c) Fatty acid salt:

In some of any of the embodiments described herein, an outer shell optionally comprises an opaque substance as described herein in any one of the respective embodiments, and/or alternatively, or in addition, further comprises a fatty acid salt as described herein in any one of the respective embodiments.

A fatty acid salt comprises a long hydrophobic hydrocarbon chain (e.g., of 4 to 30 carbon atoms in length) carboxylate anion (a fatty acyl) and a cation, as depicted in the following formula:

\[(R-C(=O)-O-)_{n}M^{(n+)}\]

wherein R is a substituted or unsubstituted, linear or branched hydrocarbon chain of 4 to 30 carbon atoms, M⁺ is a cation, preferably a metal cation, and n is an integer representing the number of fatty acyls that interact with the cation, and also represents the charge number of the cation (e.g., 1, 2, 3, etc.).

The fatty acid salts that are usable in some of any of the embodiments of the present invention may contain 1 to 3 fatty acyl chains, each chain, independently, comprising 4 to 30 or 8 to 24 carbon atoms (C8-C24) in length. Thus, the fatty acid salt can be a salt of a monovalent, divalent or trivalent metal ion or a salt of an organic cation.
A monovalent metal ion can be, for example, Na⁺, K⁺, Cs⁺, Li⁺; a divalent metal ion is selected from Mg²⁺, Ca²⁺, Fe (II), Co²⁺, Ni²⁺, Cu²⁺, Mn²⁺, Cd²⁺, Sr²⁺ or Zn²⁺; a thrivalent metal ion can be, for example, Fe(III), La³⁺, Eu³⁺ or Gd³⁺; an organic cation can be, for example, ammonium, sulfonium, phosphonium or arsonium.

The fatty acyl can be derived from fatty acids such as, but not limited to, stearic acid, arachidic acid, palmitoleic acid, oleic acid, linoleic acid, linolaic acid, arachidonic acid, myristoleic acid and erucic acid. Other fatty acids are also contemplated.

Exemplary fatty acid salts include, but are not limited to, magnesium stearate, magnesium oleate, calcium stearate, calcium linoleate, sodium stearate, magnesium arachidonoate, magnesium linoleate, calcium arachidonate, calcium myristoleate, sodium linoleate, calcium linoleate, sodium stearate, potassium stearate, sodium laurate, sodium myristate, sodium palmitate, potassium laurate, potassium myristate, potassium palmitate, calcium laurate, calcium myristate, calcium palmitate, zinc laurate, zinc myristate, zinc palmitate, zinc stearate, magnesium laurate, and magnesium myristate.

In a preferred embodiment, the fatty acid salt is magnesium stearate.

The fatty acid salt is usually in an amount within a range of from 0.05 % to 5 % by weight, more preferably from 0.1 % to 4.5 % by weight, particularly from 0.2 % to 4 % by weight, more particularly from 0.5 % to 4 % by weight, advantageously from 0.5 % to 3.0 % by weight, more advantageously from 0.75 % to 3.0 % by weight, particularly more advantageously from 1.0 % to 3.0 % by weight, more better from 1.0 % to 2.0 % by weight, and in particular is 1.0 %, by weight relative to the total microcapsule’s weight.

Without being bound by any particular theory, it is assumed that the cation of the fatty acid salt attracts the particles of an opaque substance and optionally the free carboxylic and/or hydroxyl groups of the wall-forming polymer, resulting in a better adhesion of both the opaque substance and the polymeric material to the inner core, thereby providing efficient masking of the oily dispersion of oxychloride bismuth present in the inner core.
Fatty acid salts may be used in the preparation of single-layer microcapsules while being added to the organic phase together with the encapsulated material, and the wall-forming polymer, with or without the opaque substance. Upon contacting the organic phase with an aqueous phase, the fatty chains will spontaneously wrap around the encapsulated substance and their polar/ionic heads will interact with the oppositely charged opaque substance as well as with oppositely charged groups on the polymer, thereby enhancing the formation of an opaque polymeric envelope surrounding a core comprising the encapsulated material.

**d) Plasticizer:**

In some embodiments of any of the embodiments of the present invention, an outer shell of the microcapsules further comprises a plasticizer.

Herein and in the art, a "plasticizer" describes a substance which increases the plasticity or fluidity of a composition. In the context of the present embodiments, a plasticizer is added to the wall-forming material in order to control the physical properties and level of elasticity of the microcapsule's outer shells.

Exemplary plasticizers include, but are not limited to, triethyl citrate, tricaprylin, trilaurin, tripalmitin, triacetin, acetyltriethyl citrate, paraffin oil, and any combination thereof. In exemplary embodiments, the plasticizer is triethyl citrate.

The amount of the plasticizer can be within a range of from 0.5 % to about 30 % by weight, preferably from 0.5 % to 20 % by weight, more preferably from 1.0 % to 20 % by weight, particularly from 5 % to 15 % by weight, more particularly from 5 % to 10 % by weight, advantageously is 10 % by weight relative to the total weight of the microcapsule.

**Exemplary compositions of microcapsules:**
In a most preferred embodiment of the present invention, the microcapsules as described herein comprise, as the inner core, bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate. In some of these embodiments, the amount of the inner core is at least 50 % by weight, more preferably from 60 to 80 % by weight (for example, 60 %, or 70 %, or 79 %, or 80 %) relative to the total weight of the microcapsule.

In particular, the microcapsules are single-layer microcapsules, and the outer shell comprises magnesium stearate in an amount within a range of from 1.0 % to 2.0 % by weight, and \( \text{TiO}_2 \) in an amount within a range of from 5 % to 15 %, by weight relative to the total weight of the microcapsule.

In some of these embodiments, the amount of the wall-forming polymer(s) ranges from 5 % to 15 % by weight relative to the total weight of the microcapsule.

In some of these embodiments, the wall-forming polymer is selected from a poly (methyl methacrylate) or a copolymer of methyl methacrylic acid and acrylic acid or acrylate/ammonium methacrylate copolymer.

In some exemplary embodiments of the present invention, the microcapsules are single-layer microcapsules, and the outer shell comprises \( \text{TiO}_2 \) in an amount within a range of from 30 % to 40 %, by weight relative to the total weight of the microcapsule, and does not comprise a fatty acid salt. In some of these embodiments, the wall-forming polymer is a cellulose ester such as cellulose acetate.

In some exemplary embodiments, a microcapsule as described herein is a single-layer microcapsule and comprises a reflective agent as described herein in an amount of about 60-80 % by weight, a wall-forming polymer or copolymer in an amount of 5-10 % by weight, magnesium stearate in an amount of 0-1 % by weight, and \( \text{TiO}_2 \) in an amount of 0-35% by weight relative to the total weight of the microcapsule.

In a preferred embodiment of the invention, the microcapsules are single-layer microcapsules.
In a preferred embodiment of the invention, the microcapsules are single-layer microcapsules comprising the inner core constituted by bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate in an amount from 60 to 80% by weight, the outer shell comprises magnesium stearate in an amount within a range of from 1.0 % to 2.0 % by weight, TiO₂ in an amount within a range of from 1 % to 20 % by weight, more preferably from 5 % to 15 % by weight, more particularly in an amount of 10 %, by weight, and, as a wall-forming polymer EUDRAGIT® RS PO (Poly(ethyl acrylate-

In another preferred embodiment of the invention, the microcapsules are single-layer microcapsules comprising the inner core constituted by bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate in an amount of from 60 to 80% by weight, the outer shell does not comprise magnesium stearate, and comprises TiO₂ in an amount within a range of 10 % to 50 % by weight, more preferably from 10 % to 40 %, more particularly from 20 % to 40 % by weight, advantageously from 30 % to 40 % by weight more advantageously in an amount of 25 % by weight, and, as a wall-forming polymer, ethyl cellulose, in an amount within a range of 1 % to 10 % by weight, more preferably in an amount of 5 %, by weight relative the total weight of the microcapsule. An exemplary such composition is presented in Example 2 hereinafter. The amount of the raw material (oily dispersion of reflective agent) used to prepare the microcapsules is 60 % by weight of the total weight of the microcapsule.

In another preferred embodiment of the invention, the microcapsules are single-layer microcapsules comprising the inner core constituted by bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate in an amount of from 60 to 80% by weight, and the outer shell comprises magnesium stearate in an amount within a range of from 1.0 % to 2.0 %, by weight, TiO₂ in an amount within a range of 1 % to 20 % by weight, preferably from 5 % to 15 % by weight, more preferably in an amount of 10 % by weight, and, as a wall-forming polymer EUDRAGIT® RS PO (Poly(ethyl acrylate-
co-methyl methacrylate-co-trimethyl ammonium ethyl methacrylate chloride), in an amount within a range of 5 % to 20 % by weight, more preferably in an amount of 10 %, by weight relative the total weight of the microcapsule. An exemplary such composition is presented in Example 3 hereinafter. The amount of the raw material (oily dispersion of bismuth oxychloride) used to prepare the microcapsules is 79 % by weight relative to the total weight of the microcapsule.

In another preferred embodiment of the invention, the microcapsules are single-layer microcapsules comprising the inner core constituted by bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate in an amount of from 60 to 80% by weight, the outer shell comprises magnesium stearate in an amount within a range of from 1.0 % to 2.0 % by weight, TiO2 in an amount within a range of 1 % to 20 % by weight, more preferably from 5 % to 15 % by weight, more particularly in an amount of 10 % by weight, and, as a wall-forming polymer, PMMA/MA, in an amount within a range of 5 % to 20 % by weight, more preferably in an amount of 10 % by weight relative to the total weight of the microcapsule. An exemplary such composition is presented in Example 4 hereinafter. The amount of the raw material (oily dispersion of bismuth oxychloride) used to prepare the microcapsules is 79 % by weight of the total weight of the microcapsule.

In another preferred embodiment of the invention, the microcapsules are single-layer microcapsules comprising the inner core constituted by bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate in an amount of from 60 to 80% by weight, the outer shell does not comprise magnesium stearate nor TiO2, and comprises a plasticizer, in an amount within a range of 1 % to 20 % by weight, preferably from 5 % to 15 % by weight, more preferably, in an amount of 10 % by weight, and, as a wall-forming material, EUDRAGIT® RS PO (Poly(ethyl acrylate-co-methyl methacrylate-co-trimethyl ammonium ethyl methacrylate chloride), in an amount within a range of 5 % to 20 % by weight, more preferably in an amount of 10 % by weight relative to the total weight of the microcapsule. An exemplary such composition is presented in Example 5 hereinafter. The amount of the raw material (oily dispersion of bismuth oxychloride) used to prepare the microcapsules is 80 % by weight of the total weight of the microcapsule.
The process for the preparation of the microcapsules:

The process used for the preparation of the microcapsules according to embodiments of the present invention is a modification of the microencapsulation solvent removal method disclosed, for example, in U.S. Patent Nos. 6,932,984 and 7,838,037 and WO 2012/156965, which are incorporated by reference as if fully set forth herein. According to this technology, the active ingredient is found in the core of the microcapsule. This technique seals each micro-capped ingredient from chemical and cross-link reactions, degradation, color change or loss of potency during production, and for extended periods in storage.

The solvent removal process is based on four main steps as follows:

(i) preparing a homogeneous organic solution comprising the encapsulated oily dispersion of reflective agent, and a wall-forming polymeric material, and optionally an opaque substance and/or a fatty acid salt, and an organic solvent that is partially miscible in water;

(ii) preparing an emulsion of an aqueous continuous phase containing an emulsifier and saturated with the same organic solvent of the organic solution, and optionally comprising the opaque substance;

(iii) mixing the homogeneous organic solution with the aqueous emulsion, under high shear stirring to thereby form an emulsion; and

(iv) extracting the organic solvent by adding to the emulsion formed in step (iii) an amount of water which initiates extraction of the organic solvent from the emulsion, thereby obtaining the microcapsules.

For multi-layer (e.g., double-layer and triple-layer) microcapsules, the microcapsules are formed by first modifying the surface of the single-layer microcapsules formed according to steps (i)-(iv) and then subjecting the surface-modified inner core microcapsules to one or more cycles of steps (i)-(iv), when the inner core microcapsules are dispersed in the organic solution together with the wall-forming material.

In some embodiments, the microcapsules according to the present embodiments can be prepared a modified solvent removal method comprising the following steps:
(a) contacting an organic phase comprising an oily dispersion of reflective agent, and a wall-forming polymer or copolymer, optionally a fatty acid salt, and optionally an opaque substance and/or a plasticizer, and a first partially water-miscible organic solvent, with an aqueous solution saturated with said organic solvent and comprising an emulsifier, to thereby obtain an emulsion; and

(b) adding to the formed emulsion an amount of water which initiates extraction of the organic solvent from the emulsion, thereby obtaining the microcapsules.

In further steps, the microcapsules are isolated following step (b), dried and sifted to thereby obtain a free flowing powder of the microcapsules.

These steps are further detailed as follows:

The homogenous solution prepared in step (a) is obtained by preparing an organic solution or dispersion of a wall-forming polymeric material as described in any one of the respective embodiments described herein, in an organic solvent that is partially miscible in water and is capable of dissolving or dispersing the wall-forming polymer. In exemplary embodiments, the organic solvent is an organic solvent approved for topical applications, such as, but not limited to, ethyl acetate, ethanol, ethyl formate, or any combination thereof. In some embodiments, the organic solvent is ethyl acetate.

The fatty acid salt is as described in any one of the respective embodiments described herein. The opaque substance is as described in any one of the respective embodiments described herein. In preferred embodiments, the opaque substance is TiO$_2$.

When a plasticizer is used, it is usually selected from tricaprylin, trilaurin, tripalmitin, triacetin, triethyl citrate, acetyltriethyl citrate, paraffin oil, or any combination thereof.

The components of the organic solution are mixed/stirred until a homogeneous, optionally transparent, solution or dispersion is obtained.
The aqueous continuous phase is saturated with the organic solvent that forms the
organic solution, and typically comprises an emulsifier, and optionally the opaque
substance (if included in the microcapsule and not included in the organic phase).

5 The organic solution or dispersion and the aqueous continuous phase are mixed
under low sheer stirring to thereby form an emulsion.

In step (b), an amount of water is added to the emulsion prepared in (a), thereby
extracting the organic solvent and allowing the microcapsules to form.

In the context of embodiments of the invention, the term "low sheer stirring" refers to
a mixing at about 100-800 rpm, preferably at about 300-600 rpm.

In some embodiments, when the microcapsules are multi-layer microcapsules, the
process further comprises: (c) optionally repeating steps (a) and (b), using a second,
third, and so on, organic phases and aqueous continuous phases, thereby obtaining
multi-layered microcapsules.

COSMETIC COMPOSITIONS

20 The composition according to the invention, is preferably an anhydrous oily
dispersion under a liquid, creamy, gelly, pasty or solid form (cast, molded or extruded
form).

OILY PHASE

25 For the purposes of the invention, an oily phase comprises at least one oil.

The term "oil" means any fatty substance that is in liquid form at room temperature
(20-25°C) and atmospheric pressure.

30 An oily phase that is suitable for preparing the cosmetic compositions according to
the invention may comprise hydrocarbon-based oils, silicone oils, fluoro oils or non-
fluoro oils, or mixtures thereof.
The oils may be volatile or non-volatile.

They can be of animal, vegetable, mineral or synthetic origin. According to one embodiment variant, oils of plant origin are preferred.

For the purposes of the present invention, the term "non-volatile oil" means an oil with a vapour pressure of less than 0.13 Pa.

For the purposes of the present invention, the term "silicone oil" is intended to mean an oil comprising at least one silicon atom, and in particular at least one Si-O group.

The term "fluoro oil" means an oil comprising at least one fluorine atom.

The oils may optionally comprise oxygen, nitrogen, sulfur and/or phosphorus atoms, for example in the form of hydroxyl or acid radicals.

For the purposes of the invention, the term "volatile oil" means any oil that is capable of evaporating on contact with the skin in less than one hour, at room temperature and atmospheric pressure. The volatile oil is a volatile cosmetic compound, which is liquid at room temperature, especially having a nonzero vapour pressure, at room temperature and atmospheric pressure, in particular having a vapour pressure ranging from 0.13 Pa to 40 000 Pa (10^{-3} to 300 mmHg), in particular ranging from 1.3 Pa to 13 000 Pa (0.01 to 100 mmHg) and more particularly ranging from 1.3 Pa to 1,300 Pa (0.01 to 10 mmHg).

**Volatile oils**

The volatile oils may be hydrocarbon-based oils or silicone oils.

Among the volatile hydrocarbon-based oils containing from 8 to 16 carbon atoms, mention may be made especially of branched C8-C16 alkanes, for instance C8-C16 isoalkanes (also known as isoparaffins), isododecane, isodecane, isohexadecane and, for example, the oils sold under the trade names Isopar or Permethyl, branched C8-C16 esters, for instance isoheptyl neopentanoate, and mixtures thereof.
Preferably, the volatile hydrocarbon-based oil is chosen from volatile hydrocarbon-based oils containing from 8 to 16 carbon atoms, and mixtures thereof, in particular from isododecane, isodecane and isohexadecane, and is especially isohexadecane.

Mention may also be made of volatile linear alkanes comprising from 8 to 16 carbon atoms, in particular from 10 to 15 carbon atoms and more particularly from 11 to 13 carbon atoms, for instance n-dodecane (C12) and n-tetradecane (C14) sold by Sasol under the respective references Parafol 12-97 and Parafol 14-97, and also mixtures thereof, the undecane-tridecane mixture, mixtures of n-undecane (C11) and of n-tridecane (C13) obtained in Examples 1 and 2 of patent application WO 2008/155059 from the company Cognis, and mixtures thereof.

Among the volatile hydrocarbon-based oils, isododecane is preferred.

Volatile silicone oils that may be mentioned include linear volatile silicone oils such as hexamethyldisiloxane, octamethyltrisiloxane, decamethyldisiloxane, tetracemethylhexasiloxane, hexadecamethylheptasiloxane and dodecamethylpentasiloxane.

Volatile cyclic silicone oils that may be mentioned include hexamethylcyclohexasiloxane, octamethylcycloctasiloxane, decamethylcyclopentasiloxane and dodecamethylcyclohexasiloxane.

Among the volatile silicone oils, decamethylcyclopentasiloxane and dodecamethylcyclohexasiloxane are preferred.

Non-volatile oils

The non-volatile oils may be chosen especially from non-volatile hydrocarbon-based, fluoro and/or silicone oils.

Non-volatile hydrocarbon-based oils that may especially be mentioned include:
- hydrocarbon-based oils of animal origin,
- hydrocarbon-based oils of plant origin, synthetic ethers containing from 10 to 40 carbon atoms, such as dicaprylyl ether,
- synthetic esters, for instance the oils of formula R1COOR2, in which R1 represents a linear or branched fatty acid residue containing from 1 to 40 carbon atoms and R2 represents a hydrocarbon-based chain, which is especially branched, containing from 1 to 40 carbon atoms, on condition that R1 + R2 ≥ 10. The esters may be chosen especially from fatty alcohol and fatty acid esters, for instance cetostearyl octanoate, isopropyl alcohol esters such as isopropyl myristate or isopropyl palmitate, ethyl palmitate, 2-ethylhexyl palmitate, isopropyl stearate, octyl stearate, hydroxylated esters, for instance isostearyl lactate or octyl hydroxystearate, alkyl or polyalkyl ricinoleates, hexyl laurate, neopentanoic acid esters, for instance isodecyl neopentanoate or isotridecyl neopentanoate, and isononanoic acid esters, for instance isononyl isononanoate or isotridecyl isononanoate,
- polyl esters and pentaerythritol esters, for instance dipentaerythrityl tetrahydroxystearate/tetraisostearate,
- fatty alcohols that are liquid at room temperature, with a branched and/or unsaturated carbon-based chain containing from 12 to 26 carbon atoms, for instance 2-octyldodecanol, isostearyl alcohol and oleyl alcohol,
- C12-C22 higher fatty acids, such as oleic acid, linoleic acid, linolenic acid, and mixtures thereof,
- non-phenyl silicone oils, for instance caprylyl methicone, and
- phenyl silicone oils, for instance phenyl trimethicones, phenyl dimethicones, phenyltrimethylsiloxydiphenylsiloxanes, diphenyl dimethicones, diphenylmethylphényldiphenyltrisiloxanes and 2-phenylethyl trimethylsiloxydimethicones, dimethicones or phenyl trimethicone with a viscosity of less than or equal to 100 cSt, and trimethyl pentaphenyl trisiloxane, and mixtures thereof; and also mixtures of these various oils.

According to one embodiment, the compositions of the invention comprise phenyltrimethicone.

Advantageously, the fatty phase comprises from 0 to 60% by weight, preferably from 1% to 40% by weight and preferably from 2% to 20% by weight of oil (s) non-volatile (s) relative to the total weight of the fatty phase.
According to one embodiment, the fatty phase of the compositions of the invention represents a percentage ranging from 25% to 85%, preferably from 40% to 75%, and more preferentially ranging from 50% to 70% compared to total weight of the composition.

**Lipophilic structuring agent**

A composition according to the invention, in particular when it is an eyeshadow composition, may also comprise at least one agent for structuring the oily phase, chosen from a wax and a pasty compound, and mixtures thereof.

In particular, a wax that is suitable for use in the invention may be chosen especially from waxes of animal, plant, mineral or synthetic origin, and mixtures thereof.

As examples of waxes that may be used according to the invention, mention may be made of:
- waxes of animal origin, such as beeswax, spermaceti, lanolin wax and lanolin derivatives, plant waxes such as carnauba wax, candelilla wax, ouricury wax, Japan wax, cocoa butter, cork fibre wax or sugarcane wax,
- mineral waxes, for example paraffin wax, petroleum jelly wax, lignite wax, microcrystalline waxes or ozokerites,
- synthetic waxes, including polyethylene waxes and the waxes obtained by Fisher-Tropsch synthesis,
- silicone waxes, in particular substituted linear polysiloxanes; examples that may be mentioned include polyether silicone waxes, alkyi or alkoxy dimethicones containing from 16 to 45 carbon atoms, alkyi methicones such as the C30-C45 alkyi methicone sold under the trade name AMS C 30 by Dow Corning,
- hydrogenated oils that are solid at 25°C, such as hydrogenated castor oil, hydrogenated jojoba oil, hydrogenated palm oil, hydrogenated tallow or hydrogenated coconut oil, and fatty esters that are solid at 25°C, for instance the C20-C40 alkyi stearate sold under the trade name Kester Wax K82H by the company Koster Keunen,
- and/or mixtures thereof.
Preferably, use will be made of polyethylene waxes, microcrystalline waxes, carnauba waxes, hydrogenated jojoba oil, candelilla waxes, beeswaxes and ozokerites, and/or mixtures thereof.

A composition according to the invention may include at least one pasty compound.

The presence of a pasty compound may make it possible to advantageously confer improved comfort when a composition of the invention is deposited on keratin material.

Such a compound may advantageously be selected from lanolin and derivatives thereof; polymeric or non-polymeric silicone compounds; polymeric or non-polymeric fluorine compounds; vinyl polymers, in particular olefin homopolymers; olefin copolymers; hydrogenated diene homopolymers and copolymers; linear or branched and homo- or copolymeric oligomers of alkyl (meth)acrylates preferably having a C8-C30 alkyl group; homo- and copolymeric oligomers of vinyl esters having C8-C30 alkyl groups; homo- and copolymeric oligomers of vinyl ethers having C8-C30 alkyl groups; liposoluble polyethers resulting from polyetherification between one or more C2-C100, in particular C2-C50 diols; fatty acid or alcohol esters; and mixtures thereof.

Among the esters, it is possible to cite in particular:
the esters of an oligomeric glycerol, especially the esters of diglycerol, for instance polyglyceryl-2 triisostearate, the condensates of adipic acid and of glycerol, for which a portion of the hydroxy groups of the glycerols have reacted with a mixture of fatty acids, such as stearic acid, capric acid, stearic acid and isostearic acid and 12-hydroxystearic acid, such as, in particular, those sold under the trade mark Softisan 649 by the Sasol company, or such as bisdiglyceryl polyacryladipate-2; the arachidyl propionate sold under the trade mark Waxenol 801 by Alzo; phytosterol esters; triglycerides of fatty acids and derivatives thereof, such as hydrogenated coco glycerides; non-cross-linked polyesters resulting from polycondensation between a linear or branched C4-C50 dicarboxylic acid or polycarboxylic acid and a C2-C50 diol or polyl; aliphatic esters of an ester resulting from the esterification of
an aliphatic hydroxycarboxylic acid ester with an aliphatic carboxylic acid; polyesters
resulting from the esterification, with a polycarboxylic acid, of an aliphatic
hydroxycarboxylic acid ester, said ester comprising at least two hydroxyl groups,
such as the products Risocast DA-H®, and Risocast DA-L®; and mixtures thereof.

The structuring agent(s) may be present in a composition of the invention in a
content ranging from 0.1 % to 30% by weight of agents and more preferably from
0.5% to 20% by weight, relative to the total weight of the composition.

Monoalcohol

According to a particular embodiment of the invention, the compositions of the may
further comprise at least one mono-alcohol having from 2 to 8 carbon atoms,
especially from 2 to 6 carbon atoms, and particularly 2 to 4 carbon atoms.

The compositions of the invention may include one or more mono-alcohol(s). The
monoalcohol may be represented for example by formula $R_a\text{OH}$, wherein $R_a$ is an
alkyl group, linear or branched, comprising 2 to 8 carbon atoms.

As a monohydric alcohol include ethanol, isopropanol, propanol or butanol.
According to one embodiment, the compositions of the invention include ethanol.

The amount of mono-alcohol (s) ranges from 10% to 40% by weight in the
composition, preferably from 10% to 20% by weight and even more preferably from
10% to 15% by weight relative to the total weight of said composition.

The amounts by weight of mono-alcohol (s) correspond to either the amount by
weight of mono-alcohol if the composition comprises only one mono-alcohol is the
total amount by weight of all monoalcohols if the composition includes a mixture of
several monohydric alcohols.
ADDITIVES

The compositions according to the invention can also contain additional cosmetic ingredients classically used for the formulation of particular galenic forms, generally adapted to the aimed keratinous material. Those additional cosmetic ingredients can be notably chosen amongst waxes, pasty fatty substances, film-forming polymers, non-ionic, anionic and cationic surfactants, hydrophilic or lipophilic gellants or thickeners, dispersants, actives, sunscreen agents, preservatives, antioxidants, solvents, perfumes, fillers other than the particles of the invention, bactericides, odour absorbers, coloring agents (pigments, nacres, liposoluble dyestuffs), salts, and their mixtures.

COLORING AGENTS

According to a particular mode of the invention, the composition contain at least one particulate or non-particulate, water-soluble or water-insoluble coloring agent preferably in a proportion of at least 0.01 % by weight relative to the total weight of the composition.

For obvious reasons, this amount is liable to vary significantly with regard to the intensity of the desired colour effect and of the colour intensity afforded by the coloring agents under consideration, and its adjustment clearly falls within the competence of a person skilled in the art.

For the purposes of the invention, the term "water-soluble coloring agent " means any natural or synthetic, generally organic compound, which is soluble in an aqueous phase or in water-miscible solvents, and which is capable of imparting colour.

For the purposes of the invention, the term "liposoluble dyestuff" means any natural or synthetic, generally organic compound, which is soluble in an oily phase or in solvents that are miscible with a fatty substance, and which is capable of imparting colour.
As liposoluble dyes that are suitable for use in the invention, mention may be made especially of synthetic or natural liposoluble dyes, for instance DC Red 17, DC Red 21, DC Red 27, DC Green 6, DC Yellow 11, DC Violet 2, DC Orange 5, Sudan red, carotenes (β-carotene, lycopene), xanthophylls (capsanthin, capsorubin, lutein), palm oil, Sudan brown, quinoline yellow, annatto and curcumin.

The particulate coloring agents may especially be pigments, nacres and/or particles with metallic tints.

The term "pigments" should be understood as meaning white or coloured, mineral or organic particles that are insoluble in an aqueous solution, which are intended to colour and/or opacify the composition containing them.

The pigments may be white or coloured, and mineral and/or organic.

As mineral pigments that may be used in the invention, mention may be made of titanium oxide, titanium dioxide, zirconium oxide, zirconium dioxide, cerium oxide or cerium dioxide and also zinc oxide, iron oxide or chromium oxide, ferric blue, manganese violet, ultramarine blue and chromium hydrate, and mixtures thereof.

It may also be a pigment having a structure that may be, for example, of sericite/brown iron oxide/titanium dioxide/silica type. Such a pigment is sold, for example, under the reference Coverleaf NS or JS by the company Chemicals and Catalysts, and has a contrast ratio in the region of 30.

They may also be pigments having a structure that may be, for example, of silica microsphere type containing iron oxide. An example of a pigment having this structure is the product sold by the company Miyoshi under the reference PC Ball PC-LL-100 P, this pigment being constituted of silica microspheres containing yellow iron oxide.

Advantageously, the pigments in accordance with the invention are iron oxides and/or titanium dioxides.
The term "nacres" should be understood as meaning iridescent or non-iridescent coloured particles of any shape, especially produced by certain molluscs in their shell or alternatively synthesized, which have a colour effect via optical interference.

A composition according to the invention may comprise from 0% to 15% by weight of nacres relative to the total weight of the said composition.

The nacres may be chosen from nacreous pigments such as titanium mica coated with an iron oxide, titanium mica coated with bismuth oxychloride, titanium mica coated with chromium oxide, titanium mica coated with an organic dye and also nacreous pigments based on bismuth oxychloride. They may also be mica particles at the surface of which are superposed at least two successive layers of metal oxides and/or of organic dyestuffs.

Examples of nacres that may also be mentioned include natural mica coated with titanium oxide, with iron oxide, with natural pigment or with bismuth oxychloride.

Among the nacres available on the market, mention may be made of the nacres Timica, Flamenco and Duochrome (based on mica) sold by the company Engelhard, the Timiron nacres sold by the company Merck, the Prestige mica-based nacres sold by the company Eckart, and the Sunshine synthetic mica-based nacres sold by the company Sun Chemical.

The nacres may more particularly have a yellow, pink, red, bronze, orangey, brown, gold and/or coppery colour or tint.

Advantageously, the nacres in accordance with the invention are micas coated with titanium dioxide or with iron oxide, and also bismuth oxychloride.

For the purposes of the present invention, the term "particles with a metallic tint" means any compound whose nature, size, structure and surface finish allow it to reflect the incident light, especially in a non-iridescent manner.
The particles with a metallic tint that may be used in the invention are in particular chosen from:

- particles of at least one metal and/or of at least one metal derivative;
- particles comprising a single-material or multi-material organic or mineral substrate, at least partially coated with at least one layer with a metallic tint comprising at least one metal and/or at least one metal derivative; and
- mixtures of the said particles.

Among the metals that may be present in the said particles, mention may be made, for example, of Ag, Au, Cu, Al, Ni, Sn, Mg, Cr, Mo, Ti, Zr, Pt, Va, Rb, W, Zn, Ge, Te and Se, and mixtures or alloys thereof. Ag, Au, Cu, Al, Zn, Ni, Mo and Cr, and mixtures or alloys thereof (for example bronzes and brasses) are preferred metals. The term "metal derivatives" denotes compounds derived from metals, especially oxides, fluorides, chlorides and sulfides.

Illustrations of these particles that may be mentioned include aluminum particles, such as those sold under the names Starbrite 1200 EAC® by the company Siberline and Metalure® by the company Eckart and glass particles coated with a metallic layer, especially those described in documents JP-A-091 88830, JP-A-1 0158450, JP-A-1 0158541, JP-A-07258460 and JP-A-0501 771 0.

**Hydrophobic treatment of the coloring agent**

The pulverulent dyestuffs as described previously may be totally or partially surface-treated, with a hydrophobic agent, to make them more compatible with the oily phase of the composition of the invention, especially so that they have good wettability with oils. Thus, these treated pigments are well dispersed in the oily phase. Hydrophobic-treated pigments are described especially in document EP-A-1 086 683.

The hydrophobic-treatment agent may be chosen from silicones such as methicones, dimethicones and perfluoroalkylsilanes; fatty acids, for instance stearic acid; metal soaps, for instance aluminium dimyristate, the aluminium salt of hydrogenated tallow glutamate; perfluoroalkyl phosphates; polyhexafluoropropylene oxides;
perfluoropolyethers; amino acids; N-acylamino acids or salts thereof; lecithin, isopropyl triisostearyl titanate, isostearyl sebacate, and mixtures thereof.

The term "alkyl" mentioned in the compounds cited above especially denotes an alkyl group containing from 1 to 30 carbon atoms and preferably containing from 5 to 16 carbon atoms.

The amount of coloring agent(s) can range, for example, from 0.05 to 20% by weight and better still from 0.1 to 15% by weight, with respect to the total weight of the composition.

FILLERS

According to a particular mode of the invention, the composition contain at least one filler.

For the purposes of the present invention, the term "fillers" should be understood as meaning colourless or white solid particles of any form, which are in an insoluble and dispersed form in the medium of the composition.

These fillers, of mineral or organic, natural or synthetic nature, give the composition containing them softness and give the makeup result a matt effect and uniformity.

The fillers in the composition according to the present invention may be in lamellar form (or platelet), spherical (or globular), fiber or any other intermediate form between these defined forms.

Spherical Charges

Spherical fillers used according to the invention have the shape or substantially the shape of a sphere and may be hollow or solid. Advantageously, the spherical fillers of the invention have a particle size (number average diameter) of from 0.1 µm to 250 µm, preferably from 1 µm to 150 µm, more preferably from 10 to 100 µm.
The spherical fillers may be organic or mineral microspheres. As organic spherical fillers include for example polyamide powders and especially Nylon® powders such as Nylon-12 or Polyamide 12, sold under the names ORGASOL by Arkema; polyethylene powders; polytetrafluoroethylene powders (Teflon®); microspheres based on acrylic copolymers, such as copolymer of ethylene glycol dimethacrylate / lauryl methacrylate copolymer sold by Dow Corning under the name Polytrap; expanded powders such as hollow microspheres and especially the microspheres sold under the name Expancel by Kemanord Plast or under the name Micropearl F 80 ED by Matsumoto; silicone resin microbeads such as those sold under the name Tospearl by Toshiba Silicone; the organopolysiloxane elastomer powder, preferably non-emulsifying, such as those sold under the name KSP 100 by Shin Etsu (INCI name: vinyl dimethicone/methicone silsesquioxane crosspolymer), under the name KSP-100 by the company Shin Etsu (INCI name: vinyl dimethicone/methicone silsesquioxane crosspolymer), under the name KSP-300 by Shin Etsu (INCI name: diphenyl dimethicone/vinyl diphenyl dimethicone/silsesquioxane crosspolymer); polymethyl methacrylate microspheres, sold under the name Microsphere M-100 by Matsumoto or under the name Covabead LH85 by Wacker; ethylene acrylate copolymer powders, such as those sold under the name Flobeads by Sumitomo Seika Chemicals; powders of natural organic materials such as starch powders, especially of corn starch, wheat or rice, crosslinked or otherwise, such as the powders of starch crosslinked with octenyl succinate anhydride, sold under the name Dry-FLO by National Starch; metal soaps derived from organic carboxylic acids having 8 to 22 carbon atoms, preferably from 12 to 18 carbon atoms, for example, zinc stearate, magnesium or lithium, zinc laurate, myristate magnesium, Polyporous the L® 200 (Chemdal Corporation), polyurethane powders, in particular, powders of crosslinked polyurethane comprising a copolymer, said copolymer comprising trimethylol hexyl lactone as the polymer of hexamethylene diisocyanate / trimethylol hexyl lactone, sold under the name Plastic Powder D-400® or Plastic Powder D-800® by the company Toshiki, carnauba microwaxes, such as that sold under the name MicroCare 350® by the company Micro Powders, microwaxes of synthetic wax such as that sold under the name MicroEase 114S® by the company Micro Powders, microwaxes consisting of a mixture of carnauba wax and polyethylene wax, such as those sold under the names Micro Care 300® and 310® by the company Micro Powders, microwaxes consisting of a mixture of carnauba wax
and of synthetic wax, such as that sold under the name Micro Care 325® by the
compact Micro Powders, polyethylene microwaxes such as those sold under the
names Micropoly 200®, 220®, and 220L® 250S® by the company Micro Powders.
As spherical inorganic filler, there may be mentioned the hydrophobic aerogel silica
particles.

The hydrophobic silica aerogel particles, advantageously, present a specific surface
area per unit mass (MS) of from 200 to 1500 m²/g, preferably from 600 to 1200 m²/g
and better still from 600 to 800 m²/g. The surface area per unit mass can be
determined by the nitrogen absorption method called BET (Brunauer - Emmet -
Teller) method described in "The Journal of the American Chemical Society", Vol. 60,
page 309, February 1938 and corresponding to the international standard ISO
5794/1 (Appendix D). The BET surface area is the total surface area of the said silica
aerogel particles.

The hydrophobic silica aerogel particles, preferably have a size, expressed as mean
diameter (D [0.5]) and measured according to the method previously described, less
than 1500 microns and preferably from 1 to 30 μm, preferably from 5 to 25 μm,
preferably 5 to 20 μm and more preferably 5 to 15 μm.

The hydrophobic silica aerogel particles may advantageously have a packed density
p of 0.04 to 0.10 g/cm³, preferably 0.05 to 0.08 g/cm³.

In the context of the present invention, the packed density p can be assessed using
the following protocol, said protocol of the packed density:

40 g of powder is poured into a measuring cylinder and then the test piece is placed
on a device 2003 in STAV STAMPF Volumeter. The specimen is then subjected to a
series of 2500 settlements (this operation is repeated until the difference in volume
between two successive tests is less than 2%); then the final volume Vf of packed
powder is measured directly on the specimen. The packed density is determined by
the mass ratio (m)/ Vf, namely 40/Vf (Vf being expressed in cm³ and mg).
According to one embodiment, the hydrophobic silica aerogel particles have a specific surface area per unit volume \( SV \) of 5 to 60 m\(^2\) / cm\(^3\), preferably 10 to 50 m\(^2\) /cm\(^3\) and more preferably from 15 to 40 m\(^2\)/cm\(^3\). The specific surface area per unit volume is given by the equation: \( SV = p \times SM \) where \( p \) is the packed density in g/cm\(^3\) and \( SM \) is the surface area per unit mass expressed in m\(^2\)/g, as defined above.

The hydrophobic silica aerogel particles are preferably silylated silica aerogel particles (INCI name : SILICA SILYLATE), especially particles of hydrophobic silica aerogels surface modified by trimethylsilyl groups (trimethylsiloxylated silica).

According to a preferred embodiment, the hydrophobic silica aerogel particles can be chosen (s) from:
- Aerogel marketed under the trademark VM-2260 (INCI name Silica silylate), by Dow Corning, whose particles have an average size of about 1000 microns and a surface area per unit mass of from 600 to 800 m\(^2\)/g.
- Aerogels marketed by the company Cabot Aerogel TLD under the references 201, 201 and EMT Aerogel, Aerogel TLD 203, Enova Aerogel MT 1100, Aerogel Enova MT 1200.

In a preferred embodiment, the hydrophobic silica aerogel particles will be selected from Aerogel marketed under the trademark VM-2270 (INCI name Silica silylate), by Dow Corning, whose particles have a mean size ranging from 5-15 microns and a surface area per unit mass of from 600 to 800 m\(^2\)/g.

As spherical inorganic filler, there may also be mentioned as silicas Sunsil 130 sold by Sunjin Chemical (INCI name: SILICA) AND (POLY) METAL OXIDES such as (poly) bismuth oxides.

Lamellar charges
As indicated above, the platy fillers are fillers of parallelepipedal shape (rectangular or square surface), discoidal (circular surface) or ellipsoidal (oval area), characterized by three dimensions: length, width and height. When the shape is circular, the length and width are identical and correspond to the diameter of a disc, while the height corresponds to the thickness of the disc. When the surface is oval, the length and width respectively correspond to the major axis and the minor axis of an ellipse and the height corresponds to the thickness of the elliptical disc formed by the wafer. When it is a parallelepiped, the length and width can be of identical or different dimensions when they are of the same size, the shape of the surface of the parallelepiped is square; otherwise, the shape is rectangular. As for the height, it is the thickness of the parallelepiped.

The lamellar fillers used according to the invention have a length ranging from 0.01 to 100 \( \mu m \), preferably from 0.1 to 50 microns and preferably from 1 to 50 \( \mu m \). Platelets have a width ranging from 0.01 to 100 \( \mu m \), preferably from 0.1 to 50 \( \mu m \) and preferably 1 to 10 \( \mu m \). Platelets have a height (thickness) of from 0.1 nm to 1 micron, preferably 1 to 600 nm and preferably from 1 to 500 nm.

As lamellar fillers used in the composition of the invention include phyllosilicates, such as talcs, micas, perlite and mixtures thereof.

Talcs are hydrous magnesium silicates comprising mostly aluminum silicate. The crystalline structure of talc consists in repeated layers of a brucite sandwich between the layers of silica. As talc, there may be mentioned the product sold under the name Micro Ace P3 by Nippon Talc (INCI name: talc), that sold under the name Luzenac 00 Imerys (INCI name: TALC), or the product sold under the name Luzenac Pharma M by Imerys (INCI name: TALC).

The micas are aluminum silicates optionally comprising iron and/or alkali metals. They have the property that it can be divided into thin layers (about 1 micron). They usually have a size of from 5 to 150 \( \mu m \), preferably from 10 to 100 \( \mu m \) and more preferably from 10 to 60 \( \mu m \) for the largest dimension (length) and a height (thickness) of 0.1 to 0.5 \( \mu m \). Among the micas, it may be mentioned phlogopite, muscovite, fluorophlogopite, vermiculite, and mixtures thereof. As mica, there may be
mentioned the product sold under the name S-sericite-1 5 2 BC by Miyoshi Kasei (INCI name: mica), Mearlmica Treated SVA sold by BASF Personal Care Ingredients (INCI name: MICA (AND) LAUROYL LYSINE).

Among the phyllosilicates, mention may also be perlite and preferably the perlite.

The perlite used according to the invention are generally aluminosilicate volcanic origin and composition as:

- 70.0 to 75.0% by weight of silica SiO₂
- 12.0 to 15.0% by weight of aluminum oxide Al₂O₃
- 3.0-5.0% sodium oxide Na₂O
- 3.0-5.0% of potassium oxide K₂O - 0.5-2% of iron oxide Fe₂O₃
- 0.2-0.7% of magnesium oxide MgO
- 0.5-1.5% calcium oxide CaO
- 0.05 to 0.15% titanium oxide TiO₂

Perlite is milled, dried and then calibrated in a first step. The product obtained is said Perlite Ore gray in color and size of the order of 100 microns. Perlite Ore is then expanded (1000 °C/2 seconds) to give particles more or less white. When the temperature reaches 850-900 °C, the water trapped in the structure of the material vaporizes and causes the material to expand over its original volume. The expanded perlite particles according to the invention can be obtained by the expansion process described in US Patent 5,002,698.

Preferably the perlite particles used will be crushed; in this case they are called Expanded Perlite Milled (EMP). They preferably have a particle size defined by a median diameter D₅₀ of from 0.5 to 50 microns and preferably from 0.5 to 40 µm. Preferably the perlite particles used have a bulk density loose packed at 25 °C ranging from 10 to 400 kg/m³ (DIN 53468) and preferably 10 to 300 kg/m³.

Preferably, it will be used expanded perlite particles sold under the trade names OPTIMAT 1430 OR or OPTIMAT 2550 by the company WORLD MINERALS.

May be mentioned also nitride boron, sericite, barium sulfate (BaSO₄), alumina (Al₂O₃) particles.
According to a preferred embodiment of the present invention, the lamellar fillers is chosen from talcs, micas, perlite, boron nitride and mixtures thereof.

In a preferred embodiment, the filler(s) is selected from polyamide powders, elastomeric organopolysiloxane powders, metal soaps, silicas, (poly) metal oxides, hydrophobic silica aerogel particles, perlite, talcs, micas, boron nitride and a mixture thereof, preferably a mixture thereof.

In a preferred embodiment, the fillers are selected from OPTIMAT 1430 OR or OPTIMAT 2550 by the company WORLD MINERALS sold by Word Minerals, VM-2270 Aerogel Fine Particles sold by Dow Corning (INCI name: SILICA SILYLATE); Micro Ace P3 sold by Nippon Talc (INCI name: TALC); Sunsil 130 sold by Sunjin Chemical (INCI name: silica); Luzenac 00 sold by Imerys (INCI name: TALC); Orgasol 2002 sold by Arkema (INCI name: Nylon-12); Boron Nitride ays sold under the trade name SOFTOUCH BORON NITRIDE POWDER CC6058 by Momentive Performance Materials, magnesium stearate sold by Stearinerie Dubois; sericite S-152-BC sold by Miyoshi Kasei (INCI name: MICA); KSP 100 by Shin Etsu (INCI name: VINYL DIMETHICONE/METHICONE SILSESQUIOXANE CROSSPOLYMER); and mixtures thereof, preferably mixtures thereof.

The amount of filler(s) can range, for example, from 0.05 to 20% by weight and better still from 0.1 to 10% by weight, with respect to the total weight of the composition.

According to a particular mode of the invention, the composition contains at least one a vinyl polymer having at least one carbosiloxane dendrimer-derived unit, in order to improve the comfort of the application.

The vinyl polymer has a backbone and at least one side chain, which comprises a carbosiloxane dendrimer-derived unit having a carbosiloxane dendrimer structure.
The term "carbosiloxane dendrimer structure" in the context of the present invention represents a molecular structure possessing branched groups having high molecular masses, with said structure having a high regularity in the radial direction starting from the linkage to the backbone. Such carbosiloxane dendrimer structures are described in the form of a highly branched siloxane-silylalkylene copolymer in the Japanese patent application made available to public inspection Kokai 9-171 154.

A vinyl polymer according to the invention may contain carbosiloxane dendrimer-derived units, which can be represented by the following general formula (I):

\[
\begin{align*}
Y-\text{Si} & \bigg[ \begin{array}{c}
R^1 \\
O \bigg[ \begin{array}{c}
\text{Si} \\
X^1 \\
R^1 \\
\end{array}
\end{array}
\bigg]_3
\end{align*}
\]

(I)

in which:
- \( R^1 \) represents an aryl group having from 5 to 10 carbon atoms or an alkyl group having from 1 to 10 carbon atoms;
- \( X^1 \) represents a silylalkyl group which, when \( i = 1 \), is represented by the formula (II):

\[
\begin{align*}
\left( \text{OR}^3 \right)_{i^+1} & \bigg[ \begin{array}{c}
R^1 \\
O \bigg[ \begin{array}{c}
\text{Si} \\
X_{i^+1} \\
R^1 \\
\end{array}
\end{array}
\bigg]_{3-i^+1}
\end{align*}
\]

(II)

in which:
- \( R^1 \) is as defined above in formula (I),
- \( R^2 \) represents an alkylene group having from 2 to 10 carbon atoms,
- \( R^3 \) represents an alkyl group having from 1 to 10 carbon atoms,
- \( X_{i+i} \) is chosen from: a hydrogen atom, an alkyl group having from 1 to 10 carbon atoms, an aryl group having from 5 to 10 carbon atoms and a silylalkyl group as defined above of formula (II) with \( i = i + 1 \),
- \( i \) is an integer from 1 to 10 that represents the generation of said silylalkyl group, and
ai is an integer from 0 to 3;
- Y represents a radical-polymerizable organic group selected from:
  . organic groups containing a methacrylic group or an acrylic group and which are represented by the formulas:

\[
\begin{align*}
\text{R}^4 & \text{O} \\
\text{H}_2\text{C} & = \text{C} = \text{C} = \text{O} - \text{R}^6 \\
\text{R}^5 & \text{O} \\
\text{H}_2\text{C} & = \text{C} = \text{C} = \text{N} - \text{H} - \text{R}^5
\end{align*}
\]

in which:
* R⁴ represents a hydrogen atom or an alkyl group having from 1 to 10 carbon atoms; and
* R⁶ represents an alkyne group having from 1 to 10 carbon atoms, such as a methylene group, an ethylene group, a propylene group or a butylene group, with the methylene group and the propylene group being preferred; and

- organic groups containing a styryl group and which are represented by the formula:

\[
\begin{align*}
\text{H}_2\text{C} & = \text{C} = \text{C} = \text{N} - \text{H} - \text{R}^5 \\
\text{H}_2\text{C} & = \text{C} = \text{C} = \text{C} - \text{R}^7_b \\
\text{R}^8 & \text{C} - \text{R}^8_c
\end{align*}
\]

in which:
* R⁶ represents a hydrogen atom or an alkyl group having from 1 to 10 carbon atoms, such as a methyl group, an ethyl group, a propyl group or a butyl group, with the methyl group being preferred;
* R⁷ represents an alkyl group having from 1 to 10 carbon atoms;
* R⁸ represents an alkyne group having from 1 to 10 carbon atoms, such as a methylene group, an ethylene group, a propylene group or a butylene group, with the ethylene group being preferred;
* b is an integer from 0 to 4; and
* c is 0 or 1, so that if c is 0, -(R⁸)c- represents a bond.

According to an embodiment, R¹ may represent an aryl group having from 5 to 10 carbon atoms or an alkyl group having from 1 to 10 carbon atoms. The alkyl group may preferably be represented by a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, an isopropyl group, an isobutyl group, a cyclopentyl group or a cyclohexyl group. The aryl group may preferably be represented by a phenyl group and a naphthyl group. The methyl and phenyl groups are more specifically preferred, and the methyl group is preferred above all.
According to an embodiment, \( R^2 \) represents an alkylene group having from 2 to 10 carbon atoms, in particular a linear alkylene group, such as an ethylene, propylene, butylene or hexylene group; or a branched alkylene group, such as a methylimethylene, methylethylene, 1-methylpentylene or 1,4-dimethylbutylene group.

The ethylene, methylethylene, hexylene, 1-methylpentylene and 1,4-dimethylbutylene groups are preferred above all.

According to an embodiment, \( R^3 \) is chosen from the methyl, ethyl, propyl, butyl and isopropyl groups.

In formula (II), \( i \) indicates the number of generations and thus corresponds to the number of repetitions of the silylalkyl group.

For example, when the generation number is equal to one, the carbosiloxane dendrimer may be represented by the general formula shown below,

\[
Y - \text{Si} - \left[ \text{O} \left( \text{OR}_3 \right)_{a_1} \right]_{3-a_1} \left[ \text{Si} - \text{R}^2 \text{Si} - \left[ \text{O} \left( \text{OR}_3 \right)_{a_2} \right]_{3-a_2} \text{R}_1 \right]_{3-a_2} \text{R}_1
\]

in which \( Y, R^1, R^2 \) and \( R^3 \) are as defined above, \( R^{12} \) represents a hydrogen atom or is identical to \( R^1 \); \( a^1 \) is identical to \( a' \). Preferably, the mean total number of \( OR^3 \) groups in a molecule is within the range of 0 to 7.

When the generation number is equal to 2, the carbosiloxane dendrimer may be represented by the second general formula shown below, in which \( Y, R^1, R^2, R^3 \) and \( R^{12} \) are the same as defined above; \( a_1 \) and \( a_2 \) represent the \( ai \) of the indicated generation. Preferably, the mean total number of \( OR^3 \) groups in a molecule is within the range of 0 to 25.
When the generation number is equal to 3, the carbosiloxane dendrimer is represented by the general formula shown below, in which Y, R¹, R², R³ and R¹² are the same as defined above; a¹, a² and a³ represent the a’ of the indicated generation. Preferably, the mean total number of OR³ groups in a molecule is within the range of 0 to 79.

A vinyl polymer having at least one carbosiloxane dendrimer-derived unit has a side molecular chain containing a carbosiloxane dendrimer structure, and can result from the polymerization of:

(A) 0 to 99.9 parts by weight of a vinyl monomer; and
(B) 100 to 0.1 parts by weight of a carbosiloxane dendrimer containing a radical-polymerizable organic group, represented by the general formula (I) as defined above.

The vinyl monomer that is component (A) in the vinyl polymer having at least one carbosiloxane dendrimer-derived unit is a vinyl monomer that contains a radical-polymerizable vinyl group.

There is no particular limitation with regard to such a monomer.

The following are examples of this vinyl monomer: methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, or a similar lower alkyl methacrylate; glycidyl methacrylate; butyl methacrylate, butyl acrylate, n-butyl methacrylate, isobutyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, octyl methacrylate, lauryl methacrylate, stearyl acrylate, stearyl methacrylate, or a similar higher methacrylate; vinyl acetate, vinyl propionate, or a similar lower fatty acid vinyl ester; vinyl caproate, vinyl 2-ethylhexanoate, vinyl
laurate, vinyl stearate, or a similar higher fatty acid ester; styrene, vinyltoluene, benzyl methacrylate, phenoxyethyl methacrylate, vinylpyrrolidone, and other similar vinylaromatic monomers; methacrylamide, N-methylolmethacrylamide, N-methoxymethylmethacrylamide, isobutoxymethoxycrylamide, N,N-dimethylmethacrylamide, or similar vinyl monomers that contain amide groups; hydroxyethyl methacrylate, hydroxypropyl methacrylate, or similar vinyl monomers that contain hydroxyl groups; acrylic acid, methacrylic acid, itaconic acid, crotonic acid, fumaric acid, maleic acid, and similar vinyl monomers that contain a carboxylic acid group; tetrahydrofurfuryl methacrylate, butoxyethyl methacrylate, ethoxydiethylene glycol methacrylate, polyethylene glycol methacrylate, polypropylene glycol monomethacrylate, hydroxybutyl vinyl ether, cetyl vinyl ether, 2-ethylhexyl vinyl ether, or a similar vinyl monomer with ether bonds; methacryloxypropyltrimethoxysilane, polydimethylsiloxanes containing a methacrylic group at one of its molecular ends, polydimethylsiloxane containing a styryl group at one of its molecular ends or a similar silicone compound containing unsaturated groups; butadiene; vinyl chloride; vinylidene chloride, methacrylonitrile; dibutyl fumarate; maleic anhydride; succinic acid anhydride; methacrylic glycidyl ether, an organic amine salt, an ammonium salt, and an alkaline metal salt of methacrylic acid, of itaconic acid, of crotonic acid, of maleic acid, or of fumaric acid; a radical-polymerizable unsaturated monomer having a sulfonic acid group such as a sulfonic acid styrene group; a quaternary ammonium salts derived from methacrylic acid, such as 2-hydroxy-3-methacryloxypropyltrimethylammonium chloride; and a methacrylic acid ester of an alcohol having a tertiary amine group, such as an ester of methacrylic acid and of diethylamine.

Multifunctional vinyl monomers can also be used.

The following are examples of such compounds: trimethylolpropane triacrylate, pentaerythritol trimethacrylate, ethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trioxyethyl methacrylate, tris-(2-hydroxyethyl)isocyanurate dimethacrylate, tris-(2-hydroxyethyl)isocyanurate trimethacrylate,
polydimethylsiloxane capped with styryl groups containing divinylbenzene groups at the two ends, or similar silicone compounds containing unsaturated groups.

A carbosiloxane dendrimer, which is component (B), may be represented by formula (I) as defined above.

The following represents preferred examples of group Y of formula (I): an methacryloxy group, a 3-acryloxypropyl group, a methacryloxymethyl group, a 3-methacryloxypropyl group, a 4-vinylphenyl group, a 3-vinylphenyl group, a 4-(2-propenyl)phenyl group, a 3-(2-propenyl)phenyl group, a 2-(4-vinylphenyl)ethyl group, a 2-(3-vinylphenyl)ethyl group, a vinyl group, an allyl group, a methallyl group, and a 5-hexenyl group.

A carbosiloxane dendrimer according to the present invention may be represented by the formulas with the following mean structures:
Thus, according to an embodiment, the carbosiloxane dendrimer of the composition of the present invention is represented by the following formula:

\[
\begin{align*}
Y & \text{-Si-} \left[ \begin{array}{c}
\left(\text{OR}^3\right)_{a^3} \\
\left(\text{OR}^2\right)_{a^2} \\
\left(\text{OR}\right)_{a^1}
\end{array} \right] \text{-Si-} \left[ \begin{array}{c}
\left(\text{OR}^3\right)_{a^3} \\
\left(\text{OR}^2\right)_{a^2} \\
\left(\text{OR}\right)_{a^1}
\end{array} \right] \text{-Si-} \left[ \begin{array}{c}
\left(\text{OR}^3\right)_{a^3} \\
\left(\text{OR}^2\right)_{a^2} \\
\left(\text{OR}\right)_{a^1}
\end{array} \right]
\end{align*}
\]

In which:

- \( Y, \ R^1, \ R^2 \) and \( R^3 \) are as defined in formulas (I) and (II) above;
- \( a^1, \ a^2 \) and \( a^3 \) satisfy the definition of \( a \) according to formula (II); and
- \( R^{12} \) is \( H \), an aryl group having from 5 to 10 carbon atoms or an alkyl group having from 1 to 10 carbon atoms.

According to an embodiment, the carbosiloxane dendrimer of the composition of the invention is represented by one of the following formulas:
The vinyl polymer containing the carbosiloxane dendrimer according to the invention can be produced according to the method for producing a branched silalkylene siloxane described in the Japanese patent application Hei 9-171 154.

For example, it may be produced by subjecting an organosilicon compound containing a hydrogen atom bonded to a silicon atom to a hydrosilylation reaction, represented by the following general formula (IV):

\[
\[
Y \quad \text{Si} \quad O \quad \text{Si} \quad H
\]
\[
\left[ \begin{array}{c}
R^1 \\
\end{array} \right]
\]
\[
R^1 \text{ is as defined above in formula (I),}
\]
and an organosilicon compound containing an alkenyl group.

In the formula above, the organosilicon compound may be represented by 3-methacryloxypropyltris-(dimethylsiloxoy) silane, 3-acryloxypropyltris-(dimethylsiloxoy) silane, and 4-vinylphenyltris-(dimethylsiloxoy)silane. The organosilicon compound that contains an alkenyl group may be represented by vinyltris-(trimethylsiloxoy) silane, vinyltris-(dimethylphenylsiloxoy) silane, and 5-hexenyltris-(trimethylsiloxoy) silane.

The hydrosilylation reaction is produced in the presence of chloroplatinic acid, a vinylsiloxane and platinum complex, or a similar transition metal catalyst.

A vinyl polymer having at least one carbosiloxane dendrimer-derived unit may be chosen from among the polymers so that the carbosiloxane dendrimer-derived unit is a carbosiloxane dendritic structure represented by the formula (III):
In which Z is a divalent organic group, "p" is 0 or 1, R₁ is as defined above in formula (IV) and X' is a silylalkyl group represented by formula (II) as defined above.

In a vinyl polymer having at least one carbosiloxane dendrimer-derived unit, the polymerization ratio between the components (A) and (B), in terms of the weight ratio between (A) and (B), is within a range from 0/1.00 to 99.9/0.1, or even 0.1/99.9 to 99.9/0.1, and preferably within a range from 1/99 to 99/1. A ratio between the components (A) and (B) of 0/100 means that the compound becomes a homopolymer of component (B).

A vinyl polymer having at least one carbosiloxane dendrimer-derived unit may be obtained by copolymerization of the components (A) and (B), or by polymerization of the component (B) alone.

The polymerization may be a radical polymerization or an ionic polymerization, however the radical polymerization is preferred.

The polymerization may be carried out by bringing about a reaction between the components (A) and (B) in a solution for a period of from 3 to 20 hours in the presence of a radical initiator at a temperature of from 50°C to 150°C.

A suitable solvent for this purpose is hexane, octane, decane, cyclohexane or a similar aliphatic hydrocarbon; benzene, toluene, xylene or a similar aromatic hydrocarbon; diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, or similar ethers; acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, or similar ketones; methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate or similar esters; methanol, ethanol, isopropanol, butanol or similar alcohols; octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane, octamethyltrisiloxane or a similar organosiloxane oligomer.
A radical initiator may be any compound known in the art for standard radical polymerization reactions. The specific examples of such radical initiators are 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile) or similar compounds of azobis type; benzoyl peroxide, lauroyl peroxide, tert-butyl peroxynitrobenzoate, tert-butyl peroxy-2-ethylhexanoate or a similar organic peroxide. These radical initiators may be used alone or in a combination of two or more. The radical initiators may be used in an amount of from 0.1 to 5 parts by weight per 100 parts by weight of the components (A) and (B). A chain-transfer agent may be added. The chain-transfer agent may be 2-mercaptoethanol, butyl mercaptan, n-dodecyl mercaptan, 3-mercaptopropyltrimethoxysilane, a polydimethylsiloxane containing a mercaptopropyl group, or a similar compound of mercapto type; methylene chloride, chloroform, carbon tetrachloride, butyl bromide, 3-chloropropyldimethoxysilane or a similar halogenated compound.

In the production of the polymer of vinyl type, after polymerization, the residual vinyl monomer that has not reacted may be removed under vacuum heating conditions.

To facilitate the preparation of the mixture of the starting material of cosmetic products, the number-average molecular mass of the vinyl polymer containing a carbosiloxane dendrimer may be selected within the range of between 3,000 and 2,000,000, such as between 5,000 and 800,000. It may be a liquid, a gum, a paste, a solid, a powder or any other form. The preferred forms are the solutions consisting of the dilution, in solvents, of a dispersion or of a powder.

The vinyl polymer may be a dispersion of a polymer of vinyl type having a carbosiloxane dendrimer structure in its side molecular chain, in a liquid such as a silicone oil, an organic oil, an alcohol or water.

The silicone oil may be a dimethylpolysiloxane with the two molecular ends capped with trimethylsiloxy groups, a copolymer of methylphenylsiloxane and of dimethylsiloxane having the two molecular ends capped with trimethylsiloxy groups, a copolymer of methyl-3,3,3-trifluoropropylsiloxane and of dimethylsiloxane having the two molecular ends capped with trimethylsiloxy groups, or similar nonreactive linear silicone oils, and also hexamethylocyclotrisiloxane,
octamethylcyclotetrasiloxane, decamethylcyclo-pentasiloxane, dodecamethyl-
cyclohexasiloxane, or a similar cyclic compound. In addition to the nonreactive silicone oils, modified polysiloxanes containing functional groups such as silanol groups, amino groups and polyether groups on the ends or within the side molecular chains may be used.

The organic oils may be isododecane, liquid paraffin, isoparaffin, hexyl laurate, isopropyl myristate, myristyl myristate, cetyl myristate, 2-octylododecyl myristate; isopropyl palmitate, 2-ethylhexyl palmitate, butyl stearate, decyl oleate, 2-octylododecyl oleate, myristyl lactate, cetyl lactate, lanolin acetate, stearyl alcohol, cetostearyl alcohol, oleyl alcohol, avocado oil, almond oil, olive oil, jojoba oil, gum oil, sunflower oil, soybean oil, camelia oil, squalane, castor oil, cotton seed oil, coconut oil, egg yolk oil, propylene glycol monooleate, neopentyl glycol 2-ethylhexanoate, or a similar glycol ester oil; triglycerol isostearate, the triglyceride of a fatty acid of coconut oil, or a similar oil of a polyhydric alcohol ester; polyoxyethylene lauryl ether, polyoxypropylene cetyl ether or a similar polyoxyalkylene ether.

The alcohol may be of any type that is suitable for use in combination with a cosmetic product starting material. For example, it may be methanol, ethanol, butanol, isopropanol or similar lower alcohols.

A solution or a dispersion of the alcohol should have a viscosity in the range from 10 to 109 mPa at 25°C. To improve the sensory use properties in a cosmetic product, the viscosity may be within the range from 100 to 5 x 10³ mPa.s.

The solutions and the dispersions may be readily prepared by mixing a vinyl polymer having at least one carbosiloxane dendrimer-derived unit with a silicone oil, and organic oil, an alcohol or water. The liquids may be present in the step of polymerization of a vinyl polymer having at least one carbosiloxane dendrimer-derived unit. In this case, the residual vinyl monomer that has not reacted should be completely removed by heat treatment of the solution or dispersion under atmospheric pressure or reduced pressure.
In the case of a dispersion, the dispersity of the polymer of vinyl type may be improved by adding a surfactant.

Such a surfactant may be hexylbenzenesulfonic acid, octylbenzenesulfonic acid, decylbenzenesulfonic acid, dodecylbenzenesulfonic acid, cetylbenzenesulfonic acid, myristylbenzenesulfonic acid or anionic surfactants such as sodium salts of these acids; octyltrimethylammonium hydroxide, dodecyltrimethylammonium hydroxide, hexadecyltrimethylammonium hydroxide, octylmethyldibenzylammonium hydroxide, decylmethyldibenzylammonium hydroxide, dioctadecylammonium hydroxide, tallow-trimethylammonium hydroxide, coconut oil-trimethylammonium hydroxide, or a similar cationic surfactant; a polyoxyalkylene alkyl ether, a polyoxyalkylenealkylphenol, a polyoxyalkylene alkyl ester, the sorbitol ester of polyoxyalkylene, polyethylene glycol, polypropylene glycol, an ethylene oxide additive of diethylene glycol trimethylnonanol, and nonionic surfactants of the polyester type, and also mixtures.

In the dispersion, a mean particle diameter of the polymer of the vinyl type may be within a range of between 0.001 and 100 microns, and preferably between 0.01 and 50 microns. Indeed, outside the recommended range, a cosmetic product mixed with the emulsion will not have a nice enough feel on the skin or to the touch, or sufficient spreading properties or a pleasant sensation.

A vinyl polymer contained in the dispersion or the solution may have a concentration in a range of between 0.1 % and 95% by weight, such as between 5% and 85% by weight. However, to facilitate the handling and the preparation of the mixture, the range may be between 10% and 75% by weight.

A vinyl polymer suitable for the present invention may also be one of the polymers described in the examples of application EP 0 963 751.

According to a preferred embodiment, a vinyl polymer grafted with a carbosiloxane dendrimer may be derived from the polymerization of: 0.1 to 99 part(s) by weight of one or more acrylate or methacrylate monomer(s); and
100 to 0.1 part(s) by weight of an acrylate or methacrylate monomer of a tri[tri(trimethylsiloxy) silylethyl dimethylsiloxy] silylpropyl carbosiloxane dendrimer. Monomers (A1) and (B1) correspond respectively to specific monomers (A) and (B).

According to an embodiment, a vinyl polymer having at least one carbosiloxane dendrimer-derived unit may include a unit derived from a tri[tri(trimethylsiloxy) silylethyl(dimethylsiloxy)] silylpropyl carbosiloxane dendrimer corresponding to one of the formulas:

\[
\begin{align*}
&\text{or} \\
&\begin{array}{c}
\text{H}_2\text{C} = \text{C} - \text{O} - \text{C}_3\text{H}_6 - \text{Si} - \text{O} - \text{Si} - \text{C}_3\text{H}_4 - \text{Si} - \text{O} - \text{Si} - \text{C}_6\text{H}_{15} \\
\text{CH}_3 \\
\text{CH}_3 \\
\text{CH}_3 \\
\text{CH}_3 \\
\end{array}
\end{align*}
\]

According to a preferred embodiment, a vinyl polymer having at least one carbosiloxane dendrimer-derived unit, used in the invention, comprises at least one butyl acrylate monomer.

According to an embodiment, a vinyl polymer may also include at least one fluorinated organic group.

Structures in which the polymerized vinyl units constitute the backbone and in which carbosiloxane dendritic structures as well as fluorinated organic groups are attached to side chains are particularly preferred.

The fluorinated organic groups can be obtained by replacing, with fluorine atoms, all or some of the hydrogen atoms of methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, hexadecyl and octadecyl groups and other alkyl groups having from 1 to 20 carbon atoms, and also alkyloxyalkylene groups having from 6 to 22 carbon atoms.
The groups represented by the formula -(CH₂)ₓ(CHF₂)ᵧ-R³ are suggested by way of examples of fluoroalkyl groups obtained by substituting fluorine atoms for hydrogen atoms of alkyl groups. In the formula, the index "x" is 0, 1, 2 or 3 and "y" is an integer from 1 to 20. R³ is an atom or a group selected from a hydrogen atom, a fluorine atom, -CH(CF₃)₂- or CF(CF₃)₂. Such fluorine-substituted alkyl groups are exemplified by linear or branched polyfluoroalkyl or perfluoroalkyl groups represented by the formulas given below: -CF₃, -C₂F₅, -nC₃F₇, -CF(CF₃)₂, -nC₄F₉, CF₂CF(CF₃)₂, -nC₅F₁₁, -nC₆F₁₃, -nC₇F₁₇, CH₂CF₃, -(CH(CF₃)₂), CH₂CH(CF₃)₂-CH₂(CF₂)₂F,
-CH₂(CF₂)₃F, -CH₂(CF₂)₄F, CH₂(CF₂)₅F, CH₂(CF₂)₆F, -CH₂CH₂CF₃,
-CH₂CH₂(CF₂)₂F, -CH₂CH₂(CF₂)₃F, -CH₂CH₂(CF₂)₄F, -CH₂CH₂(CF₂)₅F,
-CH₂CH₂(CF₂)₆F, -CH₂CH₂(CF₂)₇F, -CH₂CH₂(CF₂)₈F, CH₂CH₂(CF₂)₉F,
-CH₂CH₂(CF₂)₁₀F, -CH₂CH₂(CF₂)₁₁F, -CH₂CH₂(CF₂)₁₂F, CH₂CH₂(CF₂)₁₃F,
-CH₂CH₂(CF₂)₁₄F, -CH₂CH₂CH₂CF₃, -CH₂CH₂CH₂(CF₂)₂F,
-CH₂CH₂CH₂(CF₂)₁₅F, -CH₂(CF₂)₁₄H et -CH₂CH₂(CF₂)₁₅H.

The groups represented by -CH₂CH₂(CF₂)ₘ-CFRI₄-[OCF₂CF(CF₃)]ₙ-OCF₃-F₇ are suggested as fluoroalkyloxyfluoroalkylene groups obtained by substituting fluorine atoms for hydrogen atoms of alkylene groups. In the formula, the index "m" is 0 or 1, "n" is 0, 1, 2, 3, 4 or 5, and R¹⁴ is a fluorine atom or CF₃. Such fluoroalkyloxyfluoroalkylene groups are exemplified by the perfluoroalkyloxyfluoroalkylene groups represented by the formulas given below:
-CH₂CH₂CF(CF₃)-[OCF₂CF(CF₃)]ₙ-OCF₃-F₇, -CH₂CH₂CF₂CF₂-[OCF₂CF(CF₃)]ₙ-OCF₃-F₇.

The number-average molecular weight of the vinyl polymer used in the present invention may be between 3,000 and 2,000,000, such as between 5,000 and 800,000.

This type of fluorinated vinyl polymer may be obtained by addition:
- of a vinyl monomer (M₂) without a fluorinated organic group,
- on a vinyl monomer (M₃) containing fluorinated organic groups, and
- a carbosiloxane dendrimer (B) as defined above, with the general formula (I) as defined above,
by subjecting them to copolymerization.
Thus, according to an embodiment, a composition of the invention may include a vinyl polymer having at least one carbosiloxane dendrimer-derived unit and which is derived from the copolymerization of a vinyl monomer (M1) as defined above, optionally a vinyl monomer (M2) as defined above, and a carbosiloxane dendrimer (B) as defined above,

with said vinyl polymer having a copolymerization ratio between the monomer (M1) and the monomer (M2) of 0.1 to 100:99.9 to 0% by weight, and a copolymerization ratio between the sum of monomers (M1) and (M2) and monomer (B) of 0.1 to 99.9:99.9 to 0.1% by weight.

The vinyl monomers (M1) containing fluorinated organic groups in the molecule are preferably monomers represented by the general formula :\((CH_2)_z=CR_{15}COOR_f\). In this formula, \(R_{15}\) is a hydrogen atom or a methyl group, \(R_f\) is a fluorinated organic group exemplified by the fluoroalkyl and fluoroalkyloxyfluoroalkylene groups described above. The compounds represented by the formulas given below are suggested by way of specific examples of the component (M1). In the formulas given below, "z" is an integer from 1 to 4.

\[
\begin{align*}
CH_2=CC\text{H}_3\text{COO}-\text{CF}_3, \\
CH_2=CC\text{H}_3\text{COO-C}_2\text{F}_5, \\
CH_2=CC\text{H}_3\text{COO-nC}_9\text{F}_{13}, \\
CH_2=CC\text{H}_3\text{COO-nC}_{12}F_{11}, \\
CH_2=CC\text{H}_3\text{COO-nC}_{17}F_7, \\
CH_2=CC\text{H}_3\text{COO-CH(CF}_3)_2, \\
CH_2=CC\text{H}_3\text{COO-CH}_2\text{CH(CF}_3)_2, \\
CH_2=CC\text{H}_3\text{COO-CH}_2\text{(CF}_2)_F, \\
CH_2=CC\text{H}_3\text{COO-CH}_2\text{(CF}_2)_2F, \\
CH_2=CC\text{H}_3\text{COO-CH}_2\text{(CF}_2)_4F, \\
CH_2=CC\text{H}_3\text{COO-CH}_2\text{(CF}_2)_6F, \\
CH_2=CC\text{H}_3\text{COO-CH}_2\text{(CF}_2)_8F, \\
CH_2=CC\text{H}_3\text{COO-CH}_2\text{(CF}_2)_{10}F,
\end{align*}
\]
Among these, the vinyl polymers represented by the formulas presented below are preferred:
\[
\begin{align*}
CH_2=CHCH_2COO-CH_2CH_2CF_2\phi CF_2\phi CF_2\phi [OCF_2\cdot CF(CF_3)_{2}\cdot OC_3F_7, \\
CH_2=CHCOO-CF_3, CH_2=CHCOO-CF_2\phi F, CH_2=CHCOO-nC_3F_7, \\
CH_2=CHCOO-CF(CF_3)_{2}, CH_2=CHCOO-nC_4F_8, CH_2=CHCOO-CF_2\phi CF(CF_3)_{2}, \\
CH_2=CHCOO-nC_6F_{11}, CH_2=CHCOO-nC_8F_{13}, CH_2=CHCOO-nC_9F_{17}, \\
CH_2=CHCOO-CH_2CF_3, CH_2=CHCOO-CH(CF_3)_{2}, CH_2=CHCOO-CH_2CH(CF_3)_{2}, \\
CH_2=CHCOO-CH_2(\phi CF_2)_{2}F, CH_2=CHCOO-CH_2(\phi CF_2)_{3}F, \\
CH_2=CHCOO-CH_2(\phi CF_2)_{4}F, CH_2=CHCOO-CH_2(\phi CF_2)_{6}F, \\
CH_2=CHCOO-CH_2(\phi CF_2)_{8}F, CH_2=CHCOO-CH_2CH_2CF_3, \\
CH_2=CHCOO-CH_2CH_2(\phi CF_2)_{9}F, CH_2=CHCOO-CH_2CH_2(\phi CF_2)_{10}F, \\
CH_2=CHCOO-CH_2(\phi CF_2)_{12}F, CH_2=CHCOO-CH_2CH_2CH_2CF_3, \\
CH_2=CHCOO-CH_2CH_2(\phi CF_2)_{14}F, CH_2=CHCOO-CH_2CH_2CH_2CF_3, \\
CH_2=CHCOO-CH_2CH_2CH_2(\phi CF_2)_{16}F, CH_2=CHCOO-CH_2CH_2CH_2(\phi CF_2)_{18}H, \\
CH_2=CHCOO-CH_2CH_2CH_2(\phi CF_2)_{20}H, CH_2=CHCOO-CH_2CH_2(\phi CF_2)_{22}H, \\
CH_2=CHCOO-CH_2CH_2CF(CF_3)_{2}, [OCF_2\cdot CF(CF_3)]_{2}\cdot OC_3F_7, \\
CH_2=CHCOO-CH_2CH_2CF_2\phi CF(CF_3)_{2}, [OCF_2\cdot CF(CF_3)]_{2}\cdot OC_3F_7.
\end{align*}
\]

Among these, the vinyl polymers represented by the formulas presented below are especially preferred:

\[
\begin{align*}
CH_2=CHCOO-CH_2CH_2(\phi CF_2)_{3}F, CH_2=CHCOO-CH_2CH_2(\phi CF_2)_{5}F, \\
CH_2=CHCOO-CH_2CH_2(\phi CF_2)_{6}F, CH_2=CHCOO-CH_2CH_2(\phi CF_2)_{8}F, \\
CH_2=CHCOO-CH_2CF_3, CH_2=CHCOO-CH_2CF_3.
\end{align*}
\]

The vinyl monomers (M2) not containing any fluorinated organic groups in the molecule can be any monomers containing radical-polymerizable vinyl groups that are exemplified, for example, by methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, n-propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, or other lower alkyl acrylates or methacrylates; glycidyl acrylate, glycidyl methacrylate; n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, n-octyl acrylate, n-octyl methacrylate, etc.
acrylate, n-hexyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, octyl acrylate, octyl methacrylate, lauryl acrylate, lauryl methacrylate, stearyl acrylate, stearyl methacrylate, or other higher acrylates and methacrylates; vinyl acetate, vinyl propionate, or other lower fatty acid vinyl esters; vinyl butyrate, vinyl caproate, vinyl 2-ethylhexanoate, vinyl laurate, vinyl stearate, or other higher fatty acid esters; styrene, vinyltoluene, benzyl acrylate, benzyl methacrylate, phenoxyethyl acrylate, phenoxyethyl methacrylate, vinylpyrrolidone, and other vinylaromatic monomers; dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, and otheraminovinyl monomers, acrylamide, methacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, N-methoxymethylacrylamide, N-methoxymethylmethacrylamide, isobutoxymethoxyacrylamide, isobutoxymethoxy-methacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, and other vinylamide monomers; hydroxyethyl acrylate, hydroxyethyl methacrylate, acrylic acid hydroxypropyl alcohol, methacrylic acid hydroxypropyl alcohol, and other hydroxy vinyl monomers; acrylic acid, methacrylic acid, itaconic acid, crotonic acid, fumaric acid, maleic acid, and other vinylcarboxylic acid monomers; tetrahydrofurfuryl acrylic, tetrahydrofurfuryl methacrylate, butoxyethyl acrylate, butoxyethyl methacrylate, ethoxydiethylene glycol acrylate, ethoxydiethylene glycol methacrylate, polyethylene glycol acrylate, polyethylene glycol methacrylate, polypropylene glycol monoacrylate, polypropylene glycol monomethacrylate, hydroxybutyl vinyl ether, cetyl vinyl ether, 2-ethylhexyl vinyl ether and other vinyl monomers containing an ether bond; acryloxypropyltrimethoxysilane, methacryloxypropyltrimethoxysilane, polydimethylsiloxanes containing acryl or methacryl groups at one of the ends, polydimethylsiloxanes containing alkenylaryl groups at one of the ends and other silicone compounds containing unsaturated groups; butadiene; vinyl chloride; vinylidene chloride, acrylonitrile, methacrylonitrile; dibutyl fumarate; maleic anhydride; dodecylsuccinic anhydride; acryl glycidyl ether, methacryl glycidyl ether, 3,4-epoxy-cyclohexylmethyl acrylate, 3,4-epoxy-cyclohexylmethyl methacrylate, alkali metal salts, ammonium salts and organic amine salts of acrylic acid, of methacrylic acid, of itaconic acid, of crotonic acid, of fumaric acid, of maleic acid and of other radical-polymerizable unsaturated carboxylic acids, radical-polymerizable unsaturated monomers containing sulfonic acid groups, such as styrene sulfonic acid
and also the alkali metal salts thereof, the ammonium salts thereof and the organic amine salts thereof; the quaternary ammonium salts derived from acrylic acid or from methacrylic acid, such as 2-hydroxy-3-methacryloxypropyltrimethylammonium chloride, methacrylic acid esters of a tertiary amine alcohol, such as the diethylamine ester of methacrylic acid and quaternary ammonium salts thereof.

In addition, it is also possible to use, by way of vinyl monomers \((M_2)\), the polyfunctional vinyl monomers which are exemplified, for example, by trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, tetraethylene glycol diacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, trimethylolpropanetrixyethyl acrylate, trimethylolpropanetrixyethyl methacrylate, tris(2-hydroxyethyl)isocyanurate diacrylate, tris(2-hydroxyethyl)isocyanurate dimethacrylate, tris(2-hydroxyethyl)isocyanurate triacrylate, tris(2-hydroxyethyl)isocyanurate trimethacrylate, polydimethylsiloxane in which the two ends of the molecular chain are blocked with alkenylaryl groups, and other silicone compounds containing unsaturated groups.

As regards the ratio mentioned above in which \((M_1)\) and \((M_2)\) are copolymerized, the weight ratio between \((M_1)\) and \((M_2)\) is preferably within the range from 1:99 to 100:0.

Y may be selected, for example, from organic groups containing acrylic or methacrylic groups, organic groups containing an alkenylaryl group, or alkenyl groups having from 2 to 10 carbon atoms.

The organic groups containing acrylic or methacrylic groups and the alkenylaryl group are as defined above.

Among the compounds (B), the following compounds may, for example, be mentioned:

\[
\text{H}_2\text{C}=-\text{CH} - \text{Si} - \left[\begin{array}{c}
\text{CH}_3 \\
\end{array}\right]
\]

\[
\text{Si} - \text{O} - \text{Si} - \text{C}_2\text{H}_4 - \text{Si} - \left[\begin{array}{c}
\text{CH}_3 \\
\end{array}\right]
\]
The carbosiloxane dendrimers (B) may be prepared using the process for preparing the siloxane/silylalkylene branched copolymers described in document EP 1 055 674.

For example, they may be prepared by subjecting organic alkenyl silicone compounds and silicone compounds including hydrogen atoms bonded to the silicon, represented by formula (IV) as defined above, to a hydrosilylation reaction.

The copolymerization ratio (by weight) between monomer (B) and monomers (M₁) and (M₂) is preferably within the range from 1:99 to 99:1, and even more preferably within the range from 5:95 to 95:5.

Amino groups may be introduced into the side chains of the vinyl polymer using, included in the component (M2), vinyl monomers containing amino groups, such as dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate and diethylaminoethyl methacrylate, followed by performing a modification with potassium acetate monochloride, ammonium acetate monochloride, the aminomethylpropanol salt of monochloroacetic acid, the triethanolamine salt of monobromoacetic acid, sodium monochloropropionate, and other alkali metal salts of halogenated fatty acids; otherwise, carboxylic acid groups may be introduced into the side chains of the vinyl polymer using, included in the component (M2), vinyl monomers containing carboxylic acids, such as acrylic acid, methacrylic acid, itaconic acid, crotonic acid, fumaric acid and maleic acid, and the like, followed by neutralizing the product with triethylamine, diethylamine, triethanolamine and other amines.

A fluorinated vinyl polymer may be one of the polymers described in the examples of application WO 03/045337.
According to a preferred embodiment, a grafted vinyl polymer for the purpose of the present invention may be carried in an oil or a mixture of oil(s), such as volatile oil(s), in particular selected from silicone oils and hydrocarbon oils and mixtures thereof.

According to a particular embodiment, a silicone oil suitable for the invention may be cyclopentasiloxane.

According to a particular embodiment, a hydrocarbon oil suitable for the invention may be isododecane.

The vinyl polymers grafted with at least one carbosiloxane dendrimer-derived unit that may be particularly suitable for the present disclosure are the polymers sold under the names TIB 4-100, TIB 4-101, TIB 4-120, TIB 4-130, TIB 4-200, FA 4002 ID (TIB 4-202), TIB 4-220, FA 4001 CM (TIB 4-230) by the Dow Corning company.

According to an embodiment, the composition according to the present invention includes the vinyl polymer having at least one carbosiloxane dendrimer-derived unit in a content with respect to active material ranging from 0.5% to 20% by weight, in particular from 1% to 15%, more specifically from 1.5% to 10% and preferably from 3% to 5% by weight with respect to the total weight of said composition.

**DISPERSANT**

Advantageously, a composition according to the invention may also comprise a dispersant.

Such a dispersant may be a surfactant, an oligomer, a polymer or a mixture of several thereof.

According to one particular embodiment, a dispersant in accordance with the invention is a surfactant.
Depending on the fluidity of the composition that it is desired to obtain, it is possible to incorporate one or more thickeners or gelling agents into a composition of the invention.

A thickener or gelling agent that is suitable for use in the invention may be lipophilic. It may be mineral or organic.

**Inorganic lipophilic gelling agents**

Inorganic lipophilic gelling agents that may be mentioned include optionally modified clays, for instance hectorites modified with a C10 to C22 ammonium chloride, for instance hectorite modified with distearyldimethylammonium chloride, for instance the product sold under the name Bentone 38V® by the company Elementis.

Mention may also be made of fumed silica optionally hydrophobically treated at the surface, the size of the particles of which is less than 1 \( \mu \text{m} \). This is because it is possible to chemically modify the surface of the silica by chemical reaction which results in a decrease in the number of silanol groups present at the surface of the silica. Silanol groups can in particular be replaced by hydrophobic groups: a hydrophobic silica is then obtained. The hydrophobic groups can be trimethylsilyloxyl groups, which are obtained in particular by treatment of fumed silica in the presence of hexamethyldisilazane. Silicas thus treated are named "Silica silylate" according to the CTFA (8th edition, 2000). They are, for example, sold under the references Aerosil R812® by Degussa, Cab-O-Sil TS-530® by the company Cabot, dimethylsilyloxyl or polydimethylsiloxane groups, which are obtained in particular by treatment of fumed silica in the presence of polydimethylsiloxane or dimethyldichlorosilane. Silicas thus treated are named "Silica dimethyl silylate" according to the CTFA (8th edition, 2000). They are, for example, sold under the references Aerosil R972® and Aerosil R974® by the company Degussa and Cab-O-Sil TS-61 0® and Cab-O-Sil TS-720® by the company Cabot.
Organic lipophilic gelling agents

The polymeric organic lipophilic gelling agents are, for example, partially or totally crosslinked elastomeric organopolysiloxanes of three-dimensional structure, for instance those sold under the names KSG6®, KSG16® and KSG18® by the company Shin-Etsu, Trefil E-505C® and Trefil E-506C® by the company Dow Corning, Gransil SR-CYC®, SR DMF1 0®, SR-DC556®, SR 5CYC gel®, SR DMF 10 gel® and SR DC 556 gel® by the company Grant Industries and SF 1204® and JK 113® by the company General Electric; ethylcellulose, for instance the product sold under the name Ethocel® by the company Dow Chemical; galactomannans comprising from one to six and in particular from two to four hydroxyl groups per monosaccharide, substituted with a saturated or unsaturated alkyl chain, for instance guar gum alkylated with C1 to C6, and in particular C1 to C3, alkyl chains, and mixtures thereof. Block copolymers of "diblock", "triblock" or "radial" type of the polystyrene/polyisoprene or polystyrene/polybutadiene type, such as those sold under the name Luvitol HSB® by the company BASF, of the polystyrene/copoly(ethylene-propylene) type, such as those sold under the name Kraton® by the company Shell Chemical Co., or alternatively of the polystyrene/copoly(ethylene-butylene) type, or blends of triblock and radial (star) copolymers in isododecane, such as those sold by the company Penreco under the name Versagel®, such as, for example, the blend of butylene/ethylene/styrene triblock copolymer and of ethylene/propylene/styrene star copolymer in isododecane (Versagel M 5960).

Mention may also be made, among the lipophilic gelling agents which can be used in the compositions according to the invention, of esters of dextrin and of fatty acid, such as dextrin palmitates, in particular such as those sold under the names Rheopar TL® or Rheopar KL® by the company Chiba Flour.


According to one embodiment, a composition of the invention may comprise thickeners in an active material content from 0.01% to 40% by weight, especially
from 0.1 % to 20% by weight and in particular from 0.3% to 15% by weight relative to the total weight of the composition.

**ACTIVE AGENT**

5

For a particular care application, a composition according to the invention may comprise at least one moisturizer (also known as a humectant).

Preferably, such moisturizer is glycerol.

10

The moisturizer(s) could be present in the composition in a content ranging from 0.1 % to 15% by weight, especially from 0.5% to 10% by weight or even from 1% to 6% by weight, relative to the total weight of the said composition.

As other active agents that may be used in the composition of the invention, examples that may be mentioned include vitamins, such as vitamins A, C, E, B3, B5, K and their derivatives, in particular their esters, hyaluronic acid, sunscreens, urea and its hydroxylated derivatives, such as the N-(2-hydroxyethyl)urea sold under the name Hydrovance by National Starch; salicylic acid, 5-n-octanoyl salicylic acid or CAPRYLOYL SALICYLIC ACID sold under the trade name MEXORYL SAB®; C-BETA-D-XYLOPYRANOSIDE-2-HYDROXY-PROPANE in particular in solution at 30% in a mixture water/1,2-propanediol under the trade name MEXORYL BB®; sequestering agents, such as EDTA, and mixtures thereof.

20

Preferably, a composition of the invention comprises at least one active agent.

It is a matter of routine for those skilled in the art to adjust the nature and amount of the additives present in the compositions in accordance with the invention such that the desired cosmetic properties thereof are not thereby affected.

30

According to another embodiment, a composition of the invention may advantageously be in the form of a composition for caring for the skin in particular body, legs or the face, as anti-aging products, self-tanning products, suncare
products, compositions for slimming, compositions for modulating the pigmentation, deodorant products.

According to one embodiment, a composition of the invention may advantageously be in the form of a composition for making up the skin and especially face, eyelids, around the eyes, cheeks. It may thus be in the form of a bottom liquid or fluid foundation, a foundation poured hot product, a concealer or blush eyeshadow.

According to another embodiment, a composition of the invention may advantageously be in the form of a lipcare or lip make up product.

Preferably, the composition according to the invention is in the form of a liquid foundation.

Such compositions are especially prepared according to the general knowledge of a person skilled in the art.

**ASSEMBLY**

The present invention also relates to a cosmetic assembly comprising:
- a container defining one or more compartments, said compartment being optionally closed by a closure member and optionally being non-sealing, and
- a composition for making up and/or care of the invention disposed within the compartment (s).

The compartment may for example be in the form of a box. The container may be also in the form of tube. The assembly may also include an appropriate applicator as for example, a sponge, a buffer, a brush.

Throughout the description, including the claims, the term "comprising a" should be understood as being synonymous with "comprising at least one", unless otherwise specified.
The expressions "between ... and ..." and "ranging from ... to ..." should be understood as meaning limits included, unless otherwise specified.

The invention is illustrated in greater detail by the examples. Unless otherwise mentioned, the amounts indicated are expressed as weight percentages.

EXEMPLES

Reference is now made to the following examples, which together with the above descriptions illustrate some embodiments of the invention in a non-limiting fashion.

MATERIALS AND METHODS

- Ethyl acetate was obtained from Gadot, Israel.
- Magnesium stearate was obtained from FACI ASIA PACIFIC PTE Ltd.
- Titanium oxide, which is also referred to herein throughout as titanium dioxide or T1O2 RC402, was obtained from Sachtleben Chemie GmbH.
- Bismuth oxychloride pre-dispersed 2-ethylhexyl hydroxystearate (marketed as Timiron® Liquid Silver) was obtained from Merck KGaA, Darmstadt, Germany.
- Polyvinyl alcohol (PVA) as used was Mowiol 4-88, KSE solution 4%; Kuraray America, Inc., USA.
- Cellulose acetate 398-1 ONF was obtained from Eastman, USA.
- (Poly(ethyl acrylate-co-methyl methacrylate-co-trimethylammonium ethyl methacrylate chloride), EUDRAGIT® RS PO, was obtained from Evonik industries, Germany).
- Size distribution of the microcapsules was determined using HORIBA LA300.

Loose Bulk Density of the microcapsules was determined using USP-NF <61 6>.

EXAMPLE 1: Preparation of PMMA microcapsules containing bismuth oxychloride pre-dispersed 2-ethylhexyl hydroxystearate
1.1 Preparation of organic phase/master batch (MB).

An organic phase (herein referred to interchangeably as "master batch" (MB)) was prepared by gradually adding 10 grams of the wall-forming polymer poly(methyl methacrylate) (PMMA) under stirring (10 minutes), into 300 grams of ethyl acetate, heating the obtained mixture to 50 °C and stirring well until the mixture was homogeneous and transparent (about 20 minutes). The obtained polymer solution was cooled to 25 °C. One gram of Magnesium Stearate (MgSt) was added to the solution under stirring for about 5 minutes. Ten grams of Titanium dioxide (TiO2) were then added to the solution under stirring for about 5 minutes and then the mixture was homogenized for about 8 minutes.

A mixture of bismuth oxychloride predispersed 2-ethylhexyl hydroxystearate (79 grams) was added to the previous suspension under stirring for about 5 minutes. A list of the components included in the prepared MB is presented in Table 1.

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading for 100 grams MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(methyl methacrylate)</td>
<td>10.0</td>
</tr>
<tr>
<td>TiO2 RC402</td>
<td>10.0</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>1.0</td>
</tr>
<tr>
<td>Bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate</td>
<td>79.0</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>300.0</td>
</tr>
</tbody>
</table>

1.2 Preparation of the emulsion.

An aqueous solution of 0.25 % polyvinyl alcohol (PVA) was prepared by mixing water (1013 grams) with PVA 4 % solution (68 grams). Ethyl acetate (120 grams) was added to the aqueous solution, and the master batch of step 1.1 above was thereafter gradually added into the ethyl acetate/water emulsion under stirring at about 400 RPM for 2 minutes. The ratio between the master batch and the emulsion
(w/w) was 1/3. A list of the components included in the prepared emulsion is presented in Table 2.

Table 2. Emulsion constituents

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1013</td>
</tr>
<tr>
<td>PVA (4% solution)</td>
<td>68</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>120</td>
</tr>
<tr>
<td>MB</td>
<td>400</td>
</tr>
</tbody>
</table>

1.3 Extraction of the organic solvent

The extraction solution was composed of a mixture of 8775 grams water and 225 grams of PVA solution 4% (final concentration of PVA in the extraction solution was 0.10% PVA). The emulsion of step 1.2 above (1600 grams) was gradually added into the extraction solution in a 15 L pail under stirring at 150 RPM using a manual pump, and the obtained mixture was further stirred for additional 15 minutes. The resulting mixture was left to sediment for about 24 hours at 25 °C. A list of the components included in extraction medium is presented in Table 3.

Table 3. Extraction medium constituents

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsion</td>
<td>1600</td>
</tr>
<tr>
<td>Water</td>
<td>8775</td>
</tr>
<tr>
<td>4% PVA solution</td>
<td>225</td>
</tr>
</tbody>
</table>
1.4 Washing, Drying and Sifting of the microcapsules

The microcapsules obtained in step 1.3 above were separated either by sedimentation or vacuum filtration, and then dried and sifted.

In the sedimentation procedure, the upper liquid phase from the pail was decanted and the remaining suspension was shaken and transferred to a drying vessel.

In the filtration procedure, the upper phase liquid was decanted from the pail, the remaining suspension was shaken and then filtered, and the sediment was rinsed on the filter with 400 ml water. The suspension was transferred to a drying vessel. In the drying stage, the microcapsules were freeze dried (lyophilized) for 48 hours.

In the sifting stage, the dried microcapsules were sifted using automatic sifter "Ari j-Levy", Sifter MIC. 100. The sifted microcapsules were stored in an appropriate container at room temperature or in a refrigerator.

EXAMPLE 2: Preparation of cellulose acetate microcapsules containing bismuth oxychloride predispersed 2-ethylhexyl hydroxystearate

2.1 Preparation of organic phase/master batch (MB) stage

An organic phase (herein referred to interchangeably as "master batch" (MB)) was prepared by gradually adding 5 grams of the wall-forming polymer Cellulose Acetate 398-10NF (CA) under stirring (10 minutes), into 300 grams of ethyl acetate, and stirring the obtained mixture until the mixture was homogeneous and transparent (about 20 minutes). Thirty grams of Titanium dioxide (Ti02) were then added to the obtained solution under stirring for about 5 minutes and then the mixture was homogenized for about 8 minutes. A mixture of bismuth oxychloride predispersed in 2-ethylhexyl hydroxystearate (60 grams) was thereafter added to the suspension under stirring for about 5 minutes. A list of the components included in the prepared MB is presented in Table 4.
Table 4. Master batch constituents

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading for 100 grams MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose acetate 398-10NF</td>
<td>5.0</td>
</tr>
<tr>
<td>TiO₂ RC402</td>
<td>35.0</td>
</tr>
<tr>
<td>Bismuth oxychloride dispersed 2-ethylhexyl hydroxystearate</td>
<td>60.0</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>300.0</td>
</tr>
</tbody>
</table>

2.2 Preparation of the emulsion

An aqueous solution of 0.4 % polyvinyl alcohol (PVA) was prepared by mixing water (972 grams) with PVA 4 % solution (108 grams). Ethyl acetate (120 grams) was added to the aqueous phase, and the master batch of step 3.1 above was thereafter gradually added into the ethyl acetate/water emulsion under stirring at about 400 RPM for 2 minutes. The ratio between the master batch and the emulsion (w/w) was 1/3. A list of the components included in the prepared emulsion is presented in Table 5.

Table 5 Emulsion constituents

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>972</td>
</tr>
<tr>
<td>PVA (4 % solution)</td>
<td>108</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>120</td>
</tr>
<tr>
<td>MB</td>
<td>400</td>
</tr>
</tbody>
</table>

2.3 Extraction of the organic solvent

The extraction solution was composed of a mixture of 8550 grams water and 450 grams of PVA solution 4 % (final concentration of PVA in the extraction fluid 0.20 % PVA). The emulsion of step 3.2 above (1600 grams) was gradually added to the extraction solution in a 15 L pail under stirring at 150 RPM using a manual pump, and the obtained mixture was further stirred for additional 15 minutes. The resulting
mixture was left to sediment for about 24 hours at 25 °C. A list of the components included in the prepared extraction medium is presented in Table 6.

Table 6. Extraction medium constituents

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsion</td>
<td>1600</td>
</tr>
<tr>
<td>Water</td>
<td>8550</td>
</tr>
<tr>
<td>4 % PVA solution</td>
<td>450</td>
</tr>
</tbody>
</table>

2.4 Washing, Drying and Sifting of the microcapsules

The microcapsules obtained in step 3.3 above were separated either by sedimentation or vacuum filtration, dried and sifted, as described hereinabove, for Example 1.

EXAMPLE 3: Preparation of EUDRAGIT® microcapsules containing bismuth oxychloride predispersed 2-ethylhexyl hydroxystearate

3.1 Preparation of organic phase/master batch (MB) stage

An organic phase (herein referred to interchangeably as “master batch” (MB)) was prepared by gradually adding 10 grams of the wall-forming Poly(ethyl acrylate-co-methyl methacrylate-co-trimethylammonioethyl methacrylate chloride) (EUDRAGIT® RS PO) under stirring (10 minutes), into 300.0 grams of ethyl acetate, heating to 50 °C and stirring well until the mixture was homogeneous and transparent (about 20 minutes). The obtained polymer solution was cooled to 25 °C. One gram of Magnesium Stearate (MgSt) was added to the solution under stirring for about 5 minutes. Then, bismuth oxychloride predispersed 2-ethylhexyl hydroxystearate (79 grams) was added to the suspension under stirring for about 5 minutes. The components of the MB are presented in Table 7.

Table 7. Master batch constituents
3.2 Preparation of the emulsion

An aqueous solution of 0.25% polyvinyl alcohol (PVA) was prepared by mixing water (844 grams) with PVA 4% solution (56 grams). Ethyl acetate (100 grams) was added to the water phase. Ten grams of Titanium dioxide (TiO2) was added to previous step under stirring for about 5 minutes and then the mixture was homogenized for about 8 minutes and then the master batch of step 4.1 above was gradually added into the ethyl acetate/water emulsion under stirring at about 400 RPM for 2 minutes. The ratio between the master batch and the emulsion (w/w) was 1/3. The components of the emulsion are presented in Table 8.

Table 8. Emulsion constituents

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>844</td>
</tr>
<tr>
<td>PVA (4% solution)</td>
<td>56</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>100</td>
</tr>
<tr>
<td>TiO2 RC402</td>
<td>10</td>
</tr>
<tr>
<td>MB</td>
<td>323</td>
</tr>
</tbody>
</table>
3.3 Extraction of the organic solvent

The extraction fluid was composed of a mixture of 6923 grams water and 178 grams of PVA solution 4 % (final concentration of PVA in the extraction fluid 0.10 % PVA). The emulsion of step 4.2 above (1333 grams) was gradually added into the extraction fluid in a 15 L pail under stirring at 150 RPM using a manual pump, and was further stirred for additional 15 minutes. The resulting mixture was left to sediment for about 24 hours at 25 °C. The components of the extraction medium are presented in Table 9.

Table 9. Extraction medium constituents

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsion</td>
<td>1333</td>
</tr>
<tr>
<td>Water</td>
<td>6923</td>
</tr>
<tr>
<td>4 % PVA solution</td>
<td>178</td>
</tr>
</tbody>
</table>

3.4 Washing, Drying and Sifting of the microcapsules

The microcapsules obtained in step 3.3 above were separated either by sedimentation or vacuum filtration, dried and sifted, as described hereinabove, for Example 1.

EXAMPLE 4: Preparation of PMMA/MA microcapsules containing bismuth oxychloride predispersed 2-ethylhexyl hydroxystearate

4.1 Preparation of organic phase/master batch (MB) stage

An organic phase (herein referred to interchangeably as "master batch" (MB)) was prepared by gradually adding 10 grams of the wall-forming polymer Poly(methacrylic acid-co-methyl methacrylate) (PMMA/MA) under stirring (10 minutes), into 300.0 grams of ethyl acetate, heating to 50 °C and stirring well until the mixture was homogeneous and transparent (about 20 minutes). The obtained polymer solution
was cooled to 25 °C. One gram of Magnesium Stearate (MgSt) was added to the solution under stirring for about 5 minutes. Ten grams of Titanium dioxide (TiO2) were thereafter added under stirring for about 5 minutes and then the mixture was homogenized for about 8 minutes. Thereafter, bismuth oxychloride predispersed 2-ethylhexyl hydroxystearate (79 grams) was added to the suspension under stirring for about 5 minutes. The components of the MB are presented in Table 10.

Table 10. Master batch constituents

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading for 100 grams MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(methacrylic acid-co-methyl methacrylate) (PMMA/MA)</td>
<td>10.0</td>
</tr>
<tr>
<td>TiO2 RC402</td>
<td>10.0</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>1.0</td>
</tr>
<tr>
<td>Bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate</td>
<td>79.0</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>300.0</td>
</tr>
</tbody>
</table>

4.2 Preparation of the emulsion

An aqueous solution of 0.25 % polyvinyl alcohol (PVA) was prepared by mixing water (1013 grams) with PVA 4 % solution (68 grams). Ethyl acetate (120 grams) was added to the water phase, and then the master batch of step 1.1 above was gradually added into the ethyl acetate/water emulsion under stirring at about 400 RPM for 2 minutes. The ratio between the master batch and the emulsion (w/w) was 1/3. The components of the emulsion are presented in Table 11.
Table 11. Emulsion constituents

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1013</td>
</tr>
<tr>
<td>PVA (KSE 4 % solution)</td>
<td>68</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>120</td>
</tr>
<tr>
<td>MB</td>
<td>400</td>
</tr>
</tbody>
</table>

4.3 Extraction of the organic solvent

The extraction fluid was composed of a mixture of 8775 grams water and 225 grams of PVA solution 4 % (final concentration of PVA in the extraction fluid 0.10 % PVA). The emulsion of step 1.2 above (1600 grams) was gradually added into the extraction fluid in a 15 L pail under stirring at 150 RPM using a manual pump, and was further stirred for additional 15 minutes. The resulting mixture was left to sediment for about 24 hours at 25 °C. The components of the extraction medium are presented in Table 12.

Table 12. Extraction medium constituents

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsion</td>
<td>1600</td>
</tr>
<tr>
<td>Water</td>
<td>8775</td>
</tr>
<tr>
<td>4 % PVA solution</td>
<td>225</td>
</tr>
</tbody>
</table>

4.4 Washing, Drying and Sifting of the microcapsules

The microcapsules obtained in step 4.3 above were separated either by sedimentation or vacuum filtration, dried and sifted, as described hereinabove, for Example 1.
EXAMPLE 5: Preparation of EUDRAGIT® microcapsules containing bismuth oxychloride predispersed 2-ethylhexyl hydroxystearate

5.1 Preparation of organic phase/master batch (MB) stage

An organic phase (herein referred to interchangeably as "master batch" (MB)) was prepared by gradually adding 10 grams of the wall-forming polymer Poly(ethyl acrylate-co-methyl methacrylate-co-trimethylammonioethyl methacrylate chloride) (EUDRAGIT® RS PO) under stirring (10 minutes), into 185.7 grams of ethyl acetate, heating to 50 °C and stirring well until the mixture was homogeneous and transparent (about 20 minutes). The obtained polymer solution was cooled to 25 °C. Ten grams of Triethyl Citrate were added to the solution under stirring for about 5 minutes. Eighty grams of bismuth oxychloride (BiCIO) were thereafter added to the mixture under stirring for about 5 minutes and then the mixture was homogenized for about 8 minutes. The components of the MB are presented in Table 13.

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading for 100 grams MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUDRAGIT® RS PO (Poly(ethyl acrylate-co-methyl methacrylate-co-trimethylammonioethyl methacrylate chloride)</td>
<td>10.0</td>
</tr>
<tr>
<td>Triethyl Citrate</td>
<td>10.0</td>
</tr>
<tr>
<td>Bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate</td>
<td>80.0</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>185.7</td>
</tr>
</tbody>
</table>

5.2 Preparation of the emulsion

An aqueous solution of 0.25 % polyvinyl alcohol (PVA) was prepared by mixing water (723.2 grams) with PVA 4 % solution (48.2 grams). Ethyl acetate (85.7 grams) was added to the water phase, and then the master batch of step 6.1 above was gradually added into the ethyl acetate/water emulsion under stirring at about 400
RPM for 10 minutes. The ratio between the master batch and the emulsion (w/w) was 1:3. The components of the emulsion are presented in Table 14.

Table 14. Emulsion constituents

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>723.2</td>
</tr>
<tr>
<td>PVA (4 % solution)</td>
<td>48.2</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>85.7</td>
</tr>
<tr>
<td>MB</td>
<td>285.7</td>
</tr>
</tbody>
</table>

5.3 Extraction of the organic solvent

The extraction fluid was composed of a mixture of 5599 grams water and 144 grams of PVA solution 4 % (final concentration of PVA in the extraction fluid 0.10 % PVA). The emulsion of step 6.2 above (1449.2 grams) was gradually added into the extraction fluid in a 15 L pail under stirring at 150 RPM using a manual pump, and was further stirred for additional 15 minutes. The resulting mixture was left to sediment for about 24 hours at 25 °C. The components of the extraction medium are presented in Table 15.

Table 15. Extraction medium constituents

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsion</td>
<td>1449.2</td>
</tr>
<tr>
<td>Water</td>
<td>5599</td>
</tr>
<tr>
<td>4 % PVA solution</td>
<td>144</td>
</tr>
</tbody>
</table>

5.4 Washing, Drying and Sifting of the microcapsules

The microcapsules obtained in step 5.3 above were separated either by sedimentation or vacuum filtration, dried and sifted, as described hereinabove, for Example 1.
EXAMPLE 6: Characterization

Size Distribution:

The size distribution of the microcapsules obtained in Examples 1-5 was measured and the obtained data are indicated below.

Herein throughout, a "mean" diameter means an average size of the microcapsules. The size of the microcapsules may be measured by a Laser distribution size method and particularly by measuring the values D[50] and D[90]. D50 means the size of which 50% of the microcapsules do not exceed, and D90 means the size of which 90% of the microcapsules do not exceed.

The diameter of the microcapsules obtained as described in Example 1 is in the range of from about 3 microns to about 600 microns, with the mean diameter being about 175 microns, the D50 of the microcapsules being about 155 microns, and the D90 of the microcapsules being about 320 microns.

The diameter of the microcapsules obtained as described in Example 3 is in the range of from about 3 microns to about 500 microns, with the mean diameter being about 120 microns, the D50 of the microcapsules being about 96 microns, and the D90 of the microcapsules being about 237 microns.

The diameter of the microcapsules obtained as described in Example 4 is in the range of from about 3 microns to about 400 microns, with the mean diameter being about 120 microns, the D50 of the microcapsules being about 106 microns, and the D90 of the microcapsules being about 195 microns.

The diameter of the microcapsules obtained as described in Example 5 is in the range of from about 3 microns to about 250 microns, with the mean diameter being about 120 microns, the D50 of the microcapsules being about 96 microns, and the D90 of the microcapsules being about 237 microns.
Loose Bulk Density:

The loose bulk density of the microcapsules obtained in Example 1 was determined as ranging from about 300 to about 450 grams/liter (from about 0.30 to about 0.45 gram/cm$^3$), or from about 300 to about 380 grams/liter (from about 0.30 to about 0.38 gram/cm$^3$) or from about 300 to about 340 grams/liter (from about 0.30 to about 0.4 gram/cm$^3$).

The loose bulk density of the microcapsules obtained in Example 2 was determined as ranging from about 360 to about 460 grams/liter (from about 0.36 to about 0.46 gram/cm$^3$), or from about 380 to 440 grams/liter (from about 0.38 to about 0.44 gram/cm$^3$), or from about 400 to 420 grams/liter (from about 0.40 to about 0.42 gram/cm$^3$).

The loose bulk density of the microcapsules obtained in Example 3 was determined as ranging from about 140 to about 360 grams/liter (from about 0.14 to about 0.36 gram/cm$^3$), or from about 200 to 300 grams/liter (from about 0.20 to about 0.30 gram/cm$^3$), or from about 240 to about 260 grams/liter (from about 0.24 to about 0.26 gram/cm$^3$).

The loose bulk density of the microcapsules obtained in Example 5 was determined as ranging from about 420 to about 560 grams/liter (from about 0.42 to about 0.56 gram/cm$^3$), or from about 450 to about 530 grams/liter (from about 0.45 to about 0.53 gram/cm$^3$), or from about 480 to about 500 grams/liter (from about 0.48 to about 0.50 gram/cm$^3$).

Masking:

Quantitative measurements of the masking effect provided by encapsulating bismuth oxychloride, the X-Rite measurement technique using the CIE Color Systems (based on the CIE L* a* b* color scale, wherein L* defines lightness, a* denotes the red/green value and b* the yellow/blue value) was used. The standard illuminant applied for these measurements was daylight.
Quantitative values were obtained by integrating values/data measured for three visual elements of color: hue (namely, how we perceive an object's color), chroma (the vividness or dullness of a color namely, how close the color is to either gray or the pure hue), and degree of lightness (namely classifying whether a color is light or dark).

Table 16 below presents the shift in lightness on the lightness scale L* of the present microcapsules relative to the bismuth oxychloride-containing raw material Timiron® Liquid Silver (DL*). The positive DL* values presented in Table XXX denote a shift on the lightness scale in the direction of substantially lighter, brighter color for the microcapsules of the invention compared to the raw material, which is indicative of the masking effect.

<table>
<thead>
<tr>
<th>Example No.</th>
<th>DL* relative to Timiron® Liquid Silver Raw material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.45</td>
</tr>
<tr>
<td>2</td>
<td>5.71</td>
</tr>
<tr>
<td>3</td>
<td>9.96</td>
</tr>
<tr>
<td>5</td>
<td>13.47</td>
</tr>
</tbody>
</table>

Light Reflectance:

Light reflectance is measured using polarized goniophotometer system with a halogen lamp. Both input and detected light are polarized. The incident light angle is 45° and a convergent angle ranges over 20-75°, with a moving detector. The detection polarizer can be rotated to collect either parallel or perpendicular polarized light. Each quantity of light can be calculated from the quantity of parallel filtered and vertically filtered light.

The quantity of internally reflected light:

\[ \text{internally reflected light} = 2 \times I_{\text{vertical}} \]
The quantity of surface-reflected light:

\[ I_{\text{surface-reflected light}} = I_{\parallel} - I_{\perp} \]

The quantity of totally reflected light:

\[ I_{\text{total-}} = I_{\text{internally + surface}} = I_{\parallel} + I_{\perp} \]

5  \( I_{\text{crossed}} \): the quantity of light passing through the crossed polarized filters.

\( I_{\parallel} \): the quantity of light passing through the parallel polarized filters.

**Exemples 6A and 6B: anhydrous dispersion for foundation**

<table>
<thead>
<tr>
<th>Phase</th>
<th>Ingredients</th>
<th>Exemple 6A (comparative)</th>
<th>Exemple 6B (invention)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Isododecane</td>
<td>8,00</td>
<td>8,00</td>
</tr>
<tr>
<td></td>
<td>Disteardimonium hectorite / propylène carbonate / isododecane (10/3/87) ref BENTONE GEL ISD V from Elementis</td>
<td>10,00</td>
<td>10,00</td>
</tr>
<tr>
<td></td>
<td>Phenyltrimethicone ref DC 556 from Dow Corning</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>A2</td>
<td>Tri((Trimethylsiloxysiloxyethyldimethylsiloxysilylpropylmethacrylate dans l'isododécane (40/60) vendu sous la référence Dow Corning FA 4002 ID par Dow Corning.</td>
<td>5,00</td>
<td>5,00</td>
</tr>
<tr>
<td>A3</td>
<td>Cyclohexasiloxane</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Dimétique copolyol ref KF 6017 from Shin Etsu</td>
<td>1,50</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>Iron Oxydes coated with Aluminium glutamate stearoyl from Myoshi</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>A4</td>
<td>Dodecamethylpentasiloxane</td>
<td>qsp 100</td>
<td>qsp 100</td>
</tr>
<tr>
<td></td>
<td>Cyclohexasiloxane</td>
<td>15,00</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BISMUTH OXYCHLORIDE DISPERSION IN ETHYLHEXYL HYDROXYSTEARATE (TIMIRON LIQUID SILVER®- MERCK)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Vinyl dimethicone / Methicone Silsesquioxane crosspolymer ref KSP 100 from Shin Etsu</td>
<td>8,00</td>
<td>8,0</td>
</tr>
<tr>
<td>B</td>
<td>Ethanol 96 ° dénaturé</td>
<td>11,50</td>
<td>11,5</td>
</tr>
<tr>
<td>C</td>
<td>ENCAPSULATED BISMUTH OXYCHLORIDE</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
A mixture of the phase A1 and the phase A2 in the main kettle was prepared at room temperature under mixing with a Rayneri (200 à 300 tr/min.) during 15 minutes. The phase A3 was separately prepared grinding 3 times with a tricylindre all the ingredients. Under the Rayneri (400 à 500 tr/min.), the phase A3 was mixed into the mixture A1+A2 during 10 minutes at room temperature. The phase A4 was separately prepared under the Rayneri (500 tr/min.) during 10 minutes at room temperature. The phase A4 was mixed to the rest of the preparation during 10 minutes under Rayneri. The mixing was decreased under Rayneri à 200-300 tr/min. and the mixture was added to the phase B. The resulting composition was mixed during 5 minutes. For the expel B2, the phase C was added slowly under Rayneri until complete homogenization. The quantities of the ingredients are expressed in percentages by weight relative to the total weight of the composition.

**Controls and evaluation:**

Cyclohexane was added in the composition 6A such that the viscosity be comparable to the one of composition 6B.

The viscosity of the compositions was measured at 25 °C with a Rheomat 180 (Lamy) prone 2 (MS-R2) at 200 min⁻¹, after 10 minutes of rotation.

**Exemple 6A (comparative)**

Results : 15-18US prone 2 MS-R2 which are equivalent to 60-80cP (centiPoises).

**Exemple 6B (invention)** : viscosity 20 ud prone 2 which is equivalent to the previous one.
Cosmetic application:

The example 6B according to the invention of the same viscosity compared to the example 6A was much less greasy upon application evaluated on 7 women in their classical application conditions. The example 6B according to the invention was thinner on the skin with a better color homogeneity. The wear properties during the day were a little bit more appreciated on the combo/oily skins.
Claims

1. Anhydrous composition for caring for and/or making up keratin materials comprising, in a physiologically acceptable medium,
   a) at least one oily phase comprising at least one non-volatile oil and/or at least one volatile oil; and
   b) at least microcapsules comprising:
      - an inner core comprising at least a dispersion of at least one reflective agent in at least one oil, and
      - at least one outer shell formed of a wall-forming polymeric material surrounding the said core, the said outer shell comprising
        i) at least one wall-forming polymer, and
        ii) optionally at least one plasticizer and/or at least one opaque substance and/or at least one fatty acid salt.

2. Composition according to claim 1, wherein the reflective agent is bismuth oxychloride.

3. Composition according to claim 1 or 2, wherein the oil of the said dispersion is polar, more preferably is chosen from non-volatile polar hydrocarbon-based oils, more particularly chosen from 2-ethylhexyl hydroxystearate, ethylhexyl ethylhexanoate, castor oil, or any combination thereof, and more particularly is 2-ethylhexyl hydroxystearate.

4. Composition according to any one of claims 1 to 3, wherein the amount of reflective agent ranges from 50 % to 90 % by weight, more preferably from 60 % to 80 %, more particularly from 65 % to 75 % by weight of the total weight of the dispersion.

5. Composition according to any one of claims 1 to 4, wherein the weight ratio of the reflective agent particles to the oil(s) ranges from 1.5/1 to 5/1, more preferably from 1.5/1 to 3/1, particularly from 2/1 to 4/1, and more particularly from 2/1 to 3/1.
6. Composition according to any one of claims 1 to 5, wherein the oily dispersion of reflective agent is a dispersion of bismuth oxychloride in ethylhexyl hydroxystearate, more particularly a dispersion containing from 68% to 72% by weight of bismuth oxychloride in 28% to 32% by weight of 2-ethylhexyl hydroxystearate relative to the total weight of the dispersion.

7. Composition according to any one of claims 1 to 6, wherein the wall-forming polymer forming the outer shell(s) is selected from a polyacrylate, a polymethacrylate, a cellulose ether or ester, or any combination thereof.

8. Composition according to claim 7, wherein the wall-forming polymer is selected from poly(methyl methacrylate) (PMMA), poly(methyl methacrylate)-co-(methacrylic acid) (PMMA/MA), an acrylate/ammonium methacrylate copolymer, cellulose acetate.

9. Composition according to any one of claims 1 to 8, wherein the opaque substance is selected from TiO₂, zinc oxide, alumina, boron nitride, talc, mica and any combination thereof and preferably is TiO₂.

10. Composition according to any one of claims 1 to 9, wherein the fatty acid salt is magnesium stearate.

11. Composition according to any one of claims 1 to 10, wherein the microcapsules comprise

- the inner core constituted by the oily dispersion of reflective agent, in an amount within a range of from 20% to 90%, by weight, more preferably from 30% to 90% by weight, in particular from 40% to 90% by weight, more particularly from 50% to 90% by weight, more better from 60% to 90% by weight, more advantageously from 70% to 90%, by weight, more advantageously from 70% to 80% by weight, more particularly advantageously from 60% to 80% by weight relative to the total weight of the microcapsule.

- the wall-forming polymer(s) of the outer shell is within a range of from 5% to 30%, preferably from 5% to 20% by weight, more preferably from 5% to 15% by weight, particularly from 5% to 10% by weight, by weight relative to the total microcapsule weight; and
- optionally, the amount of opaque substance(s) in the outer shell is within a range of from 1 % to 50 % by weight, more preferably from 1 % to 40 % by weight, more particularly from 10 % to 40% by weight, relative to the total weight of the microcapsule and/or

- optionally the fatty acid salt in an amount within a range of from 0.05 % 5 %, by weight, more preferably from 0.1 % to 4.5 % by weight, particularly from 0.2 % to 4 % by weight, more particularly from 0.5 % to 4 % by weight, advantageously from 0.5 % to 3.0 % by weight, more advantageously from 0.75 % to 3.0 % by weight, particularly more advantageously from 1.0 % to 3.0 % by weight, more better from 1.0 % to 2.0 % by weight, and in particular is 1.0 %, by weight, relative to the total microcapsule's weight; and/or

- optionally the plasticizer(s) is within a range of from 0.5 % to about 30 % by weight, preferably from 0.5 % to 20 % by weight, more preferably from 1.0 % to 20 % by weight, particularly from 5 % to 15 % by weight, more particularly from 5 % to 10 % by weight, advantageously is 10 % by weight relative to the total weight of the microcapsule.

12. Composition according to any one of claims 1 to 11, wherein the microcapsules are single-layer microcapsules.

13. Composition according to any one of claims 1 to 12, wherein the microcapsules are single-layer microcapsules comprising the inner core constituted by bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate in an amount from 60 to 80% by weight, the outer shell comprises magnesium stearate in an amount within a range of from 1.0 % to 2.0 % by weight, TiO₂ in an amount within a range of from 1 % to 20 % by weight, more preferably from 5 % to 15 % by weight, more particularly in an amount of 10 %, by weight, and, as a wall-forming polymer, PMMA, in an amount within a range of from 5 % to 20 % by weight, more preferably in an amount of 10 %, by weight relative to the total weight of the microcapsule.

14. Composition according to any one of claims 1 to 12, wherein the microcapsules are single-layer microcapsules comprising the inner core constituted by bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate in an amount from 60 to 80% by weight, the outer shell does not comprise magnesium stearate, and comprises...
TI02 in an amount within a range of 10 % to 50 % by weight, more preferably from 10 % to 40 % by weight, more particularly from 20 % to 40 % by weight, advantageously from 30 % to 40 % by weight, more advantageously in an amount of 25 %, by weight, and, as a wall-forming polymer, ethyl cellulose, in an amount within a range of 1 % to 10 %, more preferably in an amount of 5 %, by weight relative to the total weight of the microcapsule.

15. Composition according to any one of claims 1 to 12, wherein the microcapsules are single-layer microcapsules comprising the inner core constituted by bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate in an amount from 60 to 80% by weight, the outer shell comprises magnesium stearate in an amount within a range of from 1.0 % to 2.0 % by weight, TI02 in an amount within a range of 1 % to 20 % by weight, preferably from 5 % to 15 % by weight, more preferably in an amount of 10 %, by weight, and, as a wall-forming polymer, poly(ethyl acrylate-co-methyl methacrylate-co-trimethyl ammonium ethyl methacrylate chloride, in an amount within a range of 5 % to 20 % by weight, more particularly in an amount of 10 %, by weight relative to the total weight of the microcapsule.

16. Composition according to any one of claims 1 to 12, wherein the microcapsules are single-layer microcapsules comprising the inner core constituted by bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate in an amount from 60 to 80% by weight, the outer shell comprises magnesium stearate in an amount within a range of from 1.0 % to 2.0 % by weight, TI02 in an amount within a range of 1 % to 20 % by weight, more preferably from 5 % to 15 % by weight, more particularly in an amount of 10 %, by weight, and, as a wall-forming polymer, PMMA/MA, in an amount within a range of 5 % to 20 %, more preferably in an amount of 10 %, by weight relative to the total weight of the microcapsule.

17. Composition according to any one of claims 1 to 12, wherein the microcapsules are single-layer microcapsules comprising the inner core constituted by bismuth oxychloride dispersed in 2-ethylhexyl hydroxystearate in an amount from 60 to 80% by weight, the outer shell does not comprise magnesium stearate nor TI02, and comprises a plasticizer, in an amount within a range of 1 % to 20 % by weight, preferably from 5 % to 15 % by weight, more preferably in an amount of 10 %, by
weight, and, as a wall-forming material, poly(ethyl acrylate-co-methyl methacrylate-
co-trimethyl ammonium ethyl methacrylate chloride, in an amount within a range of 5%
parent by weight, more preferably in an amount of 10 % by weight relative to the
total weight of the microcapsule.

18. Composition according to any one of the preceding claims, which contains at
least one coloring agent.

19. Composition according to any one of the preceding claims, which contains at
least one mono-alcohol comprising from 2 to 8 carbon atoms, and more preferably
mono-alcohol is ethanol.

20. Composition according to any one of the preceding claims, which contains at
least one filler.

21. Composition according to any one of the preceding claims, which contains at
least one a vinyl polymer having at least one carbosiloxane dendrimer-derived unit.

22. Cosmetic process for caring for and/or making up keratinic materials, comprising
application on said keratinic materials in particular on the skin of a composition as
defined in any claims 1 to 21.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61Q1/02 A61K8/11 A61K8/20 A61K8/37
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61Q A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
  "A" document defining the general state of the art which is not considered to be of particular relevance
  "E" earlier application or patent but published on or after the international filing date
  "L" document which may throw doubts on priority claim(s) on which the document is cited
  "O" document referring to an oral disclosure, use, exhibition or other means
  "P" document published prior to the international filing date but later than the priority date claimed

*T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"S" document member of the same patent family

Date of the actual completion of the international search
2 May 2016

Date of mailing of the international search report
12/05/2016

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer
Miller, Bernhard
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>GB 2 416 524 A (DOW CORNING [US]) 1 February 2006 (2006-02-01) paragraph [0035]; claim 1</td>
<td>1-22</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2007220686</td>
<td>27-09-2007</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2706148 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2234583 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5608092 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011506326 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100087036 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009155371 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012045579 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014112963 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2009079135 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5382433 A</td>
</tr>
<tr>
<td>US 2005048014</td>
<td>03-03-2005</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2012269752</td>
<td>25-10-2012</td>
<td>CN 102481232 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104161684 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2456413 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2826459 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2826460 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012533611 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012269752 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2011010041 A2</td>
</tr>
<tr>
<td>US 6932984</td>
<td>23-08-2005</td>
<td>AU 774354 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1298601 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2389688 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1391467 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1321904 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2356386 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5175415 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003514008 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA02004919 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6932984 BI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 0139533 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200203697 A</td>
</tr>
<tr>
<td>US 2004076699</td>
<td>22-04-2004</td>
<td>AU 2003276180 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1558207 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006511597 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004076699 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2004041234 AI</td>
</tr>
<tr>
<td>GB 2416524</td>
<td>01-02-2006</td>
<td>NONE</td>
</tr>
</tbody>
</table>