wo 20107151444 A1 1IN0 OO0 OO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oo TN
1 1d Intellectual P t t) ey
(19) Work Tttectua Popersy Oegaisaion /752 I[N RIR MR
International Bureau S,/ 0
3\) 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10
29 December 2010 (29.12.2010) PCT WO 2010/151444 Al
(51) International Patent Classification: E. [US/US]; 3261 Benton Street, Santa Clara, CA 95051
GOG6F 21/00 (2006.01) (US).
(21) International Application Number: (74) Agent: HETZ, Joseph, F.; Brinks Hofer Gilson & Lione,
PCT/US2010/038458 P.O. Box 10087, Chicago, IL 60610 (US).
(22) International Filing Date: (81) Designated States (unless otherwise indicated, for every
14 June 2010 (14.06.2010) kind of national protection available): AE, AG, AL, AM,
25) Filing L . Enelish AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(25) Filing Language: nglis CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(26) Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
o HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(30) Priority Data: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
12/492,751 26 June 2009 (26.06.2009) us ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(71) Applicant (for all designated States except US): SAN- NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
DISK COPORATION [US/US]; 601 McCarthy Boule- SE, 8G, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN, TR,
vard, Milpitas, CA 95035 (US), TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors; and 84) Designateq States (unle.ss othemise indicated, for every
(75) Inventors/Applicants (for US only): LIN, Jason, T. [US/ kind of regional protection available): ARIPO (BW, GH,
US]; 2670 Iversen Court, Santa Clara, CA 95051 (US). GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
KANARIS, Alexander [US/US]; 5049 1/2 Bartlett Av- ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
enue, San Gabriel, CA 91776 (US). HALPERN, Joseph, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

[Continued on next page]

(54) Title: MEMORY DEVICE AND METHOD FOR EMBEDDING HOST-IDENTIFICATION INFORMATION INTO CON-

TENT
(57) Abstract: A memory device and method tfor
200 embedding host-identification information into
\))) content are disclosed. In one embodiment, a
Receive a Credential from the Host ™ 210 memory device is provided comprising a memory
operative to store content and a controller in com-
¢ munication with the memory. The controller is
operative to receive a credential comprising host-
Authenticate the Host Using the Credential 1@ent}ﬁcatlpn information from a host in commu-
220 nication with the memory device, authenticate the
host using the credential, receive a request from
v the host to play content stored in the memory,
embed the host-identification information into the
: content, and send the content with the embedded
Receive a Request from the Host to Play
.) host-identification information to the host.
Content Stored in the Memory Device
230
Y
Embed the Host-ldentification information into
the Content
240
Y
Send the Content with the Embedded Host-
Identification Information to the Host 250

Figure 2

WO 2010/151444 A1 000000 U0 T O A

LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

WO 2010/151444 PCT/US2010/038458

Memory Device and Method for Embedding
Host-Identification Information into Content

Background

[0001] Insome content protection systems, a media device (e.g., a Blu-ray Disc)
provides a host player (e.g., a Blu-ray Disc player) with encrypted digital content (e.g., a
high-definition movie) for decryption and playback. The content contains many sets of
duplicate video frames that are nearly identical to one another but have some slight
variation. There are many alternate navigation paths through these duplicate frames, and
the host player selects a particular navigation path based on the device key of the group it
belongs to within the key tree structure of the Media Key Block of the host player.
Accordingly, the specific ones of the duplicate frames rendered by the host player
provide a unique signature (or “watermark”) from which to identify the host player. In
this way, if a content title were to be pirated, the pirated copy can be analyzed to
determine the navigation path that was used and, thus, the identity of the particular host
player that generated the pirated copy. Once the compromised host player is identified,
the host player’s certificate and key can be revoked, so that the host player will no longer
be able to decrypt (and possibly pirate) further content, thereby containing the potential
revenue loss of the content provider due to the host player’s security breach. For
example, new certificate revocation lists can be distributed with future releases of
content, so that the compromised host player will be disabled when it attempts to play a
new content title. However, the effectiveness of the solution is measured by the number
of recovered content it takes to precisely detect the compromised host player in the
ecosystem. This leads to a delay in detecting the compromised host player and also
contains a probabilistic detection of the absolute guilty device.

[0002] These content protection systems can face a “fox guarding the hen house”
problem in that the entity responsible for injecting the watermark into the content is the
compromised host player itself. Accordingly, there is a concern that once the host player
is compromised to allow content to be pirated, it may be further compromised to remove

the watermark injection functionality.

WO 2010/151444 : PCT/US2010/038458

Summary
[0003] E.mbodiments of the present invention are defined by the claims, and nothing in
this section should be taken as a limitation on those claims.
[0004] By way of example, the embodiments described below generally relate to a
memory device and method for embedding host-identification information into content.
In one embodiment, a memory device is provided comprising a memory operative to
store content and a controller in communication with the memory. The controller is
operative to receive a credential comprising host-identification information from a host in
communication with the memory device, authenticate the host using the credential,
receive a request from the host to play content stored in the memory, embed the host-
identification information into the content, and send the content with the embedded host-
identification information to the host.
[0005] Other embodiments are provided, and each of the embodiments can be used
alone or together in combination. Various embodiments will now be described with

reference to the attached drawings.

Brief Description of the Drawings
[0006] Figure 1 is a block diagram of a host and a memory device of an embodiment.
[0007] Figure 2 is a flow chart of a method of an embodiment for embedding host-
identification information into content.
[0008] Figures 3A-3E illustrate exemplary embedding techniques that can be used with
these embodiments.
[0009] Figure 4 is a block diagram of a host and a memory device of an embodiment.
[0010] Figure 5 is a flow chart of a method of an embodiment for embedding host-
identification information into content using a memory device that is file system aware
[0011}] Figure 6 is a flow chart of a method of an embodiment for embedding host-
identification information into content using a memory device that is file system agnostic.
[0012] Figure 7 is a flow chart of a method of an embodiment for using a content

loading system to update a look-up table.

WO 2010/151444 . PCT/US2010/038458

Detailed Description of the Presently
Preferred Embodiments

[0013] Introduction

[0014] By way of introduction, the following embodiments generally relate to a
memory device and method for embedding host-identification information into content
played from the memory device. In these embodiments, the host-identification
information is 'provided by the host to the memory device as part of a credential used to
authenticate the host to the memory device. The host-identification used during the
authentication process can be securely and directly injected into the content by the
memory device to achieve precise and instant detection of a compromised host. That is,
the embedded host-identification information enables a content owner to identify the host
that produced a pirated copy of its content and revoke that host’s certificate and key, so
that the host will no longer be able to decrypt (and possibly pirate) further content.
Further, because it is the memory device — not the host — that is responsible for
embedding the host-identification information into the content, these embodiments
overcome the “fox guarding the hen house” problem encountered with content protection
systems that rely upon a compromised host to police itself. This approach does not
interfere with the host-driven approach, so both can exist simultaneously.

[0015] Overview of Embedding Host-Identification Information

[0016] Turning now to the drawings, Figure 1 is a block diagram of a host 50 and a
memory device 100 of an embodiment. As shown in Figure 1, the memory device 100
comprises a controller 110 and a memory 120 operative to store content 130. “Content”
can take any suitable form, such as but not limited to, digital video (with or without
accompanying audio) (e.g., a movie, an episode of a TV show, a news program, etc.),
audio (e.g., a song, a podcast, one or a series of sounds, an audio book, etc.), still or
moving images (e.g., a photograph, a computer-generated display, etc.), text (with or
without graphics) (e.g., an article, a text file, etc.), a video game or other software, and a
hybrid multi-media presentation of two or more of these forms.

[0017] The controller 110 can be implemented in any suitable manner. For example,
the controller 110 can take the form of a microprocessor or processor and a computer-

readable medium that stores computer-readable program code (e.g., software or

WO 2010/151444 - - PCT/US2010/038458

firmware) executable by the (micro)processor, logic gates, switches, an application
specific integrated circuit (ASIC), a programmable logic controller, and an embedded
microcontroller, for example. Examples of controllers include, but are not limited to, the
following microcontrollers: ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20,
and Silicon Labs C8051F320. Examples of various components that can be used in a
controller are described in the embodiments discussed below and are shown in the
associated drawings. The controller 110 can also be implemented as part of the memory
120 control logic.

[0018] The memory 120 can take any suitable form. In one embodiment, the memory
120 takes the form of a solid-state (e.g., flash) memory and can be one-time
programmable, few-time programmable, or many-time programmable. However, other
forms of memory, such as optical memory and magnetic memory, can be used. Although
shown as single components in Figure 1, the controller 110 and/or memory 120 can be
implemented with several components. Further, the memory device 100 can contain
other components, which are not shown in Figure 1 to simplify the drawings. In one
embodiment, the memory device 100 takes the form of a handheld, removable memory
card (e.g., a flash storage card); however, the memory device 100 can take other forms,
such as, but not limited to, a solid-state drive and a universal serial bus (USB) device.
[0019] As shown in Figure 1, the memory device 100 is in communication with the
host device 50. As used herein, the phrase “in communication with” means directly in
communication with or indirectly in communication with through one or more
components, which may or may not be shown or described herein. The host 50 can take
any suitable form, such as, but not limited to, a dedicated content player, a mobile phone,
a personal computer (PC), a game device, a personal digital assistant (PDA), a kiosk, and
a TV system. Preferably, the memory device 100 is removably connected to the host 50,
so a user can use the memory device 100 with a variety of hosts.

[0020] Figure 2 is a flow chart 200 of a method of an embodiment for embedding host-
identification information into content using the memory device 100. As shown in the
flow chart 200, the controller 110 in the memory device 100 receives a credential from
the host 50 (act 210) and authenticates the host 50 using the credential (act 220).

(Preferably, mutual authentication and key exchange are performed, in which case the

WO 2010/151444 ‘ PCT/US2010/038458

memory device 100 would provide its own credential to the host 50 for authentication.)
The credential that the host 50 provides to the memory device 100 contains information
that identifies the host 50 (“host-identification information™), such as a serial number, a
random number, unique information about where, when, and/or how the host 50 was
manufactured, etc. The credential can be part of a public key infrastructure (“PKI”)
certificate that binds a public key with the host-identification information and is used
during the authentication process to verify that the public key belongs to the host 50.
Next, the memory device 100 receives a request from the host 50 to play content 130
stored in its memory 120 (act 230). (It should be noted that the acts discussed herein can
be performed in any suitable order. For example, the memory device 100 can receive the
request to play the content 130 before or after receiving the credential from the host 50 or
can receive the request along with the credential.) The memory device 100 then embeds
(i.e., “injects™) the host-identification information received from the host 50 during host
authentication into the content (act 240). The memory device 100 then sends the content
with the embedded host-identification information to the host 50 (act 250). In one
embodiment, the memory device 100 embeds the host-identification information into the
content “on-the-fly” in real-time during playback of the content (i.e., as the content is
being output to the host 50). Accordingly, acts 240 and 250 are performed
simultaneously. In an alternate embodiment, the memory device 100 sends the content to
the host 50 only after it has completed embedding the host-identification information into
all desired locations in the content (i.e. acts 240 and 250 are performed sequentially).
[0021] One advantage associated with this embodiment is that if the host 50 were to
pirate the played content, the host-identification information would allow the content
owner to identify the host 50 as the player that pirated the content and can revoke the
host’s 50 certificate and key, so that the host 50 will no longer be able to decrypt (and
possibly pirate) further content, thereby containing the potential revenue loss of the
content provider due to the host’s 50 security breach. That is, once the compromised
content is made available for mass distribution, the content owner can extract the
compromised host’s identification information by comparing the compromised content
with an original “gold” copy or by using a specialized software tool. The identification

of the compromised host then can be passed to a Certification Authority to revoke or

WO 2010/151444 PCT/US2010/038458

blacklist that particular host. Another advantage is that because it is the memory device
100 — not the host 50 — that is responsible for embedding the host-identification
information into content in these embodiments, this content protection system avoids the
“fox guarding the hen house” problem encountered with content protection systems that
rely upon a compromised host to police itself.

[0022] Exemplary Embedding Techniques

[0023] Asdiscussed above, in these embodiments, the memory device 100 embeds
host-identification information into content provided to the host 50 for playback. Figures
3A-3E illustrate five exemplary embedding techniques: (1) embedding host-identification
information in a last frame of a group of pictures (“GOP”) in a series of GOPs, (2)
embedding host-identification information in unreferenced frames, (3) embedding host-
identification information in unreachable GOPs, (4) embedding host-identification
information in “user data” packets, and (5) embedding host-identification information in
unreferenced streams in a system layer. These exemplary embedding techniques will be
described in the following paragraphs. It should be noted that these techniques are
merely examples and that other techniques can be used. Accordingly, a specific type of
embedding technique should not be read into the claims unless explicitly recited therein.
Further, as will be described in more detail below, one or more than one embedding
technique can be used during a playback session or across playback sessions to provide a
dynamic content protection system. Also, instead of using a single embedding technique
ata given time, a combination of embedding techniques can be used.

[0024] Before turning to these exemplary embedding techniques, it should be noted
that the memory device 100 can determine location(s) in the content in which to embed
the host-identification information using any suitable technique. For example, the
memory device 100 can determine embedding location(s) by recognizing/parsing the file
system on the memory device 100 using video file analyzer code (or hardware logic)
stored in the memory device 100. In this way, the memory device 100 would analyze the
content to determine a location in the content in which to embed the host-identification
information. Such a memory device 100 will be referred to herein as being “file system
aware.” Alternatively, the memory device 100 can determine embedding location(s) by

identifying an address using a look-up table that is generated for that particular content

WO 2010/151444 PCT/US2010/038458

and correlates addresses with particular video file objects. Such a memory device 100
will be referred to herein as being “file system agnostic.” The look-up table can be
generated by the content owner and stored with the content on a freshly-manufactured
memory device (or on a pre-used memory device that is freshly formatted).

Alternatively, as will be discussed in more detail below, a content loading system can
generate a look-up table for a “used” memory device by analyzing the memory device’s
file system (e.g., by analyzing existing fragmentation and FAT cluster assignments in
order to update the lookup table provided by the content owner). In any event, in
situations where a look-up table is used, it is preferred that the content be stored in the
memory device 100 in a write-protected manner to prevent applications, such as a
defragmenter, from moving data around in the content, which would invalidate the look-
up table. Also, the following discussion assumes that write-once memory devices and re-
writable memory device can be treated as functionally equivalent by the memory device’s
firmware even though there may be slight variations in how write-once memory devices
and re-writable memory devices handle data.

[0025] Returning to the drawings, Figure 3A illustrates an embedding technique in
which the memory device 100 embeds data in a last frame of a group of pictures (“GOP”)
300 in a series of GOPs. A GOP is a sequence of frames of digital video in an MPEG-
encoded digital video stream, where each frame is a set of luminance values that a video
rendering device (e.g., a television set) displays at the same time or at approximately the
same time, rendering a frame that results in the displaying of a picture. A GOP starts
with an intra-frame (or “I-Frame”) that contains a data set that is sufficient to describe
every luminance value in a frame. A GOP also contains a progressive frame (or “P-
Frame”) that contains a data set that, when combined with the data sets of N previous
frames, yields a data set that is sufficient to describe every luminance value in a frame. A
GOP additionally contains a bidirectional frame (or “B-Frame”) that contains a data set
that, when combined with the data set of N previous frames and N subsequent frames,
yields a data set that is sufficient to describe every luminance value in a frame.

[0026] The memory device 100 can identify the last frame of the GOP 300 in any
suitable manner. For example, if the memory device 100 is file system aware, embedded

firmware in the memory device 100 can identify the location of the last frame in the GOP

WO 2010/151444 ‘ PCT/US2010/038458

300 by recognizing/parsing the file system on the memory device 100 using video file
analyzer code stored in the memory device 100. In this scenario, the memory device 100
can identify the beginning of the content file and the first GOP within the file by parsing
information from the file system to identifying the Logical Block Addresses (LBAs) that
belong to a file. The memory device 100 can identify each GOP as well as a sequence of
GOPs in a file even when the file is split over non-consecutive LBAs by following the
file system pointers that link the file to its corresponding LBAs. On the other hand, if the
memory device 100 is file system agnostic, the memory device 100 can determine the last
frame of the GOP by using a look-up table. In this situation, the memory device 100 can
be designed to parse raw data from sectors with the additional capability of identifying
the beginning of a GOP and the respective members of the GOP. GOP boundaries can be
identified by scanning thé data contained in moﬁotonically-increasing sectors on the
memory device 100 based on their LBA. Any GOP that can not be identified in its
entirety within a range of monotonically-increasing LBAs in the raw memory device data
can be bypassed as unsuitable for marking.

[0027] It should be noted that the host-identification information embedded by the
memory device 100 can be contained entirely within one GOP 300 or can be distributed
over several GOPs with a data rate that can be as low as one data bit per GOP. Maximal
obfuscation of embedded data can be achieved by encoding such data in exponential-
Golomb coded syntax elements. Also, error correcting code (ECC), such as multiple
layers of the extended binary Golay code or equivalent, can be employed in encoding the
host-identification information in order to increase tamper resistance by way of extensive
redundancy.

[0028] Returning to the drawings, Figure 3B illustrates embedding host-identification
information in unreferenced frames in a group of pictures 310. An unreferenced frame is
a frame data set that is an integral part of the video stream that a navigation path (i.e., a
path specified by é data set or data stream that controls the sequencing of the video
rendering process) specifically excludes from rendering. Alternatively, an unreferenced
frame can be a frame data set that is unreachable through all available navigation paths.
While a referenced frame is an active frame that is rendered, an unreferenced frame is an

inactive frame due to navigation constraints and, thus, is available to be used to store

WO 2010/151444 PCT/US2010/038458

host-identification information. In one embodiment, unreferenced frames are specifically
generated as a placeholder for host-identification information by a video encoder before
loading the content into the memory device 100. The memory device’s 100 operations
(whether the memory device 100 is file system agnostic or file system aware) are similar
to those described above. Further, ECC can be employed as described above with respect
to the previously-described techniques.

[0029] Figure 3C illustrates embedding host-identification information in an
unreferenced (or “unreachable™) group of pictures (GOPs) in a series of GOPs 320. An
unreferenced GOP is similar to an unreferenced frame in that both are unplayable due to
navigation-imposed constraints. That is, an unreferenced GOP is a set of frames
belonging to a single GOP that is an integral part of the video stream that the navigation
stream specifically excludes from rendering. Alternatively, an unreferenced GOP can be
a GOP that is unreachable through all available navigation paths. Accordingly, this
embedding technique is similar to the technique in which host-identification information
is embedded in an unreferenced frame. However, this technique may be faster than the
unreferenced-frame teéhnique because it may require fewer CPU cycles to implement, as
it is relatively simple to identify the beginning of a GOP, as compared to an unreferenced
frame. Also, ECC can be employed as described above with respect to the previously-
described technique.

[0030] Figure 3D illustrates an embedding technique in which host-identification
information is embedded in user data fields (packets) in a video stream 330. The term
“user data” describes a data set that is an integral part of the video stream 330 which the
reference decoder specifically excludes from processing and, consequently, from
displaying in any way. Typically, user data fields are defined in the reference
implementation of a decoder as placeholders for future enhancements. Accordingly, user
data fields can be specifically generated as a placeholder for host-identification
information by a video encoder before loading the content into the memory device 100.
The memory device’s 100 operations (whether the memory device 100 is file system
agnostic or file system aware) are similar to those described above. Further, ECC can be

employed as described above with respect to the previously-described techniques.

WO 2010/151444 : PCT/US2010/038458

[0031] Figure 3E illustrates an embedding technique in which host-identification
information is embedded in unreferenced streams in the system layer 340. The system
layer 340 describes a data set that consists of the time or space multiplex of data stream
and/or packets of different GOP sequences within a digital video stream. A data stream
describes a data set that contains a homogeneous collection of data objects of a certain
type (e.g., audio data, video data, navigation data, or auxiliary data). Such streams may
or may not be related to each other. A packet describes a data set that is identifiable by
explicit data patterns (bit-patterns) that are inserted as a prefix and/or a suffix to a partial
data set that consists of a fragment of data produced by the video encoder (a partial data
set may or may not be a self-contained data object). As with the above-described
techniques, the unreferenced stream can be specifically generated as a placeholder for
host-identification information by a video encoder before loading the content into the
memory device 100. Also, the memory device’s 100 operations (whether the memory
device 100 is file system agnostic or file system aware) are similar to those described
above, and ECC can be employed as described above with respect to the previously-
described techniques.

[0032] It should again be noted that the embedding techniques described above are
merely examples and that other embedding techniques can be used. Further, while the
memory device 100 can be configured to per‘form a single embedding technique, the
memory device 100 can be configured to perform multiple embedding techniques.
Specifically, it is presently preferred that the memory device 100 be configured to
dynamically embed host-identification information into content by implementing
different embedding techniques as the content is being played during a playback session
or upon each playback session of the content. Varying the embedding techniques can be
an effective countermeasure to attackers who compare compromised content from
multiple hosts to locate (and then contaminate or remove) embedded host-identification
information. That is, if an attacker trying to gain unauthorized access to content could
reliably identify the “watermarks” (i.e., the embedded host-identification information), he
would be able to contaminate or remove them. For example, if an attacker compromised
more than one platform, he could quickly find out that the bit-streams are not identical,

which would alert him to the fact that some type of attacker-tracing information could be

10

WO 2010/151444 PCT/US2010/038458

present in the bit stream. The attacker can then modify or erase any data that is different,
thereby removing the host-identification information from the pirated content. An
attacker could even potentially erase the host-identification information from a single
video stream if the amount of obfuscation is insufficient or non-existent. However, by
adaptively altering the embedding technique used through a playback session and/or
across playback sessions, enough diversity is introduced into pirated content that the
host-identification information cannot be easily identified from a simple comparison.
[0033] Any suitable adaptive algorithm can be used to vary the method or combination
of the methods used to embed host-identification information. Examples of factors that
can be used to determine the embedding method and locations include, but are not limited
to, the unique certification host ID (i.e., the host-identification information itself), the
memory device certificate, and prior playback and injection session information stored in
a history log in the memory device 100. Also, any suitable event can trigger the altering
of the embedding method or combination of methods. For example, the memory device
100 can initiate a session with the host 50 to modify the embedding algorithm after a
certain playback duration (e.g., after a ten-minute period, after 100MB are played, or
after a video chapter is encountered).

[0034] Exemplary Memory Device

[0035] The memory device of these embodiments can be implemented in any suitable
manner. The following paragraphs and referenced drawings described one exemplary
implementation. It should be understood that this implementation is merely an example
and that details shown and described herein should not be read into the claims unless
explicitly recited therein.

[0036] Returning to the drawings, Figure 4 is a block diagram of a memory device 400
and host 450 of an embodiment. As shown in Figure 4, the memory device 400
comprises a controller 410 and a memory 420. The controller 410 comprises a memory
interface 411 for interfacing with the memory 420 and a host interface 412 for interfacing
with the host 450. The controller 410 also comprises a central processing unit (CPU)
413, a crypto-engine 414 operative to provide encryption and/or decryption operations,
read access memory (RAM) 415, read only memory (ROM) 416 which stores firmware

(logic) for the basic operations of the memory device 400, and a non-volatile memory

11

WO 2010/151444 : PCT/US2010/038458

(NVM) 417 which stores a device-specific key used for encryption/decryption operations.
It should be noted that the memory device-specific key can be stored in other memory
areas within the memory device. The components shown in Figure 4 can be implemented
in any suitable manner. However, it is presently preferred that the memory device
controller 410 have sufficient CPU 413 processing power to execute an algorithm that is
either file system aware with intelligence to parse a video file format or is able to use an
address lookup table in order to inject watermarks, as will be described below.

[0037] In this embodiment, the memory 420 comprises a public partition 425 that is
managed by a file system on the host 450 and a hidden protected system area 435 that is
internally managed by the controller 410. The hidden protected system area 435 stores
content encryption keys (CEKs) 440 and firmware (FW) code 442 (e.g., credential
injection code 444 and video file analyzer or lookup table code 446). The public partition
425 and the hidden protected system area 435 can be part of the same memory unit or can
be different memory units. The hidden protected system area 435 is “hidden” because it
is internally managed by the controller 410 (and not by the host controller 460) and is
“protected” because objects stored in that area 435 are encrypted with the unique key
stored in the non-volatile memory 417 of the controller 410. (The memory device
hardware unique key can be stored in the non-volatile memory 417 of the controller 410
or other areas within the memory device 400.) Accordingly, to access objects stored in
that area 435, the controller 410 would use the crypto-engine 414 and the key stored in
the non-volatile memory 417 to decrypt the encrypted objects. Preferably, the memory
device 300 takes the form of a secure product from the family of products built on the
TrustedFlash™ platform by SanDisk Corporation.

[0038] The public partition 425 of the memory stores protected content files 430A,
430B. In this embodiment, the content files 430A, 430B, which can be different versions
(e.g., resolution) of the same content title, are provided by a content provider and are
released to a content replication and ingestion facility, which loads the content files
430A, 430B in the public partition 425. (Instead of the content 430A, 430B being
preloaded in the memory device 420, the content files 430A, 430B can be side-loaded or
downloaded into the memory device 420 using a content loading system, such as a kiosk

or a PC connected to the Internet.) While the public partition 425 of the memory 420 is

12

WO 2010/151444 S PCT/US2010/038458

managed by a file system on the host 450, objects stored in the public partition 425 (such
as the content files 430A, 430B) may also be protected by the memory device 400. In
this embodiment, both stored content files 430A, 430B are protected by respective
content encryption keys 440 stored in the hidden protected system area 435, and those
keys 440 are themselves protected by the memory-device unique key stored in the non-
volatile memory 417 of the controller 410. Accordingly, to unprotect one of the
protected content files (say, content file 430A), the crypto-engine 414 would use the
memory-device unique key stored in the non-volatile memory 417 of the controller 410
to decrypt the appropriate content encryption key 440 and then use the decrypted content
encryption key 440 to decrypt the protected content 430A.

[0039] Turning now to the host 450, the host 450 comprises a controller 460 that has a
memory device interface 461 for interfacing with the memory device 400. The controller
460 also comprises a central processing unit (CPU) 463, a crypto-engine 464 operative to
provide encryption and/or decryption operations, read access memory (RAM) 465, read
only memory (ROM) 466, and display output circuit 471. It should be noted that each
component in box 460 can be implemented as separate chips in the overall host system.
The host 450 also comprises protected mass storage 472.

[0040] The memory device 400 and the host 450 communicate with each other via a
memory device interface 461 and a host interface 412. For operations that involve the
secure transfer of data, it is preferred that the crypto-engines 414, 464 in the memory
device 400 and host 450 be used to rﬁutually authenticate each other and provide a key
exchange. The mutual authentication process calls for the host 450 and memory device
400 to exchange unique certification IDs (as explained herein, the host’s unique
certification ID is the host-identification information that is embedded in the content).
After mutual authentication is complete, it is preferred that a session key be used to
establish a secure channel for communication between the memory device 450 and host
400. Alternatively, the memory device 400 and host 450 can support broadcast-
encryption-type security in order to have the host 450 provide its credential for the
memory device 400 to inject into the content.

[0041] As mentioned above, the memory device 400 in this embodiment can be used to

embed host-identification information into content. Figures 5 and 6 are flow charts 500,

13

WO 2010/151444 PCT/US2010/038458

600 illustrating the acts of this method when the memory device 400 is file system aware
(Figure 5) and file system agnostic (Figure 6). Turning first to Figure 5, when the host
450 sends a command to the memory device 400, the protected (encrypted) content 430A
is sent to the crypto engine 414 (act 505). The injection code 444 sends crypto control
commands to the crypto-engine 414 (act 510), in response to which the crypto-engine 414
uses the memory-device unique key in the non-volatile memory 417 to decrypt the
content encryption key 440, which the crypto-engine 414 uses to decrypt the protected
content 430A. The decrypted “plain” content file 430A is then sent to the controller’s
RAM 415 (act 515). The injection code 444 analyzes the content format and structure
and applies a host credential injection algorithm (i.e., a host-identification information
embedding technique) (act 525). Specifically, because the memory device 400 is file
system aware, the video file analyzer 446 in the memory device 400 analyzes and
identifies instances of data within the content to determine location(s) for embedding
host-identification information in accordance with the algorithm. The content with the
embedded host credential is then sent to the crypto-engine 414 (act 530). The injection
code 444 sends a crypto control command to the crypto-engine 414 to encrypt the content
with the embedded host credential (act 535). The encrypted content with the embedded
host credential is then sent to the host interface 412 for transfer to the host 450 (act 540).
The host 450 receives, processes, and decodes the video content without being watermark
aware.

[0042] In Figure 5, the memory device 100 was file system aware and was able to
analyze the content format and structure to apply the appropriate host credential injection
algorithm. However, not all memory devices have a firmware module (or hardware
logic) to enable an intelligent file system and video file format parser to determine the
location of injection. In these situations, an index table particular to specific content can
be used to determine the location of injection. Figure 6 is a flow chart 600 of the use of
such a “file system agnostic” memory device.

[0043] As shown in Figure 6, when the host 450 sends a command to the memory
device 400, the protected (encrypted) content 430A and the address lookup table 446 are
provided to the crypto-engine 414 (act 605). The injection code 444 sends crypto control

commands to the crypto-engine 414 (act 610), in response to which the crypto-engine 414

14

WO 2010/151444 PCT/US2010/038458

uses the memory-device unique key in the non-volatile memory 417 to decrypt the
content encryption key 440, which the crypto-engine 414 uses to decrypt the protected
content 430A. The decrypted “plain” content file 430A and the lookup table are then sent
to the controller’s RAM 415 (act 615). The injection code 444 then reads the lookup
table address indices 446 (act 620) and applies a host credential injection algorithm via
the lookup table (act 625). In other words, the injection code 444 uses the lookup table
with address indices 446 to identify instances of data within the content for embedding
host-identification information in accordance with the algorithm. The content with the
embedded host credential is then sent to the crypto-engine 414 (act 630), which, in
response to a crypto control command from the injection code 414 (act 635), encrypts the
content with the embedded host credential and provides it to the host interface 412 for
transfer to the host 450 (act 640).

[0044] Content Loading Embodiments

[0045] Content can be authored to support one or more host-identification information
embedding techniques (such as, but not limited to, the embedding techniques discussed
above). For example, a content authoring tool can randomly inject unreferenced frames,
unreachable GOPs, user data packets, and unreferenced system streams throughout the
content file during content file creation. For a memory device that is file system aware
(e.g., that has file system and file header parsing capabilities), no additional information
is required from the authoring tool. However, for a memory device that is not capable of
being file system aware, the authoring tool can provide a logical address index table of
each synthetic data type for watermark injection along with the content. As discussed
above, the index table can be used by the memory device’s firmware to embed host-
identification information based on LBA and byte addresses. As also discussed above, to
preserve the integrity of the look-up table, the content can be write-protected to prevent
applications, such as a defragmenter, from moving data around in the content, which
would invalidate the look-up table.

[0046] If the content and the look-up table are pre-loaded into a newly-manufactured
or freshly-formatted memory device, the memory device is free of fragmentation and file
allocation table cluster assignments, so the look-up table generated by the content

provider is accurate. However, since the look-up table is generated for a fresh memory

15

WO 2010/151444 ' : PCT/US2010/038458

device, a problem can occur if the memory device is not fresh but rather was previously
used to store (or delete) content. In this situation, existing file system structures in the
memory device will render the LBA entries in the look-up table out-of-date. This can
occur, for example, when a user buys a memory device pre-loaded with content and then
writes and erases additional content on remaining free space in the memory device. If the
| user later side-loads or downloads new content and a lookup table from a content loading
system (e.g., a kiosk or a PC connected to the Internet), the lookup table will not be
consistent with the existing file system structures in the memory device. In this situation,
it is preferred that the content loading system analyze the memory device for existing file
system structures for fragmentation and file allocation table cluster assignment and then
update the look-up table accordingly. That is, the content loading system would be
responsible for loading the content, loading the index file (if one exists), and possibly
m;mipulating the index file to match the existing file system and cluster allocation of the
memory device.
[0047] Figure 7 provides a flow chart 700 of such a method. In Figure 7, the “host”
refers to the host 450 in Figure 4. Instead of being used to render played content from the
memory device 400, the host 450 here is used as a content loading system/machine, such
as a kiosk, a PC connected to the Internet, a mobile handset downloading over the air, or
a set-top box/TV/game console acquiring content from Internet or from a broadcast
network. As shown in Figure 7, in response to a request from the host 450 to read the
memory device lookup table and file system (act 702), the memory device 400 provides
the host’s RAM 465 with file system information, such as the FAT tables and
fragmentation information (act 703). The memory device controller 410 then provides
the encrypted lookup table with address indices to the host crypto engine 464 (act 705),
which based on cyrpto control from the host 450 (act 710) decrypts the lookup table and
provides it to the host’s RAM 465 (act 715). The host 450 then reads the lookup table
address indices and file system information (act 720) and provides new content with a
new lookup table to the host’s RAM 465 (act 725). The host 450 then sends the new
content with the updated lookup table to its crypto-engine 464 (act 730), which encrypts

those items based on a crypto control command (act 735). The host 450 then provides

16

WO 2010/151444 PCT/US2010/038458

the encrypted content with the updated lookup table to the memory device interface 461
(act 740) for loading into the memory device 400.

[0048] Conclusion

[0049] It is intended that the foregoing detailed description be understood as an
illustration of selected forms that the invention can take and not as a definition of the
invention. It is only the following claims, including all equivalents, that are intended to
define the scope of the claimed invention. Finally, it should be noted that any aspect of
any of the preferred embodiments described herein can be used alone or in combination

with one another.

17

WO 2010/151444 PCT/US2010/038458

What is claimed is:

1. A memory device comprising:
a memory operative to store content; and
a controller in communication with the memory, wherein the controller is
configured to:
receive a credential from a host in communication with the memory
device, wherein the credential comprises host-identification information;
authenticate the host using the credential;
receive a request from the host to play content stored in the memory;
embed the host-identification information into the content; and
send the content with the embedded host-identification information to the

host.

2. The memory device of Claim 1, wherein the controller is configured to embed the

host-identification information in a last frame of a group of pictures (GOP).

3. The memory device of Claim 1, wherein the controller is configured to embed the

host-identification information in an unreferenced frame.

4. The memory device of Claim 1, wherein the controller is configured to embed the

host-identification information in an unreachable group of pictures (GOP).

5. The memory device of Claim 1, wherein the controller is configured to embed the

host-identification information in a user data field.

6. The memory device of Claim 1, wherein the controller is configured to embed the

host-identification information in an unreferenced stream in a system layer.

18

WO 2010/151444 PCT/US2010/038458

7. The memory device of Claim 1, wherein the controller is configured to embed the
host-identification information into the content in real-time during playback of the

content.

8. The memory device of Claim 7, wherein the controller is configured to vary how
the host-identification information is embedded into the content as the content is being

played.

9. The memory device of Claim 1, wherein the controller is configured to vary how
the host-identification information is embedded into the content upon each playback

session of the content.

10. The memory device of Claim 1, wherein the controller is operative to determine a
location in the content in which to embed the host-identification information by using a

look-up table.

11. The memory device of Claim 10, wherein the content is pre-loaded into the

memory device and the look-up table is provided by a content owner

12. The memory device of Claim 10, wherein the content and look-up table are
loaded into the memory device by a content loading system, and wherein the content
loading system updates the look-up table to account for existing file system structures in

the memory device.

13. The memory device of Claim 10, wherein the content is write-protected to protect

the integrity of the look-up table.
14. The memory device of Claim 1, wherein the controller is operative to analyze the

content to determine a location in the content in which to embed the host-identification

information.

19

WO 2010/151444 ' PCT/US2010/038458

15. The memory device of Claim 1 further comprising a firmware or hardware logic

module operative to analyze video encoding and file container structures.

16. A method for embedding host-identification information into content, the method
comprising:
performing in a controller of a memory device, the memory device comprising a
memory operative to store content:
receiving a credential from a host in communication with the memory
device, wherein the credential comprises host-identification information;
authenticating the host using the credential;
receiving a request from the host to play content stored in the memory;
embedding the host-identification information into the content; and
sending the content with the embedded host-identification information to

the host.

17. The method of Claim 16, wherein the host-identification information is embedded

in a last frame of a group of pictures (GOP).

18. The method of Claim 16, wherein the host-identification information is embedded

in an unreferenced frame.

19. The method of Claim 16, wherein the host-identification information is embedded

in an unreachable group of pictures (GOP).

20. The method of Claim 16, wherein the host-identification information is embedded

in a user data field.

21. The method of Claim 16, wherein the host-identification information is embedded

in an unreferenced stream in a system layer.

20

WO 2010/151444 PCT/US2010/038458

22. The method of Claim 16, wherein the host-identification information is embedded

into the content in real-time during playback of the content.

23. The method of Claim 22 further comprising varying how the host-identification

information is embedded into the content as the content is being played.

24. The method of Claim 16 further comprising varying how the host-identification

information is embedded into the content upon each playback session of the content.

25. The method of Claim 16 further comprising determining a location in the content

in which to embed the host-identification information by using a look-up table.

26. The method of Claim 25, wherein the content is pre-loaded into the memdry

device and the look-up table is provided by a content owner

27. The method of Claim 25, wherein the content and look-up table are loaded into
the memory device by a content loading system, and wherein the content loading system
updates the look-up table to account for existing file system structures in the memory

device.

28. The method of Claim 25, wherein the content is write-protected to protect the

integrity of the look-up table.

29. The method of Claim 16 further comprising analyzing the content to determine a

location in the content in which to embed the host-identification information.

30. The method of Claim 10, wherein the memory device comprises a firmware or

hardware logic module operative to analyze video encoding and file container structures.

21

PCT/US2010/038458

WO 2010/151444

1/8

50

\\\mo

CONTROLLER

HOST

\\t 100

110

£

120

~

CONTROLLER

A MEMORY

CONTENT

Ciao

MEMORY DEVICE

Figure 1

WO 2010/151444 PCT/US2010/038458

2/8
200
\’ Receive a Credential from the Host —

210

Authenticate the Host Using the Credential
220

Receive a Request from the Host to Play

Content Stored in the Memory Device
230
Embed the Host-identification Information into
the Content
240

Send the Content with the Embedded Host- [~_
ldentification Information to the Host 250

Figure 2

WO 2010/151444 PCT/US2010/038458

3/8
| P B P B P B P B P
/
/ Host-Identification
300 Information
Injection Point
Figure 3A

R R R R R R U U U U

R: Active frame (Rendered) /

] : 310
U: Inactive frame (Unreferenced)

Figure 3B

WO 2010/151444 PCT/US2010/038458

4/8

OC
o»C
oOC

U
G

U-G: Unreferenced GOP

Figure 3C 520

Video data User data Video data

Figure 3D
330

Nav | Vid Aud | | Aud Aux Aud | Vid Aud Vid | Vid
pak | pak pak pak pak pak | pak pak pak | pak

Figure 3E

340

PCT/US2010/038458

WO 2010/151444

5/8

 2.nbi4

90I1A8(q AIOWBA]

Aowapw
—
uoliiled olland
. [sr4+4
|/
g9ild v alld
WUy JUBU0D
PaY0BI0Ig paYOR0Ig
P 7
q0¢y vaey
3000 9ev
shaj) M3
uvopndAsoug 8pos)
JUBUO! aiqel M
&« 9 dmjoon 1o 444
IezAleuY
ory 614 08DIA
opog
ealy WasAg uonoalul
P8108101d UappiH lenuapaid
7)
oby V444

19]j033U0D

Sly
P

Ly 9lv
A
N

1

Wy

30V4YILNI 3OVAYALNI
AHOWIW LSOH
N
- 7
(AR 3NIONT
-OLdA¥D Ndd Zip
\ { i
oy’ b gLy

1SOH
iy .
IDOVUOLS
SSYW 0319310%d
8” Jl0IU0D gov
\ L
Woy W
"IOVAYIUNI Eﬁ} thisife}
32IA30 —/
AHOWIW Aedsi
VAR _
Loy IANIONT Gl
-0LdANO Ndd
0oy

or—"

0S¥ r\

WO 2010/151444 PCT/US2010/038458

6/8

411
MEMORY INTERFACE

505

INJECTION

[m]

mE Qe
EzWon
ow@O
>EST
DCZOQ:
OO<O
ZOO_u_

CREDENTIAL

414
CRYPTO-ENGINE

515

444

/

LAIN CONTENT
FILE

<

ANALYZE CONTENT
FORMAT & STRUCTURE 415
INJECTION CODE THEN APPLY HOST RAM
CREDENTIAL INJECTION
ALGORITHM

530

ONTENT
WITH HOST

¢

CREDENTIAL
EMBEDDED

414

CRYPTO-ENGINE

/

500 0

ENCRYPTED
CONTENT WITH
HOST CREDENTIAL
EMBEDDED

Figure 5

412
HOST INTERFACE

WO 2010/151444 PCT/US2010/038458

7/8

411
MEMORY INTERFACE

605

CRYPTED
CONTENT

|

WITH
ADDRESS
LOOKUP
TABLE FOR
HOST
CREDENTIAL
INJECTION

414
CRYPTO-ENGINE

615

TABLE

444

/

LAIN CONTENT
FILLE & LOOKUP

LOOKUP TABLE
ADDRESS INDICES

<

415

INJECTION CODE RAM
HOST CREDENTIAL
INJECTION ALGORITHM
VIA LOOKUP TABLE
' -3 0
Eo=a 630
Goka
- I i 0
ZTtaol
otmg
Czxq

<

414
CRYPTO-ENGINE

<—(l.
/ aEEg
Wz&w |640
600 Log |
>z
e igoc W
oEoa
- G850
00
Figure 6 S

<

412
HOST INTERFACE

WO 2010/151444 PCT/US2010/038458

8/8

461

MEMORY DEVICE INTERFACE FILE SYSTEM

INFO

Q I
E a = 8 » 705
e23wy /
>Swx
o 100

> pd < < —
ul | o

700
464
HOST CRYPTO-ENGINE /
a.
& 715
S2am
oWy Q
= [alna)
< 0OZ
g
[0l
LOOKUP TABLE
HOST ADDRESS INDICES AND
(CONTENT LOADING FILE SYSTEM INFO 465
SYSTEM WITH CONTENT . HOST RAM
RELOADING
'NTELL'SSSTCEN’}'; D NEW NEW CONTENT WITH
NEW LOOKUP TABLE

i—
=
|
’_
z
o
O
<
]
=

WITH UPDATED
LOOKUP TABLE

464

CRYPTO-ENGINE

740

NCRYPTED
CONTENT WITH

G

UPDATED LOOKUP
TABLE

461
MEMORY DEVICE INTERFACE

Figure 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/038458

A. CLASSIFICATION OOSOUBJECT MATTER

INV. GO6F21
ADD.

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F HO4N GI11B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, IBM-TDB, COMPENDEX, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y WO 2008/013656 A2 (SANDISK CORP [US];
HOLTZMAN MICHAEL [US]; BARZILAI RON [IL];
SELA ROTE) 31 January 2008 (2008-01-31)
figures 1, 22, 47

paragraph [0212] - paragraph [0215]

Y US 2003/161473 Al (FRANSDONK ROBERT W
[US]) 28 August 2003 (2003-08-28)
figure 2

paragraph [0236]

A EP 1 014 618 Al (SONY CORP [JP])

28 June 2000 (2000-06-28)

figures 2,7

paragraph [0040] - paragraph [0041]
paragraph [0098]

-/—

1-30

1-30

1-30

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international uy
filing date

invention

which is cited to establish the publication date of another wy
citation or other special reason (as specified)

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underiying the

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
“L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,

"0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the intemational search Date of mailing of the international search report
8 September 2010 15/09/2010
Name and maiiing address of the ISA/ Authorized officer

Fax: (+31-70) 340-3016 van Praagh, Kay

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/038458

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

7 April 1999 (1999-04-07)
page 10, line 17 - line 23

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 6 009 176 A (GENNARO ROSARIO [US] ET 2-6
AL) 28 December 1999 (1999-12-28)
column 2, line 30 - Tine 48
A US 6 523 114 B1 (BARTON JAMES M [US]) 2-6
18 February 2003 (2003-02-18)
column 9, line 35 - line 48
A GB 2 330 031 A (IBM [US]) 2-6

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2010/038458
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2008013656 A2 31-01-2008 EP 2038803 A2 25-03-2009
JP 2009543208 T 03-12-2009
KR 20090026357 A 12-03-2009
US 2003161473 Al 28-08-2003 NONE
EP 1014618 Al 28-06-2000 WO 0007329 Al 10-02-2000
us 6834346 Bl 21-12-2004
US 6009176 A 28-12-1999 US 6311271 Bl 30-10-2001
US 6523114 Bl 18-02-2003 NONE
GB 2330031 A 07-04-1999 CN 1218928 A 09-06-1999
JP 3103061 B2 23-10-2000
JP 11164132 A 18-06-1999

Form PCT/ISA/210 {patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report
	Page 34 - wo-search-report

