wo 2014/093952 A1 I} 1] 00O RO A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

19 June 2014 (19.06.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/093952 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

International Patent Classification:
HO4L 29/08 (2006.01) GO6F 21/60 (2013.01)
GO6F 3/06 (2006.01) HO4L 29/06 (2006.01)

International Application Number:
PCT/US2013/075212

International Filing Date:
14 December 2013 (14.12.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/714,413 14 December 2012 (14.12.2012) US

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, WA 98052-6399 (US).

Inventor: GREEN, Dustin, L.; ¢/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, WA 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(84)

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

[Continued on next page]

(54) Title: COMPATIBLY EXTENDING OFFLOAD TOKEN SIZE

INITIATOR 6805

OFFLOAD READ OFFLOAD WRITE

610
SOURCE STORAGE
STACK

611
DESTINATION
STORAGE STACK

OFFLOAD READ

615 616
COMBINER/
SPLITTER/INJECTOR EXTRACTOR

630
635 636
SOURCE OFFLOAD DESTINATION OFFLOAD
PROVIDER PROVIDER
FIG. 6

OFFLOAD WRITE

(57) Abstract: Aspects of the subject matter described herein
relate to offload technology. In aspects, a mechanism is de-
scribed that allows an offload provider to use larger tokens.
The larger token may be physical or virtual. In response to an
offload read command, a larger token may be created and data
from the larger token may be split or injected into multiple
tokens of a smaller size. In response to an offload write com-
mand, data from the multiple tokens may be combined into a
larger token and/or extracted and used to obtain bulk data.

WO 2014/093952 A1 AT 00N A0 0RO AE A A0 o

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

COMPATIBLY EXTENDING OFFLOAD TOKEN SIZE

BACKGROUND

[0001] One mechanism for transferring data is to read the data from a file of a source
location into main memory and write the data from the main memory to a destination
location. While in some environments, this may work acceptably for relatively little data,
as the data increases, the time it takes to read the data and transfer the data to another
location increases. In addition, if the data is accessed over a network, the network may
impose additional delays in transferring the data from the source location to the destination
location. Furthermore, security issues combined with the complexity of storage
arrangements may complicate data transfer.
[0002] The subject matter claimed herein is not limited to embodiments that solve any
disadvantages or that operate only in environments such as those described above. Rather,
this background is only provided to illustrate one exemplary technology area where some
embodiments described herein may be practiced.

SUMMARY
[0003] Briefly, aspects of the subject matter described herein relate to offload
technology. In aspects, a mechanism is described that allows an offload provider to use
larger tokens. The larger token may be physical or virtual. In response to an offload read
command, a larger token may be created and data from the larger token may be split or
injected into multiple tokens of a smaller size. In response to an offload write command,
data from the multiple tokens may be combined into a larger token and/or extracted and
used to obtain bulk data.
[0004] This Summary is provided to briefly identify some aspects of the subject matter
that is further described below in the Detailed Description. This Summary is not intended
to identify key or essential features of the claimed subject matter, nor is it intended to be
used to limit the scope of the claimed subject matter.
[0005] The phrase “subject matter described herein” refers to subject matter described in
the Detailed Description unless the context clearly indicates otherwise. The term
“aspects” should be read as “at least one aspect.” Identifying aspects of the subject matter
described in the Detailed Description is not intended to identify key or essential features of

the claimed subject matter.

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

[0006] The aspects described above and other aspects of the subject matter described
herein are illustrated by way of example and not limited in the accompanying figures in
which like reference numerals indicate similar elements and in which:

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIGURE 1 is a block diagram representing an exemplary general-purpose
computing environment into which aspects of the subject matter described herein may be
incorporated;

[0008] FIGS. 2-4 are block diagrams that represent exemplary arrangements of
components of systems in which aspects of the subject matter described herein may
operate;

[0009] FIG. 5 is a diagram that illustrates one exemplary scheme for representing one
larger token with one or more smaller subtokens in accordance with aspects of the subject
matter described herein;

[0010] FIG. 6 is a block diagram that represents an exemplary arrangement of
components of a system in which aspects of the subject matter described herein may
operate; and

[0011] FIGS. 7-9 are flow diagrams that generally represent exemplary actions that may
occur in accordance with aspects of the subject matter described herein

DETAILED DESCRIPTION

DEFINITIONS

[0012] The phrase “subject matter described herein” refers to subject matter described in
the Detailed Description unless the context clearly indicates otherwise. The term
“aspects” should be read as “at least one aspect.” Identifying aspects of the subject matter
described in the Detailed Description is not intended to identify key or essential features of
the claimed subject matter.

[0013] Asused herein, the term “includes” and its variants are to be read as open-ended
terms that mean “includes, but is not limited to.” The term “or” is to be read as “and/or”
unless the context clearly dictates otherwise. The term “based on” is to be read as “based
at least in part on.” The terms “one embodiment” and “an embodiment” are to be read as
“at least one embodiment.” The term “another embodiment” is to be read as “at least one
other embodiment.”

(13 2% ¢
a

[0014] As used herein, terms such as an,” and “the” are inclusive of one or more of

the indicated item or action. In particular, in the claims a reference to an item generally

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

means at least one such item is present and a reference to an action means at least one
instance of the action is performed.

[0015] Sometimes herein the terms “first”, “second”, “third” and so forth may be used.
Without additional context, the use of these terms in the claims is not intended to imply an
ordering but is rather used for identification purposes. For example, the phrases “first
version” and “second version” do not necessarily mean that the first version is the very
first version or was created before the second version or even that the first version is
requested or operated on before the second version. Rather, these phrases are used to
identify different versions.

[0016] Headings are for convenience only; information on a given topic may be found
outside the section whose heading indicates that topic.

[0017] Other definitions, explicit and implicit, may be included below.
EXEMPLARY OPERATING ENVIRONMENT

[0018] Figure 1 illustrates an example of a suitable computing system environment 100
on which aspects of the subject matter described herein may be implemented. The
computing system environment 100 is only one example of a suitable computing
environment and is not intended to suggest any limitation as to the scope of use or
functionality of aspects of the subject matter described herein. Neither should the
computing environment 100 be interpreted as having any dependency or requirement
relating to any one or combination of components illustrated in the exemplary operating
environment 100.

[0019] Aspects of the subject matter described herein are operational with numerous
other general purpose or special purpose computing system environments or
configurations. Examples of well-known computing systems, environments, or
configurations that may be suitable for use with aspects of the subject matter described
herein comprise personal computers, server computers--whether on bare metal or as
virtual machines--, hand-held or laptop devices, multiprocessor systems, microcontroller-
based systems, set-top boxes, programmable and non-programmable consumer electronics,
network PCs, minicomputers, mainframe computers, personal digital assistants (PDAs),
gaming devices, printers, appliances including set-top, media center, or other appliances,
automobile-embedded or attached computing devices, other mobile devices, phone devices
including cell phones, wireless phones, and wired phones, distributed computing

environments that include any of the above systems or devices, and the like.

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

[0020] Aspects of the subject matter described herein may be described in the general
context of computer-executable instructions, such as program modules, being executed by
a computer. Generally, program modules include routines, programs, objects,
components, data structures, and so forth, which perform particular tasks or implement
particular abstract data types. Aspects of the subject matter described herein may also be
practiced in distributed computing environments where tasks are performed by remote
processing devices that are linked through a communications network. In a distributed
computing environment, program modules may be located in both local and remote
computer storage media including memory storage devices.

[0021] Alternatively, or in addition, the functionality described herein may be
performed, at least in part, by one or more hardware logic components. For example, and
without limitation, illustrative types of hardware logic components that can be used
include Field-programmable Gate Arrays (FPGAs), Program-specific Integrated Circuits
(ASICs), Program-specific Standard Products (ASSPs), System-on-a-chip systems
(SOCs), Complex Programmable Logic Devices (CPLDs), and the like.

[0022] With reference to Figure 1, an exemplary system for implementing aspects of the
subject matter described herein includes a general-purpose computing device in the form
of a computer 110. A computer may include any electronic device that is capable of
executing an instruction. Components of the computer 110 may include a processing unit
120, a system memory 130, and one or more system buses (represented by system bus
121) that couples various system components including the system memory to the
processing unit 120. The system bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus using any
of a variety of bus architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, Peripheral Component Interconnect (PCI) bus also known
as Mezzanine bus, Peripheral Component Interconnect Extended (PCI-X) bus, Advanced
Graphics Port (AGP), and PCI express (PCle).

[0023] The processing unit 120 may be connected to a hardware security device 122.
The security device 122 may store and be able to generate cryptographic keys that may be
used to secure various aspects of the computer 110. In one embodiment, the security
device 122 may comprise a Trusted Platform Module (TPM) chip, TPM Security Device,
or the like.

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

[0024] The computer 110 typically includes a variety of computer-readable media.
Computer-readable media can be any available media that can be accessed by the
computer 110 and includes both volatile and nonvolatile media, and removable and non-
removable media. By way of example, and not limitation, computer-readable media may
comprise computer storage media and communication media.

[0025] Computer storage media includes both volatile and nonvolatile, removable and
non-removable media implemented in any method or technology for storage of
information such as computer-readable instructions, data structures, program modules, or
other data. Computer storage media includes RAM, ROM, EEPROM, solid state storage,
flash memory or other memory technology, CD-ROM, digital versatile discs (DVDs) or
other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to store the
desired information and which can be accessed by the computer 110. Computer storage
media does not include communication media.

[0026] Communication media typically embodies computer-readable instructions, data
structures, program modules, or other data in a modulated data signal such as a carrier
wave or other transport mechanism and includes any information delivery media. The
term “modulated data signal” means a signal that has one or more of its characteristics set
or changed in such a manner as to encode information in the signal. By way of example,
and not limitation, communication media includes wired media such as a wired network or
direct wired connection, and wireless media such as acoustic, RF, infrared and other
wireless media. Combinations of any of the above should also be included within the
scope of computer-readable media.

[0027] The system memory 130 includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic
routines that help to transfer information between elements within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or
program modules that are immediately accessible to and/or presently being operated on by
processing unit 120. By way of example, and not limitation, Figure 1 illustrates operating
system 134, application programs 135, other program modules 136, and program data 137.
[0028] The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, Figure 1 illustrates

a hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile
magnetic disk 152, and an optical disc drive 155 that reads from or writes to a removable,
nonvolatile optical disc 156 such as a CD ROM, DVD, or other optical media. Other
removable/non-removable, volatile/nonvolatile computer storage media that can be used in
the exemplary operating environment include magnetic tape cassettes, flash memory cards
and other solid state storage devices, digital versatile discs, other optical discs, digital
video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 141 may
be connected to the system bus 121 through the interface 140, and magnetic disk drive 151
and optical disc drive 155 may be connected to the system bus 121 by an interface for
removable nonvolatile memory such as the interface 150.

[0029] The drives and their associated computer storage media, discussed above and
illustrated in Figure 1, provide storage of computer-readable instructions, data structures,
program modules, and other data for the computer 110. In Figure 1, for example, hard
disk drive 141 is illustrated as storing operating system 144, application programs 145,
other program modules 146, and program data 147. Note that these components can either
be the same as or different from operating system 134, application programs 135, other
program modules 136, and program data 137. Operating system 144, application
programs 145, other program modules 146, and program data 147 are given different
numbers herein to illustrate that, at a minimum, they are different copies.

[0030] A user may enter commands and information into the computer 110 through
input devices such as a keyboard 162 and pointing device 161, commonly referred to as a
mouse, trackball, or touch pad. Other input devices (not shown) may include a
microphone (e.g., for inputting voice or other audio), joystick, game pad, satellite dish,
scanner, a touch-sensitive screen, a writing tablet, a camera (e.g., for inputting gestures or
other visual input), or the like. These and other input devices are often connected to the
processing unit 120 through a user input interface 160 that is coupled to the system bus,
but may be connected by other interface and bus structures, such as a parallel port, game
port or a universal serial bus (USB).

[0031] Through the use of one or more of the above-identified input devices a Natural
User Interface (NUI) may be established. A NUI, may rely on speech recognition, touch
and stylus recognition, gesture recognition both on screen and adjacent to the screen, air
gestures, head and eye tracking, voice and speech, vision, touch, gestures, machine
intelligence, and the like. Some exemplary NUI technology that may be employed to

interact with a user include touch sensitive displays, voice and speech recognition,

6

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

intention and goal understanding, motion gesture detection using depth cameras (such as
stereoscopic camera systems, infrared camera systems, RGB camera systems, and
combinations thereof), motion gesture detection using accelerometers/gyroscopes, facial
recognition, 3D displays, head, eye, and gaze tracking, immersive augmented reality and
virtual reality systems, as well as technologies for sensing brain activity using electric
field sensing electrodes (EEG and related methods).

[0032] A monitor 191 or other type of display device is also connected to the system bus
121 via an interface, such as a video interface 190. In addition to the monitor, computers
may also include other peripheral output devices such as speakers 197 and printer 196,
which may be connected through an output peripheral interface 195.

[0033] The computer 110 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 180. The
remote computer 180 may be a personal computer, a server, a router, a network PC, a peer
device or other common network node, and typically includes many or all of the elements
described above relative to the computer 110, although only a memory storage device 181
has been illustrated in Figure 1. The logical connections depicted in Figure 1 include a
local area network (LAN) 171 and a wide area network (WAN) 173, but may also include
phone networks, near field networks, and other networks. Such networking environments
are commonplace in offices, enterprise-wide computer networks, intranets, and the
Internet.

[0034] When used in a LAN networking environment, the computer 110 is connected to
the LAN 171 through a network interface or adapter 170. When used in a WAN
networking environment, the computer 110 may include a modem 172 or other means for
establishing communications over the WAN 173, such as the Internet. The modem 172,
which may be internal or external, may be connected to the system bus 121 via the user
input interface 160 or other appropriate mechanism. In a networked environment,
program modules depicted relative to the computer 110, or portions thercof, may be stored
in the remote memory storage device. By way of example, and not limitation, Figure 1
illustrates remote application programs 185 as residing on memory device 181. It will be
appreciated that the network connections shown are exemplary and other means of
establishing a communications link between the computers may be used.

Offload Reads and Writes

[0035] As mentioned previously, some traditional data transfer operations may not be

efficient or even work in today’s storage environments.

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

[0036] FIGS. 2-4 and 6 are block diagrams that represent exemplary arrangements of
components of systems in which aspects of the subject matter described herein may
operate. The components illustrated in FIGS. 2-4 and 6 are exemplary and are not meant
to be all-inclusive of components that may be needed or included. In other embodiments,
the components and/or functions described in conjunction with FIGS. 2-4 and 6 may be
included in other components (shown or not shown) or placed in subcomponents without
departing from the spirit or scope of aspects of the subject matter described herein. In
some embodiments, the components and/or functions described in conjunction with FIGS.
2-4 and 6 may be distributed across multiple devices.

[0037] Turning to FIG. 2, the system 205 may include an initiator 210, data access
components 215, token provider(s) 225, a store 220, and other components (not shown).
The system 205 may be implemented via one or more computing devices. Such devices
may include, for example, personal computers, server computers, hand-held or laptop
devices, multiprocessor systems, microcontroller-based systems, set-top boxes,
programmable consumer electronics, network PCs, minicomputers, mainframe computers,
cell phones, personal digital assistants (PDAs), gaming devices, printers, appliances
including set-top, media center, or other appliances, automobile-embedded or attached
computing devices, other mobile devices, distributed computing environments that include
any of the above systems or devices, and the like.

[0038] Where the system 205 comprises a single device, an exemplary device that may
be configured to act as the system 205 comprises the computer 110 of FIG. 1. Where the
system 205 comprises multiple devices, one or more of the multiple devices may comprise
the computer 110 of FIG. 1 where the multiple devices may be configured similarly or
differently.

[0039] The data access components 215 may be used to transmit data to and from the
store 220. The data access components 215 may include, for example, one or more of:
I/0 managers, filters, drivers, file server components, components on a storage area
network (SAN) or other storage device, and other components (not shown). As used
herein, a SAN may be implemented, for example, as a device that exposes logical storage
targets, as a communication network that includes such devices, or the like.

[0040] In one embodiment, a data access component may comprise any component that
is given an opportunity to examine I/O between the initiator 210 and the store 220 and that
is capable of changing, completing, or failing the I/O or performing other or no actions

based thereon. For example, where the system 205 resides on a single device, the data

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

access components 215 may include any object in an I/O stack between the initiator 210
and the store 220. Where the system 205 is implemented by multiple devices, the data
access components 215 may include components on a device that hosts the initiator 210,
components on a device that provides access to the store 220, and/or components on other
devices and the like. In another embodiment, the data access components 215 may
include any components (e.g., such as a service, database, or the like) used by a
component through which the 1/O passes even if the data does not flow through the used
components.

[0041] As used herein, the term component is to be read to include hardware such as all
or a portion of a device, a collection of one or more software modules or portions thereof,
some combination of one or more software modules or portions thercof and one or more
devices or portions thereof, and the like. A component may include or be represented by
code.

[0042] Asused herein, the term computer code is to be read to include instructions that
dictate actions a computer is to take. These instructions may be included in any computer-
readable media volatile or nonvolatile.

[0043] In one embodiment, the store 220 is any storage media capable of storing data.
The store 220 may include volatile memory (e.g., a cache) and nonvolatile memory (e.g., a
persistent storage). The term data is to be read broadly to include anything that may be
represented by one or more computer storage elements. Logically, data may be
represented as a series of 1’s and 0’s in volatile or nonvolatile memory. In computers that
have a non-binary storage medium, data may be represented according to the capabilities
of the storage medium. Data may be organized into different types of data structures
including simple data types such as numbers, letters, and the like, hierarchical, linked, or
other related data types, data structures that include multiple other data structures or
simple data types, and the like. Some examples of data include information, program
code, program state, program data, commands, other data, or the like.

[0044] The store 220 may comprise hard disk storage, solid state, or other nonvolatile
storage, volatile memory such as RAM, other storage, some combination of the above, and
the like and may be distributed across multiple devices (e.g., multiple SANs, multiple file
servers, a combination of heterogeneous devices, and the like). The devices used to
implement the store 220 may be located physically together (e.g., on a single device, at a
datacenter, or the like) or distributed geographically. The store 220 may be arranged in a

tiered storage arrangement or a non-tiered storage arrangement. The store 220 may be

9

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

external, internal, or include components that are both internal and external to one or more
devices that implement the system 205. The store 220 may be formatted (e.g., with a file
system) or non-formatted (e.g., raw).

[0045] In another embodiment, the store 220 may be implemented as a storage container
rather than as direct physical storage. A storage container may include, for example, a
file, volume, disk, virtual disk, logical unit, logical disk, writable clone, volume snapshot,
logical disk snapshot, physical disk, solid state storage (SSD), hard disk, data stream,
alternate data stream, metadata stream, or the like. For example, the store 220 may be
implemented by a server having multiple physical storage devices. In this example, the
server may present an interface that allows a data access component to access data of a
store that is implemented using one or more of the physical storage devices or portions
thereof of the server.

[0046] The level of abstraction may be repeated to any arbitrary depth. For example, the
server providing a storage container to the data access components 215 may also rely on a
storage container to access data.

[0047] In another embodiment, the store 220 may include a component that provides a
view into data that may be persisted in nonvolatile storage or not persisted in nonvolatile
storage.

[0048] One or more of the data access components 215 may reside on an apparatus that
hosts the initiator 210 while one or more other of the data access components 215 may
reside on an apparatus that hosts or provides access to the store 220. For example, if the
initiator 210 is an application that executes on a personal computer, one or more of the
data access components 215 may reside in an operating system hosted on the personal
computer. An example of this is illustrated in FIG. 3.

[0049] As another example, if the store 220 is implemented by a storage area network
(SAN), one or more of the data access components 215 may implement a storage
operating system that manages and/or provides access to the store 220. When the initiator
210 and the store 220 are hosted in a single apparatus, all or many of the data access
components 215 may also reside on the apparatus.

[0050] An offload read allows an initiator to obtain a token that represents data of a
store. Using this token, the initiator or another initiator may request an offload write. An
offload write allows an initiator to cause an offload provider to write some or all of the

data represented by the token.

10

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

[0051] In one embodiment, a token includes a cryptographically secure number that is
obtained via a successful offload read. At the present time, one example of a
cryptographically secure number is a 256 bit number generated in an appropriate way
(e.g., via creating a random number by sampling some random physical phenomena).
Some exemplary procedures for generating cryptographically secure numbers are
described in Request for Comments (RFC) 1750.With advances in technology both the
length of the secure number and the procedure used to generate a cryptographically secure
number may change without departing from the spirit or scope of aspects of the subject
matter described herein.

[0052] A token represents data that is immutable as long as the token is valid. The data
a token represents is sometimes referred to as bulk data.

[0053] An offload provider is an entity (possibly including multiple components spread
across multiple devices) that provides indirect access to data associated with a token.
Logically, an offload provider is capable of performing an offload read and/or offload
write. Physically, an offload provider may be implemented by one or more of the data
access components 215 and a token provider.

[0054] In servicing an offload read or offload write, an offload provider may logically
perform operations on the data of the store and/or on tokens associated with a token
provider. For example, for an offload read, an offload provider may logically copy data
from a logical storage container backed by data of a store into a token (which may also be
backed by data of the store), while for an offload write, the offload provider may logically
copy data from a token to a logical storage container backed by data of the store.

[0055] An offload provider may transfer data from a source store, write data to a
destination store, and maintain data to be provided upon receipt of a token associated with
the data. In some implementations, an offload provider may indicate that an offload write
command is completed after the data has been logically written to the destination store. In
addition, an offload provider may indicate that an offload write command is completed but
defer physically writing data associated with the offload write until convenient.

[0056] In some implementations, an offload provider may share data between a first
logical storage container and a second logical storage container, and may share data
between a token and a storage container. The offload provider may stop sharing data as
part of performing a write to physical storage locations of the store which would otherwise
cause more than one storage container to be modified, or would otherwise cause the data

represented by a token to change.

11

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

[0057] In some implementations, an offload provider may perform a logical copy from a
storage container to a token or a logical copy from a token to a storage container by
initiating sharing of data between a token and a storage container. For example, the
offload provider may perform an offload read by logically copying the data from the
source storage container to the token by initiating sharing of data between the source
storage container and the token. In another example, the offload provider may perform an
offload write by logically copying the data from the token to the destination storage
container by initiating sharing of data between the token and the destination storage
container.

[0058] In some implementations, an offload provider may invalidate a token to, for
example, avoid sharing data and/or avoid physically copying data. For example, the
offload provider may perform an offload write by logically copying data from the token to
the destination storage container by updating the data structures of the destination storage
container to refer to the physical storage locations of the store referenced by the token, and
in conjunction therewith, logically invalidate at least a portion of the token. Note that this
may still result in the source and destination storage containers sharing data.

[0059] In some implementations, an offload provider may initiate sharing of data storage
locations among all tokens and storage containers already sharing the data, and in addition,
another storage container or token. For example, to service an offload read, an offload
provider may initiate sharing between a source storage container and a token. Then, to
service an offload write using the token, the offload provider may initiate sharing among
the source storage container, the token, and the destination storage container. If the token
is later invalidated, sharing with the token is stopped, but the sharing between source and
destination storage containers may continue (e.g., until a write is received that is directed
at that data).

[0060] As used herein, in one implementation, a token provider is part of an offload
provider. In this implementation, where a token provider is described as performing
actions, it is to be understood that the offload provider that includes the token provider is
performing those actions. In another implementation, a token provider may be separate
from the offload provider.

[0061] To initiate an offload read of data of the store 220, the initiator 210 may send a
request to obtain a token representing the data using a predefined command (e.g., via an
API). In response, one or more of the data access components 215 may respond to the

initiator 210 by providing one or more tokens that represents the data or a subset thereof.

12

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

A token may be represented by a sequence of bytes which are used to represent immutable
data. The size of the immutable data may be larger, smaller, or the same size as the token.
[0062] With a token, the initiator 210 may request that all or portions of the data
represented by the token be logically written. Sometimes herein this operation is called an
offload write. The initiator 210 may do this by sending the token together with one or
more offsets and lengths to the data access components 215.

[0063] The data access components 215 may be implemented as a storage stack where
cach layer of the stack may perform a different function. For example, the data access
components may partition data, split offload read or write requests, cache data, verify data,
snapshot data, and the like.

[0064] One or more layers of the stack may be associated with a token provider. A
token provider may include one or more components that may generate or obtain tokens
that represent portions of the data of the store 220 and provide these tokens to an initiator.
[0065] For a portion of an offload write, for a token involved, a token-relative offset
may be indicated as well as a destination-relative offset. Either or both offsets may be
implicit or explicit. A token-relative offset may represent a number of bytes (or other
units) from the beginning of data represented by the token, for example. A destination-
relative offset may represent the number of bytes (or other units) from the beginning of
data on the destination. A length may indicate a number of bytes (or other units) starting
at the offset.

[0066] If a data access component 215 fails an offload read or write, an error code may
be returned that allows another data access component or the initiator to attempt another
mechanism for reading or writing the data.

[0067] FIG. 3 is a block diagram that generally represents an exemplary arrangement of
components of systems in which a token provider is hosted by the device that hosts the
store. As illustrated, the system 305 includes the initiator 210 and the store 220 of FIG. 2.
The data access components 215 of FIG. 3 are divided between the data access
components 310 that reside on the device 330 that hosts the initiator 210 and the data
access components 315 that reside on the device 335 that hosts the store 220. In another
embodiment, where the store 220 is external to the device 335, there may be additional
data access components that provide access to the store 220.

[0068] The device 335 may be considered to be one example of an offload provider as
this device includes components for performing offload reads and writes and managing

tokens.

13

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

[0069] The token provider 320 may generate, validate, and invalidate tokens. For
example, when the initiator 210 asks for a token for data on the store 220, the token
provider 320 may generate a token that represents the data. This token may then be sent
back to the initiator 210 via the data access components 310 and 315.

[0070] In conjunction with generating a token, the token provider 320 may create an
entry in the token store 325. This entry may associate the token with data that indicates
where on the store 220 the data represented by the token may be found. The entry may
also include other data used in managing the token such as when to invalidate the token, a
time to live for the token, other data, and the like.

[0071] When the initiator 210 or any other entity provides the token to the token
provider 320, the token provider 320 may perform a lookup in the token store 325 to
determine whether the token exists. If the token exists and is valid, the token provider 320
may provide location information to the data access components 315 so that these
components may logically read or write or logically perform other operations with the data
as requested.

[0072] In another exemplary arrangement similar to FIG. 3, the token provider 320 and
token store 325 may be included in the device 330, and the data access components 310
connected to token provider 320. For example, an operating system (OS) of the device
330 may include the token provider 320 and the token store 325. In this example, the
initiator 210 may assume the existence of a token provider and token store for all copying
performed by the initiator 210. With this assumption, the initiator 210 may be
implemented to omit code that falls back to normal read and write.

[0073] In the example above, the OS may implement offload read by logically reading
the requested data from the data access components 315 and storing the data in storage
(volatile or non-volatile) of device 330, creating a new token value, and associating the
newly created token value with the read data. The OS may implement offload write by
copying (e.g., logically writing) the data associated with the token to the destination
specified by initiator 210. In this example, the initiator 210 may need to re-attempt a copy
at the offload read step in some scenarios, but this re-attempt may be less burdensome for
the initiator than falling back to normal read and write.

[0074] FIG 4. is a block diagram that generally represents another exemplary
environment in which aspects of the subject matter described herein may be implemented.
As illustrated, the environment includes a source initiator 405, a destination initiator 406, a

source storage container 410, a destination storage container 411, a source physical store

14

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

415, a destination physical store 416, an offload provider 420, and may include other
components (not shown).

[0075] The source initiator 405 and the destination initiator may be implemented
similarly to the initiator 210 of FIG. 2. The source initiator 405 and the destination
initiator 406 may be two separate entities or a single entity.

[0076] If the source storage container 410 and the destination storage container 411 are
implemented by a single system, the offload provider 420 may be implemented as one or
more components of the system implementing the storage containers. If the source storage
container 410 and the destination storage container 411 are implemented by different
systems, the offload provider 420 may be implemented as one or more components that
are distributed across the systems implementing the storage containers.

[0077] Furthermore, there may be more than two instances of storage containers and
physical stores. For example, for a given token obtained from a source, there may be more
than one destination specified. For example, multiple offload writes may be issued which
refer to a single token, and each offload write may successfully target any destination
known to the offload provider 420.

[0078] The source physical store 415 and the destination physical store 416 may be the
same store or different stores. These physical stores store physical data that backs the
source and destination storage containers, and may also back the data represented by the
tokens.

[0079] Although illustrated as only having one storage container between the initiator
and the physical store, as mentioned previously, in other embodiments there may be
multiple layers of storage containers between the initiator and the physical store.

[0080] The source initiator 405 may obtain a token by issuing an offload read. In
response, the offload provider 420 may generate a token and provide it to the source
initiator 405.

[0081] If the source initiator 405 and the destination initiator 406 are separate entities,
the source initiator 405 may provide the token to the destination initiator 406. The
destination initiator 406 may then use the token to issue an offload write to the destination
storage container 411.

[0082] In receiving the offload write request, the offload provider 420 may validate the
token and logically write data to the destination storage container 411 as indicated by the

offload write request.

15

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

Extending Token Size

[0083] With offload technology, a standard or industry may dictate a certain fixed size
of the token. For various reasons, some implementers may desire a size that is larger than
the standardized fixed size.

[0084] To accommodate larger sized tokens, the standard may be modified to allow
multiple tokens. A token larger than the fixed size may then be represented by multiple
smaller subtokens of the fixed size. For example, one standard requires a token to be 512
bytes. In an implementation for this standard, the subtokens may each be exactly 512
bytes while the larger token may be larger than 512 bytes (e.g. 995, 2000, 4096, or some
other number of bytes).

[0085] FIG. 5 is a diagram that illustrates one exemplary scheme for representing one
larger token with one or more smaller subtokens in accordance with aspects of the subject
matter described herein. As illustrated, an exemplary large token 505 may have standard
required fields H, a provider ID P, random data R, vendor data V, and other data X.
[0086] The standard required field H may include any fields required or otherwise
specified by a standard. For example, the standard required fields H may include one or
more of: data that indicates when a token was generated, data that indicates when the
token is supposed to expire, data that indicates where a token came from, or other data
specified by a standard.

[0087] The provider ID P may indicate an instance of an offload provider that generated
the token. The provider ID P may be used in a threshold test to determine whether the
token is to be ignored or not. If the provider ID P is not a provider ID that would have
been provided by the offload provider, the offload provider may reject the token
altogether. Otherwise, the offload provider may take additional actions to validate the
token.

[0088] The vendor data V may include any data that a vendor implementing an offload
provider may desire. As one example, a vendor may include addressing information that
indicates an address of an offload provider that provided the token 505. As other
examples, the vendor data V may include a hash key, a digest, a lookup key, metadata,
data related to the bulk data, data the helps identify or locate portions of the bulk data,
other data, or the like.

[0089] The other data X may include any other data that is included in the token 505.
[0090] The subtokens may be transmitted via virtually any protocol. For example, in

one example, the subtokens may be transmitted via a Small Computer System Interface

16

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

(SCSI) protocol. In another example, the subtokens may be transmitted via a file sharing
protocol that transfers file data via server message blocks. One exemplary file sharing
protocol includes the Server Message Block (SMB) protocol. In another example, the
subtokens may be transmitted via a distributed file system protocol that is based on remote
procedure calls to access files. One example protocol based on remote procedure calls
includes the Network File System (NFS) protocol.

[0091] The examples above are not intended to be all-inclusive or exhaustive of
protocols that may be used. Indeed, based on the teachings herein, those skilled in the art
may recognize many other protocols that may be used without departing from the spirit or
scope of aspects of the subject matter described herein.

[0092] The subtokens 510-515 may be tokens of a fixed size (e.g., dictated by standard)
that represent the token 505. The subtokens 510-515 may include various fields. For
example, a subtoken may include fields (Ho, Hxi, H...) required by a standard, a provider
ID field (P), a token ID (T), sequence data (So, Sxi1, S...), a number that indicates how
many subtokens represent the token 505, and data corresponding to the data of the token
505. This other data is represented by H, Ro to Rx1, Vo to V2, and Xo to X3, where H
corresponds to the standard required fields H in the token 505, Ro to Rni1 correspond to the
random data R in the token 505, Vo to V2 correspond to the vendor data V in the token
505, and Xo to X3 correspond to the other data X in the token 505.

[0093] The fields (Ho, Hni, H...) may include any data required or otherwise specified
by a standard. This may include, for example, header or other fields specified by any
version of the SCSI protocol. The fields (Ho, Hxi, H...) may occur prior to and/or after
any other fields indicated in FIG. 5.

[0094] Where the SCSI protocol is used, the fields (Ho, Hxi, H...) may include, for
example, header or other fields specified by any version of the SCSI protocol. Some
exemplary fields include: timestamp of token creation, token type (e.g., point in time
copy), address of source, data identifying a representation of data token type, data that
identifies each of the subtokens as a token for transferring bulk data without requiring the
bulk data to pass through an initiator of a command that requested the transferring, other
fields specified by the SCSI protocol, or the like.

[0095] Where other protocols are used, the fields (Ho, Hni1, H...) may include, for
example, fields required or allowed by those protocols. In one implementation, the fields

(Ho, Hn1, H...) may be omitted altogether.

17

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

[0096] In some implementations, the fields (Ho, Hxi, H...) may also include, for
example, types of data indicated above with respect to the standard required fields H of the
token 505.

[0097] The provider ID P may indicate an instance of an offload provider that generated
the token and may be used in the same manner as indicated above.

[0098] The token ID T may be data that identifies a subtoken as belonging to a group of
subtokens that represent a larger token. For example, a token ID of “ABCD” in each of
the T fields of the subtokens 510-515 may identify the subtokens 510-515 as belonging to
a group of subtokens that represent the token 505. If a subtoken has a different token ID,
the offload provider may determine that the subtoken is not part of the group of subtokens
that represent the token 505.

[0099] The sequence data (So, Sn1, S...) may include data that indicates an ordering of
the subtokens. For example, the sequence data may include an increasing number (e.g., 1,
2, 3, 4, etc.) that indicates an order of the subtokens. The order may be used to combine
the subtokens 510-515 to reconstruct the token 505 or portions thereof.

[00100] In one implementation, data from the fields of the subtokens 510-515 may be
combined to construct all the data included in the token 505. For example, in this
implementation, the combined data of the subtokens 510-515 may include at least the data
included in the token 505.

[00101] In another implementation, the subtokens 510-515 do not include all the data that
is included in the token 505. For example, the subtokens 510-515 may include enough
data to identify (e.g., through a lookup table or other data structure) data in the token 505.
For example, the subtokens 510-515 may be combined to obtain R and address
information. R and the address information may then be used by an offload provider to
look up the other information included in the token 505.

[00102] In another example, one or more of the subtokens 510-515 may include data that
may be used to map to the random data R. In this example, the random data R cannot be
reconstructed from the data found solely in the subtokens 510-515, but the random data R
may be found (e.g., in a lookup table) from the random data included in one or more of the
subtokens 510-515. In this example, other data (e.g., the address data of the token 505)
may be included in one or more of the subtokens 510-515. The address data may then be
used to locate a mapping table, for example, that may be used to locate the other data

included the token 505.

18

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

[00103] A similar mechanism may also be used to find other omitted data that is not
physically found in the subtokens 510-515 but that may be found using data that maps to
the omitted data.

[00104] In one example, one of the subtokens (sometimes referred to herein as the master
subtoken) may include all of the random data R while the other subtokens may not include
any data that corresponds to the random data R. In another example, the subtokens 510-
515 may each include data that corresponds to the random data R.

[00105] Various mechanisms may be used to validate the token 505. In one example,
after the token 505 is reconstructed from the subtokens 510-515, a bitwise comparison is
performed to determine whether the token 505 is exactly a token generated by the offload
provider. If the bits in the token equal the bits found for a token having R in the token
store, the token 505 may be determined to be valid.

[00106] In another example, a digest of the token 505 may be computed and the digest
may be compared to digests of tokens generated by the offload provider. In this example,
a digest may be selected that has a low or no possibility of colliding with other digests. In
this example, if the digest is equal to a digest of a token generated by the offload provider,
the token 505 may be determined to be valid.

[00107] In another example, the token 505 may be determined to be valid if R is equal to
an R of a token stored by the offload provider.

[00108] In one implementation, the larger token 505 is a token that is provided and
actually exists and is implemented as one or more data structures. The larger token 505
may be physically divided into the multiple subtokens 510 which may also be recombined
to form the larger token 505.

[00109] In another implementation, the larger token 505 comprises a virtual offload token
that logically includes the fields illustrated for the token 505, but where all the fields may
not actually be in the same data structure. In this implementation, the token 505 does not
go through a period where a single chunk of data includes all the fields of the token 505.
Instead, the subtokens 510-515 include data corresponding to the token 505 (or data usable
to find the data of the token 505) but the subtokens 510-515 are not actually combined to
form a monolithic chunk of data that includes the fields of the token 505. Likewise, in this
implementation, the token 505 is not first created and then divided into the subtokens 510-
515. The larger token 505 is referred to as a virtual offload token because it does not exist

physically and independently of the subtokens 510-515 but exists virtually in the data of

19

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

the subtokens 510-515. It is to be understood that when the token 505 is described herein
that both implementations are contemplated.

[00110] FIG. 6 is a block diagram that represents an exemplary arrangement of
components of a system in which aspects of the subject matter described herein may
operate. As illustrated, the system includes an initiator 605, a source storage stack 610, a
destination storage stack 611, a spittler/injector 615, a combiner/extractor 616, and an
offload provider 630.

[00111] The offload provider 630 as illustrated is separated into a source offload provider
635 and a destination offload provider 636 to indicate that components of the offload
provider 630 may be on different machines that communicate with each other to perform
the functions of the offload provider 630. In another example, however, the source offload
provider 635 and the destination offload provider 636 may be merged and placed on a
single computer. In one implementation, the source offload provider 635 and the
destination offload provider 636 are different offload providers altogether that may
negotiate the transmission of offload data in response to an offload write command.
[00112] The initiator 605 initiates an offload read or write. In one example, the initiator
605 may be separated into a source initiator and destination initiator (as illustrated in FIG.
4) where the source initiator initiates an offload read and obtains multiple subtokens in
response thereto and then provides the subtokens to the destination initiator which later
initiates an offload write. In another example, the initiator 605 may directly initiate both
the offload read and the offload write.

[00113] It is to be understood that an offload write is an offload write regardless of form.
For example, forwarding a token to a different machine that in turn issues an offload write
is really just a different way for an offload read initiator to initiate on offload write.
[00114] The source storage stack 610 and the destination storage stack 611 may each be
implemented by one or more components arranged in layers where each layer may
perform a different function.

[00115] The spittler/injector 615 may include one or more components. The
spittler/injector 615 may receive an offload read command from the source storage stack
610. In response, the spittler/injector 615 may send an offload read command to the
source offload provider 635. In response to the offload read command, the source offload
provider 635 may provide a large token. After receiving the large token, the

spittler/injector 615 may split the token into a plurality of smaller tokens and provide these

20

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

smaller tokens to the source storage stack 610. The subtokens may, for example, be of a
fixed standardized size as mentioned previously.

[00116] In one implementation, an offload read command may include a number that
indicates how many subtokens may be provided in response to the offload read. This
number may originate from the initiator 605 or a component of the source storage stack
610.

[00117] If the spittler/injector 615 determines that the number is large enough, the
spittler/injector 615 may provide the subtokens as requested by the source storage stack
610. Otherwise, in one example, the spittler/injector 615 may return a message that
indicates how many subtokens are needed to respond to the offload read request. In
another example, the spittler/injector 615 may return an error that indicates that the
number is not large enough and may allow the initiator 605 to try a larger number(s) if the
initiator 605 determines to do so.

[00118] In another implementation, an offload read command may omit a number that
indicates how many subtokens may be provided in response to the offload read. In this
implementation, the component sending the offload read command may request subtokens
until the spittler/injector 615 indicates that all subtokens for the offload read command
have been provided.

[00119] In another implementation, the spittler/injector 615 may indicate a number of
subtokens that were generated in response to the offload read command. The component
that sent the offload read command may then be responsible for obtaining the subtokens
from the spittler/injector 615.

[00120] In an offload write command with multiple subtokens, the initiator 605 may send
the subtokens to the destination storage stack 611 which may send the subtokens to the
combiner/extractor 616. The combiner/extractor 616 may then combine the subtokens
into a single large token and provide the single large token to the destination offload
provider 636.

[00121] The subtokens may be provided in a single message or in multiple messages
depending on implementation.

[00122] In one implementation, the spittler/injector 615 may be combined with the source
offload provider 635 and the combiner/extractor 616 may be combined with the
destination offload provider 636. In at least this implementation, the spittler/injector 615

may inject data of a virtual offload token into the subtokens while the combiner/extractor

21

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

616 may extract the data from the subtokens without the larger token ever existing as a
physical data structure.

[00123] FIGS. 7-9 are flow diagrams that generally represent exemplary actions that may
occur in accordance with aspects of the subject matter described herein. For simplicity of
explanation, the methodology described in conjunction with FIGS. 7-9 is depicted and
described as a series of acts. It is to be understood and appreciated that aspects of the
subject matter described herein are not limited by the acts illustrated and/or by the order of
acts. In one embodiment, the acts occur in an order as described below. In other
embodiments, however, the acts may occur in parallel, in another order, and/or with other
acts not presented and described herein. Furthermore, not all illustrated acts may be
required to implement the methodology in accordance with aspects of the subject matter
described herein. In addition, those skilled in the art will understand and appreciate that
the methodology could alternatively be represented as a series of interrelated states via a
state diagram or as events.

[00124] FIG. 7 is a flow diagram that generally represents exemplary actions that may
occur at a destination offload provider in accordance with aspects of the subject matter
described herein. At block 705, the actions begin.

[00125] At block 710, a message is received that indicates that two or more subtokens
represent a larger token. The subtokens are each of a fixed size (e.g., a size specified by a
standard). The larger token has a size larger than the fixed size. This means that the data
included in the larger token is more than can fit into one of the subtokens. The data
corresponding to the larger token is maintained by an offload provider. The data may be
maintained in a single data structure corresponding to the larger token or in multiple data
structures (e.g., that are not combined). The larger token represents data that is immutable
as long as the data is larger token is valid.

[00126] For example, referring to FIG. 6, the combiner/extractor 616 may receive
subtokens from the destination storage stack 611. The subtokens may be provided by the
initiator 605 in conjunction with an offload write directed to the destination storage stack
611.

[00127] Atblock 715, data is extracted from the subtokens. Extracting data may include,
for example, combining the subtokens into a larger token prior to obtaining the data or
obtaining the data from the subtokens without combining the subtokens into the larger
token. For example, referring to FIG. 6, the combiner/extractor 616 may combine/extract

data from the subtokens. For example, some of the data extracted may include a number

22

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

that associates the token with the data the token represents. This number is sometimes
referred to as a key.

[00128] At block 720, the key is obtained from one or more of the subtokens. For
example, referring to FIG. 6, after the combiner/extractgor 616 combines the subtokens to
form a larger token, the destination offload provider 636 may obtain the key from the
larger token. As another example, without physically combining the data of the
subtokens, the combiner/extractor 616 may extract the key from a virtual token (e.g., one
or more of the subtokens) without physically combining all the data of the subtokens.
[00129] At block 725, evidence of the key is provided to a component of the offload
provider. Using the evidence, the key may be validated as part of the actions of block 725
or as a separate set of actions. Providing evidence of the key may include, for example:
[00130] 1. Providing the key itself;

[00131] 2. Providing the key and other data (one or more fields) of the larger token;
[00132] 3. Providing a digest (e.g., a hash function) of the key;

[00133] 4. Providing a digest derived from the key and other data (one or more fields)
of the larger token; or

[00134] 5. Providing other evidence of the key and/or larger token.

[00135] FIG. 8 is a flow diagram that generally represents exemplary actions that may
occur at a source offload provider in accordance with aspects of the subject matter
described herein. At block 805, the actions begin.

[00136] At block 810, an offload read request is received. For example, referring to FIG.
6, the source offload provider 635 receives an offload read request initiated by the initiator
605.

[00137] Atblock 815, in response to the offload read message, a key is generated to
return in response to the offload read message. The key in placed in a token (physical or
virtual), the data of which will be placed into subtokens to return in response to the offload
read message. For example, referring to FIG. 6, the source offload provider 635 may
generate a token that includes the key.

[00138] At block 820, the data of the token is divided/injected into subtokens. For
example, referring to FIG. 6, the splitter/injector 615 takes the data from the token
generated at block 815 and splits/injects the data into subtokens that are provided to the
source storage stack 610 for delivery to the initiator 605.

[00139] At block 825, evidence of the key is received. For example, referring to FIG. 6,

a component of the source offload provider 635 receives evidence of the key. In one

23

10

15

20

25

30

WO 2014/093952 PCT/US2013/075212

example, this evidence may be received as the offload provider 630 obtains the key from
the subtokens received from the combiner/extractor 616. In another example, a
component of the offload provider at a destination of an offload write (e.g., the destination
offload provider 636) may obtain the key included in the subtokens, read an address
contained therein, use the address to contact a component (e.g., the source offload provider
635) of the offload provider that generated the key, and provide the key to the component.
In another example, a destination offload provider that is a different offload provider from
the source offload provider may receive the key and addressing information, contact the
source offload provider, and provide the key. Using the evidence, the key may be
validated as part of the actions of block 825 or as a separate set of actions.

[00140] At block 830, bulk data corresponding to the token is provided. For example,
referring to FIG. 6, the source offload provider 635 may provide a portion or all of the
bulk data corresponding to the token to the destination offload provider 636.

[00141] At block 835, other actions, if any, may be performed.

[00142] FIG. 9 is a flow diagram that generally represents exemplary actions that may
occur at an offload initiator in accordance with aspects of the subject matter described
herein. At block 905, the actions begin.

[00143] At block 910, an offload read request is initiated by communicating with a
component of a source storage stack. For example, referring to FIG. 6, the initiator 605
may send an offload read request to the source storage stack 610. In conjunction with the
offload read request, a number may be send that indicates a maximum number of
subtokens that are allowed to be returned in response to the offload read request.

[00144] At block 915, in response to the message, subtokens are received. The subtokens
represent a token (physical or virtual) that is larger than any of the subtokens individually.
The larger token represents data that is immutable as long as the larger token is valid. For
example, referring to FIG. 6, in response to the offload read request, the initiator receives
multiple subtokens. In conjunction with receiving the subtokens, a number may be
received that indicates how many subtokens were generated in response to the offload read
request.

[00145] At block 920, the initiator provides the subtokens to a component of a destination
storage stack. For example, referring to FIG. 6, the initiator 605 provides the subtokens to
a component of the destination storage stack 611.

[00146] At block 925, other actions, if any, may be performed.

24

WO 2014/093952 PCT/US2013/075212

[00147] As can be seen from the foregoing detailed description, aspects have been
described related to offload technology. While aspects of the subject matter described
herein are susceptible to various modifications and alternative constructions, certain
illustrated embodiments thereof are shown in the drawings and have been described above
in detail. It should be understood, however, that there is no intention to limit aspects of
the claimed subject matter to the specific forms disclosed, but on the contrary, the
intention is to cover all modifications, alternative constructions, and equivalents falling

within the spirit and scope of various aspects of the subject matter described herein.

25

WO 2014/093952 PCT/US2013/075212

CLAIMS

1. A method implemented at least in part by a computer, the method
comprising:

receiving two or more subtokens, each of a fixed size, the subtokens together
representing a larger token of a size larger than the fixed size, data corresponding to the
larger token maintained by an offload provider, the larger token representing data that is
immutable as long as the larger token is valid;

obtaining a key from one or more of the subtokens; and

providing evidence of the key to a component of the offload provider at least to
obtain a portion of the data represented by the larger token without the portion of the data

passing through an initiator that provided the subtokens.

2. The method of claim 1, wherein obtaining the key comprises obtaining a
cryptographically secure number from one or more of the subtokens, and further
comprising obtaining addressing information from one or more of the subtokens, the
addressing information identifying a source from which the data represented by the larger

token 1s obtainable.

3. The method of claim 1, further comprising combining data from the two or
more subtokens to create the larger token, the two or more subtokens including at least all

data included in the larger token.

4. The method of claim 1, wherein the larger token comprises a virtual token
that is represented by data of the subtokens, the data from the two or more of the

subtokens not being combined to physically create a copy of the larger token.
5. The method of claim 1, wherein the subtokens are each exactly 512 bytes
and one or more of the subtokens include a field required by a standard, the field

identifying a representation of data token type.

6. The method of claim 1, wherein the subtokens are transmitted via a file

sharing protocol that transfers file data via server message blocks.

26

WO 2014/093952 PCT/US2013/075212

7. The method of claim 1, wherein the subtokens are transmitted via a

distributed file system protocol that is based on remote procedure calls to access files.

8. In a computing environment, a system, comprising:
one or more computers that implement an offload provider and a splitter/injector,
the one or more computers having computer storage elements structured to store
instructions, the one or more computer having at least one processing unit to execute the
instructions to perform actions, the actions comprising:
receiving an offload read message initiated by an initiator;
in response to the offload read message, generating a key and providing
subtokens, each subtoken of a fixed size, the subtokens representing a larger token of a
size larger than the fixed size data corresponding to the larger token maintained by an
offload provider, the larger token representing data that is immutable as long as the larger

token is valid, the larger token including the key.

9. A computer storage medium having computer-executable instructions,
which when executed perform actions, comprising:

initiating an offload read request by communicating with a component of a source
storage stack;

in response to the offload read request, receiving subtokens, the subtokens
representing a larger token that is larger than any of the subtokens individually, the larger
token representing data that is immutable as long as the larger token is valid; and

initiating an offload write request by providing the subtokens to a destination

storage stack.

10. The computer storage medium of claim 9, further comprising in
conjunction with the offload read request, sending a number that indicates a maximum
number of subtokens that are allowed to be returned in response to the offload read

request.

27

PCT/US2013/075212

WO 2014/093952

1/9

| K

181 |S8L dvy 3SNOW - -\2:
> L9 ToL S3TNAON SvL ——
— L] vl 124}
/ o - 29} quvoarly vivag __ wvaooud SNV490Y IN3LSAS
Y B WVHO0Yd 97T wanip| Nowvollddy | ©ONMVH¥3HO
_ M”NF E ------------ ¥ N P
961 N -
251 IJ N e
SY¥3LNdNOD \ e
2LONTY WIAOIN [@ 1~ . - -
- s 0 WL -
MYOMLIN Vauy 3aipy ¢l sgl LGN -
\ _ IIIIIIII L e —_— — — |\I}II/I/I“I\ IIIIIIIII
08l | — 2o i I
|
I I oz1 051 —
\ | .J chJm_o«"_M_mHz_ ./m_o‘_#_mmhz_ “«WHME_ =T viva "
AMOIN3 lEL
ol “ mv_wew_hw“z_ 1ndN| .._o>.zo_>__,_ AHOW3\ "TOA-NON Wvy90dd _
MHOMLIN _ N ¥3asn 379VAONTY 379VAONIY-NON "
Vayy 1vo0T _ 3] S3NTon |
_ WVY90dd ¥3H1O |
SY¥3INVAdS | _
\ _ sng WILSAS T SINVY90¥d _
NOILYOIdd
/96" 161 | #V #V izt # v ||
r44" ==T W3ILSAS |
H3LNINd _ JOV4YILN| Mw vel ONILVHYIdO |
<*———vyaHdiuag dOVAHALN| - st (nvy) _
| 1nd1NO O3aIA \ \ IIIIIIIII _
N _ c6L NN oNIss300dd o5l | [soig _
N\ | ! 061 021 _
HOLINOW [o I I@IA%WV — |
| 2 AYOWIN WILSAS |

L6l _

WO 2014/093952 PCT/US2013/075212

2/9
INITIATOR N 210
TOKEN DATA ACCESS A
225~/ PROVIDER(S) COMPONENTS 215
STORE (N 220

FIG. 2

WO 2014/093952 PCT/US2013/075212

3/9
s 330
)= 210
INITIATOR
Ve 310
DATA ACCESS
COMPONENTS
Ve 335
315
V- 320
DATA ACCESS TOKEN
COMPONENTS PROVIDER
) 325
TOKEN
STORE
s 220
STORE

FIG. 3

WO 2014/093952 PCT/US2013/075212
4/9
SOURCE A DESTINATION A

INITIATOR 405 INITIATOR 406
OFFLOAD PROVIDER " 420
~— 410 411

SOURCE STORAGE DESTINATION

CONTAINER STORAGE CONTAINER

SOURCE
PHYSICAL

STORE

FIG. 4

DESTINATION
PHYSICAL

STORE

PCT/US2013/075212

WO 2014/093952

5/9

S O

S L 9% d H f~hLs
...w I—l NZ> l ...—l— /\/m_\m
INg] INY d NH L ASLLS
(°s) (1) 0 0
V1vQ 3ION3INDAS Q] NIMOL 4 d H H p0Ls
(X) (A ¢3)) (d) (H) azuino3y
vivqg 43H1Q Awwm_w_oo,q GZ_QD._OZ_V V1iv(J dOdN3IA S1lg WOANYY d| 43dinodd dVANV1S /\/mom

WO 2014/093952

PCT/US2013/075212

6/9
INITIATOR "\ 605
OFFLOAD READ OFFLOAD WRITE
610 611
SOURCE STORAGE DESTINATION
STACK STORAGE STACK
OFFLOAD READ OFFLOAD WRITE
615 ~ 616
COMBINER/
SPLITTER/INJECTOR EXTRACTOR
630
635 - 636
SOURCE OFFLOAD DESTINATION OFFLOAD
PROVIDER PROVIDER

FIG. 6

WO 2014/093952 PCT/US2013/075212

7/9

RECEIVE SUBTOKENS Y710
A 4
COMBINE/EXTRACT DATA FROM A
SUBTOKENS 75
OBTAIN KEY N 720

|

PROVIDE EVIDENCE OF KEY TO A
SOURCE 725
OBTAIN BULK DATA 730

735

OTHER
ACTIONS

FIG. 7

WO 2014/093952 PCT/US2013/075212

8/9

RECEIVE OFFLOAD READ N\ 810
GENERATE TOKEN NN 815

|

DIVIDE/INJECT DATA INTO
SUBTOKENS

|

RECEIVE EVIDENCE OF KEY N 825

|

PROVIDE BULK DATA "\ 830

N 820

835

OTHER
ACTIONS

FIG. 8

WO 2014/093952

PCT/US2013/075212

9/9

INITIATE OFFLOAD READ REQUEST kN 910

l

RECEIVE SUBTOKENS 915

l

SEND SUBTOKENS FOR OFFLOAD
WRITE REQUEST

925

OTHER
ACTIONS

FIG. 9

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/075212

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L29/08 GO6F3/06
ADD.

GO6F21/60

HO4L29/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F HOA4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2012/079583 Al (CHRISTIANSEN NEAL R 1-10
[US] ET AL) 29 March 2012 (2012-03-29)
paragraph [0001] - paragraph [0003]
paragraph [0029]
paragraph [0040]
paragraph [0056] - paragraph [0067]
paragraph [0077] - paragraph [0078]
paragraph [0094] - paragraph [0104]
paragraph [0125]
paragraph [0133] - paragraph [0135]
figure 2
A US 8 042 163 B1 (KARR RONALD S [US] ET AL) 1-10
18 October 2011 (2011-10-18)
column 1, line 45 - line 59
column 4, line 1 - line 53

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 April 2014

Date of mailing of the international search report

25/04/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Cankaya, Sukru

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/075212
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2012079583 Al 29-03-2012 AR 083102 Al 30-01-2013
AU 2011305839 Al 21-03-2013
CA 2810833 Al 29-03-2012
CN 102520877 A 27-06-2012
EP 2619652 A2 31-07-2013
JP 2013539119 A 17-10-2013
KR 20130139883 A 23-12-2013
W 201224914 A 16-06-2012
US 2012079583 Al 29-03-2012
WO 2012039939 A2 29-03-2012
US 8042163 Bl 18-10-2011 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report

