J. M. VAN METER.

FENCE ANCHOR AND DRIVER.

APPLICATION FILED SEPT. 26, 1904.
UNITED STATES PATENT OFFICE.

JAMES M. VAN METER, OF CAMBRIDGE CITY, INDIANA, ASSIGNS OF ONE-
HALF TO FRANK W. MARSON, OF CAMBRIDGE CITY, INDIANA.

FENCE ANCHOR AND DRIVER.

Application filed September 26, 1904. Serial No. 233,397.

To all whom it may concern:

Be it known that I, JAMES M. VAN METER,
a citizen of the United States, residing in
Cambridge City, in the county of Wayne, and
in the State of Indiana, have invented new
and useful Improvements in Fence Anchors
and Drivers, of which the following is a lucid
specification, corresponding in substance to
that disclosed in my caveat filed in the Patent
Office under date of September 26, 1903; and
I do hereby declare the following to be a full,
clear, and exact description of my invention
and the manner of its construction, such as
will enable others skilled in the art to which
it appertains and relates to make and use the
same.

My present invention has reference, broadly,
to a new anchor for the lower strand
of wire fences or the like and the device I
employ for placing said anchors in position.

The object of this present invention,
broadly speaking, is the provision of simple
and efficient means for anchoring wire fences
to the earth and the provision of the instru-
mentality for easily and quickly inserting
said means expeditiously and in proper order.

More specific objects are to provide means
for preventing the lower end of a fence from
being inadvertently lifted up, as by
farm-stock, to bring the lower edge of a
wire fence in contact with the ground, or nearly so,
and to provide an anchor for the fence at
points between the posts.

A further object is to provide a wire-fence
anchor or staple of simple and inexpensive
construction and to provide a simple and in-
expensive tool for placing said staples or an-
chors in position, and, finally, another ob-
ject is to provide as a new article of manu-
facture a wire-fence-anchoring staple and
tool for inserting same which can be made
and sold at a comparatively low price and
will be applicable to all kinds of wire fencing.

Other particular objects and specific ad-
vantages will be made manifest in the course
of this specification—such, for instance, as
the many metal contact points which will have
with the earth, which will cause the fence to
be practically immune from lightning or elec-
trical disturbances, and, again, the tool I
provide for inserting the staples or stays may be
used as a tamp in setting fence-posts.

The detailed objects and particular advan-
tages of my invention will hereinafter appear
more fully, and the essential features will be
set out in the claim terminating this specifi-
cation.

In order that others familiar with the art
to which my invention relates may construct
and operate the same, I will now set forth a
detailed statement thereof, which I will refer
to as briefly and compactly as I may.

In my efforts to simplify as far as possible
the construction and manipulation of my in-
vention and to attain the objects thereof I
have provided the arrangement and construc-
tion substantially as shown most clearly in
the accompanying drawings, in which—

Figure 1 is an elevation of a portion of wire
fencing, showing the earth therunder in sec-
tion and showing my anchoring-staples as
applied to hold the fence near to or in contact
with the surface of the ground. Fig. 2 shows
an outside elevation of the sheath of my
driving-tool. Fig. 3 shows an elevation of
the blade and hammer of my driving-tool.
Fig. 4 shows one of my anchoring-staples as
provided ready for use. Fig. 5 is a longitudi-
nal central section of the lower portion of
the driving-tool and showing one of the sta-
pes positioned ready for driving. Fig. 6 is a
cross-section taken on the line X X of Fig. 2.
Fig. 7 is a cross-section taken on line Y Y of
Fig. 3, and Fig. 8 is a detail showing a key to
be used in connecting together the sheath and
blade of the driving-tool.

Similar indices refer to and denote like
parts throughout the several views of the
drawings.

Referring now to the drawings in detail, the
letter A denotes a relatively long staple,
preferably formed of wire or the like, with
identical arms, each terminating in a bevel-
point, as a a', extending outward and down-
ward, as shown, whereby as the staple is
driven the points are caused to travel away
from each other—that is, downward, outward,
and sometimes curving upward, sub-
stantially as shown in Fig. 1. The amount
of inclination or curvature which may be im-
portant to the staples in driving will depend
somewhat on the nature of the earth into
which they are driven, but will depend more
particularly on the acuteness which is given
to the bevel of the points.

The letter B denotes the sheath of my
driving-tool, which sheath is essentially a
relatively long somewhat-flattened tube hav-
ing a square upper end and having an open longitudinal slot b extending into its lower end centrally, as shown in Fig. 2.

The letter C denotes a blade having an exposed portion of the same length as is the sheath B and of a size and contour to neatly fit and fill the interior space of said sheath B, as indicated in Fig. 5. Formed in the lower end of the blade C is a segmental indentation c' of the same contour as is the upper curvature of the loop of the staple A. On the upper end of the blade C is permanently secured the weight or hammer D, which should be of a contour to provide a handle and also being provided with a relatively flat face on its upper end and should be of a weight sufficient to be advantageous for driving purposes, as will presently be explained. The blade C is adapted to be entered at the top into the interior of the sheath B, with the weight D resting on the upper end of the sheath B and with its lower end even with the lower end thereof, in which position the sheath and blade are adapted to be locked together by the key E, which key is passed through the aligned holes f and b, which holes are formed through the sheath B and the blade C, respectively. When the parts are thus secured together, they can better be transported, or the device can then be used as a tamp for setting posts by using the weight D as a hammer or tamp and the sheath as a handle therefor, or the sheath may be removed and simply the blade used as a handle for the tamp.

The numeral 1 denotes earth, 2 denotes a fence-post, and 3 denotes the lower wire of a fabric fence, said objects being shown merely to illustrate the application of my invention.

The sheath B being separated from the other parts, as shown in Fig. 2, it will now be seen that a staple, as A, Fig. 4, may be positioned in the lower portion of the interior space thereof, as is shown in Fig. 5, after which the device is brought to bear on the fence in such a way that the wire 3 will enter the slot b, as shown in Fig. 5. The blade C is now entered from the top of the sheath into the interior thereof, whereby the segmental portion c' will rest on the loop or upper end of the staple A, as shown in Fig. 5. It will now be apparent that by alternately raising and lowering the weight or hammer D the staple will be driven into the ground astride the wire 3 and that by reason of the peculiar cut of the points a a' the staple will assume the shape as shown in Fig. 1, thus obtaining a purchase or grip in the earth and accomplishing one of the particular objects of this invention. It is apparent that the blade C

need not be entirely removed from the sheath in order to insert a new staple each time, but the staples may be entered from the lower end of the sheath.

It should be noticed that by reason of the great number of metal contacts the fence will have with the earth the fence thus provided will be almost, if not entirely, immune from lightning or other electric disturbances, which might otherwise damage the fence or entirely ruin it.

From the above description, when taken in connection with the accompanying drawings, it will be apparent that I have produced improved fence-anchors and a device for driving same which will accomplish the objects elsewhere referred to in this specification.

While I have shown and described the best means to me known at this time for carrying out the objects of my invention in a practical manner, I desire it to be understood that I do not restrict myself to the exact details of construction shown and described nor to the particular applications or uses set forth, but hold that any changes or variations in the invention as would suggest themselves to the ordinary mechanic would clearly fall within the limits and scope of my invention.

Having now fully shown and described my invention and its application, what I claim, and desire to secure by Letters Patent, is—

A fence-anchor driver comprising a hollow open-ended sheath, the interior walls of which are straight and uncorrugated, one end of the sheath being slotted to receive a fence-wire, the sheath further provided intermediate its ends with registering apertures in the opposite walls thereof a solid blade receivable in and of a contour corresponding to the interior area of the sheath, an enlarged tamping head on one end of the blade for limiting its inward movement, the blade being also provided intermediate its ends with an aperture therethrough which aperture, when the blade is wholly received in the sheath is brought into alinement with the apertures in the sheath and which aperture is of the same size as the apertures in the sheath, and a resilient split pin of a size equal to the diameter of the apertures, the pin receivable in and frictionally engaging the walls of the apertures to effectually prevent any movement of the blade relative to the sheath.

In testimony whereof I have hereunto signed my name to this specification in the presence of two subscribing witnesses.

JAMES M. VAN METER.

Witnesses:

FRANK W. MARSON,
R. W. RANDLE.