(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2016-13669 (P2016-13669A)

(43) 公開日 平成28年1月28日(2016.1.28)

(51) Int.Cl.			FΙ		テーマコード (参考)
B32B	15/14	(2006.01)	B32B	15/14	4 F 1 O O
D06M	13/513	(2006.01)	DO6M	13/513	4 L O 3 1
D06M	15/277	(2006.01)	DO6M	15/277	4 L O 3 3
D06M	11/83	(2006.01)	DO6M	11/83	

		審查請求	未請求	請求項の)数 3	OL	(全 12 頁)
(21) 出願番号 (22) 出願日	特願2014-137746 (P2014-137746) 平成26年7月3日 (2014.7.3)	(71) 出願人	592197315 ユニチカトレーディング株式会社 大阪府大阪市中央区瓦町2丁目4番7号				
		(72) 発明者	者 北阪 大輔 大阪府大阪市中央区瓦町2丁目4番7号 ユニチカトレーディング株式会社内 者 中川 清 大阪府大阪市中央区瓦町2丁目4番7号 ユニチカトレーディング株式会社内				
		(72) 発明者					
						最終	冬頁に続く

(54) 【発明の名称】偽装布帛及びその製造方法

(57)【要約】

【課題】初期は勿論、洗濯を繰り返した後においても十分な偽装効果を発揮しうる偽装布 帛と、この偽装布帛を安定的に製造する好ましい方法とを提供すること。

【解決手段】繊維布帛、金属薄膜層、迷彩柄着色剤層をこの順で積層すると共に、少なくとも前記迷彩柄着色剤層の表面に撥水剤とシランカップリング剤とがバインダー樹脂を介して固着されている偽装布帛であって、前記金属薄膜層の厚みが0.01~1μmであり、かつJIS L0217 103法による繰り返し洗濯20回後において、JIS L1092スプレー法に基づく撥水度が3級以上であることを特徴とする偽装布帛。

【選択図】なし

【特許請求の範囲】

【請求項1】

繊維布帛、金属薄膜層、迷彩柄着色剤層をこの順で積層すると共に、少なくとも前記迷彩柄着色剤層の表面に撥水剤とシランカップリング剤とがバインダー樹脂を介して固着されている偽装布帛であって、前記金属薄膜層の厚みが0.01~1μmであり、かつJIS L0217 103法による繰り返し洗濯20回後において、JIS L1092スプレー法に基づく撥水度が3級以上であることを特徴とする偽装布帛。

【請求項2】

前記金属薄膜層がエッチング処理されていることを特徴とする請求項1記載の偽装布帛

10

【請求項3】

繊維布帛の一方の面に金属薄膜層を形成し、次いで前記金属薄膜層の表面に迷彩柄着色剤を含有する糊剤を捺染した後、パディング法にてバインダー樹脂100質量部と撥水剤10~100質量部とシランカップリング剤0.5~10質量部とを付与することを特徴とする請求項1記載の偽装布帛の製造方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、赤外線に対して優れた偽装効果を奏する布帛に関するものであり、詳しくは、洗濯を繰り返しても、当該偽装効果が低下しづらく表面の迷彩模様もかすれづらい偽装布帛と、その布帛の好ましい製法とに関するものである。

20

30

40

【背景技術】

[00002]

赤外線に対して偽装効果を発現する布帛が、これまでに幾つか提案されている。

[0003]

例えば、特許文献1に、繊維布帛の表面に金属薄膜層、微粒子含有樹脂層及び迷彩用着色剤含有樹脂層をこの順で形成すると同時に、平均熱放射率、光沢度を特定範囲に調整することで、赤外線領域において優れた偽装効果を発現しうる布帛が開示されている。さらに、金属薄膜層を部分的に形成することで偽装効果をより向上させる技術が、特許文献2に開示されている。また、特許文献3には、偽装効果と共に布帛の通気性や柔軟性を改良する目的で、繊維布帛を構成する繊維の表面に金属薄膜層や迷彩用着色剤含有樹脂層を形成する技術が開示されている。

【先行技術文献】

【特許文献】

[0004]

【特許文献1】特許第4096760号公報

【 特 許 文 献 2 】 特 許 第 4 1 5 8 3 8 7 号 公 報

【特許文献3】特許第4487554号公報

【発明の概要】

【発明が解決しようとする課題】

[00005]

上記特許文献に記載された偽装布帛は、いずれも赤外線領域においても目視においても優れた偽装効果を発揮するものであり、野戦装備品としての衣服、テント、カバーなどに好適に使用できるものである。

[0006]

野戦装備品は、通常、森林、草原、砂漠などで使用されるため、汚れが付着し易く、良好な偽装効果を維持するために定期的に洗濯する必要あるとされている。しかし、洗濯を繰り返すと、次第に布帛表面の迷彩模様がかすれ、偽装効果が低下するという問題がある。上記特許文献に記載された偽装布帛は、洗濯前の状態(以下、この状態のことを「初期

」ということがある)では、優れた偽装効果を奏するものの、洗濯耐久性の向上については一切検討されておらず、かかる問題点の解決には至っていないのが実情である。

[0007]

本発明は、上記の問題点を解消するものであり、初期は勿論、洗濯を繰り返した後においても十分な偽装効果を発揮しうる偽装布帛と、この偽装布帛を安定的に製造する好ましい方法とを提供することを技術的な課題とするものである。

【課題を解決するための手段】

[0008]

本発明者らは、従来の偽装布帛において洗濯耐久性に優れる偽装効果が得られない原因について検討したところ、洗濯水流により、迷彩柄着色剤層が脱落しかつ金属薄膜層が浸食されているからであろうとの考えに至った。そこで、水流の影響を低減できる手段について種々検討したところ、着色剤層の表面を撥水加工すれば、水流をはじきその影響を小さくすることができるとの知見を得た。しかし、単に撥水加工しただけでは、初期は目的を達成できるものの、十分な洗濯耐久性は得られない。このため、さらなる検討が必要であった。そこで、鋭意検討したところ、シランカップリング剤を併用すると、意外にも撥水効果に洗濯耐久性を付与でき、さらに、着色剤層表面にバインダー樹脂を介して撥水剤及びシランカップリングを固着させると、その洗濯耐久性を一層向上させうることを見出した。本発明は、これらの知見に基づいてさらに検討を重ねることにより完成された発明である。

[0009]

すなわち、本発明は、第一に、繊維布帛、金属薄膜層、迷彩柄着色剤層をこの順で積層すると共に、少なくとも前記迷彩柄着色剤層の表面に撥水剤とシランカップリング剤とがバインダー樹脂を介して固着されている偽装布帛であって、前記金属薄膜層の厚みが0.01~1µmであり、かつJIS L0217 103法による繰り返し洗濯20回後において、JIS L1092スプレー法に基づく撥水度が3級以上であることを特徴とする偽装布帛を要旨とするものである。

【発明の効果】

[0010]

本発明の布帛は、赤外線領域において優れた偽装効果を発揮し、目視においても赤外線画像装置においても検出し難く、野戦装備品として好適に使用できる。そして、本発明の布帛は、洗濯耐久性に優れるものであり、洗濯を繰り返した後においても優れた偽装効果を奏することができる。

[0011]

また、本発明の製造方法によれば、上記の布帛を品質よく生産することができる。

【発明を実施するための形態】

[0012]

以下、本発明について詳細に説明する。

本発明の偽装布帛は、繊維布帛、金属薄膜層及び迷彩柄着色剤層をこの順で積層するものである。

[0013]

まず、繊維布帛としては、一般に織編物、不織布などが使用できるが、これに限定されず、繊維からなるシート状物であればどのようなものでも使用できる。

[0014]

繊維布帛を構成する繊維素材としては、例えば、ナイロン6、ナイロン66、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリアクリルニトリル、ポリビニルアルコール、ビニロン、アラミド、ポリエチレン、アセテート、綿、羊毛、レーヨンなどがあげられ、これらの素材を単独で又は混合して使用する。

[0015]

そして、繊維中には、必要に応じて艶消剤、帯電防止剤、難燃剤、抗菌剤、熱安定剤な ど各種添加剤が含まれていてもよい。 10

20

30

40

[0016]

繊維布帛の表面には、金属薄膜層が積層されている。金属薄膜層は、赤外線画像装置に対し偽装効果を発現させるために設けられるものである。薄膜層を構成する金属としては、チタン、ステンレス、ニッケル、銅、亜鉛、アルミニウム、鉄などがあげられ、本発明ではこれらを単独で又は混合して使用する。中でも、加工性、性能面でニッケルと銅との合金が好適である。

[0017]

本発明では、金属薄膜層の厚みを 0 . 0 1 ~ 1 µ m の範囲に設定する。厚みがこの範囲を外れると、所望の熱的特性が得られず、結果、赤外線画像装置に対して十分な偽装効果を発現できなくなる。特に金属薄膜層の厚みが 1 µ m を超えると、布帛の風合いや通気性なども損なわれることになる。また。本発明では、金属薄膜層を複数積層させてもよく、この場合は積層した金属膜合計の厚みが上記範囲を満たしていればよい。

[0018]

金属薄膜層は、メッキ法、蒸着法、スパッタリング法、イオンプレーティング法などを利用して形成できる。また、薄い金属箔を別途形成しておき、後に接着剤を介して繊維布帛に転写することによっても同層を形成できる。本発明では、性能面で蒸着法、スパッタリング法によるものが好適である。

[0019]

金属薄膜層は、繊維布帛の表面に全面状又は部分状に積層される。この場合、金属薄膜層の厚みに多少のばらつきを持たせると、熱放射率にばらつきが生じる。その結果、背景とより混和し易くなり、布帛の偽装効果がより向上することがある。厚みにばらつきを持たせるには、例えば、金属薄膜層の表面を全面状又は部分状にエッチング処理するとよい。ただし、表面をエッチング処理し過ぎると、熱放射率が大きく低下して、かえって偽装効果が発現しなくなる傾向にある。このため、エッチング処理する際は、偽装効果を損なわない範囲で行うことが好ましい。エッチング処理には、薬品処理を伴う化学的エッチング処理や、エンボス処理、擦過処理を伴う物理的エッチング処理などがある。

[0020]

また、金属薄膜層を形成する際は、予め繊維布帛をカレンダー加工しておくとよい。こうすることで、繊維布帛が平滑なものとなり、金属薄膜層を形成する際の加工性が向上する。また、最終的に得られる偽装布帛に撥水性能も付与できるので、好ましい。

[0021]

本発明では、さらに金属薄膜層の上に迷彩柄着色剤層を積層する。同層の柄を迷彩柄にすることで、可視光すなわち目視による偽装効果を付与でき、同層を構成する着色剤を適宜選択することで、赤外線に対する偽装効果を付与することができる。なお、赤外線及び可視光に対して偽装効果を付与するには、所定厚みの金属薄膜層を設けるだけでは不十分であり、金属薄膜層と共に着色剤層をも形成する必要がある。

[0022]

迷彩柄着色剤層は、主として迷彩柄着色剤から構成されるが、好ましくは着色剤を担持させるための担持用樹脂を併用するとよい。無論、着色剤層には、本発明の効果を損なわない限り、これら以外の成分が含まれていてもよい。

[0023]

着色剤としては、染料、顔料などが使用できる。染料としては、例えば、酸性染料、分散染料、反応染料、媒染染料、バット染料などがあげられる。また、顔料としては、無機顔料、有機顔料などが使用できる。無機顔料としては、酸化チタン、炭酸カルシウム、ベンガラ、カーボンブラッグなどがあげられる。有機顔料としては、アゾ系顔料、フタロシアニン顔料、スレン顔料、イソインドリン顔料などがあげられる。

[0024]

着色剤の色彩は、偽装効果を考慮して選ぶことが好ましい。例えば、野山、樹木、草、土などの自然環境に調和するような色彩、砂地、砂漠などの自然環境に調和するような色彩、建造物などの人工的な環境に調和するような色彩、さらには淡緑系、濃緑系、茶系、

10

20

30

40

黒系など所定の近赤外線反射が期待できる色彩などが好適である。本発明では、当該着色剤を単独で又は混合して使用するが、好ましくは多段階で赤外線を反射できるような組み合わせで使用するとよい。具体的には、多段階反射率を示す迷彩柄とするのがよい。この場合、地表の主な対象物の赤外線反射率は、およそ2~65%であるといわれ、対象物に応じて多段階の赤外線が反射しているから、本発明においても、各着色剤から多段階に赤外線を反射させることにより、高い偽装効果が期待できるようになる。通常、赤外線は3~5段階に分けて反射させるのが好ましい。1~2段階の分布では十分な偽装効果が期待し難く、6段階以上の分布ではコスト面、製造面において不利となり易い。

[0 0 2 5]

一方、担持用樹脂としては、酢酸ビニル樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂やこれらの変性樹脂などが使用できる。

[0026]

一例として、迷彩柄着色剤層を形成するには、まず、迷彩柄着色剤と担持用樹脂とを含有する糊剤を調製する。糊剤には必要に応じて他の任意の成分が含まれていてもよい。例えば、増粘剤、浸透剤、消泡剤、架橋剤、可塑剤、湿潤剤、還元剤、アルカリ化合物などがあげられる。また、着色剤層の赤外線反射率を最適化したい場合や、選んだ着色剤がありまた。素を適宜配合しておらずこれを補いたい場合などには、糊剤中に赤外線吸収色素を適宜配合してもよい。赤外線吸収色素としては、例えば、ポリメチン系色素、フタロシアニン系色素、ジチオール系色素、ナフトキノン系色素、アントラキノン系色素、フェニルメタン系色素、アミニウム系色素、ジインモニウム系色素、メルカプトナフトール金属錯塩系色素、アニリンブラック系色素などがあげられる。ただし、赤外線吸収色素は、繊維への吸着性が低いので接着樹脂を併用して布帛に固着させるのが好ましい。接着樹脂としては、アクリル系、ウレタン系、ポリエステル系、ポリアミド系などの樹脂があげられる。

[0027]

糊剤を用意した後は、金属薄膜層の表面にこの糊剤を塗布し、乾燥する。これにより迷彩柄着色剤層を形成できる。塗布の方法としては、捺染、コーティング、印刷又はスプレーなどがあげられるが、迷彩模様を形成し易いという点から捺染による方法が好適である。捺染方法としては、ロータリースクリーン、フラットスクリーンなどによる方法があげられる。

[0028]

本発明の偽装布帛は、以上のように繊維布帛、金属薄膜層、迷彩柄着色剤層をこの順で積層するものであるが、さらに、洗濯耐久性ある偽装効果を具現する目的で、少なくとも前記迷彩柄着色剤層の表面に撥水剤とシランカップリング剤とをバインダー樹脂を介して固着させる。

[0029]

偽装布帛は、野戦装備品として過酷な環境下で使用されることが多い。このため、汚れ付着に伴う偽装効果の低減を抑えるために、布帛を定期的に洗濯する必要がある。しかし、布帛が洗濯水流に曝されると、金属薄膜層や迷彩柄着色剤層が脱落、浸食される機会が増えるために、偽装効果が低下し易くなる。したがって、水流の影響を小さくするための工夫が必要となる。

[0030]

そこで、本発明者らは、鋭意検討し、撥水剤を使用して水流をはじくことで、水流の影響を小さくできることを見出し、同時に、布帛を単に撥水加工しただけでは、水流により撥水剤が押し流されてしまい、永続的な洗濯耐久性は得られないことも見出した。そこで、さらに検討を重ねたところ、理由は不明であるが、シランカップリング剤を併用すると、意外にも撥水効果に洗濯耐久性を付与できることを見出した。さらに、バインダー樹脂を介して撥水剤及びシランカップリング剤を着色剤層表面に固着させると、その洗濯耐久性を十分に向上しうることも見出したのである。

[0031]

10

20

30

具体的に、撥水効果の洗濯耐久性としては、JIS L0217 103法による繰り返し洗濯20回後において、JIS L1092スプレー法に基づいて撥水度を測定したとき、3級以上を満足する必要がある。洗濯耐久性に優れる撥水効果を有することにより、永続的に洗濯水流をはじくことができるようになる。そうすると、布帛が永続的に水流の影響を受けづらくなることに伴い、金属薄膜層や迷彩柄着色剤層が脱落、浸食される機会が減る。その結果、偽装効果は良好なまま保たれることになる。本発明におけるこのような優れた洗濯耐久性は、シランカップリング剤を使用するという構成と、バインダー樹脂によって撥水剤及びシランカップリング剤を固着するという構成との相乗効果といえるものであり、従来技術に比して顕著といえるものである。

[0032]

ここで、撥水剤としては、パラフィン系撥水剤、ポリシロキサン系撥水剤、フッ素系撥水剤などがあげられ、中でも優れた洗濯耐久性を得る観点から、フッ素系撥水剤が好適である。撥水剤の付与量としては、特に限定されないが、バインダー樹脂100質量部(固形分)に対して10~100質量部(固形分)とするのが好ましく、20~70質量部(固形分)とするのがより好ましい。撥水剤の付与量が10質量部未満になると、所望の撥水性が得られず、一方、100質量部を超えると、後述するパディング法に基づく工程が不安定なものとなり易く、いずれも好ましくない。

[0033]

布帛に撥水剤を与えることは、撥水性の他、防水性(耐水圧)を上げる点でも有効である。防水性能の付与は、洗濯耐久性の向上に資するところが大きい。本発明の偽装布帛において、初期の撥水度としては4級以上が好ましく、初期の耐水圧としては10kPa以上であることが好ましい。

[0034]

また、シランカップリング剤としては、例えば、有機官能基と加水分解性基とを具備する有機ケイ素化合物があげられる。有機官能基としては、有機物との反応や相互作用の起点となりうるものであればどのようなものでもよく、例えば、ビニル基、エポキシ基、スリチル基、メタクリル基、アミノ基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基などがあげられる。加水分解性基としては、メトキシ基、エトキシ基などがあげられる。

[0 0 3 5]

シランカップリング剤の付与量としては、特に限定されないが、バインダー樹脂100質量部(固形分)に対して0.5~10質量部(固形分)とするのが好ましく、1~5質量部(固形分)とするのがより好ましい。シランカップリング剤の付与量が0.5質量部未満になると、撥水効果の洗濯耐久性が改善し難くなり、5質量部を超えると、コスト面で不利となるだけでなく、洗濯耐久性のさらなる向上も期待できず、いずれも好ましくない。

[0036]

さらに、バインダー樹脂としては、例えば、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、アクリル樹脂やこれらの変性樹脂などがあげられ、これらを単独で又は混合して使用する。中でも、洗濯耐久性、加工性、汎用性、防水性及び布帛の風合いなどの点から、アクリル樹脂、ポリウレタン樹脂が好ましい。バインダー樹脂は、特に限定されないが、固形分換算で0.1~5g/m²付着していることが好ましく、0.5~3g/m²がより好ましい。付着量が0.1g/m²になると、撥水剤やシランカップリング剤などを十分に担持できなくなり、所望の洗濯耐久性が得られ難くなる。一方、5g/m²を超えると、偽装効果そのものが低下する傾向にあり、いずれも好ましくない。

[0037]

本発明の偽装布帛では、以上のように、迷彩柄着色剤層の表面に撥水剤とシランカップリング剤とがバインダー樹脂を介して固着されている。撥水剤とシランカップリング剤を固着するには、まず、バインダー樹脂と撥水剤とシランカップリング剤とを含有する樹脂溶液を調製する。その後、迷彩柄着色剤層の上に前記樹脂溶液を捺染、コーティング、印

10

20

30

40

刷又はスプレーするか、布帛自体を前記樹脂溶液にパディングするなどした後、乾燥すればよい。本発明では、工程が簡略でありかつ厚塗りが容易であるとの理由から、パディング法による方法が好ましく採用される。

[0038]

パディング法を採用する場合、ピックアップ率は20~100質量%が好ましい。また、乾燥条件は80~130 で、60~180秒間が好ましい。乾燥後は必要に応じて熱処理することが好ましく、熱処理条件としては、150~180 で20~120秒間が好ましい。

[0039]

さらに、バインダー樹脂を介しての撥水剤及びシランカップリング剤の付与は、複数回に分けて行ってもよい。例えば、シランカップリング剤を含む処理液にパディングし、乾燥した後、バインダー樹脂と撥水剤とを含む樹脂溶液にパディングし、乾燥してもよい。また、シランカップリング剤と撥水剤とを含む処理液にパディングし、乾燥した後、バインダー樹脂を含む樹脂溶液をコーディングし、乾燥してもよい。

[0040]

本発明の偽装布帛の用途としては、特に限定されないが、例えば、衣服、テント、鞄、カバー、カーテンなどがあげられる。

【実施例】

[0041]

以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。また、実施例、比較例における各特性は以下の方法に準じて測定、評価した

[0042]

(1) 偽装効果

A 赤外線領域

森林を背景にして布帛を赤外線反射カメラで撮影し、得られた画像から偽装効果を評価した。

B 可視光領域

森林を背景にして布帛を目視し、偽装効果を評価した。

上記A、Bにかかる偽装効果を以下の基準で評価した。

:森林と調和し、形状識別が非常に困難と判断される。

:森林と調和し、形状識別が困難と判断される。

:森林との調和が十分でなく、わずかに識別可能と判断される。

×:森林と調和せず、十分に識別可能と判断される。

[0 0 4 3]

(2)撥水効果

JIS L1092スプレー法に基づいて撥水度を測定した。

[0044]

(3)防水性

JIS L1092記載の低水圧法に基づいて耐水圧を測定した。

[0 0 4 5]

(4)洗濯耐久性

JIS L0217 103法に基づいて洗濯を20回行った後(20洗後)の布帛について、上記(1)~(3)記載の項目を測定、評価した。

[0046]

(実施例1)

ナイロンマルチフィラメント糸 7 8 d t e x 6 8 f を経緯糸に用いて、経糸密度 1 2 0 本 / インチ、緯糸密度 9 0 本 / インチの平組織の生機を製織した後、精練し、目付け 7 8 g / m 2 の繊維布帛とした。

[0047]

10

20

30

40

そして、鏡面ロールを有するカレンダー加工機に上記繊維布帛を導入し、温度160 、 圧 力 3 0 0 k P a 、 速 度 3 0 m / 分 なる 条 件 で カ レ ン ダ ー 加 工 し た 。

次 に 、 カ レ ン ダ ー 加 工 し た 繊 維 布 帛 を ス パ ッ タ リ ン グ 装 置 に 導 入 し 、 布 帛 の カ レ ン ダ ー 加 工面の上にニッケル/銅合金の金属薄膜層を形成した。薄膜層の厚みは 0 . 2 μ m であっ た。

[0048]

その後、下記4色の糊剤を調製し、金属薄膜層の表面にこれら4色の糊剤を印捺した。 捺染の柄は迷彩模様とし、各糊剤が重ならないように印捺した。

[0049]

・淡グリーン

CI.Acid Blue 40(着色剤) 0.3質量部

CI.Acid Orange 149(着色剤) 0.6質量部

A c i d G r e e n 2 8 (着色剤) 0 . 2 質量部

水 38.9

捺 染 元 糊 (酢 酸 ビ ニ ル 樹 脂 を 主 た る 成 分 と す る 担 持 用 樹 脂 の 組 成 物) 6 0 質 量 部 ・濃グリーン

Acid Yellow 127(着色剤) 2.7質量部

A c i d B l u e 1 1 3 (着色剤) 0 . 6 質量部

A c i d G r e e n 109 (着色剤) 0.7 質量部

水 40.1質量部

捺染 元 糊 (酢 酸 ビニ ル 樹 脂 を 主 た る 成 分 と す る 担 持 用 樹 脂 の 組 成 物) 4 6 . 0 質 量 部

P A 1 0 0 1 (メルカプトナフトール金属錯塩系色素) 0 . 3 質量部

Dexel Clear 3301(アクリル系接着樹脂) 10.0質量部

・茶

Acid Orange 149(着色剤) 2.7質量部

A c i d R e d 2 6 6 (着色剤) 0 . 6 質量部

A c i d B l u e 2 5 8 (着色剤) 0 . 5 質量部

水 38.9質量部

捺染 元 糊 (酢 酸 ビニ ル 樹 脂 を 主 た る 成 分 と す る 担 持 用 樹 脂 の 組 成 物) 4 6 . 0 質 量 部

Kayasorb IR-750(アミニウム系色素) 0.5質量部

Kayasorb IRG-023(ジインモニウム系色素) 0.8質量部

Dexel Clear 3301(アクリル系接着樹脂) 10.0質量部

A c i d B l a c k 1 1 2 (着色剤) 5 . 0 質量部

水 34.0質量部

捺染 元 糊 (酢 酸 ビニ ル 樹 脂 を 主 た る 成 分 と す る 担 持 用 樹 脂 の 組 成 物) 3 5 . 0 質 量 部

Pigment Black 112(アニリンブラック系色素) 6.0質量部

Herizarine Binder UD(アクリル系接着樹脂) 20.0質量部

[0050]

印捺後、120 で1分間乾燥し、さらに120 で2分間高温スチーマーにより加熱 蒸熱処理し、150 で1分間熱処理した。熱処理後、水洗し、さらに界面活性剤とソー ダ灰とをそれぞれ1g/L含む水溶液を使用して60 で10分間ソーピング処理し、水 洗、乾燥を経て、前記薄膜層上に迷彩柄着色剤層を形成した。

[0051]

次に、下記処方1に示す組成の樹脂溶液を調製した。

[0 0 5 2]

処方 1

ライトエポックS-60NEF(北広ケミカル株式会社製、ノニオン性アクリルシリコ ン 系 バ イ ン ダ ー 樹 脂 、 固 形 分 3 0 質 量 %) 1 0 0 質 量 部

信 越 シ リ コ ー ン K B E 9 0 3 (信 越 化 学 工 業 株 式 会 社 製 、 ア ミ ノ 系 シ ラ ン カ ッ プ リ ン グ

10

20

30

40

剤、固形分10質量%) 15質量部

LSE-009(明成化学工業株式会社製、フッ素系撥水剤、固形分20質量%) 6 0 質量部

メイカネートWEB(明成化学工業株式会社製、架橋剤、ブロックイソシアネート化合 物) 10質量部

イソプロピルアルコール 10質量部

水 805質量部

[0053]

そして、繊維布帛、金属薄膜層及び迷彩柄着色剤層をこの順で積層してなる前記布帛を 処 方 1 の 樹 脂 溶 液 に パ デ ィ ン グ し 、 ピ ッ ク ア ッ プ 率 が 4 0 質 量 % と な る よ う に マ ン グ ル で 絞り、120 で2分間乾燥した。その後、170 で1分間熱処理することで、偽装布 帛 を 得 た 。 得 ら れ た 偽 装 布 帛 に は 、 上 記 ノ ニ オ ン 性 ア ク リ ル シ リ コ ン 系 バ イ ン ダ ー 樹 脂 が 1 . 3 g / m² 付着していた。また、フッ素系撥水剤及びアミノ系シランカップリング剤 の付与量は、上記バインダー樹脂100質量部(固形分)に対してそれぞれ40質量部、 5 質量部(固形分)であった。

[0054]

(実施例2)

まず、長さ50cm、直径10cmの金属ロールに粒度1500番(平均粒子径12μ m)の砥粒を有するサンドペーパーを巻き付けた。次に、実施例1において、金属薄膜層 形成後、前記サンドペーパーを巻き付けた金属ロールを使用して、金属薄膜層表面を10 回擦過処理した。以降は、実施例1と同様に行い、偽装布帛を得た。

[0055]

(実施例3)

実施例1において、迷彩柄着色剤層形成後、布帛を処方2の処理液にパディングし、ピ ックアップ率が40質量%となるようにマングルで絞り、120 で2分間乾燥した。得 られた布帛には、撥水剤とシランカップリング剤とがそれぞれ 0 . 6 6 g / m 2 、 0 . 0 3 7 g / m² 付着していた。

[0056]

処方 2

信越シリコーンKBE903(信越化学工業株式会社製、アミノ系シランカップリング 剤、固形分10質量%) 12質量部

アサヒガードAG-E081(旭硝子株式会社製、フッ素系撥水剤、固形分30質量% 7 0 質量部

メイカネートWEB(明成化学工業株式会社製、架橋剤、プロックイソシアネート化合 物) 10質量部

イソプロピルアルコール 10質量部

水 898質量部

[0057]

次に、迷彩柄着色剤層が積層されている面を上に向け、この面の上から処方3の樹脂溶 液 (固形分 1 9 質量 % 、 粘度 3 5 0 0 m P a ・ s / 2 5) を塗布量 1 5 g / m ² で乾式 コーティングした。その後、120 で2分間乾燥し、170 で1分間熱処理すること で、 偽 装 布 帛 を 得 た 。 得 ら れ た 偽 装 布 帛 に は 、 防 水 性 ポ リ ウ レ タ ン 系 バ イ ン ダ ー 樹 脂 が 2 . 8 5 g / m² 付着していた。また、フッ素系撥水剤及びアミノ系シランカップリング剤 の付与量は、上記バインダー樹脂100質量部(固形分)に対してそれぞれ23質量部、 1.3質量部(固形分)であった。

[0058]

処方 3

ハ イ ム レ ン Y - 2 3 7 N S (大 日 精 化 工 業 株 式 会 社 製 、 防 水 性 ポ リ ウ レ タ ン 系 バ イ ン ダ 一樹脂、固形分27質量%) 100質量部

レザミン X (大日精化工業株式会社製、架橋剤、イソシアネート化合物) 1 質量部

10

20

30

40

メチルエチルケトン 40質量部

[0059]

(比較例1)

処方 1 中の信越シリコーン K B E 9 0 3 及び L S E - 0 0 9 を省略する以外は、実施例 1 と同様に行い、偽装布帛を得た。

[0060]

(比較例2)

処方1中の信越シリコーンKBE903を省略する以外は、実施例1と同様に行い、偽装布帛を得た。

[0061]

(比較例3)

処方1中のLSE-009を省略する以外は、実施例1と同様に行い、偽装布帛を得た

[0062]

(比較例4)

処方3の樹脂溶液を使用した乾式コーティングを省略する以外は、実施例3と同様に行い、偽装布帛を得た。

[0063]

(比較例5、6)

薄膜層の厚みを 0 . 2 μ m に代えて、 0 . 0 0 5 μ m (比較例 5)又は 3 μ m (比較例 6)とする以外は、実施例 1 と同様に行い、偽装布帛を得た。

[0064]

上記実施例、比較例で得た布帛の特性を表1にまとめた。

[0065]

【表1】

	偽装効果			撥水効果		防水性(耐水圧)	
	赤外線領域		可視光領域	初期	20洗後	初期	20洗後
	初期	20洗後	20洗後	(級)	(級)	(kPa)	(kPa)
実施例1	0	0	0	4-5	3-4	18. 0	15. 7
実施例2	0	0	0	4-5	3-4	20. 8	16. 9
実施例3	0	0	0	4-5	3-4	17. 6	15. 8
比較例1	0	×	×	1-2	1	4. 1	2. 2
比較例2	0	×	×	4	1	17. 4	2. 8
比較例3	0	×-Δ	×	2	1	8. 6	3. 6
比較例4	0	Δ	Δ	4	2	16. 7	6. 5
比較例5	×	×	0	4	3	17. 3	11.7
比較例6	×	×	0	4	3	18. 2	14. 4

[0066]

実施例における布帛は、赤外線領域においても可視光領域においても優れた偽装効果を 発揮しうるものであった。そして、かかる偽装効果は、洗濯耐久性に優れるものであった

[0067]

これに対し、比較例1、3にかかる布帛は、撥水加工されておらず、偽装効果に洗濯耐久性は認められなかった。中でも比較例3は、シランカップリング剤を使用したものであったが、そもそも撥水加工されていないため、所望の洗濯耐久性は認められなかった。比較例2の布帛は撥水加工されたものであるが、シランカップリング剤が併用されておらず、所望の洗濯耐久性は認められなかった。

[0068]

そして、比較例4にかかる布帛は、シランカップリング剤を伴って撥水加工されたものであったため、ある程度の洗濯耐久性は認められた。しかし、バインダー樹脂を伴ったものではなかったため、洗濯耐久性は顕著といえるほどのものではなかった。

30

20

10

40

[0069]

比較例5、6の布帛は、金属薄膜層の厚みが所定範囲を外れていため、赤外線領域にお いて所望の偽装効果が得られなかった。

フロントページの続き

F ターム(参考) 4F100 AB01B AB31 AB33B AH05 AH06C AK01C AK25 AK48 AL08 BA03 BA07 BA10A BA10C BA23 CA13C CB00C DG11 DG11A EH66 EJ15B

EJ82 GB72 GB87 GB90 HB31 HB40C JB06C JL00 JM02B YY00

YY00B

4L031 AA20 AB32 BA04 CB14

4L033 AA08 AB05 AC03 BA96 CA22