特許協力条約に基づいて公開された国際出願

国際特許分類:
B65G 1/137 (2008.01)

国際出願番号:
PCT/JP2014-067358

国際出願日:
2014年3月28日 (28.03.2014) JP

発明者:
広井 典良 (HIROI, Noriyoshi)

代理人:
下坂 建樹 (SHIMOSAKA, Naoki)

指定国 (表示のない限り, 全ての種類の国内保護が可能):

添付公開文書:
- 国際調査報告 (条約第21条(3))

発明の名称: 情報処理装置, 情報処理システム, 物流システム, 情報処理方法およびプログラム記憶媒体

収集情報処理システム

取得部

検知部

報知制御部

71 Acquisition unit
73 Report control unit
72 Detection unit

要約: 作業の効率化および作業ミスの低減を図るために、本発明に係る情報処理装置（70）は、取得部（71）と、検知部（72）と、報知制御部（73）とを備える。取得部（71）は、作業対象物に対して実行される作業で用いる情報を前面記載作業対象物に該当されている箇所から取得する。検知部（72）は、作業対象物の所在位置を検知する。報知制御部（73）は、作業で用いる情報を、その情報を利用した作業内容とが関連付けられているデータである規則に基づいて、作業対象物に対する作業内容を検知する。さらに、報知制御部（73）は、その作業内容を報知する報知装置を制御することによって、作業内容を報知する。
明細書

発明の名称:
情報処理装置、情報処理システム、物流システム、情報処理方法およびプログラム記憶媒体

技術分野

[0001] 本発明は、流通業、製造業者の出荷作業、小売業、業務などでの仕分け作業の効率化を図ることができる技術に関する。

背景技術

[0002] 流通業者や製造業者や店舗や通信販売小売業などが持つ物流倉庫などにおいて、取扱う荷物または商品の寸法、種類あるいは宛先（送付先）は様々である。そのような荷物や商品を配送先別、または、棚包の種類別に仕分けを仕分け作業（以下、仕分け作業と記載する）は、次のような手順で行われる。例えば、まず、作業者は、作業台に置かれた荷物や商品（以下、仕分け対象物と記載する）の宛先ラベルを読み取る。次に、作業者は、その宛先ラベルに記載されている情報に基づいて、各仕分け対象物を、配送先あるいは棚包の種類などに応じた集積棚やカゴ車などに移す。

[0003] 一般的な仕分け作業では、ベルトコンベアーソーター等の機械によって、仕分け対象物が次々と作業台に供給されるため、常に仕分け対象物が作業台に存在する状態となる。また、作業者は、作業台の仕分け対象物を手で自由に動かすことができるため、作業者の工夫によって仕分け作業の省力化を図ることができる。例えば、作業者は、仕分け対象物をまとめて仕分けする。作業者は、仕分け対象物を持ちやすい位置と向きに移動・回転させてから持ち上げる。作業者は、作業台の仕分け対象物を仕分け先近くにまとめて移動してから仕分け対象物を持ち上げる。作業者は、このように作業することによって、仕分け作業の省力化を図ることができる。さらに、仕分け作業において、例えば、複数の作業者が、それぞれ、分担する仕分け移動作業（集積棚やカゴ車など）を決め、仕分けされた仕分け対象物を、担当する仕分け移動作業
先に移すことによって、各作業者の歩行量を減らすことができる。また、仕分け作業を複数の作業者により行い、手が空いた作業者は他の作業者の手伝いをすることによって、作業の効率化を図ることができる。つまり、作業者または仕分け対象物により仕分け作業時間が異なり、作業が遅れる作業者がない、そのように手が空いた作業者が他の作業の手伝いをすることによって、全体としては効率の良い仕分け作業になる。

仕分け作業は、少品种生産業者の出荷作業場あるいは図書館などのように、仕分け対象物の種類や宛先が限定されている場合には、ソーター機能を持つベルトコンベアあるいはピックアップロボットなどの機械を利用することによって、自動化が可能である。しかしながら、仕分け作業を自動化する装置は高価であり、また、汎用性が低く、さらに、大型設備であることにより、そのような装置を導入できる流通業者や小売業者は限られている。このため、ほとんどの仕分け作業は、そのような装置を用いずに、人力により行われる。

特許文献1には、仕分け作業に関わる技術が開示されている。この特許文献1における技術では、仕分け対象物に設けられたRFID（Radio Frequency IDent i fi er）、バーコード、2次元コード等からハンドスキャナ等の業務端末によって読み取られた仕分け先の情報が作業者に通知されている。この技術によれば、仕分け作業現場で必要最小限の仕分け先が作業者に通知されるため、作業者は、仕分け先を理解・認識しなくとも、仕分け作業を行うことができる。

特許文献2には、ベルトコンベアに置かれた仕分け対象物の行き先を個別に表示装置に表示する技術が開示されている。この技術によれば、仕分け対象物の見認性が向上し、仕分け誤りを低減でき、仕分け作業の精度が向上する。

特許文献3には、複数のロボットとコンベアを組み合わせることにより、商品や荷物の倉庫への入庫・保管・出庫を行う自動倉庫の技術が開示されている。この技術によれば、倉庫における入出庫効率を高めることができる。
また、特許文献4には、大きさが異なる様々な荷物を扱う配送センター等において、設備を大型化することなく、荷物の上面に貼付された伝票の内容を当該荷物の大きさによらずに読み取る技術が開示されている。さらに、特許文献5には、ベルトコンベアによって搬送されている物品の中から目的の物品を容易に抽出できる技術が開示されている。

先行技術文献

特許文献

特許文献1：特許第3867970号公報
特許文献2：特開2011-102170号公報
特許文献3：特許第3484104号公報
特許文献4：特開2006-155395号公報
特許文献5：特開2008-280102号公報

発明の概要

発明が解決しようとする課題

しかしながら、特許文献1に記載されている技術を利用する場合には、作業者が仕分け対象物と業務端末を持ち替える作業、および、仕分け対象物とディスプレイを交互に見る作業が必要である。このため、特許文献1に記載されている技術を利用した仕分け作業は非効率である。また、特許文献1における技術では、仕分け先を表示するスキャナのディスプレイまたは付属のディスプレイは、仕分け対象物から離れた位置に配置される。この場合、作業者が仕分けしている仕分け対象物と、ディスプレイに表示されている仕分け先の情報に対応する仕分け対象物がずれていることがあるために、作業者は、仕分け先を誤る虞がある。

特許文献2に記載されている技術を利用する場合には、作業者の作業時間に応じてベルトコンベアの速度を調整する必要がある。すなわち、もっとも時間のかかる作業に合わせてベルトコンベアの速度および全体の作業速度が決まる。このために、それよりも早く作業が完了しても、作業者は次の作業
に移れず次の仕分け対象物を待つことになる。また、複数人が同時に作業する場合には、作業者毎に作業速度が異なるため、もっとも作業速度が遅い作業者に全体の速度を合わせる必要がある。したがって、ベルトコンベアを用いる作業は、全体としての作業効率が悪くなりやすい。

特許文献 3 に記載されている技術を利用する場合には、仕分け対象物が多品種化した場合に、仕分け対象物の保持装置が複雑・高価になってしまう。また仕分け先が多ければ、搬送装置が大型化・複雑化してしまう。さらに、特許文献 4 に記載されている構成では、カメラは、反射ミラーに映っている荷物を撮影している。このため、カメラが荷物の伝票をピントが合った状態で撮影するためには、作業者等が反射ミラーの位置や傾きを調整することが必要である。しかしながら、その反射ミラーの位置や傾きの調整が不適切な場合には、カメラが荷物の伝票を撮影できないという問題や、カメラによる荷物の伝票の撮影画像がぼけるという問題が生じる。このような問題が生じると、例えば、そのカメラの撮影画像を利用する仕分け作業に支障を来してしまう、正確な仕分け作業ができないになる。さらに、特許文献 5 に記載されている技術では、ベルトコンベアによって搬送されている物品（例えば、製品）がモニタに映し出される。そして、それらの物の中に例えば不良品がある場合には、モニタの画像において、その不良品（つまり、抽出対象物）の像が例えば強調色によりマークされる。作業者は、そのモニタの画像に基づいて、不良品をベルトコンベア上から取り出す。しかしながら、作業者は、モニタ画像と、ベルトコンベア上の物品とを見比べながら、不良品を取り出さなければならないので、作業効率が悪く、かつ、不良品ではない物品を取り出す虞がある。

本発明は上記課題を解決するために考案された。すなわち、本発明の主な目的は、複雑・高価な装置を導入することなく、人力で行われる仕分け作業に対し、作業者の仕分け作業の効率と正確さを向上させることである。課題を解決するための手段
上記目的を達成するために、本発明の情報処理装置は、
作業対象物に対して実行される作業で用いる情報を前記作業対象物に添付させていた書類から取得する取得部と
前記作業対象物の所在位置を検知する検知部と、
前記作業で用いる情報と、その情報を利用した作業内容とが関連付けられているデータである規則に基づいて、前記作業内容を検知し、それが記載された内容を、前記情報処理装置を制御することによって、前記作業内容を報知する報知制御部とを備えている。

本発明の情報処理システムは、
本発明の情報処理装置と、
作業対象物に添付されている書類の内容を表す情報を、前記取得部に提供する情報取得装置と、
前記作業対象物の所在位置に関する情報を、前記検知部に提供する情報提供装置と、
前記報知装置とを備えている。

本発明の物流システムは、
本発明の情報処理システムを備え、
前記報知装置は、作業対象物に対する作業内容を表す情報として、前記作業対象物を仕分ける仕分け先を報知する。

本発明の情報処理方法は、
コンピュータが、
作業対象物に対して実行される作業で用いる情報を前記作業対象物に添付されている書類から取得し
前記作業で用いる情報と、その情報を利用した作業内容とが関連付けられているデータある規則に基づいて、前記作業対象物に対する前記作業内容を検知し、
その作業内容を報知する。

[0018] 本発明のプログラム記憶媒体は、
作業対象物に対して実行される作業で用いる情報を前記作業対象物に添付されている書類から取得する処理と、
前記作業対象物の所在位置を検知する処理と、
前記作業で用いる情報と、その情報を利用した作業内容とが関連付けられているデータである規則に基づいて、前記作業対象物に対する前記作業内容を検知する処理と、
その作業内容を報知する処理と
をコンピュータに実行させるためのコンピュータプログラムを記憶する。

[0019] なお、本発明の前記主な目的は、本発明の情報処理装置に対応する情報処理方法によっても達成される。さらに、本発明の前記主な目的は、本発明の情報処理装置、情報処理方法を実現するコンピュータプログラムまたは当該コンピュータプログラムを記憶するプログラム記憶媒体によっても達成される。

発明の効果

[0020] 本発明は、複雑・高価な装置を導入することなく、人力で行われる仕分け作業に対し、作業者の仕分け作業の効率と正確さを向上できる。

図面の簡単な説明

[0021] [図1]本発明に係る第1実施形態の情報処理システムの構成を簡略化して表すブロック図である。
[図2]第1実施形態の情報処理システムを実現するハードウェアの一例を示すブロック図である。
[図3]第1実施形態の情報処理システムの処理の流れを表すフローチャートである。
[図4]仕分け対象物の一例を表す図である。
[図5]第1実施形態において仕分け対象物に貼付される宛先ラベルの一例を表す図である。
[図6] 第1実施形態におけるデータベースに格納される仕分け先情報の一例を表す図である。
[図7] 第1実施形態における情報処理システムを含む物流システムを説明する図である。
[図8] 第1実施形態における情報処理システムを含む物流システムを説明する図である。
[図9] 本発明に係る第2実施形態の情報処理システムを含む物流システムを説明する図である。
[図10] 本発明に係る第3実施形態の情報処理システムを含む物流システムを説明する図である。
[図11] 第3実施形態の情報処理システムの処理の流れを表すフローチャートである。
[図12] 本発明に係る第4実施形態の情報処理システムを含む物流システムを説明する図である。
[図13] 本発明に係る第5実施形態の情報処理装置の構成を簡略化して表すブロック図である。
[図14] 第5実施形態の情報処理装置を説明する図である。
[図15] 本発明に係る第6実施形態の情報処理システムの構成を簡略化して表すブロック図である。
[図16] 本発明に係るその他の実施形態を説明する図である。

発明を実施するための形態

[0022] まず、本発明に係る実施形態において、手段」、「装置」や「システム」とは、単に物理的手段を意味するだけでなく、その手段」、「装置」や「システム」が有する機能をソフトウェアによって実現する場合も含む。また、1つの手段」、「装置」や「システム」が有する機能は、1つの物理的手段や装置により実現されることは限らず、2つ以上の物理的手段や装置により実現されてもよい。さらに、2つ以上の手段」、「装置」や「システム」の機能が1つの物理的手段や装置により実現されてもよい。
以下に、本発明に係る実施形態について、図面を参照しながら説明する。

＜第1実施形態＞

図1乃至図8は、本発明に係る第1実施形態を説明する図である。

はじめに、図4、図5、図7を参照しながら、第1実施形態の概要を説明する。第1実施形態が関連する物流システムである仕分けシステムは、例えば荷物宅配業の物流センター等に適用される。この仕分けシステムでは、図7に表されるように、仕分け作業者111は、仕分け作業台400に載っている仕分け対象物（作業対象物）200の行き先を確認し、仕分け対象物200を行き先に応じた仕分け先300に運ぶ。

このような仕分け作業においては、通常、仕分け作業者111は、仕分け対象物200に貼付された宛先ラベル210（図4参照）を確認し、仕分け先300を認識する。次に、仕分け作業者111は、仕分け対象物200を持ち、仕分け先300まで運ぶ。

仕分け作業者111は、上記のように、仕分け対象物200の宛先ラベル210に記載されている情報を読み取り、当該宛先ラベル210に記載されている情報に基づいて、仕分け先300を認識する。しかしながら、宛先ラベル210には、通常、多数の情報が記載されており、仕分け対象物200の仕分けに利用する情報は、その宛先ラベル210に記載されている情報の一部である。このため、仕分け作業者111が、宛先ラベル210から、仕分けに利用する情報を誤って読み取ることができ、これに起因して、仕分け対象物200の仕分け先300を間違えてしまう事態が発生する。

そこで、第1実施形態では、認識装置520が、カメラ500による撮影画像を利用して、仕分け対象物200の形状および宛先ラベル210を認識する。然ら後に、仕分け対象物200が搬送装置700によって仕分け作業台400に搬送される。そして、投影装置610が、カメラ530により撮影された仕分け対象物200の仕分け先300を検知し、その仕分け対象物200の上面にプロジェクタ600によって仕分け先300を表す仕分け先投影像230（図4参照）を投影する。仕分け作業者111は、その仕分け
先投影像を確認し、当該仕分け先投影像２３０に応じた仕分け先３０
0 に仕分け対象物２００を移動する。この結果、仕分け作業者１１１は、宛
先ラベル２１０の内容を認識・理解しなくとも、仕分け作業を行うことができる、仕分け作業の迅速化、および、仕分け誤りを低減できる。

なお、プロジェクト６００は、投影エリア内に仕分け対象物２００が入る
と、当該仕分け対象物２００に仕分け先投影像２３０を投影し始める。また
、プロジェクト６００は、仕分け対象物２００が投影エリアから外れる、ま
たは、投影エリア内であってもカメラ５３０によって撮影されなくなった時
点で、その仕分け対象物２００への投影を終了する。

また、図７の例では、カメラ５３０、および、プロジェクト６００が各１
台ずつ描かれているが、カメラ５３０の撮影エリア、および、プロジェクト
６００の投影エリアの大きさに応じて、カメラ５３０とプロジェクト６００
の各々の数量および位置を適宜変更してもよい。

次に、図１を用いて、本発明に係る第１実施形態の情報処理システムの構
成を説明する。なお、図１における参照符号は、理解を助けるための一例と
して各要素に便宜上、付したものであり、本発明に対するなんらの限定を意
図するものではない。

第１実施形態の情報処理システム１００は、認識装置５２０と、投影装置
６１０とを含む。認識装置５２０は、カメラ５００と、制御装置５５０と、
データベース５６０とを含む。認識装置５２０は、順番に送られてくる仕分
け対象物２００（図４参照）の全体形状および仕分け対象物２００に貼付さ
れている宛先ラベル２１０を、カメラ５００によって撮影し、宛先と形状を
認識する。

すなわち、カメラ５００は、仕分け対象物２００の宛先ラベル２１０およ
び全体形状を撮影する。なお、カメラ５００は、例えば複数台が、同じ仕分
け対象物２００における互いに異なる位置を撮影するように配置されていて
もよい。その理由は、仕分け対象物２００における宛先ラベル２１０の貼付
位置は固定されていないことから、仕分け対象物２００を様々な方向から撮
影することによって、宛先ラベル210をより確実に撮影できるようにするためである。また、複数の仕分け対象物200が存在する場合には、複数台のカメラ500が互いに異なる場所を撮影するように配置されていてもよい。これにより、それらカメラ500は、複数の仕分け対象物200および当該仕分け対象物200に貼付されている宛先ラベル210を同時に撮影することができる。

[0034]また、例えば、仕分け対象物200を移動あるいは回転させながら、1台のカメラ500が同じ仕分け対象物200の異なる場所を撮影するようにしてもよい。これにより、カメラ500は、1台しか設置されていないとも、仕分け対象物200の全体形状および宛先ラベル210を容易に撮影できる。また、宛先ラベル210が予め定められた向きを向くように仕分け対象物200が配置されるようにしてもよい。他にも、仕分け対象物200に、宛先ラベル210としての、認識が容易な形状を持つ専用ラベルを、認識が容易な位置に貼るようにしてもよい。このように、仕分け対象物200の宛先ラベル210をカメラ500が確実に撮影できるようにする方法や装置構成は様々に考えられる。具体的にどのような方法や装置構成を採用するかは本発明を実施する場合の状況に応じて選択すればよい。

[0035]また、カメラ500の動作は、制御装置550によって制御される構成であってもよいし、例えば、カメラ500が制御部（図示せず）を備え当該制御部がカメラ500の動作を制御してもよい。カメラ500は、有線または無線の情報通信網を通じて制御装置550に接続される。

[0036]制御装置550は、カメラ500が撮影した宛先ラベル210の画像（静止画）または映像（動画）から、画像処理によって、宛先ラベル210に記載されている宛先のデータを取得する。換言すれば、制御装置550は、カメラ500による撮影画像に基づき、作業対象物（仕分け対象物200）に対して実行される作業（仕分け作業）で用いる情報（宛先データ）を作業対象物に貼付されている書類（宛先ラベル210）から取得する取得部としての機能を持つ。また、カメラ500は、作業対象物に貼付されている書類（
宛先ラベル210の内容を取得部（制御装置550）に提供する情報取得装置として機能する。

データベース560には、宛先データと、仕分け先300を表すデータとが関連付けられているデータが格納されている。換言すれば、データベース560には、仕分け作業で用いる情報（宛先データ）と、その情報を利用した作業内容（仕分け先300を表すデータ）とが関連付けられているデータである規則が格納されている。

制御装置550は、取得した宛先データに関連付けられている仕分け先300を表すデータをデータベース560から取得する。換言すれば、制御装置550は、作業対象物（仕分け対象物200）に対する作業内容（仕分け先300）を検知する。なお、制御装置550は、例えば、宛先ラベル210の撮影画像（映像）から、光学文字認識であるOCR（Optical Character Recognition）機能を利用して宛先データを読み取る。また、データベース560には、宛先ラベル210に記載された最終目的地情報と、その配送ルート情報とが関連付けられている関係データ、および、配送ルート情報と仕分け先300を表すデータとが関連付けられている関係データが格納されていてもよい。この場合には、制御装置550は、宛先ラベル210に記載された最終目的地情報に基づいて、データベース560から配送ルート情報を読み出し、さらに、当該読み出した配送ルート情報に基づいて仕分け先300を判断してもよい。この場合には、仕分け先300は、例えば、配送ルートの途中の荷物（商品）中継地に応じた仕分け先が設定される。

また、宛先ラベル210に、宛先に関連する複数の異なる情報（住所、郵便番号、および電話番号など）が記載されている場合には、制御装置550は、予め決められた情報の優先順位に従って仕分け先300を判断してもよい。

さらにまた、仕分け対象物200は、宛先のみに応じて仕分けされるとは限らず、例えば、仕分け対象物200の重さ、大きさおよび配送方法などをも考慮して、仕分けされてもよい。この場合には、例えば、データベース5
60には、図6に表されるような仕分けに用いるデータ（規則表561）が格納される。また、制御装置550は、仕分け対象物200の宛先ラベル210から宛先に関連した情報だけでなく、重さや大きさや配送方法等の情報をも読み取る。

制御装置550は、認識した仕分け対象物200の形状のデータと、取得した仕分け先300のデータと関連付けたデータをデータベース560に登録する。

この第1実施形態の情報処理システム100を備えた物流システム101は、搬送装置700と、仕分け作業台400とを備えている。搬送装置700は、例えば、ベルトコンベアにより構成され、仕分け対象物200を搬送する。この第1実施形態では、認識装置520のカメラ500は、搬送装置700によって搬送されている仕分け対象物200を撮影する位置に配置されている。制御装置550は、カメラ500によって仕分け対象物200を適切に撮影できるように、搬送装置700の駆動制御を行う機能を備えている。つまり、制御装置550は、搬送制御装置としての機能をも備えている。この第1実施形態では、搬送装置700によって搬送された仕分け対象物200は、導入路710を通って仕分け作業台400に導かれる構成と成している。

次に、投影装置610の構成について説明する。投影装置610は、カメラ530、プロジェクタ600、および制御装置620を含む。なお、投影装置610が備えるプロジェクタ600は、例えば、複数であってもよい。また、カメラ530は、1つは限らず、複数であってもよい。

カメラ530は、作業台（図7に表される仕分け作業台400）にある仕分け対象物200を撮影する。制御装置620は、カメラ530が撮影した画像を利用して、仕分け対象物200の形状および所在位置を認識する。換言すれば、制御装置620は、作業対象物の所在位置を検知する検知部とそして機能する。また、カメラ530は、作業対象物（仕分け対象物200）の所在位置に関する情報を、検知部（制御装置620）に提供する情報提供装
置として機能する。

一方、制御装置620は、認識装置520の制御装置550と通信接続されており、制御装置550が認識した仕分け対象物200に関わる情報を制御装置620から受け取る。制御装置620は、認識した仕分け対象物200の形状を、制御装置550により認識された仕分け対象物200の形状と照合する。そして、制御装置620は、制御装置550により認識された仕分け対象物200のうち、カメラ530により撮影された仕分け対象物200の形状に合う形状を持つ仕分け対象物200を検知する。なお、この際、制御装置620は、仕分け対象物200の形状だけでなく、形状以外の情報をも考慮することがより好ましい。例えば、認識装置520の制御装置550は、仕分け対象物200の形状だけでなく、カメラ500による仕分け対象物200の撮影時間や、撮影画像に基づいた仕分け対象物200の色などというような、形状以外の情報をも取得する。さらに、投影装置610の制御装置620も、仕分け対象物200の形状だけでなく、カメラ530による仕分け対象物200の撮影時間や、撮影画像に基づいた仕分け対象物200の色などというような、形状以外の情報をも取得する。さらに、制御装置620は、制御装置550から取得した複数種の情報と、カメラ530の撮影画像に基づいて取得したそれら各種の情報に基づいて、カメラ530により撮影されている仕分け対象物200を検知する。これにより、仕分け対象物200の検知精度を高めることができる。さらに、制御装置620は、その検知した仕分け対象物200に関連付けられている仕分け先情報を取得する。つまり、制御装置620は、カメラ530により撮影されている仕分け対象物200の仕分け先300を検知する。

なお、制御装置620は、カメラ530による撮影画像に、複数の仕分け対象物200が撮影されている場合には、各仕分け対象物200に関し、個別に仕分け先300を検知する。また、制御装置620は、その機能によりカメラ530による撮影画像に基づいて、仕分け対象物200の移動を追跡することができる。
プロジェクト600は、制御装置620の制御動作に従って投影動作を実行する報知装置である。すなわち、プロジェクト600は、認識された仕分け対象物200の所在位置の情報に基づき、仕分け対象物200、あるいは、その近傍、仕分け先300に関する情報（例えば、仕分け先投影像230（図4参照））を投影する。その仕分け先投影像230は、例えば、仕分け先300を表す文字または仕分け先300に関連する図形や記号などの像である。さらに、仕分け先投影像230には、仕分け作業者111に仕分け作業の内容を説明する文字が含まれていてもよい。

すなわち、制御装置620は、作業で用いる情報（宛先ラベル210の内容）と、作業内容とが関連付けられているデータである規則に基づいて、作業対象物に対する作業内容を検知し、プロジェクト600を制御することによって、作業内容を報知する報知制御部として機能する。

なお、制御装置550、データベース560および制御装置620は、図1では別個に表されているが、それらは一つの装置に構成されていてもよいし、それらのうちの2つが同じ装置に構成されてもよい。また、それらは、例えば機能別に別々の装置に構成されていてもよい。

次に、図2を用いて、第1実施形態の情報処理システム100を実現するハードウェアの構成について説明する。

図2は、第1実施形態の情報処理システム100を構成する認識装置520および投影装置610を実現するハードウェアであるコンピュータ40の—構成例を表すブロック図である。このコンピュータ40は、例えばCPU（Central Processing Unit）1、RAM（Ramdom Access Memory）2、自己障装置3、通信インタフェース4、入力装置5、出力装置6を有する。

認識装置520の制御装置550と投影装置610の制御装置620の各機能は、RAM2から読み出したコンピュータプログラム（プログラム）を実行するCPU1によって実現される。換言すれば、CPU1およびRAM2は、認識装置520の制御装置550と投影装置610の制御装置620を構成する。記憶装置3は、例えば、ハードディスク、フラッシュメモリ、
および光ディスクなどのディスクメモリ、または半導体メモリを含む装置（記憶媒体）である。記憶装置3によって、データベース560が構成される。通信インターフェース4は、CPU1に接続され、当該CPU1と情報通信網あるいは外部の記憶媒体とを接続する機能を備えている。外部データが通信インターフェース4を介してCPU1に取り込まれてもよい。

[0053]入力装置5は、カメラ500およびカメラ530により構成される。出力装置6は、プロジェクタ600により構成される。なお、上記したような情報処理システム100を構成するハードウェア構成は、一例にすぎず、図2に表されている各構成要素は、独立した論理回路で構成されていてもよい。また、コンピュータ40は、入力装置5として、例えばキーボード、マウスやタッチパネルを備えていてもよい。また、コンピュータ40は、出力装置6として、例えばディスプレイを備えていてもよい。

[0054]以下に、第1実施形態の情報処理システム100の構成を具体的に説明する。

[0055]図4は、仕分け対象物200の一形態例を表す図である。なお、図4に表されている仕分け対象物200は直方体状であるが、仕分け対象物200の形状は、例えば球状というような、直方体状以外の形状である場合もあり得る。

[0056]図4に示すように、仕分け対象物200には宛先ラベル210が貼付されている。また、仕分け対象物200の表面（図4の例では上面（天面））には、プロジェクタ600によって仕分け先投影像230が投影される。仕分け先投影像230は、仕分け作業に必要な情報（例えば、仕分け先300を表す文字や図形やマークなど）を表す像である。この仕分け先投影像230を見ることにより、仕分け作業者111は、実行する仕分け作業の内容を理解し、仕分け対象物200を仕分けできる。

[0057] 図5は、仕分け対象物200に貼付される宛先ラベル210の一例を表す図である。宛先ラベル210は、例えば、宅配伝票である。この宛先ラベル210には、宛先郵便番号エリア211と、宛先電話番号エリア212と、
宛先住所氏名エリア213と、依頼主郵便番号エリア214と、依頼主電話番号エリア215とが設定されている。さらに、宛先ラベル210には、依頼主住所氏名エリア216と、配送日時エリア217と、配送物内容エリア218と、配送物寸法エリア219と、伝票番号エリア220と、伝票番号バーコードエリア221とが設定されている。なお、宛先ラベル210には、他にも、通常配達かどうかを記載する配達形態エリアや、荷物を識別するお問い合わせ番号を記載するエリア等が設定されてもよい。また、宛先ラベル210には様々なフォーマットがあり、宛先ラベル210の態様は図5の態様に限定されない。

宛先郵便番号エリア211は、宛先（発送先）の郵便番号が記載される領域である。宛先郵便番号エリア211には、例えば、数字（例えば、000-1111）が記載される。宛先電話番号エリア212は、宛先の電話番号（固定電話番号や携帯電話番号等）が記載される領域である。宛先電話番号エリア212には、数字（例えば、090-0000-1111）が記載される。宛先住所氏名エリア213は、宛先の住所および氏名等が記載される領域である。宛先住所氏名エリア213には、例えば、都道府県、市区町村、ビル名、および氏名（例えば、東京都千代田区1丁目一番地日本大堂）が記載される。

依頼主郵便番号エリア214は、依頼主（発送元）の郵便番号が記載される領域である。依頼主郵便番号エリア214には、例えば、数字（例えば、000-2222）が記載される。依頼主電話番号エリア215は、依頼主の電話番号（固定電話番号や携帯電話番号等）が記載される領域である。依頼主電話番号エリア215には、例えば、数字（例えば、090-0000-2222）が記載される。依頼主住所氏名エリア216は、依頼主の住所および氏名等が記載される領域である。依頼主住所氏名エリア216には、例えば、都道府県、市区町村、ビル名、および氏名（例えば、東京都千代田区2丁目二番地電気大堂）が記載される。

配送日時エリア217は、配送される日時が記載される領域である。配送
日時エリア217には、例えば、配送される日付および時間帯（例えば、1月1日12時〜14時）が記載される。配送物内容エリア218は、配送物の内容が記載される領域である。配送物内容エリア218には、例えば、配送物が含む物品の名前や分類（例えば、食品および書籍）が記載される。配送物区画エリア219は、配送物の情報（寸法や費用）が記載される領域である。配送物区画エリア219には、例えば、配送物のサイズ、重量、および配送料（例え、サイズ：120、重量：2キログラム以下、配送料：1500円）が記載される。伝票番号エリア220は、伝票番号が記載される領域である。伝票番号バーコードエリア221は、伝票番号を示すバーコードが記載された領域である。

[0062] 図6は、データベース560に格納されている仕分け先300を表す情報（仕分け先情報）の一例を示す図である。図6に表されている仕分け先情報は、例えば、規則表561である。規則表561は、宛先ラベル210に記載される内容と、仕分け先300を表す名称（仕分け先名）とを関連付けた表（リスト）である。この規則表561は、例えば、仕分け先名、宛先県名（最終目的地）、仕分け対象物の重さ、仕分け対象物のサイズ（大きさ）、配達方法等の項目を含む。

[0063] 規則表561は、例えば、仕分け先名「A」に関連付けられている、宛先県名（最終目的地）が「沖縄県」であり、仕分け対象物の重さが「2〜5kg」であることを表している。さらに、規則表561は、仕分け先名「A」に関連付けられている、仕分け対象物のサイズ（大きさ）が「20×20×20cm³」未満であり、配達方法が「通常配達」であることを表している。なお、規則表561は、図6に表す様子に限定されず、例えば、制御装置550が、宛先ラベル210から取得した宛先データに基づいて仕分け先300を検知するために利用される規則情報であれば、どのような情報であってもよい。

[0064] また、規則表561は、当該規則表561が有する複数の項目のうちの選択された一部の項目に基づいて仕分け先300（作業内容）が確定する決ま
（規則）を表す表であってもよい。また、規則表561は、当該規則表561が有する全ての項目に基づいて仕分け先300（作業内容）が確定する決まり（規則）を表す表であってもよい。さらに、規則表561は、当該規則表561が有する複数の項目の優先順位が定められており、当該優先順位を考慮して仕分け先300（作業内容）が確定する決まり（規則）を表す表であってもよい。

図7は、第1実施形態の情報処理システム100を含む物流システム101を説明するモデル図である。この物流システム101では、認識装置520は、仕分け対象物200をカメラ500によって撮影し、当該撮影画像に基づいて仕分け対象物200の宛先・形状を認識する。認識装置520による処理が終了した仕分け対象物200は、搬送装置700によって搬送され、導入路710を通って仕分け作業台400に移される。

投影装置610は、カメラ530による撮影画像に基づいて、仕分け作業台400上の仕分け対象物200における仕分け先300を検知し、その仕分け対象物200に仕分け先300を表す情報をプロジェクタ600によって投影する。なお、カメラ530とプロジェクタ600の一方又は両方は移動可能に設置されているものでもよい。この場合には、例えば、制御装置620が、仕分け対象物200を適切に撮影できる位置にカメラ530を移動する制御、あるいは、仕分け対象物200に適切に像を投影できる位置にプロジェクタ600を移動する制御が行われる。

図8は、仕分け作業者111が仕分け作業を実行している様子を仕分け作業者111の横側から見た図である。図8の例では、カメラ530は、仕分け作業台400の上面全面を撮影可能な撮影可能なエリア540を持ち、複数の仕分け対象物200を同時に撮影することができる。このカメラ530の撮影画像に基づいて、仕分け作業台400上の各仕分け対象物200の形状や仕分け先300等が制御装置620によって検知される。図8の例では、プロジェクタ600は複数設置されており、各プロジェクタ600は、投影エリア630内の仕分け対象物200の上面に、仕分け先300を表す情報
（仕分け先投影像２３０）を投影する。なお、設置するプロジェクタ６００の数は複数ではなく、１台であってもよい。この場合には、その１台のプロジェクタ６００は、仕分け作業台４００の上面全領域に像を投影可能な投影エリア６３０を持つ。

[0068] 仕分け先投影像２３０は、仕分け作業者１１１が仕分け先３００を容易に判別できる像であればよく、例えば、コード番号等の文字や、記号、図形、模様、色、あるいは、それらの組み合わせによって、仕分け先３００を判別可能な像であればよい。また、仕分け先投影像２３０は、例えば、時間と共に入変化してもよい。

[0069] ところで、仕分け対象物２００の表面色が白色以外であることに起因して、プロジェクタ６００が仕分け対象物２００に投影した像（仕分け先投影像２３０）の色が、想定された色とは異なることがある。このために、仕分け作業者１１１が仕分け先投影像２３０を視認しづらい状況になる場合がある。このような場合には、例えば、制御装置６２０が、カメラ５３０により撮影された画像に基づいて仕分け対象物２００の表面色を検知し、仕分け対象物２００に投影される仕分け先投影像２３０が明瞭となるように、仕分け先投影像２３０の色を変更してもよい。また、仕分け先投影像２３０は、色とコード番号等の組み合わせでなくても仕分け先３００を表してもよい。

[0070] また、制御装置６２０は、仕分け対象物２００、仕分け作業者１１１、および仕分け先３００のうちのどれか１つの位置や向きに応じて、仕分け対象物２００に投影する仕分け先投影像２３０を回転する、あるいは、移動してもよい。また、例えば、制御装置６２０には、仕分け対象物２００と仕分け先３００との相対位置に基づいて、投影する仕分け先投影像２３０の向きを定めるデータが与えられる。このような場合には、制御装置６２０は、そのデータに基づき、仕分け対象物２００と仕分け先３００との相対位置に応じて、投影する仕分け先投影像２３０の一部または全体を回転または移動させてもよい。このような場合には、投影装置６１０（制御装置６２０）は、移動する仕分け対象物２００を追跡しながら、当該仕分け対象物２００に仕分
け先投影像 230 を投影し続けることができる。なお、制御装置 620 は、上記のような相対位置より求められる方向に基づいて、仕分け先 300 に向け方向を記号や文章で表す像をプロジェクタ 600 により投影してもよい。

また、制御装置 620 は、仕分け作業者 111 の状況に応じて、投影する仕分け先投影像 230 の内容を変えてもよい。すなわち、仕分け作業者 111 が仕分け先 300 から離れた場所に居る場合がある。また、作業量が仕分け作業者 111 によって異なっており、各仕分け作業者 111 の作業量が同一となるように作業量を調整することが好ましい場合がある。このような場合を想定し、例えば、投影装置 610 は、仕分け作業者 111 の所在位置を検知する機能を備えていてもよい。その仕分け作業者 111 の所在位置を検知する構成は、例えば、仕分け作業者 111 を撮影するカメラと当該カメラの撮影画像に基づいて仕分け作業者 111 の位置を検知するコンピュータとを有する。そして、制御装置 620 は、仕分け作業者 111 の所在位置や、制御装置 550 から得られる仕分け対象物 200 に関する情報等に基づいた仕分け作業者の 111 の作業量等を利用し、仕分け対象物 200 を仕分けする担当者を決定する機能を備えていてもよい。さらに、制御装置 620 は、仕分け対象物 200 に、当該仕分け対象物 200 の担当に決定された仕分け作業者 111 の例えば氏名等が仕分け延投影像 230 として投影されるようにプロジェクタ 600 を制御する機能を備えていてもよい。さらにまた、制御装置 620 は、担当の仕分け作業者 111 が仕分け対象物 200 に近付く、あるいは、担当の仕分け作業者 111 が仕分け対象物 200 に向けて手を差し出したことを検知する機能を備えていてもよい。そして、制御装置 620 は、そのような状況を検知した場合に、仕分け対象物 200 に投影している仕分け延投影像 230 の内容を、例えば担当の仕分け作業者 111 の氏名等を表す情報から、仕分け先 300 を表す情報に変更する機能を備えていてもよい。

さらに、制御装置 620 は、カメラ 530 の撮影画像に基づいて仕分け対象物 200 を検知し始めからの経過時間を計測する時間計測部（図示せず
を備えていてもよい。そして、制御装置620は、その時間計測部の計測時間（つまり、仕分け対象物200が検知され始めてからの経過時間）に応じて、プロジェクタ600による仕分け先投影像230の内容を予め与えられたルールに従って変更する機能を備えていてもよい。さらに、制御装置620は、カメラ530の撮影画像に基づいて仕分け対象物200を検知し始めから所定時間Tを経過したことを検知するタイマー（図示せず）を備えていてもよい。この場合には、例えば、制御装置620は、カメラ530の撮影画像に基づいて仕分け対象物200を検知したときにタイマーを駆動する。そして、制御装置620は、そのタイマーによって所定時間Tを経過したことを検知した時に、プロジェクタ600による仕分け先投影像230の内容を変更してもよい。具体例を挙げると、仕分け先投影像230は、仕分け先300を表す像から、仕分け対象物200の仕分け作業を促進する文字やマーク等の像に変化する。仕分け対象物200が検知され始めてから所定時間Tを経過しても仕分け対象物200が検知され続けている状況は、作業者がその仕分け対象物200の仕分けを忘れている可能性がある。このような状況を想定し、上記したように作業者に仕分け作業を促進できる構成は、作業忘れの仕分け対象物200の仕分け作業を優先的に作業者に実行させることができる。

さらにまた、制御装置620は、プロジェクタ600を制御することにより、仕分け対象物200、あるいは、その近傍に、仕分け先投影像230だけでなく、仕分け作業者111への業務連絡をも投影してもよい。

また、制御装置620は、プロジェクタ600を制御することにより、仕分け対象物200、あるいは、その近傍に、仕分け先投影像230と共に、仕分け対象物200に関わる情報を投影してもよい。例えば、その仕分け対象物200に関わる情報とは、仕分け対象物200の量、「天地無用」や「上積厳禁」などの取扱上の注意事項、仕分け作業盤400に放置されている時間などが有る。さらに、仕分け対象物200に関わる情報には、仕分け先300に応じた出荷時刻、仕分け先300であるカゴ車310に積載する
際の順番などの付加的な情報もある。さらに、仕分け対象物２００に関する情報には、同じ仕分け先３００に仕分けされる同分類の仕分け対象物２００の所在位置、長時間放置されている仕分け対象物２００に対する注意喚起などの付加的な情報もある。

なお、上記のように、仕分け対象物２００、あるいは、その近傍に投影される付加的な情報によっては、仕分け作業台４００に質量測定装置が設けられていてもよい。

次に、第１実施形態における情報処理システム１００の動作（処理の流れ）を図３に基づき説明する。図３は、情報処理システム１００（制御装置５５０および制御装置６２０）の処理の流れを表すフローチャートである。なお、図３に表される処理の流れは一例であり、適宜に処理順が入れ替えられたり、ある処理が繰り返されててもよい。

また、処理内容に矛盾を生じない範囲で、処理が並列に実行されてもよい。さらに、各処理間の他の処理が追加されてもよい。

まず、制御装置５５０は、データベース５６０に仕分け先３００の情報を登録（セットアップ）する（ステップＳ１０１）。なお、データベース５６０には、仕分け先３００の情報が予め登録されていてもよい。

次に、制御装置５５０は、搬送装置（たとえばベルトコンベア）７００を制御することによって、仕分け対象物２００を認識装置５２０におけるカメラ５００の撮影可能エリアに移動する（ステップＳ１０２）。

次に、制御装置５５０は、カメラ５００を制御することにより、仕分け対象物２００を撮影する。また、制御装置５５０は、そのカメラ５００により撮影された仕分け対象物２００の画像に基づいて、仕分け対象物２００に貼付されている宛先ラベル２１０の内容を取得する。また、制御装置５５０は、そのカメラ５００による撮影画像に基づいて、仕分け対象物２００の形状を検知する（ステップＳ１０３）。なお、宛先ラベル２１０に仕分け対象物２００の大きさの情報（例えば、２０ｃｍ×３０ｃｍ×３０ｃｍ）が記載されている場合には、制御装置５５０は、その情報をカメラ５００の撮影画像
から読み取ってもよい。また、制御装置 550 ではなく、カメラ 500 が、
撮影画像から情報を取得する機能を備えていてもよく、この場合には、カメラ
500 が仕分け対象物 200 の宛先ラベル 200 の内容を取得し、また、
仕分け対象物 200 の形状を検知してもよい。そして、そのように検知した
情報をカメラ 500 が有線通信あるいは無線通信によって制御装置 550 に
送信してもよい。

[0081] 制御装置 550 は、カメラ 500 による撮影画像に基づいて得られた仕分
け対象物 200 の情報をデータベース 560 の例えば規則表 561 と照合し
、仕分け対象物 200 の仕分け先 300 を検知する（ステップ S104）。
そして、制御装置 550 は、その検知した仕分け先 300 のデータ（仕分け
先情報）に、一意の ID（Identification number）と、取得時刻と、仕分
け対象物 200 の形状の情報とを関連付け、当該仕分け先情報を例えば一時
記憶領域（図示せず）に格納する。また、その仕分け先情報は、制御装置 5
50 から投影装置 610 の制御装置 620 に送信される。

[0082] その後、制御装置 550 は、搬送装置 700 を制御し、仕分け対象物 20
0 を仕分け作業台 400 に向けて搬送する（ステップ S105）。

[0083] そして、投影装置 610 の制御装置 620 による制御によって、カメラ 5
30 が、仕分け作業台 400 に搬送された仕分け対象物 200 を撮影する。
制御装置 620 は、カメラ 530 によって撮影された撮影画像に基づいて仕
分け対象物 200 の形状を検知する。さらに、制御装置 620 は、その検知
した仕分け対象物 200 の形状に基づいて、制御装置 550 から送信された
仕分け先情報から、仕分け作業台 400 上の仕分け対象物 200 に関連付け
された ID を取得する。また、制御装置 550 は、検知した仕分け対象物 2
00 の形状と、仕分け先情報に基づいて、仕分け作業台 400 上の仕分け対
象物 200 の仕分け先 300 を検知する。さらに、制御装置 550 は、仕分
け作業台 400 上の仕分け対象物 200 の所在位置情報を取得する（ステッ
プ S106）。

[0084] 制御装置 620 は、プロジェクタ 600 を制御し、仕分け作業台 400 上
の仕分け対象物２００、あるいは、その近傍に、仕分け先３００を表す仕分け先投影像２３０を投影する（ステップＳ１０７）。

その後、制御装置６２０は、カメラ５３０による撮影画像に基づき、仕分け対象物２００がカメラ５３０の撮影可能エリア５４０に存在するか否かを判別し（ステップＳ１０８）、存在する場合には、ステップＳ１０６以降の動作を繰り返す。これにより、投影装置６１０は、仕分け対象物２００、あるいは、その近傍に仕分け先投影像２３０を投影し続ける。

また、制御装置６２０は、ステップＳ１０８の判断動作により、存在しないと判断した場合には、仕分け先投影像２３０の投影を中止し、処理を終了する。つまり、仕分け対象物２００が仕分け作業者１１１によって処理されるおらず、当該仕分け対象物２００が仕分け作業台４００上に存在している間は、仕分け先投影像２３０が連続して投影され続ける。また、仕分け対象物２００が仕分け作業台４００から仕分け作業者１１１によって移動した場合には、仕分け先投影像２３０の投影は終了する。なお、仕分け対象物２００が仕分け作業者１１１や他の仕分け対象物２００の陰に入ってカメラ５３０に写らなくなる場合がある。この場合にも、仕分け先投影像２３０の投影は終了する。

第１実施形態の情報処理システム１００は、上記のような処理を実行する。

この第１実施形態の情報処理システム１００が採用されている場合には、仕分け作業者１１１は、仕分け対象物２００に投影された仕分け先投影像２３０に基づき、当該仕分け対象物２００を仕分け先３００に移動する。なお、第１実施形態の情報処理システム１００は、仕分け対象物２００の認識から仕分け対象物２００への仕分け先投影像２３０の投影までの一連の処理を制御装置５５０、６２０によって行う。このため、仕分け作業者１１１が、仕分け対象物２００を撮影するためにカメラ５００、５３０を操作する作業や、仕分け対象物２００の認識に関する画像処理が実行されるように制御装置６２０を操作する作業が不要である。
また、上記説明では、1つの仕分け対象物200について説明したが、情報処理システム100は、複数の仕分け対象物200を並列に処理することも可能である。

すなわち、認識装置520の制御装置550および投影装置610の制御装置620は、カメラ500、530による撮影画像に複数の仕分け対象物200が含まれている場合に、各仕分け対象物200に関し、形状を認識する等の処理を個別に行うことができる。なお、図1の例では、1台の認識装置520に1台の投影装置610が接続されているが、1台の認識装置520に複数の投影装置610が接続していてもよい。

第1実施形態の情報処理システム100は上記のように構成されている。これにより、当該情報処理システム100は次のような効果を得ることができる。

すなわち、第1実施形態の情報処理システム100では、認識装置520のカメラ500により撮影された画像に基づき、制御装置550が、仕分け対象物200の形状を認識し、また、宛先ラベル210から宛先データを取得する。さらに、制御装置550は、その宛先データに基づいて、データベース560から、仕分け対象物200の仕分け先300の情報を取得する。投影装置610の制御装置620は、カメラ530による撮影画像に基づいて、仕分け作業台400上の仕分け対象物200の形状および所在位置を認識する。また、制御装置620は、認識装置520の制御装置550により認識された仕分け対象物200の形状の情報と当該仕分け対象物200の仕分け先300の情報のいずれかが関連付けられているデータを制御装置550から受け取る。さらに、制御装置620は、認識した仕分け対象物200の形状の情報と、制御装置550から受け取ったデータに基づいて、認識した仕分け対象物200の仕分け先300を検知する。さらにまた、制御装置620は、プロジェクタ600を制御することにより、その仕分け先300を表示する仕分け先投影画像230を仕分け対象物200あるいは、その近傍に投影する。この仕分け対象物200に投影された情報を利用することにより、仕分
け作業者111は、仕分け対象物200の仕分け先300を容易かつ正確に認識することができる。これにより、情報処理システム100は、仕分け作業の効率化および仕分け誤りの低減を図ることができる。

また、情報処理システム100は、仕分け作業者111が仕分け対象物200の宛先ラベル210を判読（理解）するために要する事前知識を持たなくても、仕分け作業を行うことを可能にする。これにより、情報処理システム100は、仕分け作業者111による仕分け先300の判読ミスや判断ミスを減らすことが可能となり、これにより、仕分け作業の効率を向上できる。

ところで、仕分け対象物200に比べて当該仕分け対象物200に貼付されている宛先ラベル210が小さい場合に、仕分け作業者111が仕分け対象物200を容易かつ正確に認識することができない。
象物200と宛先ラベル210の両方を見なければならない場合には、仕分け作業者111の負担が大きい。つまり、そのような場合には、仕分け対象物200を見る場合と、宛先ラベル210を見る場合とで、仕分け作業者111は、視野範囲を大きく変更する必要がある。このため、仕分け作業者111の目的負担が大きい。これに対して、この情報処理システム100を導入することにより、仕分け作業者111は、宛先ラベル210を見なくとも済むために目的負担を軽減することができる。このことにより、仕分け作業のミスの削減や仕分け作業の効率の向上に寄与する。

また、例えばベルトコンベアによって移動している仕分け対象物200を複数の仕分け作業者111が仕分ける場合には、作業の遅い仕分け作業者111の作業速度に合わせてベルトコンベアによる仕分け対象物200の移動速度が設定される。このような場合には、作業の早い仕分け作業者111は、次の仕分け対象物200を待つことが多くなり、無駄が生じる虞がある。これに対して、第1実施形態の情報処理システム100では、仕分け作業者111が仕分ける仕分け対象物200は、ベルトコンベアではなく、仕分け作業台400に載置される。このため、仕分け作業者111は、各々の作業速度でもって仕分け作業を行うことができる。これにより、第1実施形態の情報処理システム100を導入した仕分け作業は、ベルトコンベアを利用する方式よりも作業効率を良くすることができる。

<第2実施形態>

以下に、本発明に係る第2実施形態の情報処理システムおよびそれを含む物流システムを説明する。なお、第2実施形態の説明において、第1実施形態の情報処理システムおよび物流システムの構成部分と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する。

図9は、第2実施形態の情報処理システムおよび物流システムを説明する図である。

第2実施形態では、情報処理システム100は、第1実施形態の情報処理システム100と同様な構成を備えている。また、物流システム101aは
、第1実施形態における物流システム101を構成する仕分け作業台400に代えて、ベルトコンベア750を利用する。また、この物流システム101aは、コンテナ320と、機410と、回収箱770とを有している。

[0101] ところで、この第2実施形態では、封筒や小物のように小さい仕分け対象物200を仕分ける場合を想定している。仕分け対象物200が小物の場合には、大きな物に比べて、破損や紛失等のトラブルが発生しやすい。このことを考慮し、この第2実施形態の物流システム101aは構築されている。

つまり、この物流システム101aでは、仕分け作業者111が、まず、仕分け対象物200をコンテナ320に仕分けし、その後、コンテナ320を当該コンテナ320に応じた仕分け先300（図9の例では、カゴ車310）に移動するという仕分け作業が行われる。第2実施形態の物流システム101aは、このような仕分け作業の効率化を図る構成を備えている。

[0102] すなわち、第2実施形態の物流システム101aを構成する情報処理システム100は、第1実施形態と同様に、認識装置520によって仕分け対象物200の形状および仕分け先300を認識する。そして、情報処理システム100は、その認識された仕分け対象物200の仕分け先を表示する仕分け先投影像230を、投影装置610の、例えば図8に表されているようなプロジェクタ600によって仕分け対象物200、あるいは、その近傍に投影する。なお、仕分け先投影像230は、仕分け先300を例えば仕分け作業者111が目視により認識できる態様を備えているもの、その態様は限定されずに様々な態様を探り得る。例えば、仕分け先投影像230は、宛先を表示する文字や記号と、仕分け対象物200とを結ぶ線の態様であってもよいし、宛先を表示する文字や記号を囲む枠の態様であってもよい。なお、この第2実施形態では、仕分け対象物200に投影される仕分け先投影像230は、カゴ車310ではなく、仕分け先のコンテナ320を表示している。

[0103] 第2の実施形態の物流システム101aでは、仕分け作業者111は、情報処理システム100のプロジェクタ600が仕分け対象物200、あるいは、その近傍に投影する仕分け先投影像230を認識する。そして、仕分け
作業者111は、仕分け対象物200を、所定のコンテナ320に収納する。なお、仕分け対象物200は、コンテナ320に代えて、機410の決まったエリアに仕分けされてもよく、予め定められた仕分け先別に分類される。この後、仕分け作業者111は、仕分け先別に分類された複数の仕分け対象物200を、仕分け先300のカゴ車310に移動する。

なお、この例では、仕分け対象物200をまずコンテナ320によって仕分けしている（分類している）。さらに、仕分け対象物200を仕分ける道具として、コンテナ320以外に、例えば、折りたたみ式コンテナ、専用ケース、トレー、段ボール箱、梱包用ラップ、袋、包装紙、ロープ、ベルトなどを利用するのも考えられる。つまり、仕分け対象物200の形状や重さ等を考えした適宜な道具が仕分ける道具として採用される。

第2実施形態では、ベルトコンベア750は、認識装置520によって仕分け対象物200の形状や仕分け先を認識するエリアと、投影装置610により仕分け対象物200に仕分け先を投影するエリアを通じて仕分け対象物200を搬送する構成を備えている。このようなベルトコンベア750を備えていることにより、この物流システム101aでは、仕分け対象物200は、連続的に移動している状態となる。このため、仕分け対象物200が、当該仕分け対象物200を担当すべき仕分け作業者111のエリアから流れ出してしまう事態が発生する虞がある。このような場合には、それよりもベルトコンベア750の下流側で作業している仕分け作業者111がその仕分けできなかった仕分け対象物200を仕分けてすればよい。また、何れの仕分け作業者111によっても仕分けされなかった仕分け対象物200は、ベルトコンベア750の終端760から回収箱770に回収される。そして、この回収された仕分け対象物200は、再度、始端740からベルトコンベア750に乗せられることにより、仕分けされる。

なお、投影装置610は、複数のプロジェクタ600を備え、これらプロジェクタ600は、ベルトコンベア750によって仕分け対象物200が移動する方向に、間隔を介して配置されていてもよい。この場合には、仕分け

[0104]

[0105]

[0106]
対象物 200 の移動によって、当該仕分け対象物 200 に仕分け先投影像 230 を投影するプロジェクタ 600 が切り換わっていく。

[0107] また、ベルトコンベア 750 の駆動速度は、仕分け作業者 111 の仕分け作業のスピードを考慮して適宜設定される。さらに、ベルトコンベア 750 の駆動速度は、例えば仕分け作業者 111 の周辺に配置されたコントローラ（図示せず）あるいは仕分け作業者 111 が身に着けているウェアラブル端末であるコントローラ（図示せず）によって調整可能な構成としてもよい。

さらにまた、ベルトコンベア 750 によって移動している仕分け対象物 200 の個数を検知する装置が設置されていてもよい。この装置は、例えばベルトコンベア 750 の終端 760 付近の仕分け対象物 200 の個数を検知できるように構成される。また、この装置は、例えば、カメラと、そのカメラによる撮影画像を画像処理することにより仕分け対象物 200 の個数を検知する演算装置とを含む装置である。このような装置により検知された仕分け対象物 200 の個数に応じて、ベルトコンベア 750 の駆動速度を調整し、さらに、ベルトコンベア 750 を停止する制御構成が物流システム 101a に備えられてもよい。

[0108] 上記以外の第2実施形態の情報処理システム 100 および物流システム 101a の構成は、第1実施形態と同様であることから、ここでは、その説明は省略する。

[0109] この第2実施形態の物流システム 101a は、第1実施形態の情報処理システム 100 と同様の構成を持つ情報処理システム 100 を備えていることから、その情報処理システム 100 から得られる効果を得ることができる。

つまり、第2実施形態の物流システム 101a も、仕分け作業の効率化および仕分け作業のミスの抑制を図ることができる。

[0110] <第3実施形態>

以下に、本発明に係る第3実施形態を説明する。なお、この第3実施形態の説明において、第1又は第2の実施形態の情報処理システムおよび物流システムを構成する構成部分と同一構成部分には同一符号を付し、その共通部
分の重複説明は省略する。

[01 11] 図１は、第３実施形態の情報処理システムおよびそれを備えた物流システムを説明する図である。

[01 12] この第３実施形態の情報処理システム１００を構成する認識装置５２０は、第１実施形態と同様な構成を備えている。また、投影装置６１０を構成するプロジェクタ６００は、仕分け先３００の少なくとも一部が投影エリア６３０に含まれるように、設置場所や設置数が設定される。また、カメラ５３０は、プロジェクタ６００の投影エリア６３０を含むエリアを撮影できるように、その設置場所や設置数が設定される。

[01 13] この第３実施形態では、投影装置６１０の制御装置６２０は、カメラ５３０により撮影された撮影画像に基づいて、第１実施形態と同様に、仕分け対象物２００の仕分け先３００を認識する。そして、制御装置６２０は、プロジェクタ６００を制御することによって、仕分け先３００を表す仕分け先投影像２３０を仕分け対象物２００、あるいは、その近傍に投影する。さらに、この第３実施形態では、制御装置６２０は、プロジェクタ６００を制御することによって、仕分け先投影像２３０が投影されている仕分け対象物２００の仕分け先３００にも、仕分け先投影像２３０を投影する機能を備えていともよい。これにより、仕分け作業者１１１は、仕分け対象物２００の仕分け先３００が明確となり、作業効率を高めることができる。

[01 14] 第３実施形態の情報処理システム１００および物流システム１０１ｂにおける上記以外の構成は、第１実施形態と同様であり、ここでは、その説明は省略する。

[01 15] 以下に、第３実施形態における情報処理システム１００の処理の流れを図１１を利用して説明する。なお、図１１は、情報処理システム１００の処理の流れを表すフローチャートである。

[01 16] まず、認識装置５２０の制御装置５５０は、データベース５６０に仕分け先３００の各仕分け先を登録するとともに、仕分け先３００の個々のカゴ車３１０の位置を登録（セットアップ）する（ステップＳ２０１）。
その後、情報処理システム100は、第1実施形態の処理でのステップS102乃至ステップS107と同様の処理を行う（ステップS202乃至ステップS207）。

仕分け対象物200に仕分け先投影像230を投影し始めた後に、投影装置610の制御装置620は、カメラ530による撮影画像に基づいて、仕分け対象物200が仕分け作業台400の上、あるいは、その近傍に存在するか否かを判断する（ステップS208）。そして、仕分け対象物200が仕分け作業台400の上、あるいは、その近傍に存在する場合には、制御装置620は、ステップS206以降の動作を繰り返すことにより、仕分け先投影像230を仕分け対象物200に投影し続ける。

そして、例えば仕分け作業者111が、仕分け対象物200を仕分け先300に移動すべく、仕分け対象物200を仕分け作業台400から離した場合には、仕分け対象物200が仕分け作業台400の上、あるいは、その近傍に存在しなくなる。このような場合には、投影装置610は、仕分け先投影像230の投影を停止する。そして、投影装置610は、その仕分け対象物200の仕分け先300を表示（例えば仕分け先投影像230）を当該仕分け先300（例えばカゴ車310）に予め定められた時間、投影する（ステップS209）。その投影時間は、例えば、仕分け作業者111が仕分け対象物200を仕分け作業台400から仕分け先300に移動するために要すると想定される時間に、ゆとり時間を加算した時間が設定される。このように、仕分け先300にも例えば仕分け先投影像230が投影されることにより、仕分け作業者111が仕分け作業台400から仕分け対象物200を移動する仕分け先を間違うことが削減される。

なお、仕分け先300に投影する仕分け先投影像230は、仕分け対象物200に投影する仕分け先投影像230と同じであっても異なっていてもよい。この仕分け先投影像230は、例えば、名称、コード番号、記号、図形、模様、色など容易に区別できるもの1種類、または複数種類を組み合せてもよい。また、仕分け先投影像230は、輝度、色調、投影位置が時間によ
り変化してもよいし、動画と組み合わせてもよい。

第3実施形態の情報処理システム100および物流システム101bは、
第1実施形態の情報処理システム100と同様の構成を持つ情報処理システム100を備えている。これにより、当該情報処理システム100および物流システム101bは、第1実施形態と同様に、仕分け作業の効率化および仕分けミスの減少を図ることができる。

さらに、第3実施形態では、制御装置620は、仕分け先投影像230を
仕分け対象物200だけでなく、仕分け先300にも投影する機能を備えている。これにより、仕分け作業者111は、より直接的に仕分け先300を
認識することができるため、仕分けミスをより削減することができる。

また、第3実施形態では、仕分け作業者111が複数のカゴ車310の文
字や記号を認識する際、プロジェクタ600からの光が当てているカゴ車
310が、目的とするカゴ車310であることが明確である。そのため、個々のカゴ車310について個別に注目しなくてもよい。これにより、付随的に、仕分け作業者111の疲労が減少し、仕分け作業効率が向上する。

以下に、本発明に係る第4実施形態を説明する。なお、この第4実施形態
の説明において、第1又は第2又は第3の実施形態の情報処理システムおよ
び物流システムを構成する構成部分と同一構成部分には同一符号を付し、そ
の共通部分の重複説明は省略する。

図12は、第4実施形態の情報処理システムおよびそれを備えている物流
システムを説明する図である。この第4実施形態では、情報処理システム100は、第1実施形態の構成に加えて、仕分け対象物200の立体形状を測
定する構成を備えている。この仕分け対象物200の立体形状を測定する構
成は、認識装置520に備えられている。

具体的には、認識装置520は、仕分け対象物200の立体形状を測定可
能なカメラ（例えばデブスセンサ付きカメラ）510を備えている。なお、
立体形状を測定する手法としては、例えば、測定対象物（仕分け対象物20}
0）を複数の角度からカメラにより撮影した撮影画像を画像処理することにより、高さ方向の寸法を得る手法がある。また、カメラと距離センサを組み合わせることによって、仕分け対象物200の高さ方向の寸法を取得することが可能である。このように、仕分け対象物200の立体形状を測定する手法には複数種の手法がある。認識装置520に採用する手法は、仕分け作業者111の作業態様等を考慮して適宜な手法が選択される。

[0127] 投影装置610の制御装置620は、認識装置520により取得された仕分け対象物200の高さ情報を利用して、仕分け対象物200の例えば上面に投影する仕分け先投影像230のピントを調整する。例えば、投影画像の焦点位置が異なる複数のプロジェクタ600が設置される。制御装置620は、仕分け対象物200の高さ情報に基づいて、それらプロジェクタ600の中から、仕分け対象物200の例えば上面に投影画像のピントが合うプロジェクタ600を選択する。そして、制御装置620は、その選択したプロジェクタ600を制御して仕分け先投影像230を投影する。

[0128] さらに、この第4実施形態では、認識装置520が仕分け対象物200を認識する認識エリアへの出入りを制御するゲート720が設置されている。このゲート720は、例えば、カメラ500の撮影動作等を考慮してゲートの開閉が制御装置550によって制御される。

[0129] 第4実施形態の情報処理システム100およびそれをおこしている物流システム101cにおける上記以外の構成は、第1実施形態と同様であり、その説明は省略する。

[0130] この第4実施形態の情報処理システム100および物流システム101cは、第1実施形態の情報処理システム100と同様の構成を備えていることから、第1実施形態と同様の効果を得ることができる。さらに、この第4実施形態では、情報処理システム100および物流システム101cは、仕分け対象物200の高さ方向の寸法を測定し、この高さ寸法に基づき仕分け対象物200に投影される仕分け先投影像230のピントができる構成を備えている。このため、仕分け対象物200の高さばらつきに起因して、仕分け
対象物200の例え上面上に投影される仕分け先投影影像230がぼけるという問題を防止することができる。つまり、仕分け対象物200の高さによらずに、当該仕分け対象物200の上面上に仕分け先投影影像230をピントが合う状態で投影できる。この明瞭な仕分け先投影影像230により、仕分け作業者111は、仕分け対象物200の仕分け先300をより認識しやすくなり、これにより、仕分けミスをより低減することができる。

[0131] <第5実施形態>
以下に、本発明に係る第5実施形態を説明する。

[0132] 図13は、第5実施形態の情報処理装置の構成を簡略化して表すブロック図である。第5実施形態の情報処理装置10は、表示制御部11と、第1の取得部12と、第2の取得部13と、第3の取得部14とを有している。第1の取得部12は、作業対象物に付属した明細書に記載された内容を取得する機能を備えている。第2の取得部13は、作業対象物の位置を取得する機能を備えている。第3の取得部14は、明細書に記載されている内容と、作業内容とを関連付けた規則を取得する機能を備えている。表示制御部11は、第1の取得部12が取得した内容と、第3の取得部14が取得した規則とに基づいて、作業対象物に対する作業内容を表示する信号を出力する機能を備えている。

[0133] 情報処理装置10は、作業対象物に付属した明細書に記載された内容を取得し、作業対象物の位置を取得し、明細書に記載されている内容と、作業内容と対応付けての規則を取得する。そして、情報処理装置10は、取得した内容と取得した規則に基づいて、作業対象物に対する作業内容を表示する制御を行う。したがって、情報処理装置10は、作業対象物に対する作業内容を明確に報知することを可能にする。これにより、情報処理装置10は、作業対象物に対する作業の効率化を図ることを容易にする。

[0134] ここで、情報処理装置10の具体例を説明する。図14は、情報処理装置10の具体例を説明するブロック図である。図14の例では、第1の取得部12は、第1のカメラ50に接続され、第1のカメラ50が撮影した画像
静止画又は動画）を含む情報（例えば、作業対象物に付属した明細書に記載された内容）を取得する。第2の取得部13は、第2のカメラ53に接続され、第2のカメラ53が撮影した画像（静止画又は動画）を含む情報（例えば、作業対象物の位置）を取得する。第3の取得部14は、記憶装置56と直接的あるいは間接的に接続しており、記憶装置56に格納されている情報を直接的あるいは間接的に取得する。表示制御部11は、情報を表示する表示装置（図示せず）に接続しており、各取得部12、13、14が取得した情報を基づいて、その表示装置を制御する。

なお、第1の取得部12、第2の取得部13、および第3の取得部14は単一の取得部として構成されてもよい。そして、この単一の取得部は、外部との情報を通信（送受信）してもよい。

また、図14に表されている構成を第1〜第4の実施形態で述べたシステム構成に対応させると、図14に示す第1のカメラ50と、第2のカメラ53とは、それぞれ、第1〜第4の各実施形態におけるカメラ500と、カメラ530に対応している。記憶装置56は、第1〜第4の各実施形態におけるデータベース560に対応している。第1の取得部12は、第1〜第4の各実施形態における制御装置550に対応している。また、第2の取得部13、第3の取得部14、表示制御部11とは、第1〜第4の各実施形態における制御装置620に対応している。さらに、情報を表示する装置は、例えば、プロジェクタ600が対応している。

なお、情報処理装置10は、例えば、ウェアラブル端末に備えられていてもよい。ウェアラブル端末とは、身に付けて持ち歩くことができるコンピュータである。具体的には、情報処理装置10は、眼鏡型のウェアラブル端末に組み込まれる。この眼鏡型のウェアラブル端末は、例えば作業者に装備され、当該作業者が作業している作業対象物あるいはその近傍に作業内容を表示（投影）することが可能になる。

＜第6実施形態＞

以下に、本発明に係る第6実施形態を説明する。
図15は、第6実施形態の情報処理システムを説明する図である。この第6実施形態の情報処理システム100dは、第1の取得装置1200と、第2の取得装置1300と、第3の取得装置1400と、表示制御装置1100とを備えている。第1の取得装置1200は、作業対象物に付属した明細書に記載された内容を取得する機能を備えている。第2の取得装置1300は、作業対象物の位置を取得する機能を備えている。第3の取得装置1400は、明細書に記載されている内容と、作業内容とが関連付けられている規則を取得する機能を備えている。表示制御装置1100は、第1の取得装置1200が取得した内容と、第3の取得装置1400が取得した規則に基づいて、作業対象物に作業内容を表示する機能を備えている。

この第6実施形態の情報処理システム100dにおいても、前記各実施形態と同様に、作業の効率化を図ることができる。

なお、図15の例では、第1〜第3の各取得装置1200、1300、1400と、表示制御装置1100とは、ネットワーク2000を介して接続されている。

また、第6実施形態の情報処理システム100dを第1〜第4の各実施形態における情報処理システムに対比すると、第6実施形態における表示制御装置1100は、第1〜第4の各実施形態における制御装置550、620に対応している。また、第6実施形態における第1の取得装置1200は、第1〜第4の各実施形態におけるカメラ500に対応している。さらに、第6実施形態における第2の取得装置1300は、第1〜第4の各実施形態におけるカメラ530と制御装置620に対応している。さらに、第6実施形態における第3の取得装置1400は、第1〜第4の各実施形態における制御装置620に対応している。

なお、情報処理システム100dの表示制御装置1100は、例えば、ウェアラブル端末に組み込まれていてもよい。表示制御装置1100が組み込まれるウェアラブル端末としては、例えば、眼鏡型、帽子のつばにつけられ
る取り付け型（帽子取付型）、腕時計型、首にぶら下げられるタブレット型、および衣服に直接取り付けた衣服型のウェアラプル端末が想定されるが、これに限定されない。また、情報処理システム１００ｄを構成する各装置が、別々のウェアラプル端末であってもよい。つまり、情報処理システム１００ｄは複数のウェアラプル端末によって構成されていてもよい。

ここで、各装置のそれぞれがウェアラプル端末で構成される情報処理システム１００ｄの表示制御方法の一例を以下に記載する。

情報処理システム１００ｄの表示制御装置１１００がタブレット型、腕時計型、または衣服型のウェアラプル端末に組み込まれている場合には、表示制御装置１１００は、作業対象物の近傍に作業内容を表示する。なお、表示制御装置１１００は、仕分け作業者の体の一部（例えば、作業対象物を持つ腕）に作業内容を表示してもよい。

情報処理システム１００ｄの表示制御装置１１００が帽子取付型、または眼鏡型のウェアラプル端末に組み込まれている場合には、作業内容を次のよう表示することが可能である。例えば、仕分け作業者の目の近傍に投射板（例えば、メガネレンズ）が配置されるようにし、表示制御装置１１００は、その投射板に作業内容を表示する。この際、そのメガネレンズに表示させた作業内容が作業対象物の近傍に見えるように、表示制御装置１１００は、作業内容の表示位置を制御する。また、表示制御装置１１００は、仕分け作業者の目の網膜に直接作業内容を表示させる構成としてもよい。

以上、実施例を用いて本願発明を説明したが、本願発明は、上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解しうる様々な変更をすることができる。

例えば、本発明に係る情報処理装置は、図１６に表されるような構成を採り得る。例えば、図１６の情報処理装置２０は、取得部２１と、検知部２２と、報知制御部２３とを備えている。取得部２１は、作業対象物に対して実行される作業で用いる情報を前記作業対象物に添付されている書類から取得する機能を備えている。検知部２２は、作業対象物の所在位置を検知する機
能を備えている。報知制御部73は、作業で用いる情報と、その情報を利用した作業内容が関連付けられているデータである規則に基づいて、作業対象物に対する作業内容を検知する機能を備えている。さらに、報知制御部73は、その作業内容を報知する報知装置を制御することによって、作業内容を報知する機能を備えている。例えば、報知制御部73は、作業対象物あるいはその近傍に、作業内容を表す像を投影することによって、作業内容を報知する。

[0149]また、第1～第4の各実施形態では、作業対象物に添付されている書類として、仕分け対象物200に貼付されている伝票が例に挙げられている。これに対し、作業対象物に添付されている書類は、仕分け対象物200に貼付されている伝票に限定されず、例えば、仕分け対象物200に付けられている荷札であってもよい。ただ、荷札である場合には、荷札は位置や向きが変化しやすいことから、作業対象物に添付されている書類としての荷札からカメラの撮影画像を利用して情報を取得する場合には、情報を取得するために、例えば次のような手法を採用することが好ましい。例えば、荷札の表裏両面に同じ情報が記載されているようにする。あるいは、荷札をカメラで撮影する前に、その荷札の表面（情報が記載されている面）がカメラで撮影されるように荷札の向きを作業者が調整するという作業が行われるようにする。

[0150]この出願は、2014年3月28日に出願された日本出願特願2014_067358を基礎とする優先権を主張し、その開示の全てをここに取り込む。

[0151]上記の実施形態の一部または全部は、以下の付記のようにも記載されるが、以下には限られない。

[0152]【付記1】
作業対象物に付属した明細書に記載された内容を取得する第1の取得装置と、
前記作業対象物の位置を取得する第2の取得装置と、
前記明細書に記載される内容と、作業内容とを対応付けた規則を取得する
第3の取得装置と、

前記第1の取得手段が取得した前記内容と前記第3の取得手段が取得した
前記規則に基づいて、前記作業対象物に対する前記作業内容を表示する信
号を出力する表示制御装置と、を備える情報処理システム。

[付記2]

前記表示制御装置から出力される信号に基づいて、前記作業対象物に対す
る前記作業内容を前記作業対象物あるいはその近傍に表示する表示装置をさ
らに備える付記1に記載の情報処理システム。

[付記3]

前記作業内容は、前記作業対象物が発色するにより表示される付記1また
は付記2に記載の情報処理システム。

[付記4]

前記作業対象物は、メガネレンズを介して視認可能であり、

前記表示制御装置は、前記メガネレンズ上における前記作業対象物の位置
または近傍に対応する位置に、前記作業内容を表示する付記1に記載の情報
処理システム。

[付記5]

作業対象物に付属した明細書に記載された内容を検出する第1の取得装置
と、

前記作業対象物の位置を検出する第2の取得装置と、

明細書に記載される内容と、作業内容とを記録した記録装置と、を備え、

前記第1の取得装置で検出された前記内容と、前記記録装置に保存された
前記情報に基づいて、当該作業対象物に対する作業内容を、前記作業対象
物の位置もしくはその近傍に表示する表示制御装置を備える情報処理システ
メム。

[付記6]

画像投影装置をさらに備え、当該画像投影装置が、前記作業対象物に対す
る作業内容を、前記作業対象物の位置もしくはその近傍に投影し、また、前
記作業対象物の移動に応じて、投影内容を変化させる付記1乃至付記5のいずれか1つに記載の情報処理システム。

[付記7]
前記表示制御装置は、作業内容として、前記作業対象物の移動先を含む情報を表示する付記1乃至付記6のいずれか1つに記載の情報処理システム。

[付記8]
前記表示制御装置は、前記作業対象物と前記移動先との相対位置に基づいて求められる方向を表示する付記7に記載の情報処理システム。

[付記9]
前記表示制御装置は、前記作業対象物と、前記作業内容を行う作業者の作業位置および作業状況に基づいて求められる方向を表示する付記1乃至付記8のいずれか1つに記載の情報処理システム。

[付記10]
前記表示制御装置は、前記作業対象物の属性を表示する付記1乃至付記9のいずれか1つに記載の情報処理システム。

[付記11]
前記作業対象物を移動する移動装置をさらに備え、前記第2の取得装置により求めた前記作業対象物の位置と数量の一方又は両方に基づいて、前記移動装置を制御する付記1乃至付記10のいずれか1つに記載の情報処理システム。

[付記12]
前記表示制御装置は、前記明細書の内容に基づく情報を、前記作業対象物の位置もしくはその近傍、および、前記作業対象物の移動先との両方に表示する付記7乃至付記11のいずれか1つに記載の情報処理システム。

[付記13]
前記表示制御装置は、前記第2の取得装置によって前記位置を取得できなくなったタイミングで、または、当該タイミングから一定時間を経過したときに、前記作業対象物の移動先への表示を終了する付記7乃至付記12のいずれか1つに記載の情報処理システム。
ずれか１つに記載の情報処理システム。

[付記１４]
前記作業対象物の形状を検出す第４の取得装置をさらに備え、
前記表示制御手装置は、
前記明細書に基づく情報、前記作業対象物の位置および形状に応じて、
前記作業対象物の位置もしくはその近傍に表示する付記１乃至付記１３のいずれか１つに記載の情報処理システム。

[付記１５]
作業対象物に付属した明細書に記載された内容を取得する第１の取得部と、
前記作業対象物の位置を取得する第２の取得部と、
前記明細書に記載される内容と、作業内容とを対応付けた規則を取得する第３の取得部と、
前記第１の取得部が取得した前記内容と前記第３の取得部が取得した前記規則とに基づいて、前記作業対象物に対する前記作業内容を表示するための信号を出力する表示制御部と、を備える情報処理装置。

[付記１６]
作業対象物に付属した明細書に記載された内容を取得し、
前記作業対象物の位置を取得し、
前記明細書に記載される内容と、作業内容とを対応付けた規則を取得し、
取得した前記明細書の内容と前記規則とに基づいて、前記作業対象物に対する前記作業内容を表示するための信号を出力する情報処理方法。

[付記１７]
作業対象物に付属した明細書に記載された内容を取得する処理と、
前記作業対象物の位置を取得する処理と、
前記明細書に記載される内容と、作業内容とを対応付けた規則を取得する処理と、
前記取得した前記明細書の内容と前記規則とに基づいて、前記作業対象物
に対する前記作業内容を表示するための信号を出力する処理と、コンピュータに実行させるコンピュータプログラム。

符号の説明

[0169] 100 情報処理システム
 101, 101a, 101b, 101c 物流システム
 200 仕分け対象物
 210 宛先ラベル
 230 仕分け先投影像
 500, 530 カメラ
 520 認識装置
 550, 620 制御装置
 560 データベース
 600 プロジェクタ
 610 投影装置
 700 搬送装置
請求の範囲

[請求項1] 作業対象物に対して実行される作業で用いる情報を前記作業対象物に添付されている書類から取得する取得手段と

前記作業対象物の所在位置を検知する検知手段と、

前記作業で用いる情報と、その情報を利用した作業内容とが関連付けられているデータである規則に基づいて、前記作業対象物に対する

前記作業内容を検知し、当該作業内容を報知する報知装置を制御することによって、前記作業内容を報知する報知制御手段と

を備えている情報処理装置。

[請求項2] 前記報知制御手段は、前記作業対象物の所在位置と、前記報知装置により報知する内容とが関連付けられたデータに基づき、前記検知手段により検知される前記作業対象物の所在位置の変化に応じて前記報知装置による報知内容を変更する請求項1に記載の情報処理装置。

[請求項3] 前記報知制御手段は、前記検知手段が前記作業対象物を検知し始めから所定の時間を経過したときに、経過時間に応じて前記報知装置による報知内容を変更する請求項1又は請求項2に記載の情報処理装置。

[請求項4] 前記検知手段は、検知エリア内における前記作業対象物の所在位置を検知する構成として、

前記報知制御手段は、前記検知手段が前記作業対象物の所在位置を検知しなくなったとき、あるいは、検知しなくなったから所定の時間を経過したときに、その作業対象物に関する報知動作を停止する制御を前記報知装置に行う請求項1又は請求項2又は請求項3に記載の情報処理装置。

[請求項5] 前記報知制御手段は、前記報知装置である投影装置により、前記作業対象物の表面、あるいは、前記作業対象物の近傍に前記作業内容を投影することによって、前記作業内容を報知する請求項1乃至請求項4の何れか1つに記載の情報処理装置。
[請求項6] 請求項1乃至請求項5の何れか一つに記載の情報処理装置と、
前記書類の内容を表す情報を、前記取得手段に提供する情報取得装置と、
前記作業対象物の所在位置に関する情報を、前記検知手段に提供する情報提供装置と、
前記作業内容を検知し、
を備えている情報処理システム。

[請求項7] 前記報知装置は、投影装置により構成されており、
当該投影装置は、前記作業対象物を処理する作業者が頭部に装着する装着物に組み込まれ、前記作業者の眼の近傍に前記作業内容を表す像を投影する請求項6に記載の情報処理システム。

[請求項8] 請求項6又は請求項7に記載の情報処理システムを備え、
前記報知装置は、前記作業対象物に対する作業内容を表す情報として、前記作業対象物を仕分ける仕分け先を報知する物流システム。

[請求項9] 前記作業対象物を搬送する搬送装置と、
搬送対象の前記作業対象物の所在位置と数量の一方又は両方に応じて、前記搬送装置の駆動制御を行う搬送制御装置と
をさらに備えている請求項8に記載の物流システム。

[請求項10] 前記報知装置は、投影装置であり、
前記報知制御手段は、前記作業対象物を仕分ける仕分け先を表す像を、前記作業対象物に投影し、また、前記仕分け先にも投影する請求項8又は請求項9に記載の物流システム。

[請求項11] コンピュータが、
作業対象物に対して実行される作業で用いる情報を前記作業対象物に添付されている書類から取得し
前記作業で用いる情報と、その情報を利用した作業内容とが関連付けられているデータである規則に基づいて、前記作業対象物に対する前記作業内容を検知し、
その作業内容を報知する
情報処理方法。

[請求項12] 作業対象物に対して実行される作業で用いる情報を前記作業対象物
に添付されている書類から取得する処理と、

前記作業対象物の所在位置を検知する処理と、

前記作業で用いる情報と、その情報を利用した作業内容とが関連付
けられているデータである規則に基づいて、前記作業対象物に対する
前記作業内容を検知する処理と、

その作業内容を報知する処理と
をコンピュータに実行させるためのコンピュータプログラムを記憶す
るプログラム記憶媒体。
<table>
<thead>
<tr>
<th>配送方法</th>
<th>冷蔵配送</th>
<th>冷蔵配送</th>
<th>冷蔵配送</th>
<th>冷蔵配送</th>
<th>冷蔵配送</th>
<th>冷蔵配送</th>
</tr>
</thead>
<tbody>
<tr>
<td>仕分け対象物0のサイズ</td>
<td>20×20×20cm³未満</td>
<td>20×20×20cm³未満</td>
<td>20×20×20cm³未満</td>
<td>20×20×20cm³未満</td>
<td>20×20×20cm³未満</td>
<td>20×20×20cm³未満</td>
</tr>
<tr>
<td>仕分け対象物の重量</td>
<td>2〜5kg</td>
<td>5kg以上</td>
<td>2〜5kg</td>
<td>2〜5kg</td>
<td>2〜5kg</td>
<td>2〜5kg</td>
</tr>
<tr>
<td>宛先県名（最終目的地）</td>
<td>沖縄県</td>
<td>北海道</td>
<td>東京都（23区内）</td>
<td>東京都（23区外）</td>
<td>福岡県</td>
<td>大阪府</td>
</tr>
</tbody>
</table>

A | B | C | D | E | F |
情報処理装置

表示制御部

第1の取得部

第2の取得部

第3の取得部
[図14]

情報処理装置

第1の取得部

第2の取得部

第3の取得部

表示制御部

記憶装置

10

11

12

13

14

50

53

56
[図16]

取得部

検知部

報知制御部

70 71 72 73
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

B65G2/137 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B 65 G1 / 137, B 65 G61 / 00, B 07 C1 / 00-99/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2004/0195320 A1 (United Parcel Service of America, Inc.), 07 October 2004 (07.10.2004), paragraphs [0051] to [0100]; fig. 1 to 5 & WO 2004/079546 A2</td>
<td>1,4-6.11-12 7-10</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "Z" document of the same patent family

Date of the actual completion of the international search 18 May 2015 (18.05.15)
Date of mailing of the international search report 26 May 2015 (26.05.15)

Name and mailing address of the ISA/ Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan
Authorized officer
Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2012-240783 A (Dai fuku Co., Ltd.), 10 December 2012 (10.12.2012), paragraphs [0024] to [0039]; fig. 4 to 8 (Family: none)</td>
<td>9</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2013-28454 A (Ishida Co., Ltd.), 27 February 2013 (27.02.2013), paragraph [0025]; fig. 3 (Family: none)</td>
<td>10</td>
</tr>
<tr>
<td>P,X</td>
<td>JP 2014-91609 A (Dai fuku Co., Ltd.), 19 May 2014 (19.05.2014), paragraphs [0019] to [0045]; fig. 1 to 2 (Family: none)</td>
<td>1, 4-6, 11-12</td>
</tr>
</tbody>
</table>
国際調査報告

国際出願番号 PCT／JP2015/001029

A. 発明の属する分野の分類（国際特許分類（IPC））
 Int.Cl. B65G1/137 (2006.01)

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））
 Int.Cl. B65G1/137, B65G61/00, B07C1/00-99/00

最小限資料以外の資料で調査を行った分野に含まれるもの
 日本国実用新案公報 1922–
 日本国公開実用新案公報 1971–2
 日本国実用新案登録公報 1995–2
 日本国登録実用新案公報 1994–2

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文書

<table>
<thead>
<tr>
<th>引用文献のカテゴリ〜</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2004/0195320 A1 (UNITED PARCEL SERVICE OF AMERICA, INC.)</td>
<td>1, 4-6, 11-12</td>
</tr>
<tr>
<td>Y</td>
<td>2004.10.07, 段落 0051-0100, 第1-5 図</td>
<td>7-10</td>
</tr>
<tr>
<td>A</td>
<td>& wo 2004/079546 A2</td>
<td>2-3</td>
</tr>
</tbody>
</table>

C 欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリ
 ° 「X」特に関連ある文献ではなく、一般的技術水準を示すもの
 ° 「Y」国際出願 日前の出願または特許であるが、国際出願 日以後に公表されたもの
 ° 「A」優先権主張に疑義を提起する文献又は他の文献の発行日若しくはその特別な理由を確立するために引用する文献（理由を付す）
 ° 「X」国際出願 日前の出願、かつ優先権の主張の基礎となる出願
 ° の日の後に公表された文献
 ° 「X」国際出願 日又は優先 日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理由のために引用するもの

国際調査を完了した日 18.05.2015
国際調査報告の発送日 26.05.2015

国際調査機関の名称及びあて先
日本国特許庁（ISA／JP）
郵便番号１００－８９１５
東京都千代田区霞が関三丁目４番３号

特許庁審査官（権限のある職員）
大谷 光司
電話番号 03-3581-1101 内線 3351

様式 PCT／ISA／210（第２ページ）（2009年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2012-240783 A (株式会社ダイフク) 2012. 12. 10, 段落 0024-0039, 第 4-8 図 (ファミリーなし)</td>
<td>9</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2013-28454 A (株式会社イシダ) 2013. 02. 27, 段落 0025, 第 3 図 (ファミリーなし)</td>
<td>10</td>
</tr>
<tr>
<td>P, X</td>
<td>JP 2014-91609 A (株式会社ダイフク) 2014. 05. 19, 段落 0019-0045, 第 1-2 図 (ファミリーなし)</td>
<td>1, 4—6, 11-12</td>
</tr>
</tbody>
</table>

様式 PCT / ISA / 210（第2ページの続き）（2009年7月）