A particle detector for detecting particles flowing in a duct, comprising a first triboelectric probe (5) for detecting the particles and a second triboelectric probe (3) for detecting a signal generated by contaminants on the particle detector. The presence of signal-generating contaminants on the particle detector will result in an error signal on the first probe (5) and a signal on the second probe (3). Therefore the presence of a signal on the second probe (3) will indicate that the signal appearing on the first probe (5) includes an error signal. If the ratio of the magnitude of the signal generated on the second probe (3) to the magnitude of the signal generated on the first probe (5) exceeds a certain pre-defined limit then cleaning of the detector will be required.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho
AM	Armenia	FI	Finland	LT	Lithuania
AT	Austria	FR	France	LU	Luxembourg
AU	Australia	GA	Gabon	LV	Latvia
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova
BB	Barbados	GH	Ghana	MG	Madagascar
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia
BF	Burkina Faso	GR	Greece	ML	Mali
BG	Bulgaria	HU	Hungary	MN	Mongolia
BJ	Benin	IE	Ireland	MR	Mauritania
BR	Brazil	IL	Israel	MW	Malawi
BY	Belarus	IS	Iceland	MX	Mexico
CA	Canada	IT	Italy	NE	Niger
CF	Central African Republic	JP	Japan	NL	Netherlands
CG	Congo	KE	Kenya	NO	Norway
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand
CI	Côte d’Ivoire	KP	Democratic People’s Republic of Korea	PL	Poland
CM	Cameroon	KR	Republic of Korea	PT	Portugal
CN	China	KZ	Kazakhstan	RO	Romania
CU	Cuba	LC	Saint Lucia	RU	Russian Federation
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan
DE	Germany	LK	Sri Lanka	SE	Sweden
DK	Denmark	LR	Liberia	SG	Singapore
EE	Estonia	SI	Slovenia	SK	Slovakia
SN	Senegal	SZ	Swaziland	TD	Chad
TR	Turkey	TG	Togo	TJ	Tajikistan
TM	Turkmenistan	TR	Trinidad and Tobago	UA	Ukraine
US	United States of America	UZ	Uzbekistan	VN	Viet Nam
YU	Yugoslavia	ZW	Zimbabwe		
Improvements in and relating to particle detectors

The invention relates to apparatus for detecting particles flowing in a duct and a method of detecting contaminants on the particle detector.

The performance of a triboelectric particle detector may be impaired if particles from the flow are allowed to build up on its surface. One way to avoid the build up of particles is to clean the probe on a regular basis. However, cleaning involves taking the particle detector off-line and may be time-consuming and require the disassembly of complex equipment. It is therefore desirable to monitor the level of contamination of the detector.

United States Patent No. 5,287,061 describes an on-line method of monitoring a detector for contamination. In the method described in that patent, a detector in the form of a probe is triboelectrically charged by particles in a flow. The signal generated by that charging passes through monitor circuitry that includes an amplifier, the gain of which is dependent upon the impedance of the probe. Under normal operating conditions, the impedance of the probe is substantially infinite. However, when the probe becomes contaminated the impedance may drop significantly, and that drop results in a change in the gain of the amplifier. In order to detect the occurrence of any such change in gain, a second signal of known amplitude is passed through the amplifier. A change in the magnitude of the amplified second signal indicates that the gain of the amplifier has changed and that cleaning of the probe may be required.

A low probe impedance can also cause the gain of the amplifier to rise with respect to the amplifier's internal
noise; i.e., the gain seen by the input signal is unchanged, but the gain seen by the internal noise is increased. That causes an increase in the background noise level of the instrument, and that increase may be enough to mask low-level signals.

However, a finite probe impedance does not always cause a problem in a particle detection system. In particular, in a detector in which A.C. coupling is used, such as those described in British Patent No. 2266772 and British Patent No. 2277154, a finite probe impedance usually only has a significant effect if it is so low as to saturate the amplifier, or if it varies in magnitude with time. Each of those effects would produce an error signal with an A.C. component which would be detected by the A.C. monitoring apparatus. In most other circumstances a finite impedance would usually only result in a D.C. signal caused by the offset-error voltage of the amplifier. The A.C. coupling circuitry would filter out such a D.C. signal.

A more significant problem for both A.C.- and D.C.-coupled detectors occurs when contaminants on the detector act as a signal source. Particles flowing past the detector can interact with the contaminants and cause the generation of A.C. or D.C. error signals. The impedance-dependent contamination monitoring technique described above would not detect signal-generating contamination unless the contamination also resulted in a low probe impedance.

It is an object of the invention to provide a method and apparatus for detecting particles flowing in a duct and for detecting contamination which is acting as a signal on the particle detector.
According to the invention, there is provided a particle detector for detecting particles flowing in a duct, comprising: a first triboelectric probe for detecting the particles and a second triboelectric probe for detecting a signal generated by contaminants on the particle detector.

The first probe may be used for monitoring the particle flow in the usual way. The presence of signal-generating contaminants on the particle detector will result in an error signal on the first probe. The error signal will also be detected on the second probe because the second probe is located between the first probe and the structure. Therefore, the presence of a signal on the second probe will indicate that the signal appearing on the first probe includes an error signal. The degree to which contamination is a problem may be determined by considering the ratio of the magnitude of the signal generated on the second probe to the magnitude of the signal generated on the first probe. If this ratio exceeds a certain pre-defined limit then cleaning of the detector will be required.

Advantageously, the second probe substantially surrounds the first probe. Each of the first and second probes may take any of several forms; for example, at least one of the probes may be in the form of a rod (which may be of circular cross-section), a ring or a stud.

The particle detector may be so arranged that, if the detector is mounted on a duct, both probes will project into a flow of particles flowing in the duct. Alternatively, the particle detector may be so arranged that, if the detector is mounted on a duct, neither probe will project into a flow of particles flowing in the duct. Preferably, the particle detector is so arranged that, if the detector is mounted on
a duct, the second probe does not project into a flow of particles flowing in the duct. If both probes project into the particle flow, the second probe should be so arranged that it generates a significantly smaller signal attributable to the particle flow than the signal generated by the first probe. The ratio of the signals from the two probes would remain approximately constant when the detector was not contaminated, but a ratio significantly different from that constant value would indicate that the detector was contaminated. Even with the second probe out of the air stream, it is possible that the second probe will detect a low-level signal attributable to the flow of particles.

Also according to the invention there is provided apparatus for detecting particles flowing in a duct, the apparatus comprising: a particle detector, which includes a first probe and a second probe, the first and second probes being so arranged that, if the particle detector is mounted on a structure, the second probe will be positioned between the first probe and the structure, and the first and second probes will be substantially electrically isolated from each other and from the structure; means for monitoring a signal generated on the first probe; and means for monitoring a signal generated on the second probe by contaminants on the detector.

The means for monitoring the signal generated on the second probe may be electronic circuitry substantially identical in design to that used to monitor the signal generated on the first probe. The means for monitoring the signal generated on the second probe may be substantially independent of the means for monitoring the signal generated on the first probe. Alternatively, the means for monitoring
the signal generated on the second probe may utilise the means for monitoring the signal generated on the first probe.

The monitoring means may include means to monitor A.C. components of the signals and may furthermore include filtering circuitry which removes D.C. components from the signals. Alternatively, the monitoring means may include means to monitor D.C. components of the signals.

Also according to the invention, there is provided a particle-detecting installation, including a duct together with a particle detector as described above. Also according to the invention, there is provided a particle-detecting installation, including an apparatus for detecting particles as described above. Both probes may project into the flow of particles. Alternatively, neither probe projects into the flow of particles. Preferably, the second probe does not project into the flow of particles. The duct may be a stack.

Also according to the invention, there is provided a method of detecting contaminants on a particle detector, which involves the use of a particle detector as described above. Also according to the invention, there is provided a method of detecting contaminants on a particle detector, which involves the use of an apparatus for detecting particles as described above. Also according to the invention, there is provided a method of detecting contaminants on a particle detector, which involves the use of a particle detecting installation, as described above.

The present invention also provides a method of detecting contaminants on a particle detector comprising: providing a particle detector, which comprises a first
triboelectric probe for detecting particles flowing in a duct and a second triboelectric probe; monitoring a signal generated on the first probe; and monitoring a signal generated on the second probe by the contaminants.

The signal from the second probe may be monitored continuously via monitoring circuitry that is substantially independent of monitoring circuitry used to monitor the signal from the first probe. Alternatively, the signal from the second probe may be monitored intermittently via monitoring circuitry used to monitor the signal from the first probe, with the monitoring circuitry being switched between the two probes. The latter method requires less circuitry but the former enables monitoring to be carried out more frequently without taking the first probe off-line.

Preferably, A.C. components of the signals generated on the first and second probes are monitored. Alternatively, the D.C. components of the signals generated on the first and second probes may be monitored. Alternatively, the signals including both A.C. and D.C. components may be monitored.

The present invention also provides a method of detecting contaminants on a particle detector, the method comprising: providing a particle detector, which is mounted on a structure and includes a first triboelectric probe and a second triboelectric probe, which is positioned between the first probe and the structure, the first and second probes being substantially electrically isolated from each other and from the structure; and monitoring a signal generated on the second probe by the contaminants.
Apparatus for detecting contaminants on a particle detector in accordance with the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

Fig. 1 is a cross-sectional view of a particle detector according to the invention.

Fig. 2 is a schematic representation of the signal processing circuitry used to perform the detector-contamination check.

The particle detector shown in Fig. 1 consists of a first probe 5 and a second probe 3 which are mounted in the wall of a stack 1 so as to project into a flow of particles within the stack. The first 5 and second 3 probes are electrically isolated from each other by a first insulating layer 4, and the second probe 3 is electrically isolated from the stack wall 1 by a second insulating layer 2. The wall of the stack is regarded as zero electrical potential; that is, it is the electrical reference potential.

If the particle detector is contaminated by contaminants which act as a signal source, the contaminants serve as a voltage or current source, with one connection to the first probe 5 and the other to the stack wall 1 (and hence ground). That voltage or current source will also generate a signal on the second probe 3, since the second probe 3 is located between the first probe 5 and the stack wall 1. The second probe 3 will therefore generate a signal if an error signal which is attributable to contamination of the detector is generated on the first probe 5.

The signals from the detector are monitored by the apparatus shown in Fig. 2. Signals from the first probe 5
are filtered and amplified in the main amplifier channel 6 and signals from the second probe 3 are filtered and amplified by the check-probe amplifier channel 7. A microprocessor unit 10 so controls the channels as to maintain the same level of gain and sensitivity in each.

In this described embodiment of the invention, the same electronics is used in each of the amplifier channels. The signals from the probes 3, 5 pass first to input amplifiers 11, 12 which provide output voltages from the input signals. The sensitivity of the input amplifiers 11, 12 may be adjusted, and that adjustment is controlled by the microprocessor unit 10. Sensitivity adjustment allows the apparatus to be used in processes covering a very wide range of particle-flow levels, with the sensitivity being adjusted according to the particle-flow level of the process. The sensitivity is typically fixed during instrument installation.

The signals next pass through high-pass filters 13, 14, which filter out the D.C. component of the signals, together with A.C. components at frequencies of up to some upper frequency limit. In a particular example of the invention, that limit might be about 0.1 Hz, but the value of the limit should be chosen to be appropriate for the process in which the apparatus is used.

The signals then pass through low-pass filters 15, 16 which remove high-frequency components of the signals, including high-frequency interference signals. Low-pass filtering helps to make the apparatus more robust in industrial environments.
The signals then pass to switched-gain amplifiers 17, 18, which are used to improve the ability of the apparatus to accommodate the widely varying particle-flow levels seen in some processes; for example, in bag filter applications using reverse air jet cleaning, where very high amplitude pulses of particles may be seen during the cleaning cycle. Each component amplifier (three are shown in each of the two amplifier blocks in Fig. 2) is an A.C. amplifier with a gain that may independently be switched from 1 to 16. The amplifier gains are adjusted dynamically by the microprocessor unit 10 during normal system operation: the microprocessor unit 10 changes the gain of the amplifiers 17, 18 in response to variations in the dust level.

The signals from the amplifiers 17, 18 pass to the microprocessor unit 10. In that unit, the signals are compared and, if the signal from the check-probe amplifiers 18 is significant when compared with the signal from the main amplifiers 17, the user is alerted that the probe is contaminated. The error:signal ratio threshold at which the operator is alerted may need to be adjusted according to the signal level, since, at low levels, background noise may become significant enough to cause the two signal levels to be approximately equal, whereas, at higher levels, substantially the whole of each signal will be attributable to particle flow or detector contamination.

Although the specific embodiment which has been described above utilises circuitry which monitors the A.C. components of the signals from the probes, the invention could also be embodied in a system in which the D.C. component of each of the signals is monitored.
Claims:

1. A particle detector for detecting particles flowing in a duct, comprising: a first triboelectric probe for detecting the particles and a second triboelectric probe for detecting a signal generated by contaminants on the particle detector.

2. A particle detector as claimed claim 1, in which the second probe substantially surrounds the first probe.

3. A particle detector as claimed in claim 1 or 2, in which at least one of the probes is in the form of a rod.

4. A particle detector as claimed in claim 3, in which the rod is of circular cross-section.

5. A particle detector as claimed in claim 1 or 2, in which at least one of the probes is in the form of a ring.

6. A particle detector as claimed in any of claims 1 to 5, the particle detector including mounting means so arranged that, if the detector is mounted on a duct, both probes will project into a flow of particles flowing in the duct.

7. A particle detector as claimed in any of claims 1 to 5, the particle detector including mounting means so arranged that, if the detector is mounted on a duct, the second probe will not project into a flow of particles flowing in the duct.

8. Apparatus for detecting particles flowing in a duct, the apparatus comprising: a particle detector, which includes a first probe and a second probe, the first and second probes being so arranged that, if the particle...
detector is mounted upon a structure, the second probe will be positioned between the first probe and the structure, and the first and second probes will be substantially electrically isolated from each other and from the structure; means for monitoring a signal generated on the first probe; and means for monitoring a signal generated on the second probe by contaminants on the detector.

9. Apparatus as claimed in claim 8, in which the means for monitoring the signal generated on the second probe is electronic circuitry substantially identical in design to that used to monitor the signal generated on the first probe.

10. Apparatus as claimed in claim 8 or 9, in which the means for monitoring the signal generated on the second probe is substantially independent of the means for monitoring the signal generated on the first probe.

11. Apparatus as claimed in claim 8 or 9, in which the means for monitoring the signal generated on the second probe utilise the means for monitoring the signal generated on the first probe.

12. Apparatus as claimed in any of claims 8 to 11, in which the monitoring means include means to monitor A.C. components of the signals.

13. Apparatus for detecting particles flowing in a duct, the apparatus being substantially as herein described with reference to and as illustrated by the accompanying drawings.

14. A particle-detecting installation, including a duct and a particle detector according to any of claims 1 to 7.
15. A particle-detecting installation, including an apparatus for detecting particles flowing in a duct according to any of claims 8 to 13.

16. A particle-detecting installation as claimed 14 or claim 15, in which both probes project into the flow of particles.

17. A particle-detecting installation as claimed in claim 14 or claim 15, in which the second probe does not project into the flow of particles.

18. A particle-detecting installation as claimed in any of claims 14 to 17, in which the duct is a stack.

19. A method of detecting contaminants on a particle detector, which involves the use of a particle detector according to any of claims 1 to 7.

20. A method of detecting contaminants on a particle detector, which involves the use of an apparatus according to any of claims 8 to 13.

21. A method of detecting contaminants on a particle detector, which involves the use of a particle-detecting installation according to any of claims 14 to 18.

22. A method of detecting contaminants on a particle detector comprising: providing a particle detector, which comprises a first triboelectric probe for detecting particles flowing in a duct and a second triboelectric probe; monitoring a signal generated on the first probe; and monitoring a signal generated on the second probe by the contaminants.

23. A method as claimed claim 22, in which the signal from the second probe is monitored continuously via monitoring
circuitry that is substantially independent of monitoring circuitry used to monitor the signal from the first probe.

24. A method as claimed claim 22, in which the signal from the second probe is monitored intermittently via monitoring circuitry used to monitor the signal from the first probe.

25. A method as claimed in any of claims 22 to 24, in which A.C. components of the signals generated on the first and second probes are monitored.

26. A method of detecting contaminants on a particle detector, the method comprising: providing the particle detector, which is mounted on a structure and includes a first triboelectric probe and a second triboelectric probe, which is positioned between the first probe and the structure, the first and second probes being substantially electrically isolated from each other and from the structure; and monitoring a signal generated on the second probe by the contaminants.

27. A method of detecting contaminants on a particle detector, the method being substantially as herein described with reference to and as illustrated by the accompanying drawings.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GOIN1S/06

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbol)

IPC 6 GOIN

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category *</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 179 934 A (SVAROVSKY LADISLAV) 25 December 1979 (1979-12-25) column 1, line 46 - column 2, line 31 column 4, line 4-44</td>
<td>1, 8, 14, 15, 21, 22</td>
</tr>
<tr>
<td>A</td>
<td>US 5 287 061 A (DECHENE RONALD L ET AL) 15 February 1994 (1994-02-15) column 2, line 37-52</td>
<td>1, 8, 14, 15, 21, 22</td>
</tr>
<tr>
<td>A</td>
<td>DE 11 22 292 B (J.C. ECKHARDT AG) 18 January 1962 (1962-01-18) column 1, line 38-51; figure 1</td>
<td>1, 8, 14, 15, 21, 22</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

* "A" document defining the general state of the art which is not considered to be of particular relevance
* "E" earlier document but published on or after the international filing date
* "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
* "O" document referring to an oral disclosure, use, exhibition or other means
* "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
* "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* "&" document member of the same patent family

Date of the actual completion of the international search

4 August 1999

Date of mailing of the international search report

13/08/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epi nl, Fax (+31-70) 340-3016

Authorized officer

Zinngrebe, U
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4179934 A</td>
<td>25-12-1979</td>
<td>GB 1578157 A</td>
<td>05-11-1980</td>
</tr>
<tr>
<td>US 5287061 A</td>
<td>15-02-1994</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 1122292 B</td>
<td></td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>