»

United States Patent 19 1] 4,445,177
Bratt et al. BEST AVAILABLE COPY 151 Apr. 24,1984

[54] DIGITAL DATA PROCESSING SYSTEM [57] ABSTRACT
UTILIZING A UNIQUE ARITHMETIC A data processing system having a flexible internal
LOGIC UNIT FOR HANDLING UNIQUELY structure, protected from and effectively invisible to
IDENTIFIABLE ADDRESSES FOR users, with multilevel control and stack mechanisms
OPERANDS AND INSTRUCTIONS and capability of performing multiple, concurrent oper-
[75] Inventors: Richard G. Bratt, Wayland, Mass.; ations, and providing a flexible, simplified interface to
Stephen L Schleimer, Chapel Hill; users. The system is internally comprised of a plurality
John F. Pilat, Raleigh, both of N.C.; of separate, independent processors, each having a sepa-
Richard A. Belgard, Saratoga, Calif; rate microinstruction control and at least one separate,
Steven J. Wallach, Saratoga, Calif.; independent port to a central communications and
Gerald F. Clancy, Saratoga, Calif.; memory node. The communications and memory node
Craig J. Mundie, Cary, N.C.; David is an independent processor having separate, indepen-
H. Bernstein, Ashland; Edward S. dent microinstruction control and comprised of a plu-
Gavrin, Lincoln, both of Mass.; rality of independently operating, microinstruction con-
Thomas M. Jones, Chapel Hill, N.C.; trolled processors capable of performing multiple, con-
Brett L. Bachman, Boston, Mass. current memory and communications operations. Ad-
. dressing mechanisms allow permanent, unique indentifi-
[73] Assignee: Data General Corporation, Westboro, cation of information as objects and an extremely large
Mass. address space accessible and common to all such sys-
[21] Appl. No.: 266,411 tems. Addresses are independent of system physical
! configuration and, as particularly described withrefer-
[22]) Filed: May 22, 1981 ence to the invention herein, indentify locations of ob-
[51] Int.CL3 ... GOG6F 9/22 ject information to be accessed by utilizing address
[52] UsS.CL . 364/200 formats which comprise an object field, offset field and
[58] Field of Searchccoverieiecnennacn. 364/200, 900 alength field so that information can be identified to bit
granular level and to information type and format.
[56] References Cited Arithmetic logic unit (ALU) means, also as particularly
U.S. PATENT DOCUMENTS described with reference to the invention herein, in-
3,646,522 2/1972 Furman et al. oo 3647200 ~ Clude general register means having three vertically
4030072 6/1977 Bjornsson oriented parts for storing such respective fields. Protec-
4,035,777 7/1977 Moreton tion mechanisms provide variable access rights associ-
4,042,972 B8/1977 Gruner et al ated with individual bodies of information. User lan-
4,079,451 3/1978 Woods et al guage instructions are transformed into dialect coded,
4,131,941 12/1978 Siegel et al. uniform, intermediate level instructions to provide
:,}2:,2;; ;5 ;g;g ghﬁsetal equal facility of execution for all user languages. Oper-
4,172,281 1071979 GOTAON oo ands are referred to by uniform format names which are

Primary Examiner—Jerry Smith
Assistant Examiner—Michael R. Fleming
Attorney, Agent, or Firm—Robert F. O’Connell

transformed, by internal mechanisms transparent to
users, into addresses.

3 Claims, 199 Drawing Figures

130 112
|| "M- MOD 140 9 I
-——u i0S MO29] g ‘ |
JPP 142 9
| towe ; ; |
' 4 Cig |
l Fe=—m—l————l—" |
146 l I
[! '
0 | : |
FUEU
: 10JP 1324 I FU 148 eu | :
|
l | C120 192 : l
JP
| cstor - — e e e e e e e e o |
L |

U.S. Patent Apr. 24, 1984

130

12

Sheet 1 of Iv56

4,445,177

LioM MOD . 1404
- 10S MIO 9] mEM
JPP 142 9
 IOMC o \
1317
y Ui |
reepreemsmeeelrT 11"
146 I l
U \ 1
PD | :
FUEU
- E
I0JP 1324 I FU v |
. | |
| 4p 120 L2z g
CS101 -C1;T-—————————-———_l
FIG 1
10S 116/MEM112 JP 114
128 14 32

32
viD Aopnessl uio l o l:

128 32 a2 14 32 32
UID DESCRIPTOR uID 0 L |- »faon] © L
- UID/AON
o OBJECT
—Y b e~ —Je——ADDRESS
L ’ } DESCRIPTOR
—Y .
FIG 2
SIN SIN
1 2
| 1
/ \ /S -\

L mn AON ADDRESS
(LOGICAL ADDRESS)

AON DESCRIPTOR
(LOGICAL DESCRIPTOR)

SOP NAME | NAME

soP | NAME | NAME | NAME
2 c D E

INSTRUCTION

STREAM

FIG 3

Sheet 2 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

oLy
D)

v OId

SIANIHOVIN TYNOILNIANOD
movu

FHVMAEVH

90v
)

SNOILONYLSNI IQ0D0HIIN

NOVLS

vy Did
10l §O
azr -
$NOVLS JA0I0UIIN
|]

r —— y JUYMQUVH
“ “ gy — [

)
|
| |

|
! |
! !
I I

SNOILONYLSNI SNOILONYLSNI
SOW - 30000HOIN | 3a0D0HIIN
HOLINOW | d0s
oey ezy
oz — vzy — q o
0oZy
(- ey —
NOVLISOUHOVN SNIS
N—Qllu

SNOLLONYLSNI FIDVNONVYT H3sSN

[

yovy
2

SNOILONHLSNI 2DOVNONVYT INIHOVIN

zov
2

SNOILONYLSNI IDVNONVYT HISN

Sheet 3 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

S 9Oid

="
_ HOVLS _

_ dos |

—.lv_m 7
ey P ret

a—{ sn3

“—2zzI n3

z1g ~ |

0zt nNd

r—-——=—=— 1
_ |
| T
. _
N _
_ wm..* SON _
[_ |
_ _
i —
[
 — |

_ vey —r 4 SIN
- / |
L _

)

; _
| |
sow | suo _
o.m.L, “l — | _
e

N2t WIW

I'I'l"amwn.&ﬂnJ

)
05
XOVLS MOVLS
34NO3S OHOVIW
4 20§ —r’

Sheet 4 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

9 OId

n4
\»\ - ozi
i R i
B |
dSdA | e dSdA _
—_— ss
r n r — el = |
| | I | L _ NOViLS _ _
| _ _ _ 55| _ 30uN0S _ “
| >
| | | | N |
| _ _
_ I _ $S300ud _ | |
_ | | NOV1S
_. “ _ | “ OUOVI _
| | _ _ 205 =’ _
— __ — —_
T Hn& ﬁ%&w fﬂ
r——= -1 r—F—""—===-9 r e ——— T
| _ “ | | |
| | | | vayy 193r80 193rg0 _
| 34N03004d _r -- |" 3¥na390ud F~- .“ ouviS unazdoud [~ mzu_mwwmﬁ |
“ “ — _ _ 909 609 o’ 909 —r? “
L L L

i ———

209

—_————— .

3YNA3004
ﬂwow — e —— —— — — —

il

U.S. Patent

Apr. 24, 1984

CS 101 LEVELS
701

USER

Sheet 5 of 156

4,445,177

704

EOS

USER
INTERFACE 709 ~ HIGH LEVEL LANGUAGES, UTILITIES, FILES, PROCESSORS
o~ 702 o~ 703
COMPILERS BINDER

ARCHITECTUAL

(FILES, CL{,
PROCESSORS)

INTERFACE 708 =~ S-LANGUAGES , UIO-OFFSET ADDRESSING, OBJECTS, ACCESS CONTROL

o~ 705 706
S-INTERPRETER mCODE KOS SOFTWARE
715
NAME INTERPRETER mCODE
710
KOS mCODE
FU 120 INTERFACE 711)
FU 120 DEVICES SPECIALIZED DEVICES
(725 (715 7‘6\ r717
o E TRANS
DESCRIPTOR NAME TR
F-UNIT CONTROL . DER
° PROCESSOR S-OP REA UNIT
713 .~ 506 723~~~ — 718
DISPATCH PROTECTION
FU 120 wes TABLES UNIT
L o e e] L -~
NAME INTERPRETER GRF 2 [
TIMERS TRANS
UNIT
KOS mCODE

FIG 7

U.S. Patent

Apr. 24, 1984

Sheet 6 of 156

4,445,177

EXECUTING PROCESSES STOPPED PROCESSES
1 1
1]
610 610 610 610
(. .
PROCESS PROCESS PROCESS PROCESS
STATE s " STATE STATE STATE
A M N Zz
PROCESS A
BOUND TO vP
612 ' 612
p- VIRTUAL A VIRTUAL
PROCESSOR | . . _ | Pprocessor
STATE STATE
M A
MEM 112~
MEMORY SYSTEM
VIRTUAL PROCESSOR M BOUND TO JP114
120 \
Fu
P 114

FIG 8

Sheet 7 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

6 9Id

208
NIVLS OHOVA
1
/ N\
MOVLS ¥asn
. —o H3QVIH SO
¥OV1S SON MOVLS SO3
€ IWved
43AV3H SOX > H3AQVIH SON
MOVLS SWEQ
ELLLE Z IWvyd - v
H3av3H SO INved jot— d 4
$06 ——r? P06 €06 —r 206 —r’
0§
NOVIS 3HND3S
]
/ AN
ain ¥JV1S IHND3S
H3avaH SO
: GiN MOVLS SOM
L Iwvad _ ain Xovis s03
T ANVHA ain XOv.is SWaa
€ JINVHd —_— Qin XOv1s yasn
¥ INvyd
906 — —
106

123ra0 $S3004d

U.S. Patent Apr. 24, 1984

Sheet 8 of 156

4,445,177

FROM
S-INTERPRETER
FU 120 WCS (-1014 1002
INVOKER EXAMPLE
DC DEVICE
ENTRIES
o oL NEW
PC PBA PBA
ALL
CODE
ey INVOKER EXAMPLE
2V CODE CODE
DESCRIPTION
PROCESSOR
oLD NEW
NTP NTP
NEW MAGRO REGISTERS — 1004
STATE
PRODUCED BY mvs:ee EXANI.ﬂrPLE
CALL mCODE
”
PBP
FD PROCESS OBJECT 1006 —
FROM NAME
INTERPRETER JOP
NTP — 1008
(OTHER MACROSTATE) EXAMPLE'S
L NEW FP = FRAME
DESCRIPTOR FOR EXAMPLE
DESCRIPTOR FOR C
INVOKER'S
OLD FP—» FRAME
MACROSTACK
OBJECT
f' 1010
OLD MACRO
STATE EXAMPLE’S
TRANSLATED FRAME
INTO POINTERS
INVOKER'S
FRAME

FIG 10

SECURE STACK
OBJECT

MEMORY SYSTEM

U.S. Patent

FP

Apr. 24, 1984

STORAGE FOR B

w4

STORAGE FOR A

STORAGE FOR X

POINTER TO Z

FRAME HEADER

STORAGE FOR Z

J\//—/

Sheet 9 of 156

| EXAMPLE'S
FRAME 1102

~1104
~ 1106

- INVOKER’S
FRAME 1108

REMAINDER
OF
STOCK

FIG 11

4,445,177

U.S. Patent Apr. 24, 1984 Sheet 10 of 156

4,445,177

LOGICAL DESCRIPTOR 1204
AON LOG OFF|$ET LENGTH
PAGE NO. lDISP
\ J \ / \
L
i 4
PHYSICAL PAGE DISP LENGTH

NO.

PHYSICAL DESCRIPTOR 1202

FIG 12
B'S OFFSET
1
r : - \
B'S DISPLACEMENT 02
1034 ﬂ
¥ T
PAGE Il page |
1 { 2 { | [e—— svoraGe Fors
|
| |
1 1
! Q13{)8
MACROSTACK l
OBJECT EXAMPLE'S FRAME
UID (AON)
—r 7
B'S
PAGE
SECONDARY MEMORY
EXAMPLE'S FRAME
STORAGE FOR B
r—— —_—_———————— e —_——_———— 9
3
FRAME 1 2 {8'S FRAME

NO.}

B'S DISPLACEMENT

— e MM e e e]

U.S. Patent

Apr. 24, 1984 Sheet 11 of 156 4,445,177

ACCESS CONTROL OVERVIEW

PRINCIPAL UID
1404

PROCESS UID
1405

DOMAIN UID TAG
1406 1407

SUBJECT 1408

[~ SUBJECT TEMPLATE 1416

1410

/——MODES 1418

OBJECT

SUBJLT [m SUBLY | m
ACL ENTRY
ACL ENTRY N
- /
ACCESS CONTROL
LIST 1412
Rlw]e

FIG 14

U.S. Patent

Apr. 24, 1984

Sheet 12 of 156

4,445,177

1516 ~—

uD LISTS

UPSBFORA ..,

UPSBFORB 4,

UPS ARRAY
1512

SECURE STACK

FOR A’S PROCESS
906

SECURE STACK
FOR B’S PROCESS

206

MEM 112 ——

INVOCATION
FROM SUSPEND
mCODE
FU 120 WCS 1942
N
ALU
» FU 10120 REGISTERS
10S VP
SWAPPING -
mCOOE REGISTERS RESERVED
1510 _ FOR VP SWAPPING
U-CODE EXECUTION
1504
PROCESS
MACROSTATE
1506
PROCESS
INTERVAL T. MACROSTATE
1506 1512
EGGT. VP NUMBER 1513
1508
TIMERS — 502
[1
1
LINE FROM 105
DESCRIPTOR
TO POINTER
TRANSLATION
INTERRUPT Kiie
LINES

FIG 15

Sheet 13 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

TR GHm—— — SN S— S————

St

ml
dfol Tz _
|
|
awol ra__
01
_
_ “~ ai191
_
_ P
_ — proL avW
_ bt}
621 _ 1 ¥91 - OaN
om = n *1 ins LYY
| -
WO om_ _
_ wa <oiel
_ 9
— dViN
_
_ - ong
— rV—w—
|

Sheet 14 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

8L 9id

r—m— OWOI
OlN
Cez
WOl
Coer
1‘IIIIIIIIIIl|I'IIlI|II ——
ONdr U _ Hm: W3 _
ad
S _
adr
Cen _
aon no.._ _
— ¥ \ L
— nid IN
_ {3
_ ozs!] otgL="
\
_ JIN
08

_ zz81—
_ vigi=—’
_ \ \
— aSn ’\ *
_ ~zigl v ~~zigt VN
_ 0181

L———_—-—————-—_—--——_————

Sheet 15 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

6L OId

jll.qom_.ﬂllllll..lul llllllllllllllllllnlnllll.ll_
. _ 1 ~~zo6L a1 | _
_ ON - _
_ Pu«m_ : : _
_ o161 :
_ 4saa - ||_ ” _
| “ | |
. _ _ nv _ od _
_ _ _ vE6L _
— ‘qmwm— 1961 1 — — niv —
_ ian3 a 1and] _ svig XN _ gz6l ~ _
zzing | _l vo81 - so61” _«mm.k*{ oveL—" _ _
or _
| 1 _ _l- —l__l- _
_ _ _
249 U Y _ _
| ¢ 1| on | : :]
vg6L~ _ 905 — 9€61 ¥E6i Ze61 _ _
“ al Se _ - - IH T _ _
_ 2961~ _llllllllllllll..llllllll_ _
S _ —_——_——_——_— e e |]
[y
o ad |
Nuo—»:m.._H vt adr st%hg

~~0rt QoW

Sheet 16 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

e — — ——————————
982 ~~z06l Q1
250z ~
[
0dd
2002 =
——] e | ————_—_—
r N e _
“ J _ - _ (reoz “
_ ™ Nmvw _ “ y ..._.“M _
_ IMMJ 44 _ d | _
_ W _ _ 3
_ | _ _
__ 6502 - _ _omowb __
LINKN dX3
— — — —d
R — o
[[
182 !
0802 = ow
940 WO
zz0z | v20z — 010z —"
e — — —_—— e — —— —

4,445,177

Apr. 24, 1984

U.S. Patent

Lol Ol

Sheet 17 of 156

. O0LLOLSD

T riiol

da
—
21101
qaen—o.
s N
“I dr lm
|
i o
_ q.o!o— A 1 droil V
_ na O —— n4 “ e S0l
_ otioL ”v
| . m Gvio1
) ad
M w zziot 0ziol VAN M W nl_ 91101)
T/
8zi0l
zrioL dar z Ol
\VARVARRAV/

oriol \ aon

Z110}

9ELOL
A”WV na

0Olda

¥ELOL |,V

9z101L
WV a3

on

*ZL0) L

Sheet 18 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

c0l "Oid

ZTi01 N3

— —— — — — —

WNLONNLS
300w N3

— — — — a—

NSINVHOIN
NIVLiS GNY
HILSIO3H NI

— o — - — — —

oziol N4 2110l AN
e o e e G S—— w—— Sw— g e — — G e cm— —— J
wuﬂ»%hcmu oL |
W
nl‘ 300! _
orzos — SASINY eeat : vecot
HOIN NOLLONYLSNI-OHOIN |_
j |||||| = P ——— —— —— TE—E GE—— SE— — J
s, — e |
L
_ vezor - zez0b octor
b e - =] [| _SWSINVHOIN NOLLI310Ud
| ‘r— """ -—"—-——-—-"—"—"=—7—=77—7== 1
LINN
| NOLLVISNVUL |
_ ssauaav |
— saavi saavL
_ i e Nov/oIn |
— VO Imvn 2204 ||U TTEOL - —
L _eeeo - it SWSINVHOIN DNISS3UAQY |
== ro e Y
| N _ _uhl »Uuz..-o _ _
$103790 | | | .ssacoud
| | aunadoss | | ' . _ |
| 1 | f $8300kd TVALWIA _ |
WSINVHOIN ! $390M8 1 T
NOVLS ONV | A | avis - | [| _
HRLSIOZN NJ dA | |
| $103r90 | | t | |
vizor — WNAAI0UJ . oz L~ 133r0
| | | | ssacowe _ |
_ _ ' ||
§$103r4o0 l $83004d TYNLYHIA
L, 2und3ooud) ot | sassaoona wvnauia] |
Z o h..o.uo. SIHNLONULS $SID0Ud

4,445,177

Sheet 19 of 156

Apr. 24, 1984

U.S. Patent

€0L "OI4

9o
S VIQVIH ¥3aVIH u3avan ¥aavan FPy—
0L£01 1d —9¢C01 1d cd $d vd
SO zd zd 6d 9d id
1 td e e 1id 8d
89€c01 vd svm | sYml i svn] oid
sin sd 1 SO } “ $03 " " snaa “ ‘ o i
Z9c01 99d ! ' e 'L 4 wasn
SH3181934 id »ot01 — zecoL—~ ogcoL — eztoL —
Moy [_¥Ovis 84 vas vas vas vas
; ed - soN so3 swea uasn
9ST0L ~ old 0z¢0L — rzeoL zzeol 0ZEoL —
NOLLO8 Lid
SNOIAI¥d | H —
ANINEND . N z8£01—
Ud SIN 09501 | anoas | & VL anvn
SUIL8IDIY l | 08601 1
Vg0 — .ﬂ re -
$8300ud Prrimiads |
- |Lmal -
otgos =~ T lllll -
g ST,
99€04 SvEo L ~1 L HIAVYIH]
dss qQid Lid
e 3 angascus)
T 3¥NA3D0Ud
ain |- S2Unda0ud -
PPEO| ~y
>d | -
wouw 3009 NIS
yocos Treot a3 IWNEILNI
rscoi a4
FTT) I g
Nod | Y .w T
did AUING 2000 'agzq | 841 103rg0 1%3re0 103rg0
r—aun § I | B e D L) I G R 34NA3006d 34NAIO0Nd 3MNA3204d
yrers oreoi~J Q2 itd Q3 WNEILXI $03 Snag uisn
9EE0L - WIAYIH
PLZOL WSINVHOIN MOVLS - e1c01 sigoL — vicoL—~ zicoL
ANV 3714 H3ILSID3Y nd ——®> 12390 JUNAD0Yd BON

0T 10t Nd

L0 NI

cizot $103rG0 3WNQIDOUL

Sheet 20 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

S01L "OId

9CEOLSS

21501 JIAVEH NOVLS SS

oLs0lL
INVHL NOVIS
9EEOISS

PiGOL YIAVIH INVHS

glsol
NJ078 H3LINIOd 3HNQ300Hd

81S01

—

L JWVHEA INILNOH-OHIIN

¢ 3WVEd ANILAOY-OUDIN

a—uo,la\ “

N AWYHJ INILNOY-QUOIN

8iLsol I\\

e

0zZsol
WOVLS

3NLLNOY
~OHDIN

yo0L "Old

18 115
H3IAV3H NOVIS
SYW SO

ZivOl
ANVHL | 3HNAID0Hd

rivOl
Y3QV3IH 3WVHd

1901
SHILNIOC FOVINIT

8iv0L
SH3LNIOd TVI01

214 []8
{viva JILYNOLNY)
viva Ivo01d

Tivol
FWVYL T 3UNTID0Hd

+

¢ivol
ANVHJ |1 3WNA3D0Nd

vivol
H3IAQV3H 3WVEd

9L¥0L
SHALNIOC FDVINIT

8LPOI
SHILNIOd T¥207

ozrolL
(viva ollvioLny)
viva vool

¥ivol
H3gV3IH INVEY

9Lv0L
SHALNIOC ADVHINIT

8iv0oL
SHIALNIOd VIO

oTPoL
(Viva J1LVvWOLNY)
viva 1vool

———— —— g () | §

U.S. Patent

Apr. 24, 1984

Sheet 21 of 156

4,445,177

LAUGN LAUSN
N T /
umw LAUID OSN -~ — [+] L
32 46_ 32 32
AON AON e — - o [+} L
14 32 32
FIG. 106A
NAME
8/12/16
NAME RfSOLVE
AON o L

14 32 32

FiG. 106B

AON LOGICAL ADDRESS

PHYSICAL ADDRESS

OF
14

FIG. 106C

Z0L 9id

Sheet 22 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

02101 N4 —THI0L WIW
7 77 .lﬁ.'l.”“ul”.””llll..lll.”“ - T T T T T T T/
_ | NONOV'NdA | _
T
_ _ " _ |
| 120/ NOV'NdA
_ _ NMHM”\I 0 NOY NN ouov anv? “ _
o JHWA

_ _ czLol DUNWA 82201~ oczoL — | _
_ do N4 | r—- _
! | If——————=——————— i

_ 1INN _ _ _ _
_ zomwmuwﬂ«ﬁ _ 4 SMIe— pwsm d NdA | NIVNOQ —] VIOV feg—m _ _
8zzoL~ * _ _ _ _ _

_ 0 Nov _ 0z20t < || “viop - “ |
_ 0 NOv] | _
_ * _ X3ANi _ _ XIANI _ _

_ d NOV 14N 1HW LHW _ _ Iszow:._dll 10V 1H 10V ain _
_ FHOVD INWVN _ _ _ _ _
9zzoL ~ » | g0~ 9101 | | zrzon oLz08~" | _

_ INVN _ N3 ———m E _ _ NOV = a _
_ | N I
_ | S378VL LINIWIOVNYIN AHOWIW d NOV _ _ $37av.l NOV aIn ain _ _

|||||||||||| - e —— —— — —— — — e]
L l-..lFawmmzlll.l.l R T
- = = - T N"70zz0I _S3MNLONYLS DNISSIEAAY

U.S. Patent

Apr. 24, 1984

Sheet 23 of 156

WORD A NTE
FLAG 8 PR
L D
WORD B
WORD C
D (
ES
WORD D

FIG. 108

4,445,177

0ZL0LNS —~ _—2TL10L WA 601 9id

Apr. 24, 1984 Sheet 24 of 156 4,445,177

r-r------"-"—-—"""—"""—""—""—"—"=""7"-—

U.S. Patent

r===1
I |
! [
! yova !
ODON/09 " “
» Leed
yezot LVdNY
FHOVD
NOILD310Yd -
- ~ J
¥ - i
r==x]
| 3cow ! bore v
_ —
-
_ AIMY | | gieol
_ | I
y31sID3y NSV !
NSV Wvav _
ste0t” § oteoL —" _
| ETT _ Xaant
s318vL Qdd w—{ 1SH e 1H NOV
| NOILO3L0Hd _
_ ‘ | »1.60L — Z160L
b _1_ ————
0£Z0L WSINVHO3N NOILD310Hd Gdd

4,445,177

Apr. 24, 1984

U.S. Patent

OLI OId

Sheet 25 of 156

— GTENED T Se— —— TN S A E— N — — —

—0Z10L N4 _~THI0L WAW
quIIIIIII — lll;ll'lllllll'lJ
N LS _
oPZOoL
und
S I S _
_ SOow _
_ llllll —— gczot — _
_ 2 us _
NQS
I O R I S |
L s zas «ao.m
Y e . 2 —
] - 1as _
zLoLs oL0LL
11s 1as _
_ ~ dis _
99¢€01
_l oW 9€Z0L SIWSINVHO3W NOILINYLSNI-OHIIN _

Loe Oid

S~ IE10L DWOI

r~ w# ﬁ “<szi0l O
~ AWV T
- oot aa || D—-— Y) 140d OIN - oeior woi
“ p] . g ~ Te——gTLLO0L
< ~—eovaer [[[[I 1
LY
~r S—vrioL AOW \)
A ~ Vas -~ Va hovro—
d ~ - S 14Od drid
_—l e d e A e]] e — —] — e e e S ——— . —— ———
[wrhﬁl \ ZLLOL WIW
o 0910z 9910Z Lioz
n _ re—=9
- SLOT) 3ua |
= ot~ 3HO¥D Ny ium |
- .ﬁ S ERIENEEIE olo: ANOWIW | Ssvarw |
[-3 © L] © @ ©® L l r — - L
N _ ViR FAYAR S EAVEAVERYA: 8 951024 05102~ ¥PLOZ -7 e
D AP AR~ A v A" AL A v
O ¥31I0HINOD LINN - all S8a
= _ 30V3HILNI NOILVI0S! e2il a¥|| 28
w ANOWIW a1 20|| © 81102
N (o M8
_ tzioz— 4} esioz ozioz—" 8810z ¢
4 - Crsioz Nerioz
< _ — 90107 TINOW A"Vv ¥3TI0MINOD
0
(@, 091021 ¥Nva
—- _ NN
< \ \ \
4 ¥ 10T 9EL0T
~ — geioe 0f]
5 b i e 1 1 it
< _ .
s 3 ¥£10Z LLNDQY b y > z
m _ ~—9zi0Z M
8 | s ||s 2
- o e WD EEEES s Gy SR AL GRS Shute el e p— —— - - a— = - -
= r IRl L
A _ _ VRV |
. N LN £ z s
So — — AVHEY AVHEY — — — — — — — — — — AVHHY AVHHY Avedy _
AHOWIW AHOW3IW AYOWIN AH AHOWIN
-) I YNVE JHOLS NIVW onaw ona |
L zL0z zi0z—" zi10z ~ zrioz — zror— 3
e o o e e e e e e ———————— ——— — e — — —

Sheet 27 of 156

U.S. Patent Apr. 24, 1984

c0¢ OId

}i'llll'l'l’lll'llll'll‘\Illllc

-
0gz0z— snaunov I]| Rt 41
1 1§ szzoz Y snaiasio || [] [] _ mv: ¢ 1l _
re 9zz20z || SNE HION3T ll.lllal.a ll@jjﬁl .
—I A /)] b Id
“ oM wu::o<<% oy N37 340 NOV _ _
T > yav ¥ b .ro._.m_«%w..mmn _
_ __ __ :] __ szzor— O3 vsz0z— |
‘ “~rzzoz [J[_ _sneawvn_" _ _
—II-..II] |ommmuln._vm._'.lll—.llmw|«hv«||ﬁm_llll.I.I_IEMMN.I..III.I_ uv«%ﬂ. NI m:o<ut0A.rJH _
_ _ = _ dNOV _ _ == zo_._.0u»onm<0u | g
_ 22O __ _ A1vd430 _ _ _ vez0i m .ﬂ:..v.._\m _
_ TvEoT szzor /) \/ _
_ VNI _ T | _ | - TNn
A N4} SNVHL _
_ _ 8 snIvddo “ _ " ss3ugav _
_ Wocuou LL _ o,_ac..ﬂ._ _ _ _
_ 2901 _ Em&m _ _ _ _
_ svia Mw X1Xt) d w | _ | _
| Mw Mw | — als % llllll | |} rez0z | |_ _zseor~ () _ " 85202~ “ _
“ JHONI1 " ¥SEO0L 449440 “ 4HONOY _ _ uuum _ _
AH b - -] - |-) - _ _
_ .roonom — nnuouj — _ ec«o«j n _ —.I] lm_mmlu)lll ALl
_ 1 J3sN31 _ 138440 _ 13SNOV _
oszoz _ $ _
_ ﬁ = 1 | . ,Im @@H:._.L 0 m _ _
r llllllll 'l-r — — vy — — — ,|—Fl R G SE—— e L II—'
oo dsag ovior ad]
U 1 _—ZPLOL SNG adr {

JL

JL

veoc_"9id

4,445,177

Sheet 28 of 156

Apr. 24, 1984

U.S. Patent

_ nd N——0EZ0T NOY
I ~——%zzoz 136340
m —..lll..l e [——— s e e ——— e —— SoveEer _WloNa T T T
_ .v..”wwm_ 21901 ._Oc.rzoq_
_ . Nﬂm‘n SHANLL _
“ “ »2202~ _
_ _ | C Mw Mw ANVN "
“ _ 43ud uawuh_o mnun _
_ _ : —g9z0z N p520Z omﬂpl BdSIN _
21001 M“ ~ _ Gl .
AH__”TV ANINg K~ HOLVHANID _
_ _ ——g620Z 1asn3 1asnd xmmmww_wmu _
_ _ 90202 —~—] _foo«ou N 01044 _
|1 sian3 _
!
_ _ M , . ERLITS _
Y ﬂ# m* mw Y SYNLLS T0HLNOD —
— — — 111804
_ 98202 _
| dan B e N33 o3l —
_ 1 oamr a J| “~s9sz0z ~—uuz0z : = v8z0Z 70 “
I rizoz yasuvd
|] mlm_
» - v9z0Z _
_ _ odl ﬁ] : SY3LSIDAY _
- 3ivis "8
“ _ $ - zizoz ~T920T . H _ ~ ¥8%0z K \\ 08202 - 79202 _
_ 2dd aisN SMou LMOW om Y3INNOS _
_ _ ow Iv3d3y D34Nd
_ rL _ - o.z02 ﬁ 98c0L—" o06z0z—" l“
v - - VT == —l——————— Mw lllllllll
T — ZyiL0L adf

[oviOl GOW

4,445,177

Apr. 24, 1984

U.S. Patent

Sheet 29 of 156

¥
[l
_
|
I
_
!
||
|
__
_
||
1
__
_
||
I
1
__
__r
_
_

¢riol SNS adr
ryiol SN8 QON

£0¢ 9Id r “@otna . — -nu-.....n..l...l..”..lﬂ..lquhc.ﬂl._'“
— e — e — . e e L~y Cescor k- 1
llllllllllllllllll - ' 32IENOD H1DNZT “ _T
i
. lecoz 4 | [| — 14 .
_ | Ceicoz uNo LW | |." T azﬂ%—«ﬂ ,
_ _ o TUNDLAHS _ | eze0e 3 I “_ _m
| L 80— [l veeoz I " | | ooctz IH.:..H_..
vee0z — | mr——f—4-—-————————— _
T = _ _
[weinw | “ m =Y @ C6ce02 WIDS ﬂ _ _
_ wuxa NDIS 3OS _ _
| _ — Czeeoz b < geeoe _ _
_ zeeoz nv
AV, AR 1 _ l_..l.. - . _ _
(I | e 1 f X
f o B9%0Z 8L _ | waa | o] oas viasm _ _
w1 Ll . 1
1 1 — —
: ml) 91602 dx3
wiz] som wiLInw | |“—-————— l_ p—— ——— _
. wevoz _ z 2l soree |
L] . 7 > 1t Ul — = ——|—— |¢I JESEDR | = | siana |
Lo o o | & =] ! A T ™
$ \ sceoz 09€02 r———4F4F—-F- T_ _ E oWod _ _
(e owOlwnaM, _1..- B e 2 3 “ oz s | |
21660 _ 940 WOu3 wnoxa _ || tusna K= oW —J _
> = e ol
e W g | g | et e g~ S 2 Jona |
JL L
1

—" G SIS S— e — A —— S— — A G— —— ——— S——— —— e s s

Sheet 30 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

v0c "Old

YPOZT O, .

oL gy sna o/ 3
YAON
GNVWWOD
\

HITIOHULINOD
(M810)
Q33dS HOIH

vv0Z ‘Old H

ol

H3ITOHLNOD
wILNIHd HITIOHLNOD

NN SNOILVDINNWWOD

Q)

+Z101 Q3

Sheet 31 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

v¥0c "Oid

TINNVHO XNW 1SHNA 3§d1103

N—.vonlJ
viva,
HAOWQ 7 <
L ryvor viva ‘L {d'si-0)
: £ vivadoi
Oud ‘91
[1cio STOYLNOD ONY)
~Snoi NOLLN1083Y 7CZ 2NVASONVH 400!
ALIHOINd .._.m.wuuwm waay,
Wivdool Evy
11000408d w 7 53 g
4 scrog—" HOSS300Hd 0/1 m sng
gaq : ANVINNOD
9E10L~y . z doi
- m
WOl y3d4ng 70v GONVINWNOD o
LNdNi ‘ss3yaav
‘viva NING
oProT
9EY0T
aao e) —
2dOqai yEPOZ
sziolN L yaay WIVOON Hagy ovoaN
LT oOm 4344n8 V1VQ (T3 viva L 761
aNNo81nNo Lhowa L dVN STOHLNOD
GNY . L PTPOT ¥0Z 014
Trvoz — _ 2 y3ldvay "ve avIaN Woud
‘91 viva TANNVHD
S—01¥02 H3IAOW Viva V1YQ YAON
,
T
NN#ON.\\
~—0it0Z TFANNVHO V.1Va YAON
'rQo«j
owes
)
0 (=}
W m NQVONJ
o
(=]
8 8 {ucav, N1VORE ovOowe
FY
2|8 @ dVH HAOY | cyomiN0D
® ONV L [0TP0T ¥0Z ‘DI
] . mm%ﬂ(ﬂﬁ(€T avong WNOb4
9
Te 8aOW ., 3sdinNo3
43d4ng TR
/- viva
“Te
9ZroT sivoz—"

Sheet 32 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

e — — ——— | SR —— —— —— ot ov— —— ——

r— 7777

L

§s0Z Oid

€101

Ndddd AﬂL\I,_a.I.JV na

\‘l €104

[]%:¥ X4
X110
—
oLz
8£401dQ 0/d ——()

— e ———— —]

vioLZ
hllll.l.ll..ll'.llll-lllll."ll.l'nl..IIII..IIIlII.II e —

8LI0L da _

4,445,177

Apr. 24, 1984

U.S. Patent

Sheet 33 of 156

90¢ "OId

———————

 geLot da’

81108
dd

_ _
gri0L N3INd —
892-55Z 'SOId | ¥SZ-8EZ "SOI4 |
zz101 oziol 4
na 9020z Siana n4 | $0Z "9l4
) i) —_— —— e e e e — e o | — —
i T -
|
_ _ Y _ 1
_ I _
_ 4 9710t Qd Czieior owol 5oz o1
_ C_zvioL aar Su.wwwo._mw_u \ zog101 WOl BL104
sol
_ ovi0t GOW WaN CZezior oW
_ | _
£0Z ‘D14 _ zoZ 'oI4 | 102 ‘D14 _ »OZ ‘Ot
———— —— —— — —— — s e A o o e e e s — — . — —

— s G - — — — —d— — — —— —— — —

Sheet 34 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

202 Oid < owol
[$4%+79
= nol
e 0104
L¥L0L OWdP
orior ad
lllll.llll.ll..l.lTlI‘l N S —_— — —_ — — —
lxmjom...zoo I
30VaHILNI C Q s
8Li0T
zzioz AHOWIN T T Y, - _
01202 — Z1 202] riL02 \lcﬂhcﬂ JOHLNOD
_ wvdor | wvar 1 svdor Ko hdemiad 3LUM/avIY _
| (] SSVdAB
1 l 91202
_ T ¥EL07 T AN .\# \v _
— TLL0T 9€L02 —
HIXITHILTINN
_ 1sanoay K————— _
1H0d ¢ s
orzoz ori0z
_ —ti00 oz07 — c _
_ 11 1L 1 11 __ [_
HALNIOd TTioT Ja
amm
_ o avol o~ 9202 _
— 5202 HIDYNYW
_ — rzL02 TsLi0T 183n03Y _
850z Pﬁ
WIOVNYW L] 3nano " J0u1NOD
_ avo av3y < — SSIN _
— 9zL02 ™~ ™ !
_lonsn - 8220z — ssloz VA 0510z | | svi0z trioz _
—_— e b —— —_— e e PR S llll..lnlnjllr.ﬁ.jl
voioz! oam.\él_ _ C _ _ _ ~ %9102 Nid - 1LNOW ﬁ

M.

M

qreL0Z OW - TLNOW

roLoT

Br9L0Z D28 - LINOW

Sheet 35 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

Lic "Oid

(1% 9 ¥
140d
LONULSNI
dar

HOYH3 viva

TNVAVY Viva

(1€-0) LnO Vivao

“IIVAY LHOd

183Nn034 AVO"

(92-0) ss3auaay

+¥10} QON

L¥104 INdP

1oL ad

oL OId

0i1012Z
1H0d
ANVH3dO
dar

-—

“UVAY LHOd

-

oo

1830038 avol

.

Houd3 Yiva

—

“HYAY Viva

. od

(1€-0) viVQ Qvad

"IIVAVY V1va

(1£-0) VivVQ 311HM

(1-0) NOLLYNLLS3Q

(2-0) NOLLYY3IdO

(1-0) Ndd

(¥-0) HIN3T

(92-0) $S3HAQY

L¥10} ONdP

rioL QON

t¥iol ade

ov10l ad

60¢ OId

01602
LH0d
W3LSAS
Ol

)

“NVYAY 1HOd

HOHH3A avO1

\j

HOUY3a Viva

“UVAY viva

(L£-0) viva avau

(1€-0) V1VQ LM

(9€-Z€) NOILVYH3JO

(€-0) HIN3Y

(Le-») $S3aHaav

LELOL DWOI

6TLOL AN

0€ 10} WO

8E20Z SNA

Sheet 36 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

-— —o + w H —e
ﬁ % g 1] & 1 2iz ol4
o o - " ® m o
& $ 2 g2 8 @ z
0121z ¥SL 28 0 % o om o
g 94 go m m m m m m
‘llllllllllmlllljl_lllII'IIII'IIIIII'I lthNhONl!-
y XNNYd _
) ey [y Py S .\I..&._.._N _
]
Yol .)] c “ —
013 01 — e | e e s e | e e e S t &
ommanl s < = ln l) 135 Y18 dr > Ao _
N : At PR P/ R 458 |
=1 m m »
| R_Yu_. NV«_. Nvln | | |.N Vll 73S 160d or o Fod
r"'ulhl Ill—-ll'll'-l'L rl Load K B [0) Py Saee—" L X3 R R —" 'l”ll"llL _
Em— RS MR TP S SR Swm—— e) N TUMEAS R —_—— s | ey RSN —— TS snssen | SRS —— L R I D G Se——— IIL
"I _ . 1 “. [“uvaoar .“
1
! “ | m s [s|f “
Odd Ndd |15 xan |3 vad | Na Odd Ndd ~
D'N\—an — - e teziz “
_ yudidr L § } 1 |
| |\]]) J _
".|¢<n=. I“ | /— orziz I |
riatabt ninin P\ !
I 2reiz
Y . |
1 ona — i
| T |
I r N) uvaor |
r' | e e - A SN CEas e - e sy onw [en s A eamme G -—— IIL
< 5 m # W “ W n‘n l.l/o—ucu
5 m m m € & 3 m 2 m
2 . S 3 5
D

Sheet 37 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

vele 9Old

—~8E102 $NY -
¥ HOLW HaQV 41 IHOVON3 01] hm«ohxmz
vezsz nVM
)
I
| [
|)
| in z
g
| c N Y z
O -l e | e = | — o | = ‘J m
- “l “ "l F ¢ r ‘\ m — .l,m
-4 Y =
| | g | el
| » | o |
| m ; m
| L r I, (SRR (RIpRpI (IpUpir, GPIIS, (p——— -
L —_ -— - === === ||
— veceie
- aEEd 1 _.Im....lu B B e e e
 [6#57E Nda “ “ | i 1 - 8
| 93 ONI I | did al " I 2 |
| | _ RE do | | ves N8 Ndd |
_ﬂm_m | E “ | _ o] .\ ﬂf_ _
7~ 3 81242
| ! I ~ | H X X -~ uudoi |
I RN Y r !
| BER [_ 13 |
14 ‘
| I S (RN PN PR | —..nﬂ'll ——— o] | i 0z212 r
rlurt 2202 | iz “
> > = » _
s & :) S 182 ¢
- 2 c | ﬁ X Iso B
2 o 2 \ — E 2% =
» ° |) 3 o9 9
Y uvdol S 13
S U - g = == - -2 5
|v 1202 !] $
: s @
> S
-

Sheet 38 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

€L OId

rigiz

!

013§ 1¥Od us

3
k4

1 13§ 1HOd us
veciz— «

%0072 ISNTd ITONIS

3OVd 3LV ISN —rl
O34 M3N 1HVLS —]

SdY

21007
NOILO37138
ALINOIMd
HO183N03Y

- 91202 Od

ja—— D3Y LX3AN 138
f— HIM

ja— AV LHOd I
ja— HOM

ja— AV 1HOd OF
ba— YOI

jt— AV 1HOd OI
la—— 138 1HOd If
jat -~ DNILIVAM IP
g QITVA O3H I
je— 138 LHOd OF
j— ONILIVM OF
ba—— QITVA 034 OF
— 138 L40d Ol
j— QUAS LIVM O1
jt— QYO LIVM OI
aItvA 034 Ol

QYA O34 Ir

QUIVA D3d Or

[23134

ONILLIVM I s

aQIvA D3 O!

ONILIVM O

HiMmd

avoT livM Ol

QyAg 1LIVM O1 us

«S;.\«

NJ01D NNY 3344

iMd

1901
ovid
lvm
1HOd

fog— LUO AZYd IF
jee— 1HOd A3td OF
jet— QY01 JUNLAL
he— L1HOd A3Hd OI
ke— QYO 1VA 138
a— QUAS ANY
a— 4016

fee— QHAB LVM 135

134 1 u

vdif —
vdif ———q
¥YdOf —
VdOor ———
¥dO) —
vdOl—

ONn—NJ*

HsHdd
©
[

us

D>

-y

plelogle)
28Nd
ATONIS

ollalel]

31vis
183n03ad

1HOd

J—— NVYX303dN1

j— QA D3H d33N
¢—— HSINIJ D3Y
tat— DY IF ONDIVL
a— Q3LHO8V I
fal— I OO0 WL
'— 1LHOd A3Nd Il
- 138 LHOJ IF
e— D3Y OF ONIIVL
t— 31408V O

[—— O OO0 i
a—— LYOd A3Yd OF
js— 13S LHOd O
l—— D34 O ONDIVL
j— LHOd VO

[8— 01 YO0T W1
l— LUOd AJHd Of
[%-— 136 LHOd O
je#—— O34 1353¥
fo— LXN 440CN7H

Sheet 39 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

vE€iLe Oid
91202 Od

j—

qlcﬂnwu
140d A3ud 01—
Q
i¥0d Azudor— &
2 j~——— 0738 180d
1HOd AZd I ——
AN fo———————— 1 738 1HOd
% & \lcnn (%4
ﬁ q t144%4
¥2019 387nd 31ONIS >
a3iyosyv Ir]
m [— LXN QVO1 MVl
a3aLHoav or z 13S LHOd O1 z
g 73§ 140d OF A
D34 I NOOL = r
= 938 140d It h
O3H OF NOOL 210IM3N
7al 138 ¥18 Ol 45015 Nh '
CEEN
« 238 %8 or asav
lyogvar |4 1ASluodir N8I ————— yN003a
¥3019 357Nd I1ONIS 21501 e 13§ LHOd OF 13$ %19 NI NOILD313S
Luoay he— LHOJ AZNd IF 138 30vd OI somgy
149V S3aud It —— dr jagp— | HOd A3Nd OF 738 39vd O & 82127
1yav S3ud OF — 135 39vd I fa
188V A3Y4d I — 135 39Vd ONI > fe—30vdaiviasn
LHAY A3Hd OF — ha— AV LHOd If 138 39Vd 31V 8 e— %18 ¥NI 350
Od IF DNINVL— 73S uav avol m
O OF DNINY.L—— je— AV 1HOd Of < A f—39Vd MNJ 3SN
:18 —,NL 9ic —u‘h

'

AD07J 38Ind 31ONIS

4,445,177

Sheet 40 of 156

U.S. Patent Apr. 24, 1984

¢2.02 NH
md 0l d1503S
J
Ty
- HYdWNY - N2070
_ P <Jo——13870d
3 (A3 4%1 ATONIS
sy &m»sz
NWVF
NHOMLIN
~— wvr
SIVYNDIS TOHINOD doz riviz
NOILONYLISNIOHDIN
z z) Yo
2
TOULNOD NODIY 1avavol
O34 M3N 1H1S
LdNUUILNI
SWOUd TOULNOD D190 G3YOLS HIDVNVA 1S3IND3Y H do 03y
— o112 » QUOMSSOND

U.S. Patent Apr. 24, 1984

Sheet 41 of 156

4,445,177

L REL TS To)

TAHOM

MOKHSNIDIND

SLLXNZQUOM

Sz T Y
p—sm———(

a0

LXNNI40L0d
807av3y

LXNOVLIANI

oo
|

ALVANYANS

1xXNunodoay
LXNQTINNO

TCR

1

INOAGONI

AXNGUHOYD
LXNJTYHINA

90113834

D>

HNOLA8INI

Imsa

OADAINNIO
OAJGUHIVYD

TRAILER COMMAND REGISTER

SIVHS

1XNYOIINVL

--HH

|
D—|— 0011353y
J

L———

21522-ﬁ

SINGLE-
CLOCK
—

SEINZEN"d0 ——
LIHIYNSIO —————
SSINADHONL Dl
LHADYOINL D——
AHON D————p

21518 PULSE.—p

—~ 21514
(-

ALVaaANVL

LCLEAR.

21820

CACHE/MIT/
MiSS ENCODING
CHME
REG
CHMER

PULSE- o
CLOCK

CHKFLUSHOK

| SV

< 21518

N—————& NOFLUSHYET +

TDN

& d1AD3UdIIN
—~-avoIdYMiLas
—a LUMJABdOLS
[~—= LdHYHILNI
—& QHAGLYMLIS
——® WLIMHEdNS
o OIUNNYEdNS

TRAILER DECODING NETWORK

TCE
REG
TCER

TRAILER CONDI™ION ENCODING

CLOCK ——a»f

SINGLE

PULSE

R
o

FH I ER T
§ °23° T2 2°F

21512—")

LOADACT
JOPREVABRT
JIPREVABRY
JOPRESABRT

TMSTOPBYP
MISSBUSY

JIPRESABRT
NEWREQUEST

o GIAGSINHOVYD
— D+Ndd1§S
e 8+1d478S

TCL 21510
FIG. 215

U.S. Patent Apr. 24, 1984

$400H

AlQ —————>]

ROJQ ————
ao3¥AYAE ——)
QO3HQYOT ———
ACGHIINVE —————

3ALLOVOIY —]
do1s __{

(€-0}dO0O3IY

Sheet 42 of 156

4,445,177

LXNAYOIMYH

|/
| —

RQE

READ QUEVE

RQSR

21714
I

FREERUNCLK ~—>»

RQD

et (1-0)03SAVO

————a 30VE0
pmsmm—t- GQUAEANY
et QVOTANY
- AYOI3HNLNA
% 90UdNIOVO

> LOVYAHAS
p——0= LOVAVYO1
———e LOVavOouAla

RQ 20728
FIG. 217

> LOVaVOIMVH

— el

ASNEASSIN

o

MiISS CNTL REG

1JVYMO3Y

da03d

MISCE

21810—"

——t—{> 30818

SELWBA
BANKRDY
CACHMISSED
SUPBANKREQ
TMSTOPHAND

ASnassin

ao3Havol

aqoD3HquAd
ad3dumia

———> LuisiNVE

BANK CONTROLLER
REQUEST LOGIC

LOADPEND
IOENCACHE
TMSTOPBYP

SELWBA
CORRWBPAR

TMWBAUX

21514-)

MISSC 20726

———{ (z-0)onoNNve

FIG. 216

U.S. Patent Apr. 24, 1984

Sheet 43 of 156

4,445,177

* JAJAVYOIOYL

bt
=
S f
w U L~ —{> avoisa
=8
[4
[N V,
gL < D 3074y
§¥
- N - DADGINNGT
x g
g 8
z
2 3
[o
5| f
w - :n\
—> amsi
HY3ITO a
] > vaovs
LIHHOVD =
—{> LiNisL
31VANVANI

(1-0}03SAVOT

(+-0)73s1404d

LM 20730
FIG. 218

(1-0)aM ——————————t

21814
./

* (1-0)LHO4OVOT

- 4
g 4 o 1XNaYO1DVL
~ [}
= g
~ « (1-0)GHOMAYOT 0 L1XNGINNGT
GNVHJOLSNL—d 3 &« 84
£ o 1XNQYO1Sa
1XNGdOavol e <-
= §] > QOILAMAYOT
o (1-0)d0avol —= YaM13001
S —a | XN44OGNYH
1XN1dOavo
isaaor A + 15300Y01
(-]
s/ ’
~
[~}
L3
[+]
p |
>
=
4
19vavol

gy

U.S. Patent Apr. 24, 1984 Sheet 44 of 156 4,445,177

Asnavam
pad
~ 1 hd
[~3
N
..] o
SMLXNEEOD < S g
o — > vAMT3S
IVAGM §E§ a 2 N
. ~]
J »
140daM E‘E’; * E— PR - T g Q
XNVEMNL ——s 3 w
A
t ' h » UVJEMUYOD
g —> XNVEMIL
JUMINLS ?
&
]
E
@
)
s
& L = ASNGdGM o
-
AGUYINVE L
- & & ~| N
2" 9 O | ssnavem ol .
ao3auemavol : z N\ o ol O
veM13040 . E 30
E —— ASNGIAE Q
4A9141S g
8 A
(3}
: §
QDaULUMAG 1 1 T s
a
o~

" SINGLE-
PULSE CLOCK

U.S. Patent Apr. 24, 1984 Sheet 45 of 156 4,445,177

o
“
[\
- o~
(1-0)QHOMOLNY —3—o ¥
(1-0)d003 ——»]
(1-0)am ——» o e ™
TAUOM ————> E ‘.N-, GN\‘
{12-02)aY01 ———» § —= (£-0)5950 o~)
(¥-0INTE — 23— E g LD
(1-oIves —x—ef ® ol W
(12-02)V5L — o
dOLUMN1E ————u
T :
o o
= ~
§ v,
FHOVONIOI J ﬁ olud o g
13§14040! y E“ N o
LXNLUMHOYD 3 3¢ L] —{>01adn o
H wE .
LXNGYOTDVL e 8 O
LXNAQUHOVD ——— o I-——-l)umm s| T
il
83
£z
]
@
21OMr8
—_— —— DHOIDNINVL
RYX3dIAWL ———— _ : aam
HILOHONWINS ——— 3MdAg
1¥0dA3H4OI . anou
(7070 F)7 C—— g OMASLYIN D
von—ef £ LMABLYAN ~ N
vdol——ef O 8 N
1UMdrgdoLIs——e 5 f b I3} .
ASNGSSIN—— z S = 9
HILMAGINS ——f @ J g w
Q3SSINHOVYD ———p] % -
LXNHIHLMAG ————» g - .—’ R
&
'\ [
°
5
™~

—
—

SINGLE-
PULSE CLK

U.S. Patent Apr. 24, 1984 Sheet 46 of 156 4,445,177

FIG. 224

sdoay
HL0BONGNS -
] °
a © N]
1830Av0Y —wf o & N ;:\
WYX3dIANL —o J b
153083 —»f w J a —» OlAVd
isaaor—e © 3¢ - 14AYQ
lovavol—ei O . @ N <5 -
oLyodavol —ef 2 - g [« Y <8 * 93Ava
LLHOdOYO1 —af @ <g > ViAva
TISIHOAIF —od O * DIUNUYEOT
1ESLHOLOr ——
TISLHOLOI 2 S o e
f o
19vauAg - " b
& -
1XNIIOONVH \ e 5 - o
- ‘||:J ®° I E &
X £ ~ 2 e 10tNd
1XNivaoN3s ¢ N £ w <] 2E
] —e W so
N z
& [SE
o »x
“\ - & f_. 1AONd
YHINNDIIVOQ a b
z 8 -
T2 23
HHA4YD — &£ O —
w O -
o«
— E s D,
i) o Y¥3doi
z) 1D
o <«
S - . s
o
s |18 :
f::’ ':l" 5 -} -~}
¥ @9
w Z
5 oy
0
P
=
o
SUYINDINL o
ANiOaY :
¥ad
dois
o
3
dOLS ———op "
LXNNIJOLOY ———— J
AXNLIHSLNO ———= o
ixnguaINN ——f & > o
LXNASSVINO ———pf W X & OINASY ;
3SLH0dOr ——f 70 fe > (1-0)QONAYG o~
LXNQMPIZSN —— E E = (L-0JOINAHG g
AxNaiasn ———f < = (1-0)93uNI a
10ovavo1———w X o
1ISLY0EO| ———
1OVAUAE ———
WYX3d3aNL

FIG. 225

4,445,177

Apr. 24, 1984

U.S. Patent

Sheet 47 of 156

ocLozZ nid

——— e e —_——— e ————— . ———————, .
__ orocz WG i T T e p—— = L O/d 0€e Oid
_ G _
| e e _
. oc i [71,/ £4 —
— * " — _ _
_ | HRASY |
| ovocT— & ! —
e e e — | —d
“] zc) (5 4 GINASY ; _
€0£2 P e e e e e e | e ———————
_ ouisv “ auv Mg MNa Mas mal » woez | _
NOUd
I » s 8 » 30 |e-w01 | _
_ | eroez oMN m omn| 3 fomm m OMN m v Jomm 1
_ rlzm.._.llan_llul,.l..llu lll ——- - _
JISNDIS
S
_ HOWASY #~ _
_ TUBINE L— wem
(92 ‘81 ‘01 ‘TNSWY *SNa _
||||||||| - — — o
_ sa) J_ ix3NoIS _
_ I v 2 | aswos_fe—asnons
_ Maad| veo oﬂl FIvos ue IH_:» | avose _
_ — L % \\ (17 ¢ — ze, —
N | % _v zc P P
_yT Ty TT e e e e e e e e - .
| _Ila) g gl NOWLVLOY NOLYION .l.wJ || wa—; R _
L » Mk > 8 glg | ALivd een-aue | oo | |
g |3 |4 i (R |lEF o wef__ o) Lo] I
| £ = F g - 7 A ey T Ty woezJ ¥ odon |
| = A ° .) el T o6 !) N | _
oaa oagm ozamr 03NNV
TR 5 g ' i i o
z
_ _ = m - Unuve —— m 8 Haly HoM! wamer - HNHYI f— “ _
| A A - A - A — _
| | svocz~ 4 al.__:__ino._ ozocT Pn.:._ »ZosT Al amny 3205 AN olo!_.._ »vosz |
eZotL —
! [o 1o H
_ | oc} ey o_:.ul_ _
| Fl..l.lnl:lul'l |||||||||| L N Thioez I

4,445,177

Sheet 48 of 156

U.S. Patent Apr. 24, 1984

R T e eu eyttt
_ _ TIENOS > <na_ _ r-r—-———F+T7—-"-""""""—"—"—-""—"— - T ootz varmvans 1 _ _
_ LiHS w1 yiHS A ! _
| S | | iWvaws s] [} [] [] L4 |
— _ u L+ L'} v u _
| : |1 I $0 ja—— $9 [o— v fa—r 80 [o—— sofe——1 ||
[i « | _ _ vi |visouv v |sisouv v 71804V v Lisa1Y v |o1so1v _ ¥
| | Il | »unlu_.izg_.r_ 75— ves 7—vad _ I
| | Y | _ “ R 2
| | Pl r-r-r-—-—m———"F"T—-F—F""—>————— “0eotz 1ave |
{ I
_ >-90EZ OL _ o yval _ _ Vol \M _ + * * + J _ _ _
_ _ _ _ U] (S]] v b+u L+u _
——— —— ——— $0 fo—— $9 ja——ou
_ “ « _ | _ _ v 50 SOSOLY v * 60801V v 89 S0SDLY v 20821Y v |90soLy _ “ “
_ | ot .T.__.I“n._muz _ E 7% vas rﬁu alumi,:n _ |1
98
| Y | Pl b e e e 4
O O st i ||
| eocz oL i avud - _ _ | Yo} 7S ¥ ¥ ¥ ¥ 7} Ll
| _ _ ._null..l _.moTII ..muil :.nol.ll. -..aol.l :ox“mollll_
_ I
_ v SISILY v |vosouv v v v fzosoiy 10S01Y SOLY
_ _ « “ _ _ $: €082, v v 00! _ _ _
_ _ _ £ * vas 7N #%—ved _
_ roocz~ ¢ | _ bt e, e e e e L T 4 _ _
| _rI||||l|.I.|.||.I|F lllllllllllllllll L_
| - raraxsw— [ToNINeN ¥20€Z 701
| vooszos NSHLNO— T—eNLNO . |
_ TUINNTG -2 TUANNTR
_ HomASY & 4D " YONASY |
D et |
o _ _
|
L S |
| S — — —
~ = 5

4,445,177

Apr. 24, 1984

U.S. Patent

Sheet 49 of 156

'——-——————-——- b e i B I Y i —

g0€¢ Ol4

QON AB ANQ «——]
GON ¥I ANQ w—

0301V i _
O3IAM! 94— L
DICML w—i 2
oanuvr l.l_ | « — vootz
OIN AQG ANG l_l “ — IJmPl.uuczu
OIN VO AUQ ~——
Ol ABY ANQ <o _ ~m uds3 \M OWNAYG
OIN JHS ANQ 7 _ j IJmPIno!Eo
Fa
| |
I
|

bt T
GOW 2HS ANG Aﬂl. 7
J I LIDE I
rf'smm Jasa _ “-veocz | awsm1 [S | WOus
| v v Yo Yo “ “
%) f—
| woud woud nold Woud I
(Le-0)NSM _ 7~ M‘ : m\ : % : % ’ I I
rﬂﬂll T S Gm— ST NI G G— CE— e — — L —
I S R P 3| a-voez
(1e-0)SN0 | _ | noud
I v v v v I |
| $ e 9 o $2 £ |
_ WOud woud nOud WOud | _
(] We Wo (]
NEWY xmn % % I“ |
T J
'}
T T T T T T TNk T T —— -

——— — e e]

4,445,177

Sheet 50 of 156

U.S. Patent Apr. 24, 1984

Le€c "OId

LT = <QEJ

()

()

() uox

(D) HONX

(8) wox

(V) uoNx

11110000000000000000000000000000 xswu
0000000000000000000O0 T L H LU HI LTI 1L w1

ﬁlﬁ - vl
|- ! u'
1aNINSW
O= 0

____OOOOOOOOOOOOOOOO____________uu
1aNaSW

CDGIL
COO0O0 I EI T I EULLAL LI E1I1000000000000

] Lo

4,445,177

Apr. 24, 1984

U.S. Patent

Sheet 51 of 156

cée "Old

3 3 3 3 33
OLZET D0N O/d b 1] 8 8 B
¥ $ 3 P F 3
- . a 6 L3
l
j e | G GEEED @SN S = Sue ovesy csmme e | e J
ddIss . 2 | _ XNvdam
Ndd188 " S3sanvi | —7—t> Luadam
103188 _ IVAJEM
_ .
_.l Thott A
_ —--—————=q
N L
[-1%4514 A ”
0HD “ T xowdam fsi ' xnwsa) —vese “
LIHON
2009N3 GNY 0Vd
! 153430 LI NOVEILIEM oV Aluia |
| 2UVANOD xnw xnw
_ sezez " . ovzez T, _
_ v 11 o1 10 (TR (TR (T (1 ﬁﬁ \ﬂ ‘m |
LT Y NSRS SN RN DR S S — — s o
M ez oamovi)
| |
I e _
_ F————— 4 _
» 1| |
pd
| % 3 £~a3MSL |
_ i ' 1 A | |
_ | <1 LINISL !
| ET) am ET') ET _ e —— e e e
— £
| aOVIN T osovin |5 soviw o vovin 1§ I I T
| sth “—zezee Stk “-oczez Sty “-ozzez stk S ozzez |
2z i _ <
L] 7z1-0 e VSt
Illlll.l.l.llll..l.llullll.-:.«ﬂw#.oﬂull -

TVADVYL

Sheet 52 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

.Il.llllull'lllllnlullll.'l.— y
_ | o | veee Oid
| & T | 0LZEZT DOW 0/d
_ WO
I
_ .k |
_ v 8T _
I
B |
|
_ Aol] 301dY _
_ zezee _
— an [y | r—
rZZeT et
i | ozm_quE $2 owin | _ l“
I aovsn - _ _ vas
_ 2UTET r 2z — —
| 4 | | 0z -9sece _
\Qbﬂﬁ
b -9 oz.u%%zm | “ xnwves vamas _
_ WONd _ _ w ﬁ _
llllllll |" ol slz t]o rlll\mrlli I [Ot |
amsa _ £ 7% 7g < iddn I
. oAgvsq, ~<130VYSQ
N rezeez L —
| zszee Y eveez 1z all-.l\hll ll\w..llll. o Joz (v |
— ~— P N.lvv«n« \oa«nu \lo*«n« oz \‘omwnn —
_ *—1 uvmag o dvasa Yvmsa Je— <*—1 uvisg — 1 uvgm p-—— -1 uvsin pe— “
——c139
_ ».] Me . M« (3£ t|o sijer zijo siler zijo o _
e
ﬂﬁ—“ﬂw l'l'l"lllll"ll'l‘"l'll'l"lh
v
(o3 N
$: £ £ T
o X cE s &

4,445,177

U.S. Patent Apr. 24, 1984

Sheet 53 of 156

gcee 9id "I |||||||||| oizezoomosa T T T TS
MO
0LZET OONW O/d _ uhw.n_u
oas |
_ [ok
([" .h.w.nh
== —|=——— _ R A
| viva | wve | _ T x m m m m . _
! ass | zezez o 3 ; g a >
e e e e _ | Auaoom m E T E g _
N] 5 s &5 =
r cwiea] | _ Y vy 4
“ | _ _ (13 ot _
w | M | _ _ . , . _
g vy 14 I_I_|J _] _
ssvdia || woveasum
am) _ FTTA _ _ _ / _
. .ﬂo\«l M ﬁ _ “ 0 _ ANQ AN / AHG Aua / od _
] h £ fu 3 /u 8 \ £ 8 & 8 oumzcz— |0dd
_ ! g1 3|\ ¥|F ¥/|% _
| oay | _ _ $ 8 g 8 _
YIAVS _ | _. < 3 2
_-n«u«\~ | _] T ——— —_—_—]————
erip il r——— &k — "
| | oszee , _
L | e TN
Ao f N _ £ L SHvY _
_ = 3UOLSVivVa j_
: . e b s | saom I o e
e 3 3 EER I |
m
m — » m m — - 138 “—ﬂ“.—.‘ﬂ “ —<1av018a
_ _ f f _
a3 OGY
| v gy e

£€ec "Old

4Z1 138

91 138

T 138

} 138 -

S~
~ 012€2 20N
—
[
q
<
L
<
S48 2 sUeZ suaz sue L
21w am Invid X3am
A ﬁ
— | A ‘F
e
° FTVe) “oN INVEd
&
L d \\N
Q0
g 91282 104D
=
%]
S
()
y—
N F o Ndd 22} 43§
Ndd 921 138
3
&
< _ X3aNi — ovL J
ke .) Ndd T 138
- 1 € T > o4 Ndd | 135
= | we | [awom | | 00w | Ndd | Ndd 0 138
w , seeee) TOVAN o) o0VIN szzcz) SOVAN .««a«v VOViN
] T
a, $S3UAAY TVOISAHd Y1LZEZ S1OW
7p]
!

80 13§~

LR

L

a 3nvyd

O INVEL

9 INVHd

v 3NV

N

(24
zl-

L Bl K

=]
H]

—-jNTM

]
t

L]

-

o
3

AN

Sheet 55 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

ree Old

V¥EZ ‘DId 0L

AUAOVW

i,

1
I
1
1n0a Nig]
3M 'SV ‘asvu e \ T
~ ENTd ¥aav av :
E€E¥ET QoL e 3 ez -]
’ A
0LNOGNTd — T 4v m
1n04 Nia
IM ‘SYD ‘esvy
£Nd p
av
®9LpEZ Haav ID/.:R C
- [
1N0a Nia f _ .,
3m 'svd ‘asva [™= 7
ZN1d soav pe{ av £
F -
arivee 8vree A s ———
eEPE r— [el
01n0Q 1noa NIg 7
IM 'SVD ‘esvd
CNd
yaav l.@”
e
YL YET Sree -
—1 | wo []
o3y 1noa “NIg . / |
ONIXNW M 'SvO ‘asvi [’ __J® A ozree
tN1d gaav av am agoam
LEI G 148424 3 Sree
— [
1noa Nig #
IM 'SV ‘esvy
cmwumu ‘yaav |@} 8LvEZ gam
: : avvez HOLV1 W_
13s 1o o | [M3
-G8 -SAS . 1N0a Nia , (v /8__8 am
ZEvES m .m«o .Dm<¢ € \n ntﬂﬁnﬂ
BNd 1am | S—
31N0ANTd OLpez Haav < av N3A3IaM
— . arvee ONQﬂul\
inoa NIQ {
Im ‘svD ‘esvy \ -
ON1d Haav av :
20LYET

grree

4,445,177

Sheet 56 of 156

U.S. Patent Apr. 24, 1984

nnnnnnnnn . 1 vwrez 014

r _
i “ m._.:om._ m_m..
138 — — HLNoal iNIgt — ﬂ
=== ==1=
| ooz _ | eLnoal .mu_-_m.._. — i J_ I3SAON
_ 1 “osvez V|4 , 1NOUNTd 3
agoam “ | - | " “ HSJUNd 9
rSYET r
| . 2
IN3Az am _|.Ql R | » 7 _ HVMS ,w
| (] & “ 4 1
| 1 » | \eswu o
Nouay WNINTO m 0 ! L3N 18VD 1SV
| . o _ — !
¥OsAs “ ! e i — “ 03M '0SVO ‘0SvH
¥1003y ' a
>] , TIM 'TSYD ‘TSVH w
oxmw\" | I o l,—“ 1 ° [
! | - 1 Hosvu [e—————————— - b GoN
N1OSAS -——— !] y
I | L J [1 YavNd a
e | uaav “ “.e i LY _
3AING | 2svee orvez ‘
I H I— i | S NI PNV S SN DU g - =4 YyHvo
I b a
! a f——
i zinogs v |uavven
T3sau SIoT ————— oaving u
I | “ ssvua v /
I t1n0a1 [i 2 [osvez 3 1OVWIEd
“. i1noal L —® -
————— ll.uu_clo. “ _ zsved
ﬁ rree u
[] ‘ z
| 1 isvua 2
] ("]
|)
[" 1
1 1 v
| I
J | !

U.S. Patent Apr. 24, 1984

PHYSICAL
ADDRESS

MA20112
ADDRESS

12 13

Sheet 57 of 156

4,445,177

19

BLK

/_

L)

L)

MODSEL

" CA

RA

FIG. 235

U.S. Patent Apr. 24, 1984

cco

[e10})] cc2 cC3 CC4

[~ RA
CA

Sheet 58 of 156

CCs

cCé

4,445,177

cc7?

MOD SEL —

AAS =t
CAS

INPUTS TO MA

UDIN

L. LDOUT

RAO

RASO

CASO

WEO

DOUTO

RA1

CA1

RAS1

CAS1
WE1

DOUT1

RA2

CA2

RAS2

CAS2

WE2
DOUT2

RA3

CA3

RAS3

CAS3
WE3

DOoUT3

WRITE DATA
BUS VALID

X WDO X WD1 X wD2 X wD3
l

READ DATA
BUS VALID

X RDOX RD1 X RD2 X RD3 X

FIG 236

4,445,177

Sheet 59 of 156

U.S. Patent Apr. 24, 1984

Z€¢ Ol

03 9013

03u &O.—u

_ oLiEe _q|.ﬂzIJ| I“
_ du3 A¥G3 I l.._ul 90113534
O3Y fe5N3I¥OuT 03y [e————SHOLVDIONI
| 2ise , | | Houya
_ Couez Nowsez _ _
_ _ 99.82 — _
| _ I ¥aav %0018
| I NI GHOM
_ pay o3y
_ _ _
— rLLET — —
— “ vnhanJ —
_ _ m ll_IlIzansS:
03y n I
_ _ 3 | HOOVHS4Y
I (1 I [
TLLET r ll—
— — cm
_llu.lll.lllll||.l||.|l||..|.||...|.l|l...|ll|lul
L4737+ 4
HOBHI DUy
sua oas
zos52 ' nouanis] 930043 voLvuanae |
ET) 95262 ~ acs ug
9d40Qy La o3a Hay IWOUANAS
9d 043 —1 QI HOuY3 93y [Hau vas
_l. J Hoay b - viva -
& L 3 SNOYd) vSL€2 avay - osiet
L NOILD3YHOD -
0952 « LYTE] aN3NN0D « [TITY
300043 h._nzmza

0gL0Z
ad

U.S. Patent Apr. 24, 1984 Sheet 60 of 156 4,445,177

e e ——— e e e
| BCRR j
l 23T20) 1 l
| BANKSTRT —{ vLD }— VLDREO |
I BANKCMD —w{ 0P |—a opCODE fC 23730 |
MODSMUX MODSELDRV
l 23724 « '
| PPN Mux g b mooser |
I] 23732 I
| SBA ——81 BLK RRCAMUX '
| 23726 ADSS f
| Mux I
l o |
? RFSH- |
| e BuUSY |
37
I 22 \ ,
I PPN l
I — T I
' BLK (| AFRCA- el PLNADRDRY I
| w 23736 I
' RCAR PLNADR
23728 I
b '
. [
I CNT 23 T I
DOWN hi-1
| 2 |
| & MAAG |
b o o e e e B -
r-r--—r—Hm——F—"—™""F"F""F"""F" """ """ """ ""—"—"—"———— 1
: f (23738 '
l wOR WODRY l
23746
l s8D g & DRV wo |
| e |
WDPC » E 2 l
I 23742 CHECK BIT
PARERR GENERATOR WD |
' ERCCG |
l 23740 — pee T L“"‘ I
I ENBL wDP |
b BN —

FIG. 237A

4,445,177

Sheet 61 of 156

U.S. Patent Apr. 24, 1984

g.¢8¢ OId ,
o = e e e —— —— — .l-llll'lll'l'llllll'llllllllll'l

_ 34 ‘HOYHa 2043 Nwhﬂﬂl_
_ m.>._o ﬁl dd08 _
e e e e e — e —————— m
_ y ! _
_ - 0204 %7 - 1 _
G N3Dd - ! !
_ secss T - | |
* |
_ HOAYQUMYYIOVIY w— sesez “ | _
_ 1AYN18D013 ~— I ' _
o o _ _
_ - ¥6L€2 | |
YW, e T —- _
——— T T ——
r QIALISY T l"
_ udod
| 1NOGH ‘NIO1 ‘SYH .m<u||A .]Eo o3s _
064c2 _ | _
_ * 8vD giowHg a——
b s —— & L |
_ udam 2 ’ _
m
_ ENETY: B t » u:lL sowdg _
— ASNEHSY
— “ﬂ”ﬁ"ﬂ“ * [4 ¥ 4 984€2 l\ r ﬂ HII 03YATA —
_ : 300940 o.mcsmu .
b s el
r T HS4413§34oW A T]
_ 03yaN3OwW _
680LET
| t _
_ ASNAHSIY
| uo : ﬂp% = | uvn 3t _
_ HS4Y N wedy | | WSau HS4Y |
— 8022 \\ 90.€2 »0L€2 toLeT t\ EVMMMM _

Sheet 62 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

6€¢ OId
9yZ0Z Svig q
— svias
otecz |
81 1
OHZIXN I....ﬂmu_l'
viecs—

nsvig

orecs —
1307

zi6cz —

(1£-0)
XNNL38440

8€2 Id

Or2oT XNNLISIH0

$3XNN40
zzecz [
S3ION3
IN3§3) -———] ON3831330 31vosdd0 —
0ZBET = S18€2 |\U !
~ (v-0)SVI@
-8 1+4 J
XNW440
a
3 a
A d
y A (+5-91) (18-94)
3 L (1-0) (§1-0)
s n adr
3 ! IvyaLn abn w0
" 4
1x3d
.{ rigee
(LE-91)
INVN
loum HXNNI40
Zi18€2
— SAXNWL0
15111
(1£-0) 138440 V IIIL
Crvior (1€-0) cOW Crzzoz awwn

S~ 2ri0l Qdf

4,445,177

U.S. Patent Apr. 24, 1984

Sheet 63 of 156

ove 'OId

VOrZ ‘'oid 0L

vorZ ‘Did oL
92201 ON
P F 1
SEOPZ
JHSL
ma -——— IMA ,
si002— sLovz—"
Q3IHSL J3HEL 93HSL YIHSL
zvorz— ovorz— scovz— ocorz—
08092 -~ :oan Tionz -~ vnov«J Ay unoculu Ay onovuJ Ay ouovNJ Fy
ddyav HdALHIG HdIVA QudsL OHdS1 SUdsL vudSL
Hd
C1zovz
020 ~ 1 Fy yeori— {3 zZorE— 4 'y o«on«J Av
-— -+ 3081 adst 8981 voSsL
[
Js1
Ceiorz
29072~y (—oworz o 99ore Siore~y Az 91002 Az rovi~ A7, z1ovz~ z1 oVl
i XNWyavy
SALYI0 sy aslL os1 ass vSi1 ot
si ovi
Colorz
~
NmA b
HIOHSN |——
o90rE Havovi

Sheet 64 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

vore "Olid

rZ

92201 ON
'oo!«J _ ‘,_ 8d GvO'1 ON3d —_
NHOHdO any ONNH ——
NIIHD ” o0 onyn IIJ
Addo NOLLYY3dO ¢
as
h)
m a INELXD 80rz—" Ny
< oo 5809Z — *
WOYe ALX3 AHOLXZ .,
!UW:U ‘NO
— IN31X3 XNNSSa
TBOFPT 31" k],]
elswn‘ 138440 A 1eorz ~ adavy
080rZ | INH coorz
A 7 2 { ((
(1] 4
A (-] As9 1s9 — %0
950¥T S 950PT -~ rSO¥PT J Tsore J 'ao'«J zZ60re ooch.J wcovnj sno
asa osa 0|~ esa ‘u— vsa asnd .._ osnd Ig asnd 'r‘ vsSno ..—
sa ' . e]
Cosorz . .
e IMomym
Y
B
OvZ "Did MOy

Oy 'Old NOUd

Sheet 65 of 156

U.S. Patent Apr. 24, 1984

4,445,177

Lve "OId

(16-0)943
(1£-0)0d3
v220Z 243 96202
SuaniL
Woud
(1£-0)0d! Amm._msmm: . LIVAg! 89202 H3Y 300240 ONY
¥3.1SID3Y [rve ' $Z20Z N8 INVN OL
000 (82-0)0d! 4530891 Jo
DNNHEI A
TLTOZ Ddl (82-92)04O4 j HONVHS 3934dO
(82-0)0dD
€
vezoz
t y3suvd
{2-08)
] ET
XNWO4D
- 7 L
L 198 74 18 ¥ .0
° b, OMELSNI 3ss osg
(82-92)0dd (5210040 | o0 At
] \QN 8 21
I3 I.L
ozzor oLrg
2do 1
, Mvdd s8) osa] ssa| vsa| csa|zsa | 1sa| ¢ss
Ae -
[
w | ou | sy
0845 vd | ed |2y | s | pu
(82-92)0d0 1 LOMBI'0OMEI 29202
oLivz 418N
— usso
, Thive
P (3
(1eadr
3 (82-52) 5
(¥z-1)adr (0)adr P p 4
-2zri0l Qdr Svriol . aow

U.S. Patent Apr. 24, 1984 Sheet 66 of 156 4,445,177

JPD(0-31) JPD BUS 10142
EUSDT 20286 —
JPO(20-31)
EU 12 70 EvDIS
MUT— pee 7~ —> 20206
24222 —
1
£U DISPATCH 1 24224
FILE
EUDISF
JPD(16-31)
24220 ﬁ
ALGORITHM -
FILE 1% -
AF
JPD{10-15)
| Yo aDR
. (_ 24219 20202
r' 24218
Fu o:gs;::rcu FUDIS. R J
D FUDISF ENC
(28-31)
1172 FUSDT 11010
24216
FUDISENC
[
]
4’ N B/ A Bl l
2‘212‘\ 24210\ 24214\
RDIAL LOPCODE LADDR
O
OPCODEREG 20268
NAME BUS 20224

FIG. 242

Sheet 67 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

lasn4 &ve OId
dsian4 — wYr
sizvz
18 174 ozzrz
i 4)A
ON3sIand 4y
)
0i0L1 ~
, scere ozeye
45 st Hav axnw [
SVN
S——9terz Hyagv
i 81E¥T
S— PEEYT oday oxnn |
SYN
y ~— Z8¥T ddav H9vS2
oLErE Y
1424 n ‘- oterz auav o | 8
SVN n
HOVSMOY — 8289z auay £
Havsvyoua
.. rIEPT
st — 9zE¥Z Juav vXnn L
90T 8.202 SYN
z Jdi 3syduse vzeve
\n L o 0sere guav
0LEFT
zzevz
(—evere nvog - - 191NAZ
. 3 T S veay
IVIdN
I o Nc«oﬂ
z 3
XOWoga 1N3A3 Hav
SVNLLIS
t € wassvolt z v8zoz A5 L soz0z
ina Ndday
IDdN SN3ISVYD
orerz — & S~ orerz | |
inQNJ
— Hi1Dd3y 934Nd
SMOY z ' < oszaz “— zoz0z
C—oseor
HXAN440 DENOV
S——2rI0t gdr

U.S. Patent Apr. 24, 1984

Sheet 68 of 156

4,445,177

wo [m |wo | w | fmo|wo| s [uo| m] Mo uo| w | wo uT] o | mi | mo F]
e e e | ee e P Er e
sR sA 8R | sm $R R A on
A 8 C D] wn
Mo | m <. . m [mof wm] mo| mi | mo| m] wo | m -« . | mo u|—|
e e e e e e
R R R A 3R 8A
MR uR “n
E F| s G sa
mo | wo . ["°I w | o wo | i | mo uTI wo | |mo| m ... o [uﬂ
e | e e e e e P e
sh | sa . sn SR A R | R sn
MR MR
H ! J
La l LA LA]
DATA WRITTEN INTO
OFFMUXR 23812
wo| m uo . wo uolm] wo | m [uq
e LA LA P nn] e
sr “r R RW « « « RW
I | [
K Ter ... o L DATA AVAILABLE
wo | m mo |] Mo L-wi [wo | ae | as [wo [m]
e A .. [e e e | an e
sh AW ... rw | SR SR sn sn
-1 [
o N
rﬂg‘ﬁ'ﬁ:
mo [wi [mo| as| as | wo | m I Mo | mi [Mo [aB - .. aB | mO | i]
e e | an EP e e | ar] ep
SR SR | MA SR SR SR SR
LA IF GRAF 10354 or LA ¥ MEMORY REFERENCE
OR | —— OFFMUXR ARE or «*— IS READ TO OFFMUXR
Rw REFERENCED RW 23812 OR GAF 10354
° [] P

FIG.

244

U.S. Patent

Apr. 24, 1984

Sheet 69 of 156

4,445,177

MO | Mt | Mo | wmi Mo | wmi « M| mi | mo Mo | nw - .. ww | wm
EP EP eP eP EP
SR SR sA SR SR
ONLY IF
MR fe— THERE IS A EU « .. EU MR
ot MEMORY READ A s
MO | Nw Nw | a8 | aB | Mo Mo | aB | a8 IMO'I uq Luo" m"]
EP AR €p AR NW'
SR SR NW
T u
DATA RETURNED
rro OFFMUXR 23812
Luo Mool m] om | Mo MOl Mi [NR ... MR | MO m—l
WA | wa | wa ep MR EP
we | ws SR LA --. LA | sR
"4 w
DATA RETURNED
TO EU 10122
mo | mi | wm « NR|mo] m MO | mi | Ns | mo
EP unl EP (5] s8 | Ep
sA SR SR MR | SR
X
Y
DATA RETURNED
FROM MEM 10112
Mol Mt | NR <« . . NR | MO m—l
EP MR EP
SR SR
V4

FIG. 244A

U.S. Patent Apr. 24, 1984

Sheet 70 of 156

4,445,177

MO L Mo’ AB AB MO M
AR
B c D E
FIG. 245
Mo Mo’ AB AB MO” M fee e MO* M
MR AR
MA
D E F

FIG. 246

U.S. Patent

Apr. 24, 1984 Sheet 71 of 156

4,445,177

PRIORITY MASKED
LEVEL EVENT BY
0 E-UNIT STACK OVERFLOW NONE
1 FATAL MEMORY ERROR NONE
2 POWER FAIL |
3 F-BOX STACK OVERFLOW URE
4 ILLEGAL E-UNIT DISPATCH (GATE FAULT) NONE
5 STOREBACK EXCEPTION MCWD
[NAME TRACE TRAP T
7 LOGICAL READ TRACE TRAP T.J AND DES
8 LOGICAL WRITE TRACE TRAP T, AND DES
[UID READ DEREFERENCE TRAP DES
10 UID WRITE DEREFERENCE TRAP DES
11 PROTECTION CACHE MISS NONE
12 PROTECTION VIOLATION MCWD
13 PAGE CROSSING INTERRUPT NONE
14 LAT NONE
15 WRITE LAT NONE
18 MEMORY REFERENCE REPEAT NONE
17 EGG TIMER OVERFLOW AM,T,
18 E-BOX STACK UNDERFLOW AMT)
19 NON-FATAL MEMORY ERROR NONE
20 INTERVAL TIMER OVEREFLOW NONE
21 {PM INTERRUPT NONE
22 S-OP TRACE TRAP NONE
23 ILLEGAL S-OP NONE
24 MICROINSTRUCTION TRACE TRAP NONE
25 NON-PRESENT MICROINSTRUCTION NONE
26 INSTRUCTION PREFETCH {S HUNG NONE
27 F-BOX STACK UNDERFLOW NONE
MICROINSTRUCTION
28 BREAK POINT T, AND
TRACE TRAP MCWD
MISS ON NAME CACHE
29 LOAD OR READ REGISTER NONE

FIG. 247

Sheet 72 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

QUMW
$3g
oLerz
LDINA3 NSWI

oL

AN NSWL
NSWW

TTENT NEWY
vuav
— Y9208
IN3A3
'
A
L £33 Wrennd
un3
19T anv K”
anv 1303
HITANVYH ﬂ NSW 1301INAZ
INA3 INAD
oave —r’ ez —~ olerz

I
]

Sheet 73 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

0zZL0LNd OL O——

6¥c Oid

0Zi01Nd OL -~

0Z101Nd Ol -~

a
o
30
o U Mm
144144
1
o
u
1
108 N
21001 o
30023a P4
03u344na o
u
C 2
oTer: uag |
n
v
s
- !
OdM n 8
OdM N 1 HINOIHD ;
Alidvd . , _
da
rnﬂavu
" 100
a | 21907
a 300930
103u1Q
zzeve ozerz
n&c«V\
STVNDIS TOULNOD NOLLINULSNIOHDIN / go0a

oda

0ag

oa

SON

uav

viva

—0
»0Z02

AYQUQavY
(4157 HAVSD WOHd
H3AING
ss3vaav

H3ANQ viva

NI vilva <viol

ddr Wou4d

Sheet 74 of 156 4,445,177

Apr. 24, 1984

U.». 2atent

0sc 'OIid B 7 7 7,
© LYMUO4 (14-9) \ % \\ 7 \ \ (€-0) @0
uava \ yova 3w
pa'd
YR TRY! 18 9§ T8 18 or
3 1YME04
oy
7
2 1vmuo4d eun \
7
7]
sa1d
FgvidyA —] 01vwuod 440891
9
2 1vmuo4 NSYN o8 dus
L oL 69
\\
9 LYNHO4 \ OVNS
€L 2L
v 1vAHO4 o ° (v:0) o) €0 |3 o z:0)
A 4408 4 8L and A30 It an LEL
YR TRY 19 09 18 9§ z$ 1S 13
_ . (o) |) .
T (€:0) NI (1:0) § (+:0) (s:0} | (5:0) (£:0) (z:0) (€:0) g (1:0) {€:0)
w aNvy ny | N0 | wv 184 | ous LX3INOD any THLONIT al eN Wioadr |[$ |41 |d
ar v ve cF S LC 9C SC ¥E €€ € LC OC 8Z 8T L 9Z T ¥T TT 1T 0Z 6L 91 TR oL 6 8 ¢ Yy ¢

T
a1 asve

U.S. Patent Apr. 24, 1984 Sheet 75 of 156 4,445,177
7% ////////////////// wre fero
FIG. 251
i rear
MCWwWO
] e | v U
MCW1

FIG. 252

4,445,177

Sheet 76 of 156

U.S. Patent Apr. 24, 1984

£€se¢ "Old

Si ANV
— _—— 1) — — —
| | | | _
— — _ — _ V0L
_ _ _ _ ']
| | | _ |
. e _ | L _
Lt INVHS
- weo Py ST 1z) y3aisiDIY
09€01
wo

e s — — — — — —— — —— —

ot — c—— —— —— —— —— — at— ——— —

0 U318i1934

- 9ET0Z
JUONIT

N~ ¥ETOT
449440

“—ze20T
JHONOY

4,445,177

U.S. Patent Apr. 24, 1984

Sheet 77 of 156

184

Jus

(4198 ay

ALISNA

TOMINOD
HALNIOd
dovis

Zi0it

vESc Old

H31SI1D3H NOLLYNILS3A

11snd
WO 1XANOD

¥9z0Z _

AN3A3 0L

TLOL}

W3L1SIN3Y 3DHNOS
g1E82
—
1 -
— (WO1109) - .
viesz iNJSO8 » uavsva). -
INVEL (davisa
NOILYNLLE3a
4 (SNOIAZHd)
ZiIEST ANDI-S0L
(LNIHHND) XNWHAVAS
o-ﬂﬂ«l INOSOL
\l\ [18 %14
sscol — .)i
HdSIN -
_ Jus Invud Havous
o DN
- Junos zzese —
¥ |
[ET sau
ozesz—" vzesz —
88202 OVH

11snd
WOoYJ an

Zrioy Qadr

Havas

Sheet 78 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

¥Sc "OIid

118 /14
vln_llg,e:

SN303
aNaN1o
WIDSNOI) =t GNIZHWINTD ——in{
HH1D03 NIISNON ~——— SWLLNI
oHZaG) ———om
307 —
zivez (¢
rezos oLrsz— A
ANIAS Ol MINAO
’
L zviorgdr

Sheet 79 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

~— LT YIS

NI
dq 1asyy - 1% @ ﬁ
vuans asvos
—
i
vessz — sissz A4
39vd
ONVYN @
3 §vs MYVYN
(1-0)) F ozbez :
B ~ Trssz—
LA —
(11114 8 y
T
| 13834 HiXN _
SSYN
* orgse Ik
M pouna«
yvdo *
! RESS20Z)
* frese % 28sVN = SNOLLIGNOD
— *2 1831-ONWVN
zesse ayqy gesez)
OVN
ovE0Z)
Q1314 HONVUE - uaov
yreor " TYEOT
DWOD
(6$-0)
ONyio3 - vivg “
QUOw
otsse 18n3 avoo svoo 3002 $200
L L.
Jdiwng o18se TISST rigsT 015§Z
ovcoz) A‘o
3NIT VIYES 90 e— -] Hwdqg o — — - \
Zrion (1e-0) 90202 sian3
adr
r2552

§S§¢ OI4

{$1-0)

Sheet 80 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

9§¢ "OId

., WGNQON Dd0 “nnno« OdX3
‘95 i
- r||—————_———_——— e e

_I ze (18 o1 lm
_ IMdd WdS adi tmadn TMadn uxm&NV dX3ds

— Zz9sz o«o\mﬂl o—oﬂ«l vwf\m«' o«ﬂrﬂ.«l c—o\an 91982 “
“ (2] Ave ze Ao o1 45 ¥ 3 _
_ — |
_ Zuado _

\j

_ 143114

_ | |
“ (z¢ _
_ LHBdO _
— [4%-11 4 —
_ 0s€02 _ _
_ 4Y1INW Woud _
— nigdo _
w olosz |
L. % —_—_————— e ey

2zeoe 7 -
Aze Aze
S— Z¥i0L adr

4,445,177

Sheet 81 of 156

U.S. Patent apr. 24, 1984

L8028 —/
ud _\)
Wadn
81LST l‘b
s\.‘ncncu
4 1188
dd
[} £¢14
ez | lh QqUOwW Wou4
._m. z £2£02
HLINK 2 e 0dO WOH4
> ~4
oseoz z ovduLINK z
>
9re0Z
—J Q o=
vIl82 s Quow WoU4
08t0z d4d4dX3 04
0do
\ll—
€Zeoe
WILINW
oLise P 9zeoz rTiST TTise
o9eoz Q [#vi—anru
e yay agud
4
1SNOD m
z
f*—odxa WOud
rZeoe
Aze Lvz
- | i
- “—¥5C0Z NILINW zvi0l gdr

Sheet 82 of 156 4,445,177

Apr. 24, 1984

U.d. Fatent

o {EE0T

85¢ 'OId

\\
¥4 (7]
sSYW
a md
¥AG
i
Are " L9%0z ﬁ
zo {19 'riY] II.I\FPI
Sdd
€9 6% Sg _) |
[1%-1-14
zo 1o Sud 1x3 m sslzs
Y,
wal awnm] (ssva) vol 20000 1*
3 ly
—
a X
< s9
v 1
n ZMv LInKW X |l YAHYHD
) v A g 3 z
09 65 5 b N—icoz 0 OX £X - ziese
- o9
1x3 Ave
0z
o9
~— BSEQT
LAYLIN o
a v u
N 080z |]
os A ¢ ¥ M AHSaIN
‘,Iqr"ll
99£02 — o8) S (r-o0
148
£ ZLLINSLIN 8vLIHSLIIN - i
gs 0 sS _ f 0 ’
%’ M » * 890z 18 \\cn
sac0z— Aos {€9-95)
‘ ! ¢
81101 40 HON
os 2 £z) °
Aze (e , ~—¥SE0T
‘98 NLLINW ($5-0) snga

U.S. Patent apr. 24, 1984

Sheet 83 of 156

4,445,177

20316 ~
EXP
SCEXPQ
EXPQ
25912 20322 —~
] 25914
20332 ‘ -
EXRAM — RMEZ —+#—} 5}
o] LZDOA
4,
7z
2 1
20380 b
“~ exenr
1} 8 RJMP
/ 2 (3-9)
1 A
rd
2 1y 2 9 1 3
INSELA INSELB
(-
20330 T 203as
8t 8y
y y
™\ 20384
EXPALU
:) 4
] (’203&!
-— SIGN o 4 — — — — — —| SCALER je— — DPLINK
Q 20382
sy
8, SCLA 4
7 20330 — 4
e 20328
EXOM r’ 25918
s SHFTIC
SHFTCNTL
20384 -)
—
TO MULT
1 20314
s ———— e el
JPD 10142

U.S. Patent Apr. 24, 1984 Sheet 84 of 156 4,445,177

EUDP(0-11))
>
LDCMQ
» CMDHOLD
Fu EU
MI1CPT
M1
SETDP
10120 10122
FIG. 260
MOD 10144 —
DAVEB
MEM
ZFILL
JPD 10142
10112 —
4
B CLOF
JPOP
FU EU
M1CPT
EUDP(9-10)
10120 10122
FIG. 261
MEM JPD 10142 —~
10112
PD
DRDY
10148 — FU XJPD - €U
PHYSICAL XFRC
DESCRIPTOR 10120 10122
FIG. 262
DROY
TEST(2-4)
>
Fu EBTESTEN EU
TC
XFRC
10120 10122

FIG. 263

U.S. Patent Apr. 24, 1984

Sheet 85 of 156

4,445,177

FIG. 266

LEN(2.7) ~
m—
LMAONRSOS |
FU CKSIZE v
EXCEPT
10120 10122
FIG. 264
PUSH
POP
EUCSR PUSH Euls
EU
10122
REGISTERS INTERNAL
4TH STACK
INTERRUPT
CURRENT
STATE POP 26512
26510 —
~—
|
Eues 3RD INTERRUPT
2ND INTERRUPT
1ST INTERRUPT
26514
MEM 10112
FIG. 265
NINTP
Fu NIACK €U
NITE
10120 - 10122

Uay. ALl

Apr. 24, 1984

Sheet 86 of 156

4,445,177

B JPD 10142 ~,
MEM N
MOD
10112 1o4m

]
NINTP

PD

10148 NIACK

|/
EXEVT
FU XJPD Eu
PHYSICAL DESCRIPTORS
ETRAP
JPOP
10122
10120 NiTE 012
FiG. 267
MEM op CLEAR
10112 10118
PD MOD
10146 10144 DIS{0-11) >
Fu DRDY €U
JPO ~|
LONWCS
PHYSICAL DESCRIPTORS
10120 NINTP 10122

FIG. 268

4,445,177

Sheet 87 of 156

U.S. Patent Apr. 24, 1984

69¢ 9Ol

$§300V 183N0F4 $8300V
za%a xa2a 91$0Z D0N ¥Lv0Z ONE3
]) 1]
[— r LI LI !
183no3y INVED 18anoau INVED 1s3anoau 1NVUD 163N03Y INVHD
'y [A, '}
[ﬂ ﬁ ﬂ
\
0504
24 zada 24 Xao24a 24 20N 24 OweE3
seoz— Peig seoz— Yot rnest— Bgiuiue nese—" Pyizion o189z </
. ‘8'9'v'z'o
004

HOLVHINZO $S300V LNVHD DN
0L9#0T HAONG

Sheet 88 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

v110l QON

04¢ Old

Czrior adr
- 610/Z §LINN "1OHd] =
YL ViVO | m
PAR L] s2zo! 85202 €201 m
. - . z
Waw Coviol Qd nLy glozz LOLWWOD i Z
N
yl 23a 8
LINN 434 AHOW3W
30YHaANI NG T] (Oore0e dsaa
AN
92201 ozzoz dN31 T 8120z dd440 | 91202 dNOV
JHOVD o [}
- L2
gloiz B3y z 3NVN o 98202 v£202 | z€202
1ns3y > 2 agonan | awoaio | auoNOv
ml 5202 N t ¥
mnwmwm 1™ 2 dvHl IWVN] | Zvzoz |
NS s10.2 - _ Caivaso]
rwve g LINN SNYH1 INYN ! 1
OWO0D = \ rGEoL 449
“izoz 940
Crzz0z INVYN Ve ZvioL SN8 qadr
(71202 1104 L1100 gOW
| coozz w3gooaa tsw-s! €10,z DNISS3HAAY 3Q0OJw m
10022 _"— 012¥2 B v6202 |
SHIAV3Y WYIHLS| 1 130090401 |§ rozoz waavsd | wbwww]
80202 | {zizrz Iviay] } “
siana | ! I 96202 || | - w_m._.
1 | -h, SYNLLIS Zivse S So
vi2L2 v9202 gzeve HNL9D3 | & @
" 543 H3sHVd | dSIN3 | 82207 I om
~ ===-11{|2 asvo iua [*] 0175Z z>
24202 29202 M ozzre 1] HWLLNI |
2dl g1SNI o | 91v3 T =h azoz || |
] - JdN
04202 09202 m _ gLzve S 96202 m
2dd szud [| dsiad R 85E01 SHIWIL 0620z | 26202
_ oltoLlL 1LOSNd II SMOY LMOW i OMOW
90022 S00.42 | 8§ voosz |)
S3IATVA Od LINN ONISHVd | S$3W4 HOlvdSia 1
4 1 1
\-Zviol sna adr STYNOIS WYF STYNDIS LN3IA3

INIHOVWOUOIW oZiol Nd

U.S. Patent Apr. 24, 1984

LOGICAL DESCRIPTOR DETAIL

Sheet 89 of 156

4,445,177

RS AON OFF LEN
27101 27111 27113 27118
IO 13,14 27 28 59 60 91
| LOGICAL DESCRIPTOR 27116
| S 2
| |
| 1
| [
RTD i FIU TYPE 7
27103 27105 A 27107 27109 "/
o) 23 45 6 7 10 11 13
RS FIELD

FIG. 271

4,445,177

Sheet 90 of 156

U.S. Patent Apr. 24, 1984

60222

9EE0t

¥Z10L

FOVHOLS AHVANOD3IS

HO Z1 101 AHOWINW

NOVLS 3UNO3IS
NI SanWvud
MNIOVLS IVALHIA

¢l¢ Old

0Z10!I N4
_ ¥SE0s JYD 40
I 102.2 NOILHOJ NOV1S
| 10242 e
| sawvis o fm-—=——=emod
3344 WOoLL08
| : _
o€D
| 953
sCR £02.2
— v Boo
Seh SINVH |
| g2 NOVIS
® IVNLYIA
| 3
9 £12.2
| SNOIAZHd
)
] -)
f gizLe
| AN3HHND
_ 502.Z SOW HOd
Q3AH3SIY -
_ SINvyd
- |
10222 _|

90¢cL2
MNIOVLS IVALYIA HOA
FIGVINVAY SINVHA

SIWvHd 3344

o o - — e oy

SiC.Z IANVHA

85801 §MOY

0 3NVHY HO4 MOY

S$} JNVHL HOd MOH

U.S. Patent Apr. 24, 1984

Sheet 91 of 156

STRUCTURES CONTROLLING EVENT INVOCATION

4,445,177

RETURN SIGNALS 27331

FIG. 273

// ce EM e 10 TE REGISTERS
/] 27301 27309 4 A 27319
MCW1 20290
[|]
I Ll I 1 |
0 [fe) ~ - « w ~ - [") ~ @ -
[« [=] [=] - - - - o [V o o o [}
5 a A 0 © I = & b
508 8 R 8 & E 5 & & & § 8
AM | MM | T™ ET T ME | iPM NT | tR W] ST | mT]| mB
EM 27301 EP 27309 TE REGISTER 27319
FM RETURN ADDRESS cc RETURN SIGNALS /
27324 27326 27328 27330 A
RCWS REGISTER 27322
i 1
8' 0 ~ @ - © 0
a o 3 3 S & 3
~ ~ ~ ~ ~ ~ ~
o~ N ™~ o~ ~N o ~N
EG | NT | Es | MRR] sT | ur | us

U.S. Patent Apr. 24, 1984 Sheet 92 of 156 4,445,177

FU 10120 MICROMACHINE PROGRAMS
SOURCE TEXT LISTING

923 0 ©@20@:
924 0O ENTRY BREL:
925 0 OFF_ALU_OUT = IPC OR PC.AON,
926 0 LOAD_AON(PF) WITH AON(PC.AON),
927 0 LOAD. OFF(PF) WITH OFFSET;
928 0O
8289 o0 PARSE_K_LOAD_EPC, /* INSURE PAGE CROSSING DETECTED */
8930 O OFF_ALU_OUT = PARSER (SIGN_EXTEND) LEFT_SHIFTED(3) OR
93t 0 ZEROVAL,
832 O LOAD (ACCUMULATOR) WITH OFFSET;
933 0
934 0O OFF_ALU_OUT = ACC PLUS PF,
935 0 READ_PREFETCH_FOR_BRANCH USING OFF_ALU CON_LENGTH(32),
936 O SOURCE(OFF_ALU_DATA) TO JPD_BUS(CURR_PC),
837 o GOTO _NEXT_S_OP;
838 O
MICROINSTRUCTIONS
923 © ©@20@:
824 0 ENTRY BREL:
925 0 OFF_ALU_UUT = BPC OR COMMON (@A@.7).
M 0O ipd_ctel 10 alu_op 5 src_frame 2, r_source 7 , com_ext @A@
926 O LOAD_AON (CURRENT (5)) WITH AON (COMMON {(@A@.7)),
M O dest_frame O, r_dest 5, r_w 1 a_in 2, src_frame
M 0 2.r_source 7, com_ext @A@
827 o LOAD_OFF (CURRENT (§)) WITH OFFSET
M 0 dest_frame O, r_dest5,r_w 1 o_in 3
927 @ :
928 0 PARSE_K_LOAD_EP,
M 0 dev_cmd 121, nb_ctri 1,
830 0 OFF_ALU_OUT = PARSER (SIGN_EXTEND) LEFT_SHIFTED (3)O0R
M 0 alu_in 2, nb_cirl 1, rand 18f 3 alu_op 5
931 0 COMMON (@B@.0),
M O src._frame 2, r_source 0, com_ext @B@ ,
832 0 LOAD (ACCUMULATOR) WITH OFFSET
M 0 awt o.in3
932 0 .
934 O OFF_ALU_OUT = ACC PLUS CURRENT (5),
M 0 alu_in 2 alu_op 3 src_frame 0, r_source 5,
835 O READ_PREFETCH_F USING OFF_ALU CON_LENGTH (32),
M 0 mem 7, dev_cmd 124 db_ctrl 1 len_ctrl 6 ,
936 O SOURCE (OFF_ALU._DATA) TO JPD_BUS (CURR_PC) ,
M 0 ipd_ctrl 7 dev_cmd 124,
937 0 GOTO _NEXT_S_OP
M 0 nac 4, 1it8 _NEXT_S_OP
o

937

FIG. 274

I
|
!
!

U.S. Patent Apr.

24, 1984

POINTER FORMATS

Sheet 93 of 156

GENERAL POINTER FORMAT 30101

4,445,177

OFFSET FLAGS AND IN UID POINTERS: UID
30103 FORMAT 30115
BITS 0-31 { BITS 32-47 i BITS 48-127
! I
| i
| [
| i
| {

Y N I.._..__-_._..._._...____...___.__.‘
|
|
{
I

FLAGS AND FORMAT 30105 1

! RESERVED NR RESERVED FORMAT CODE

30107 30109 30111 30113
2 r' F 1 2 2 ']
32 33 34 35 36 a9 40 a1 42 43 44 45 46 a7

37 38

FIG. 301

U.o. Fatent Apr. 24, 1984 Sheet 94 of 156 4,445,177

ASSOCIATED ADDRESS TABLE

AAT PTR VERSION SIZE 7 CURRENT ADDRESS
30211 30204 30206 /] 30208

AAT HEADER
30203

MAS OBJECT FOR A PROCESS UID-OFFSET FIELD POINTER FIELD
30207 30209

AATE
30205

AATE ARRAY
30204

AAT 30201

FIG. 302

U.S. Patent Apr. 24, 1984 Sheet 95 of 156 4,445,177

NAMESPACE OVERVIEW OF A PROCEDURE OBJECT

HEADER 10336

GATES 10340

PBP

LITERALS 30301
30305 30307

K IL N SIP 30309

PED 30303 - NTP 30311 SOPP 30313

PBP 30315 EPP 30316
PEDS 10348 S

PED 30303

INTERNAL ENTRY
DESCRIPTORS 10342

CODE 10344

LINKAGE POINTERS
30319 STATIC
SDPP —— e e e e e e] DATA
STATIC DATA INITIATION PROTOTYPE
INFORMATION 30321 ' 30317

NTP

NAME TABLES 10350

BINDER AREA
30323

FIG. 303

U.S. Patent Apr. 24, 1984 Sheet 96 of 156 4,445,177

LONG NTE 30405

SHORT NTE 30403 —————I

FLAGS ST DISP | INDEX
FoRmaT | BASE | LENGTH | Dpisp EXT Name | RESERvED| 1ES
30407 30425 30435 30437 30439 30441 30443 30445
o 15 16 3132 47 48 6364 95 96 111 112 127
NTE 30401

FLAGS 30408
|
']
-

o9 J 11|13 s 17|19 W 3&";] ;To\:zl;
7 8 9

16 11 12 13 14 15

N

FLAGS AND FORMAT 30407

ABP
30429 POINTER LOCATION 30431 BASE IS AN
2 APB 30427
16 17 18 31
BASE 30425
BASE IS A

NAME OF E 4
E OF BASE 30433 NAME 30432

16 a1

FIG. 304

4,445,177

Sheet 97 of 156

U.S. Patent Apr. 24, 1984

S0¢€ "Old

(dd) 00 :dBY ‘3INON :13S SOV14 ® £0S0E | HOA ILN

0 (473
‘dSI0 HLONTT

a3asnnn

d
9
Y

(dd) 00 dav

L1v0E Avddvy

SIP0E LOIYIANI Si 3sve
€0v0E 3LN ONOT:13S SOVII: Z0S0€ (1) 1SIT HO4 FIN

2E=831 sawvnsa | aasnan 0 ze - 3 | morzg aas
:JWVN X32QN} *LX3 dsig dsia HLON3T dSia "did v SOV
9¥yoe L¥POE 6EPOE LEYOE SEFOE Seroe 20v0E
H43AQV3aH INVHS
8¢1-
1517 404 "Hid FOVININ
L0SOE JWVHI MOVLS LHOS dd

1 HOd 39VHOLS ze

N 404 IDVHOLS v9

dW3L HO4 IDOVYHOLS 96

FdWYX3 NOILLNTOSIH WVN

U.S. Patent Apr. 24, 1984 Sheet 98 of 156 4,445,177

NAME CACHE REGISTERS

AON OFF 8 BIT OF LENGTH
I L LA 1 LA . L

1 L]
0 NAME CACHE REGISTER 30602

N
= rrrI=rs

NAME CACHE ENTRY 30601

FIG. 306

TRANSLATING S-INTERPRETER UIDS TO DIALECT NUMBERS

S-INTERPRETER UID

LAR MICROCODE

WIRED S-INT.
AON

S-INTERPRETER AON DIALECT NO.
30705 307089

S-INTERPRETER TRANSLATION TABLE 30701

FIG. 307

U.S. Patent

Apr. 24, 1984 Sheet 99 of 156

USER
40101

REQUEST FOR
SYSTEM RESOURCES

OPERATING SYSTEM
40102

OPERATING SYSTEM
COMMANDS TO RESOURCES

SYSTEM RESOURCES
40103

FIG 401

4,445,177

U.S. Patent Apr. 24,1984 = Sheet 100 of 156 4,445,177

MULTIPROCESS OPERATING SYSTEM

USER USER USER
PROCEDURE PROCEDURE | . . .+«\ erocebure
802 - 802 602

Y Y

Pnocess PROCE ss . - . - - - - - - . - - - - - L] PROCESS
610 610 810
PROCESS MANAGER 40203
VIRTUAL VIRTUAL VIRTUAL
PROCESSOR PROCESSOR |- : - -| PROCESSOR
612 612 612
VIRTUAL PROCESSOR MANAGER 40205

VIRTUAL VIRTUAL
MEMORY MEMORY
40208 40208
| VIRTUAL MEMORY
. MANAGER 40207

VIRTUAL VIRTUAL

DEVICE e DEVICE

40208 40208
VIRTUAL 170 |

MANAGER 40209

|
Y ¥

JP MEM 10S

10114 10112 10118

FIG 402

U.S. Patent Apr. 24, 1984

Sheet 101 of 156

EOS AND ROS

EXECUTING USER PROCESS

810

CALLS TO CALLS TO
USER PROCEDURES EOS PROCEDURES
PROCEDURE 40303 . 40304
INTERFACE
40302 r EOS CALLS TO ROS
40305
USER PROCEDURES €o0Ss KOS
40306 PROCEDURES | PROCEDURES
40307 40308
L I J
S-LANGUAGE KOS
SIN SINS SINS
LEVEL 40310 40311
INTERFACE — o e e e e e e e L Y _
40309 [mCALLSTO | xos
S-LANGUAGE mCODE KOSmCODE | .cope
40312 40313 -
SIGNALS
FROM L |
HARDWARE
40314 mINSTRUCTION
40315
L .._...______.____‘-
INTERFACE JP 10114

FIG. 403

4,445,177

SIGNALS

FROM

HARDWARE
40314

U.S. Patent Apr. 24, 1984 Sheet 102 of 156 4,445,177

EOQS VIEW OF OBJECTS

OBJECT UID 40401

ATTRIBUTES
LAVUID OBJECT SERIAL NO. OF THE
OBJECT
40402 40403
40404
LOGICAL ALLOCATION UNIT 40405 P
OFFSET
[¢] 1 2 3
BITO l BIT 1 l BIT 2 I soe .
OBJECT
CONTENTS
—— e —— A
P R
OFFSET
N
. BIT N

FIG 404

U.S. Patent Apr. 24, 1984 Sheet 103 of 156 4,445,177

PATHNAME TO UID-OFFSET TRANSLATION

PATHNAME

{ TRANSLATION TABLE 40503\

40501

w : W
3 1
aZ [W 4
u &
an X
=i Sk
[«] [+]
C 40502 C s0s02
OBJECT 40404
WITH FILE
CONTENTS
40405
OBJECT UID’S
UNIVERSAL IDENTIFIER 01
OBJECT SERIAL NUMBER LAUID
{48 BITS) 40602 (32 BITS) 40602
F———— J Lo .
LAUSN
L. 8r
AUGN (24 BITS) (8 BITS)
40605 40607

FIG 406

U.S. Patent Apr. 24, 1984 Sheet 104 of 156 4,445,177

ATU, MHT, AND MEMORY

ENTRY IN

CACHE- MEM 10112

PRIMARY

MEMORY

o::):ér ADDRESS

ADDRESS 40708
40705

ATU

10228

NEW ENTRY NOT IN
40710 | Aty CACHE: INVOKE
L ENTRY mCODE
AON OFFSET —_— e —
ADDRESS r

TO MHT
40708 — "
KOS
I
I
|
1

MICRO- MHT ENTRY
ROUTINE FOR AON-
OFFSET
ADDRESS

40709 —

FIG 407

U.S. Patent Apr. 24, 1984

LY

Sheet 105 of 156 4,445,177

SusJeCT AST 10014
40801
PRINCIPAL L/ LINK FREE CHAINHEAD 40807
DOMAIN
PROCESS
AST HASH ASTE 40808
TABLE -
‘ 10710 LINK SUBJECT
4
0802 ENTRY
HASH |/
FUNCTION e — e o
ASN
’ - T T T LINK FREE ASTE 40806~

M

M

ASTE 40808’
—81 LINK SUBJECT
—{ LINK FREE ASTE 40806"

FIG 408

4,445,177

oLy Ol4 60¢ OId

I
I
I
I
l
I
J
1
I
I
(
|
I
I

FONAIQ —

P72/

—\

Sheet 106 of 156

LD T M G S VP L s G S

—_———— e d

- FJIA3Q -

vosor —.
_
I

Apr. 24, 1984

uU.>. Patent

..._.._l

~

€060¥ £060¥
103ra0 anvl 493r40 anv
l_ l_ m._.zw...zoo
soror NV SOror NV

wv\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

‘ >¢._.w.own“wr<._< L———
/ \
[" Zosor i53rdoomvy |~ T — 7
| —

r060F

391A30— | 3 3
Ny = _ a a
_ el B n
~ ~ 1 ceoramvy 1 v .8Ja9 |
»00L¢ QNVY 40 . .
ss3yaqy L _u |||||||||| Jd
13s430-ain ainva - =

L00LF AINVIY .
S.NV1 ONVY 378VL NV 3ALLOY $103rgo0 aNv snv

4,445,177

Sheet 107 of 156

U.S. Patent Apr. 24, 1984

_‘lnll.lllllllllllllllllllllll'llllll

LLy Ol

£060Y QNV1

FUNLDNHLS ANV IVNLI3ONOD

. 6ELLY
S$370vd
I0V3 €21y
iL1aq
TvNOLLIaaY 30vds 3344
60Liy
$a1314 IANVYY QaXId
9060¢ IANVT
011y
138340
80LLY
ANLNI S0LLY
an NSO
SOLLP AHOLDIHIO H3LSYN
YOLLY €01 1p
anvi ainva

—_——— e]

2oLy HIAVIH ANV

U.S. Patent Apr. 24, 1984 Sheet 108 of 156 4,445,177

LAUDE DETAIL

STRUCTURE VERSION
41209 SIZE 41211

LOCK 41213

FILE IDENTIFIER
41218

uto 41217

41219 — PRIMITIVE TYPE

W
r~—— — T~

AON 41221

EXTENDED TYPE ATTRIBUTE 41223

DOMAIN OF EXECUTION
ATTRIBUTE
41225

~— T~/
— T~

PACL
ATTR. VERS. NO. 41227 size 41229

SIZE 41231

PACL OFFSET 41233 EACL OFFSET 41235

CONTROL
r\/__/ . ATTRIBUTE
INFORMATION
41239

FIXED PACLES

41237

LAUDE 40906

FIG. 412

U.S. Patent Apr. 24,1984 Sheet 109 of 156 - 4,445,177

UIDS AND AONS
SET 41301 OF
UIDS FOR OBJECTS
ACCESSIBLE TO A
COMPUTER SYSTEM 10110

SET 41303 OF
AONS IN A GIVEN
COMPUTER SYSTEM 10110

80 BITS

fa—14 BITS —a

AON Y

UID 40401 FOR OBJECT X 41302

40401 7 41304 7

(UP TO 280 UIDS 40401) (UP TO 24 AONS)

AOT 10712

| > UID FOR OBJECT X 41302

|
!

AOTE U 06
{U IS OBJECT X'S AON)

——— T]
,’-—-—\N

UID-AON TRANSLATION
AON-UID TRANSLATION
UID-AON TRANSLATION
AON-UID TRANSLATION

Y |

UID FOR OJBECT X 41302 OFFSET 41307 AON 41304 | OFFSET 41307

UID-OFFSET ADDRESS 41308 AON-OFFSET ADDRESS 41309

FIG 413

U.S. Patent

Apr. 24, 1984 Sheet 110 of 156 4,445,177

OBJECT MEMORY QUEUE

LINK 41423 | REQTYPE 41425

REQUEST
41429

EVENT COUNTER 41431

OMQE 41421
SEQUENCER 41405
EVENT COUNTER 41407
FREE HEAD 41409
AOM WORK HEAD 41411
AOM WAITING HEAD 41413
VMM WORK HEAD 41417

VMM WAITING HEAD 41419

—
~——]

TJAOMQE 41445b

OMOE
OMQ 41421 }— ARRAY
41403
M
OMQ 41421
OMQ 41401
L LINK 41447 l FLAGS 41449 V///
/////] veno 415t | uib Lo
41453
AOMQE 41445
EVENT COUNTER 41435
FREE HEAD 41437
WORK HEAD 41439
WAITING HEAD 41441
WAITING TAIL 41443
“JAOMQE 414454
AOMQE
— ARRAY
41437

AOMQE 41445¢c

AOMQ 41433

FIG. 414

U.S. Patent Apr. 24, 1984 Sheet 111 of 156 4,445,177

AOT 10712
uID AOT IMPLEMENTATION
40401 '
] AOTHT 10710
HASH - AON 41304 T
FUNCTION ‘ =] LINK 41508 uID
e e — e — e
41502 ENTRY ATTRIBUTE INFO
41504
AOTE 41306
AOTHT o LINK 41506 |
ENTRY - ——d
NUMBER
FREE AOTE
41306
41513
- LINK !)
AOTE FREE LIST | ey
HEAD POINTER ATTRIBUTE INFO
AOTE
41306
B S,
LINK 41506 , viD
o e e e e]
ATTRIBUTE INFO
AOTE
41306
LINK 41506 |
Y -
FREE AOTE
41306
AOT ENTRIES
UINK 41515
UID 41517
SIZE 41519
DOE 41521 'T’f,‘},'g 41523] FLAGS 41525 PAGES IN MEMORY 41527

////////// WIRE COUNT 41529 ‘ ANPAT THREAD 41531

ATTRIBUTE VERSION NO 41533

PAGES WIRED +1505 P,

AOTE 41508

FIG 415

U.S. Patent Apr. 24, 1984 Sheet 112 of 156 4,445,177

SUBJECT TEMPLATES, PACLES, AND EACLES

FLAVOR FIELD UID FIELD
41603 41605
] 1

PRINCIPAL COMPOMNENT 41606
PROCESS COMPONENT 41607
DOMAIN COMPONENT 41609
TAG COMPONENT 41611

SUBJECT TEMPLATE 41601

SUBJECT TEMPLATE
41601

ACCESS MODEBITS 41615 |

PACLE 41613

SUBJECT TEMPLATE
41601

ACCESS MODE ARRAY 41617 |

EACLE 41815

FIG. 416

U.S. Patent Apr. 24, 1984 Sheet 113 of 156 4,445,177

LINK ASN DOMAIN NUMBER
41701 41702

" PRINCIPAL UID 41703

PROCESS uio

ANPAT THREADHEAD
41705
\\\\\\\\\\\\\\\\
FIG 417
PURITY FLAG 41805 e rep
1
\\ © UNUSED ENTRY O 41807
N ROS ENTRY 1 41809
N N EQS ENTRY. 2 41811
NN DBMS ENTRY 3 41813
N USER ENTRY 4 41815
L l |
DTE 41802

DOMAIN TABLE 41801

FIG. 418

u.D. Patent

AOT 10712

Apr. 24, 1984

Sheet 114 of |

ANPAT OVERVIEW

—

AOTE FORAON I

ANPAT 10920

56 4,445,177

AST 10914

ASTE FOR ASN J

FREE POINTER 41905

NEXT TO FREE 41912

ANPATE (AON X, ASN J) 41907

FREE ANPATE 419078

ANPATE (AON i, ASN J) 41907C

FREE ANPATE 41907D

S R e ¥

r——-—___/'\—/—

ANPATE (AON |, ASN Y) 41907E

FREE ANPATE 41907F

FIG.

419

U.S. Patent Apr. 24, 1984 Sheet 115 of 156 4,445,177

ANPATE DETAIL

SUBJECT THREAD 42001 SUBJECT BACK THREAD 42002

SUBJECT THREAD 42003 SUBJECT BACK THREAD 42004

ASN FIELD 42005 ACCESS CONTROL 42006

FE RN

ARRAY 42008 /
ANPATE 41907 /
42006 : ANPAT TYPE FLAG 42007: VALID FLAG

FIG. 420

: APAM
\ 1 2 ASN INDEXES 42102 N

- AON INDEXES 42103

COLUMN FOR ASN K 42105

APAME 42106
FOR AON 4, ASN K

o _ 4

J ROW FOR AON J 42004 L

APAM 10918

APAME 42006
42107: VALID 42111: READ
42109: EXECUTE o7 09 1 13 42113: WRITE

FIG. 421

U.S. Patent Apr. 24, 1984

LOGICAL

DESCRIPTOR —#»

27116

MEMORY

OPERATION ———

42203

Sheet 116 of 156

PRIMITIVE DATA ACCESS CHECKING

EXTENT |

PRIM. ACCESS

ENTRY 42215

o VALID/INVALID

4,445,177

SIGNAL 42205 TO MEM 10112

FIG. 422

NEW
CACHE AOT 10712
ENTRY
AOTE 41306 FOR 0BJ
PROTECTION CACHE 10234
ILLEGAL CACHE 42209
ACCESS MISS
EVENT 42208 EVENT
42206
KOS mCODE KOS PROTECTION
TO SOFTWARE CACHE MISS o
CALL mCODE mCODE OBJ. LENGTH
42215 42207 - 42210
APAM 10918
CALL TO KOS N
PROTECTION VIOLATION I |
PROCEDURES PRIM. DATA
42217 ACCESS INFO I I
42213 I I
| 1
APAME
42106 FOR
SUBJ.- OBJ.
PAIR

4,445,177

Sheet 117 of 156

U.S. Patent Apr. 24, 1984

Ecy OId

408 30 ss3yqay
ANINIOVIdSIQ--INVYL

S0€ZY HOLYISNVHL LN3W3DVIdSI0
Y3IAWNN 3Wved oL 1383440-NOY

90CTr SYIALSINIY viioLdr

i+ |vtoN
dsio | Iwvus
Z19 40 §sauaay it
LN3W2OV1dSIQ-3DVd-NOY asig | 394 | wov 13sd40 Nov
[
1t ININIOVIdSIg 508 30 SS3¥QQY
¥L ‘ON IWVH4 138430-NOY p—
= SNVHL
NOV-aIn
L [
€18
N e . ol
4
138440 ain
ZLLOL WaW £08 40 $S3HAQVY 435340-aIN
._.mm_&o ain
/ Y
L1 LN3W3DV1dSIa
Z 3NVY OLNI 031409
S 39Vd 193190 40 SINIINOD o1 ‘N 30V
|/ —
1
. 60g zo
N P 14 € < 39vd
ra0
NOILYISNYYHL Ss3Haav
ONV ‘SIAVH AHOWIW | tov 103rao

AUVYWIHd 'S3DVd 193180

U.S. Patent Apr. 24, 1984 Sheet 118 of 156 4,445,177

UMM CONCEPTUAL OVERVIEW

LOGICAL
DESCRIFTOR 27116
PROC 42406
RUNNING ON
VP 42401 BOUND
TO JP10114
ATU
10228
UPDATE
ATY
foen crmrs c— — —— — —
PHYSICAL
MISS EVENT DESCRIPTOR
INVOLVES TO MEM
VMM mCODE 10112 o
VMM o
MICROCODE
42402 yau
TABLES
42404

UP 01 SUSPENDED

VMM UP 42403 RESUMES .

VMM PROC 42404
RUNNING
ON

VMM VP 42403

VMM UP 42403 SUSPENDED

UP 42401 RESUMES

up
42401

e I i, Y
) COMPONENTS EXECUTING ON JP 10114 | COMPONENTS IN PRIMARY MEMORY 10112

FIG. 424

4,445,177

U.S. Patent Apr. 24, 1984

Sheet 119 of 156

Sy 'Old

SO¥ZP 204d
WA NI G3LN23x3 Yorzy SININOdNOD 3000w gNy
SININOINOD WiNA $378VL WNA IUVMAYYH WA
1 | |
/ \/ \/ —\
a30N34SNE £OvTy]
dA WA »ZSTH
‘\(I.I\l\ $30VSsaN £oszy
s01 3000w
aannsau
LOPEY
dA DNILINYS
toriy
ona
q3aNadsns
torzy
dA DNILINYY
coszy
3000w
4Invd 30vd
: r0.L0¥
- sLz0L
fom 3000w 1V ILHN ON
e e -
Tisey 0zszy
HOLVYNIQHOO0D $34Na300ud ¥ roszy zoszy
NRA H30VNVYN _ 3000w H3dOUd 3g00w
Anvyy ivim mn
9Lz01 i y
siszy KN e Lo S
$34NQ300Ud 138 118 ALHIQ SSIN nuv niy
H3IOVNYW ON ‘3L1um Jlvadn
ONI9VY
ZLIOL NINOL oL
Y01dID§3q] -.«_.m< -
9052 WOISAH
_ ONNA %
SOSZY TANmA ALY o1
e 1diNos3g
a3Innsau j(QQO.W.W
corzy
dA WA

SANINOJIWOD NIALSAS WA

U.S. Patent Apr. 24, 1984 Sheet 120 of 156 4,445,177

MHT ENTRY

: 42602: LOCK FLA
42602 | 42603 42304] 42605 42606'42807 42611142613| 4 e04. vgfm ,ug

[2222222222227777772277.77 ik ot momaris

42606: CLEANING FLAG

42607: PURGING FLAG

42611: CLEANING REQUIRED FLAG
42613: DELETE WHEN LOADED

FRAME NUMBER 42608

AON 42609 r_

PAGE NUMBER 42610

MHTE 42601

FIG. 426

SEARCHING MHT 10716

MHT
AO’:::’::GE DESCRIPTOR
MHT LOCATION 42705 42706

HASH FUNCTION
42702
MHT INDEX 04 -
MHTE INDEX
42704 X MHTE VALID MHTE 42601(A)
SIZE MHTE
LOCATION VALID MHTE 42601(8)

VALID MHTE 42601(C)

INVALID MHTE 42601(D)

MHT 10716

FIG. 427

U.S. Patent Apr. 24, 1984

Sheet 121 of 156

VMM QUEUE DETAIL

F\/ A ﬁ“

4,445,177

VMM QE
I ARRAY

42801

VMM QUEU 42506
VMMEC 42505
LINK 42803 FREE HEAD 42804
LINK 42803 WORD HEAD 42805
LINK 42803 WAITING HEAD 42806
LINK 42803 WAITING TAIL 42807
LINK 42803 ' VMM QE 42808A
LINK 42803 I VMM QE 428088
LINK 42803 VMM OF 42808C
LINK 42803 l VMM QE 42808D
LINK 42803 | VMM QE 42808E
LINK 42803 [VMM GE 42808F
VMM QE ENTRY 08
LINK 42803 FLAGS 42809 | VP NO 42810
AON 42811 PAGE 42812
FLAGS 42809
42813 | 42814 | 42815 | 42816 | 42817 | 42818 // / %

FIG.

428

U.S. Patent Apr. 24, 1984 Sheet 122 of 156 4,445,177

MEMORY FRAME TABLE DETAIL

FORWARD BACK UINK

R 4 '
42002 €S | 42003 MHTE LINK 42004 LINK 42005 4200

42902: WIRE COUNT MFYE 42901
42903: USE COUNT

/ 42013
42908 NIUFL HEAD 42020 3L
NIUFL 42909 1FL 42010 IUFL HEAD 42921 T
PURGING 42011 | LOADING 42012 ' PURGING LIST HEAD 42022 \
T. WIRE 42913 42014 LOADING LIST HEAD 42923
42015 PREV. TR. 42016 TEMP WIRED HEAD 42924
U-TR. CUT 42017 42018
77770 _—
VMM DESCRIPTOR 42007 METE 42001A I F I ~a
NG

42908: VERSION NUMBER

42009: NIUFL HEAD PTR

429 10: WUFL HEAD PYR

429 11: PURGING LIST HEAD PTR

420 12: LOADING LIST HEAD PTR

429 13: TEMPORARY WIRED LIST HEAD PTR

429 14: PAGING POOL LOW FRAME NO

420 15: PAGING POOL HIGH FRAME NO /
429 18: PREVIOUS FRAME NO

420 17: UNBOUND FRAME COUNT
429 18: WAITING FOR A FRAME COUNT MFTE 420018 Fly
42010: MHT SIZE 42013
42026: MFT FRAME DISPLACEMENT ADDRESS
42026: MFT AON-OFFBET ADDRESS 42913
42027: MFT 812 \‘ o
MFTE 420014 r /
MFT 10718
MFT LISTS 42020

FIG. 429

4,445,177

U.S. Patent Apr. 24, 1984

LEY OId

ooty

£00E¥ 0L

08
O3ANNA
1ivmy

|

AVADINNA
LNIWILONI

3§7vd
= INOQG NHOM

$3A

ON

Nyl
BVId 3NOQ
NHUOM

InygL
aN3s ol
o3y

$.03
1N3A3 OLN
lvmy

$3A

Sheet 123 of 156

tooey

asiva
= ON3S 04 D3
FIGVUVAY
H3dina 0/1 Jdi

|

ot oL
IOVSSIN
anN3s -

3nulL
O¥Y1d aN3S OL
O3

SUILNNOD LNIA3I LIVMY ONY O/ luvis

‘TO0EY ANY LOOEY SHO01E

£00E¥ HO ‘s00EY
'YOOEY ‘£00EY WOYS

1$3n034 0/
INved
'a NV31D 183N034 0/) ON
L00EY
]
_ d001 OWO
| ssaooud
800¢Cy
4001
'd DA 1$3n03y 0/}
sooty $83904d
INvyd
| wod %ol 153n034 o/
voocy
doo1 0/
'd HSINId J18VIVAY
£oocy ¥344na o/
£00Z5 dA WA |
SAN34SNS Z00LY 8.03 01
‘340N any
s34 J3IWWA
VMY

o/l
dHviS

U zooer

dNLUVLS WILSAS LV AILHVLS d0o1

Sheet 124 of 156 4,445,177

Apr. 24, 1984

U.S. Patent

EEY OId

v00EY
S00EY OL
- [‘ooeroy
TINNYHOANS
oL 139
1aVUVAY uzuuﬂwo “
38AYN INVYI aNY ON3S OL
43s3u 183n03y 138

¢
JIEVYUVAY
ELLL T
sl

13§
1AV UVAY
34 AV
ANVHS

| EO0E® WOWJ

dWVHd HO4 NOO
‘PO0OEP XD018

cEt "OId

€00tV

Y00ty OL

LOQEP OL

ovd
FEVUVYAY
INvud
38 AVYNW 138

NOLLYH3dO
LM
3137dW0D

NOLLVH3dO
avay
A137dWOD

ov3
INOQ NHOM
138

é
S30VESaN

ON

d007T 0/} HSINI4
‘200E¥ 32018

[+ 15]
JHON

ADVSSIAN
OiX HOd
3001

ZOOEP WOHd

4,445,177

U.S. Patent Apr. 24, 1984

Sheet 125 of 156

Looey
| oL
500ty
T3INNVHOENS
LN 139 _!
| 3anyL =
INUL = FBVUVAY
" 3NOG NHOM 38 AVYW INvVHS
200%P ONV aN3s aNvY aNog
01 '03y NHOM
183n03y
o/ 1$3noay
3¥VdIUd §8300ud
183noay
WWA DO
1X3N 139

¢
OO NO

XHOM WA
ELTel]

HYINVIIO IWVYS ONV dOOT OWO SS300ug SOOEY WOud
:200EY ANV 900EY SXD018

900E¥ OL

ON

vEY OId
S00tv

—.lll' LO0EY OL

TINNVHOENS
0l 129

ELETY
= BY4 aN3S
Ol 183n0ay

a3ivoomy
INYYY

aNdL = ovy
INOQ dHOMm

[

808Z¥ JONWA
1X3N
139

S3A

anva
SOSTP DIWWA
139

YOOEY WOHS

4007 OWIWA SS300Hd

Sheet 126 of 156 4,445,177

- Apr. 24, 1984

U.S. Patent

Z09Ey 01
)

9vd
123180 ¥Od
S1HW INVN

¢
13834 OVY
anva

NIS .LVT WON4d

[
138 V14
ONIDUNd

V134 1L09EY LNIWDIS

L8V "OId
€09EP OL
_ i
ONiavo DNIDHNG
= Snlvis = SNivVis

83A

NOLLYDO0TIV INVU
_ G31V¥20T1IVY
Invud
_ = $NLVLS
_]
1218VIUVAY
INVHd
3INVHd ON
“ ILvI011Y = SNLYLS
_l 209ty LNIWD3IS IWVHLI 3LVI0T1TVY
_ ONIDuNd
_ = SALYLS
ILHN
_ ININYXE
_ ONIGYOT
= SNLVLS
_l LO9EY INIWDIS ALHW ANINVYX3
AIN3QIS3Y
FWYUVAY =Snivis
aNv
aNNog 39vd

t09ty
NYNL3Y

9y "OId

009€Y NOILONNS

MIIAHIAO NOILVIOT1IV ANVYY

4,445,177

Sheet 127 of 156

U.S. Patent apr. 24, 1984

6E¥ "OId4

006E¥ INILNOY
NOLLY20711v3a awvug

G

8EY OI4 cosey

ANNOD INVYL
ANNOENN
LNIWIHONI

LHN
JONVHHVYIY

o1
a3aLvooTy
INVYY
= SNiVig
INVYL
01 39Vd £osey
193180 aNta oL
alavivay
NS aNvyd ON
AVl = SNlvis
avaH 14niN 3DVd
noud u..km%.om_._.__..omo BNIDlng
ANVES INVL 1HV1S

T40IN NO
GV3H NO
pel]
SANVHY ANd

NOLLYD0T11v3a 3wvud

[
a3isIgon
vvd
SaANVHS

LNNOD NV INvYd
aNNOENN GNNOS] HO4
AN3IW3UYD3Q 43N HOUVas

¢
VAV

INVES
aNnoenNn

LO9EY WOy

NVL3A Z09Ey INIWDIS

U.S. Patent

Apr. 24, 1984 Sheet 128 of 156

REARRANGING MHT 10716

MHT INDEX

MHTE 42601A

+1

INVALID MHTE 426018

* e &8 & o a u e @

MHTE 42601C

J+1

MHTE 426010 (HASHED AON-PAGE J)

J+2

MHTE 42601E (HASHED AON-PAGE)

J+3

INVALID MHTE 42601F

WORKING SET OF

BQUND OBJECT PAGES 44601

44102 OBJECT PAGES

MHKT 10716

FIG. 440

WORKING SETS

REFERENCED BY NOT YET
VIRTUAL REFERENCED BY
PROCESSOR 612 VIRTUAL PROCESSOR

TO WHICH
PROCESS 610A

OF EOS

FOR PROCESS 610A

FIG. 441

44103 OBJECT PAGES

)

|

|

|

' 612 BUT ADDED

[TO PROCESS 610A'S
iS BOUND | WORKING SET

| AT THE REQUEST

|

|

}

|

4,445,177

U.S. Patent Apr. 24, 1984 Sheet 129 of 156 ‘4,445,177

RELATIONSHIPS BETWEEN WORKING SETS

SET OF ALL OBJECT PAGES
BOUND TO A PRIMARY
MEMORY FRAME 44201

44202: SET OF OBJECT PAGES BELONGING TO PROCESS 610A'S WORKING SET
44203: SET OF OBJECT PAGES BELONGING TO PROCESS 610B'S WORKING SET
44204: SET OF OBJECT PAGES BELONGING TO PROCESS 610C'S WORKING SET
44205: SET OF OBJECT PAGES BELONGING TO PROCESS 610D'S WORKING SET

FIG. 442

WORKING SET MATRIX DETAIL

FRAME NUMBERS 44303

o~ 1 J N
o 1
frd
]
3 S
L4
& g
[] «
3 a
H
3 - ENTRIES FOR VIRTUAL PROCESSOR 44304
?
w / «
8 WSME FOR S
F VIRTUAL PROCESSOR s
< 1 AN J FRAME J06 w
3 £
£ 4
>

WORKING SET MATRIX 10720

WSME 44306

44307144308 f#——— 08: REFERENCED SINCE
LAST PAGE FAULT

44307: IN WORKING SET

-

FIG. 443

U.S. Patent Apr. 24, 1984 Sheet:130 of 156 4,445,177

WORKING SET MANAGEMENT INFORMATION
IN VPSB 614

H

MEMORY QUANTUM 44427

MIN WORKING SET SIZE 44429

MAX WORKING SET SIZE 44431

WSM ROW ADDRESS 44433

FIRST FRAME 44435

" LAST FRAME 44437

PAGE FAULT FREQUENCY 44439

LPF REAL TIME 44441

LPF PROC EXECUTION TIME 44443

PAGE-TIME INTEGRAL 44445

LAST PTI UPDATED PROC. EX. TIME 44447

PAGE FAULTS 44449

WORKING SET FAULTS 44451

CURRENT WORKING SET SIZE 44453

AD(LEFT) MEMORY MANAGER INFORMATION 46225

FIG. 444

U.S. Patent Apr. 24, 1984 Sheet 131 éf 156 4,445,177

ADD TO WORKING SET

‘ START }

REMOVE FROM WORKING SET

RESET
WSME FOR
UP-PAGE
PAGE]
TO REMOVE DECREMENTY
FOUND MFYE USE
COUNT
REMOVE USE YES MOVE MFTE
A PAGE COUNT = 0 TO
»? NIUFL
l REMOVE PAGE
' LOOP 44502 . NO
ADD PAGE TO
WORKING SET 44503 SET WSME DECREMENT
FOR CURR WS
UP-PAGE
]
o G
MFTE.
USE COUNT
REMOVE FROM WORKING
SET MICROCODE 44601
MOVE MFTE YES USE
TO IUFL ‘ COUND = 1
?

NO

INCREMENT
CURR WS

ADD TO WORKING SET
MICROCODE 44501 m

FIG. 445 FIG. 446

U.S. Patent Apr. 24, 1984 Sheet 132 of 156 4,445,177

OVERVIEW OF PROCESSES

PROCESS OBJECT 44701
USER MAS
< 103208
58
o
<
DB.S
MAS
10330
8
-
(=]
&5
~
EOS
MAS
103320
»
1]
*
KOS MAS
10334
) L — e e]
<8 MAS502
L
<
SECURE STACK
OBJECT
10336
PET 44705 WITH prvry
AWAIT ENTRIES
FOR PROCESS €10 PROCESS STACKS 44703
NON-STACKED DATA PROCEDURES 602
REFERENCED BY - EXECUTED
PROCESS 610 44704 BY PROCESS 610
44706

FIG. 447

U.S. Patent Apr. 24, 1984 Sheet 133 of 156 4,445,177

EVENT COUNTERS AND AWAIT ENTRIES

EVENT COUNTER NAME 44803

7 EVENT COUNTER VALUE 44802 - j
0 4 EVENT COUNTER 44801 64
0
EVENT COUNTER NAME 44603
128
¥ EVENT COUNTER VALUE 44802
i BACK LINK 44805 j 102

L————--—————_ — o —]
AWAIT ENTRY 44804—)—

FIG. 448

AWAIT TABLE OVERVIEW

EVENT COUNTER NAME '
T
44803 FOR ADVANCED EC PETLOCK 44011
r FREE LIST HEAD 44907
HASH
FUNCTION
44901 FREE PETE 44009
;
E EC LIST HEAD 44905
4
LIST PETE 09A
PET INDEX
i AWAIT ENTRY
! T sa804
LIST PETE 098
{ AWAIT ENTRY | —
PETHT 44903 1 44804 s
PET
ARRAY ~—
FIG. 449 44902 FREE PETE 44900

PET 44705 WITH
PET EC LIST 44904

U.S. Patent Apr. 24, 1984 Sheet 134 of 156 4,445,177

PROCESS SYNCHRONIZATION WITH
EVENT COUNTERS AND AWAIT ENTRIES

PROCESS 610A
PROCESS A RESUMES
WHEN ECO4’S
VALUE IS VAL1 TABLE C 45003 PROCESS 8108)
CHANGE TABLE C CHANGE TABLE
' ‘ c
NAME: ECO4
VALUES: VALO
VALY
ADVANCE (ECO4) | VAL2 I ADVANCED (ECO4)
(ECO4 ~ VAL2) , (ECO4 = VAL1}
EVENT COUNTER 45004 —
NEXT__EC__VAL= ‘ N_EC_VAL =
READ (ECO4) READ (ECO4)
ECNAME: ECO4
ECVAL: VAL1
PROCESS: A
NEXT_EC_VAL = AWAIT ENTRY 450054 — N_EC_VAL =
NEXT_EC_VAL + 1 N_EC_VAL + 1
ECNAME: ECO4
ECVAL: VAL2
PROCESS: B
AWAIT (ECO4, AWAIT ENTRY 450058 — AWAIT (ECO4, -
NEXT_EC_VAL) N_EC_VAL)
ECNAME: ECO4
ECVAL: VAL3
4 PR S: A
PROCESS A SUSPENDED oces PROCESS 6108
UNTIL ECO4 HAS J SUSPENDED UNTIL
VALUE VAL3 . AWAIT ENTRY 45005C £CO4 = VAL2
PROCESS 8108 RESUMED

AWAIT TABLE 45008 -)

CHANGE TABLE
C

FIG. 450

U.S. Patent

MESSAGE
QUEUE ~-
45210

MESSAGE ELEMENTS

IN QUEUE 45211

Apr. 24, 1984

LOCKS

Sheet 135 of 156

EVENT COUNTER 44801

SEQUENCER 45102

LOCK 45101

FIG. 451

MESSAGE QUEUES

ENQUEUE EVENT COUNTER 45203

DEQUEUE EVENT COUNTER 45204

QUEUE HEAD INDEX 45205

QUEUE TAIL lﬁDEx 45206

QUEUE LOCK 45207

MESSAGE QUEUE HEADS 45201

FREE MESSAGE ELEMENTS
45209

MESSAGE ELEMENT 45208A

MESSAGE ELEMENT 452088

MESSAGE ELEMENT 45208C

FREE MESSAGE ELEMENTS 45209

MESSAGE QUEUE ARRAY 45202

FIG. 452

4,445,177

U.S. Patent Apr. 24, 1984

Sheet 136 of 156

4,445,177

PROCESS OBJECT
801

USER MAS
10328

DBMS MAS
10330

EOS MAS
10332

KOS MAS
10334

vp
NO
45304
UID'S FOR PROCESS OBJECT 901
UID'S FOR PROCESS STACKS
10326-10336
VPSB614 FOR VPA 45303
VPS BA 45301
RUNNING LIST HEAD 45311
ELIGIBLE LIST HEAD 45313
SUSPENDED LIST HEAD 45315
STOPPED LIST HEAD 45317
KILLED LIST HEAD 45319
ve
NO
43304 MVPLE 45321

MVPLE 45309

SECURE STACK
10336

FIG. 453

U.S. Patent Apr. 24, 1984 Sheet 137 of 156

VIRTUAL PROCESSOR SYNCHRONIZATION

VPSB 614
FOR NON-KOS PROCESS
A’S VIRTUAL PROCESSOR

PROCESS
OBJECT 901
FOR PROCESS A

VPS8 614 FOR
— KOS PROCESS MANAGER
PROCESS'S VP.

VPS BA 45301

VPATE FOR MOS EC 45407

— VPATE 45403

VPATE FOR PRIV EC 45405

4,445,177

PRIVATE EC 45405

MULTIPLEXED
OUTWARD SIGNALS EC
45407

CLOCK EC
45425

VPAT CHUNK 45402

FOR PROCESS A'S
VIRTUAL PROCESSOR 612
«m— VPAT CHUNK 45402

FOR PROC MANAGER
PROCESS'S

VIRTUAL PROCESSOR
612

VPATE 45403

VPAT 45401

FIG. 454

/

L]
lAwm’ ENTRY FOR ECBI
']

PET 44705
WITH PETE
LIST FOR
PROCESS A

EC 8

OUTWARD SIGNALS
OBJECT 45423

U.S. Patent Apr. 24, 1984

Sheet 138 of 156

LOCK 45501

VP UID 45511

VERSION INFO 45503

SECURE STACK UID 45513

PRIVATE EC 45405

CURRENT STOCK UID 45515

CREATOR 45505

SECURE STACK AON 45517

PRINCIPAL, PROCESS
TAG UID'S 45507

PROCESS AON 45519

VP NUMBER 45521

VIRTUAL PROCESSOR
INFORMATION
45509

VIRTUAL PROCESSOR
INFORMATION 45509

.

EOS INFORMATION
45523

SCH. MESS. QUEUE UID 45525

4,445,177

STOPPED MESS. QUEUE UID 45527

KILLED MESS. QUEUE UID 45529

EOS INFOR PTR 45531

PER-DOMAIN INFO 45541

DOMAIN INFORMATION
45540

o TE— G . G S TR Sme meen swwm e

SYNCHRONIZATION
INFORMATION 45555

PROCESS MANAGER
STATISTICS 45567

INIT. PROC. PTR. 45533

INIT. MESS. PTR. 45535

TIME OF LAST AWAIT 45537

CUM. AWAIT TIME 45539

EOS INFORMATION 45523

DOMAIN UID 45543

DOMAIN MAS UID 45543

DOMAIN MAS AON 45547

VIRTUAL MEMORY
MANAGER STATISTICS
45569

PROCESS OBJECT 801

FIG. 455

TRACE UID PTR. 45549

TRACE OBJECT AON 45551

INTERRUPT LIST HEAD 45553

PER-DOMAIN INFORMATION
45541 FOR EACH DOMAIN

AWAIT QUANTUM 45557

DOMAIN OF AWAIT 45549

AWAIT LIST HEAD 45561

PROCESS STATE 45563

AWAIT QUANTUM RUNOUT 45565

SYNCHRONIZATION INFORMATION 45555

U.S. Patent Apr. 24, 1984 Sheet 139 of 156 4,445,177

EVENT COUNTERS

AWAITED BY THE PROCESS MANAGER |
PROCESS MANAGER PROCESS AWAIT PROCESS MANAGER
PROCESS ENTRIES Co PROCESS QuUEUES
NEW REQUEST
EC 45601 ' PMRQ
. i . 45607
cLocK PROCESS MANAGER
EC 45425 PROCESS CHUNK
OF VPAT 45617
STOPPED
KILLED EC 45605 SCHEDULER
MESSAGE
- QUEUE
MOS EC 45600
45607
VPAT 45401
STOPPED
QUEUE
45611
EVENT COUNTERS
AWAITED BY
USER PROCESSES USER PROCESS
AWAIT ENTRIES
r PM CLOCK]
EC 45615 . KILLED
| It o | . i QUEUE
45613
OUTWARD SIGNALS
EC'S
OUTWARD SIGNALS PET 44705
OBJECT 45423

FIG. 456

U.S. Patent Apr. 24 1984 Sheet 140 of 156 4,445,177

PET ENTRIES AND LISTS

7aG | moex | unx | BACK lougean

45701 | 45703 | 45705 | YNK { 45709

45707
AWAIT A
EC NAM
v R e e s
45717
AWAIT ENTRY 457024
PET AWAIT LIST ENTRY 45702
45700
45553 AWAIT ENTRY 457028
DOMAIN INTERRUPT
LIST HEAD
45561 > 45709 45719
AWAIT LIST INTERRUPT ENTRY 457 14A
HEAD

PROCESS OBJECT 901

HANDLER ENTRY 45724
45701 | 45703] 45705 | 45707 | 45709

DOMAIN
as711] 45713 | 45715 | uia
as717 |, |4 1, wore
PET INTERRUPT & -~ o 45708
LIST ENTRY 45718 Fal
¢ ba INTERRUPT ENTRY 457188
45719: HANDLER ENTRY INDEX

45721: INTERRUPT PRIORITY
45723: INTERRUPT PENDING

45701 | 45703

HANDLER ENTRY 45724

PTR TO HANDLER PTR YO MAS
PROCEDURE 45725 FRAME 45727
PET INTERRUPT HANDLER ENTRY 45724 PET 44705 WITH

AWAIT AND INTERRUPT
LISTS FOR A PROCESS

FIG. 457

U.S. Patent apr. 24, 1984 Sheet 141 of 156 4,445,177

CLOCK EVENT COUNTER IMPLEMENTATION

PROCESS LEVEL

r—=— "L A
I PM CLOCK EC '
45615

|

NEW REQUEST EC
45601

HENDER
PETE A
PETEB

PET 44705 WITH PETE LIST FOR
PM CLOCK EC 45615

VIRTUAL PROCESSOR LEVEL

CLOCK EC »
Q
45425 g & @
i] 5 Q
] ele az 9
] el <> o
o ole zZT o
« z <0f | &
=] g « X © []
NEXT INTERESTING i wi? ang Iy
CLOCK VALUE 45801 z £le W o &
; - la o g z
z Zlz e w
. o a E
% - <
UPAT 45401
CLOCK BASE VALUE
FU_10120 LEVEL
ITEVAL TIMER 25410 EGG TIMER 25412 TIMER SET REASOM

GRF 10354 — GR'S 10360

FIG. 458

U.S. Patent Apr. 24, 1984 Sheet 142 of 156

OUTWARD SIGNALS OBJECT DETAIL

CONFIGURATION INFORMATION 45910

EVENT COUNTER 45907

LAST VALUE OF EVENT COUNTER 45905

OSOE 45903

0S0 45423

FIG. 459

4,445,177

PROCESS MANAGER REQUEST QUEUE

LOCK 45101 ‘

CONFIGURATION
INFORMATION 46003

ENTRY COUNT 46005

TAG 46011

LINK 46013

PROCESS UID 46015

PMRQE 46009

PMRQE
- ARRAY
48007

PMRQ 45607

FIG. 460

KOS-EOS MESSAGES

TAG 46103

PROCESS UID 46105

EOS INFORMATION 46107

KOS-EOS MESSAGE 46101

FIG. 461

U.S. Patent Apr. 24, 1984 Sheet 143 of 156 . 4,445,177

i

- ..
VPSB NUMBER 46201 SECURE STOCK AOM 46209
PRINCIPAL UID 46203 ARRAY OF MAS AONS
" 46211
PROCESS UID 46205
ARRAY OF TRACE
POINTERS 46213
STACK o -
INFORMATION 46207 STACK INFORMATION 46207

PRIORITY 46217

PROC. EXECUTION TIME ALARM 46210

PROCESS
MANAGER
INFORMATION 46215

EL. PROC. EX. TIME 46221

PROC. EX. TIME LIMIT 46223

7

PROCESS MANAGER
INFORMATION 46215

ATOMIC OP DEPTH 46257

MEMORY MANAGER

PEND NT 46259
INFORMATION 46225 Sus cou

PROC. EX. TIME ALARM PERIOD 46261

PROC. EX. TIME LINE PERIOD 46263

STOP PENDING 46265

VP MANAGER STOP ACK. PENDING 46267
INFORMATION 46255 -

KILLED ACK. PENDING 46269

WIRED KERNEL VP 46271

VP MANAGER INFORMATION 46255

FIG. 462

U.S. Patent

VP MANAGER LOCK
46348

Apr. 24, 1984 Sheet 144 of 156

VIRTUAL PROCESSOR MANAGER OVERVIEW

4,445,177

LIST HEADS

MVPLE 45321

vp VP
V' AT
no | o | VP STATE | FLas
VPIE 46303
VP INFORMATION
ARRAY 46301
LIST HEADS
HVPLE 46307 > VPSB 614
HVPL 46305 VPSBA 45301 MVPL 46319
] [
[=]
i 3
« L
w w
- =
L4 <
a a
> >
VPATHT 46307 VPAT 45401

VIRTUAL PROCESSOR INFORMATION ENTRY DZTAIL

VP NUMBER 46401

VP ID 46403

EXECUTION STATE 46405

VP CONFIGURATION FLAG 46407

VP ALLOCATED FLAG 46409

VPIE 46303

FIG. 464

U.S. Patent Apr. 24, 1984 Sheet 145 of 156 - 4,445,177

VIRTUAL PROCESSOR LISTS DETAIL

NULL LIST HD 46501 RUNNING LIST HD 45311

o RUNNABLE LIST HD 46503

ELIGIBLE LIST HD. 45313

STOPPED LIST HD 46505 SUSP. LIST HD. 45315

KILLED LIST HD 46507 STOPPED LIST HD. 45317

UNBOUNDED HD 46509 KILLED LIST HD. 45319

DECONFIGURED LIST HD 46511

HVPLE 46307

HVPLE 46307
HIGH-LEVEL VP LIST MICRO VP LIST
46305 45309
NEXT 46513 PREV 46515 NEXT 46529 PREV. 46531

LISTID 46517 //////// COUNTER 46533 LIST ID 46535

HVPLE 46307

MVPLE 45321

FIG. 465

U.S. Patent Apr. 24, 1984 Sheet 146 of 156 4,445,177

VPAT DETAIL
AON-OFFSET OF
EC NAME 44803
HASH FUNCTION FREE LIST HEAD 46607
46602
VPATHT INDEX
POINTER
VPAT INDEX VPATE FOR UPA TO VPAT
- CHUNK 46605
VPATHE
46604
) VPAT CHUNK 45402
VPATHE 46307 FOR UPX
VPATEC | H
1
A W
\ SECURE STACK
10336 FOR
——1 awarr VP X'S PROCESS
ENTRY Li004
FOR
VPAT CHUNK 45402 Efa';;"e
FOR VPY
VPAT 45401
SATISFIED 46609 NOTIFY 46611

EVENT COUNTER AON 46613

EVENT COUNTER OFFSET 46615

EVENT COUNTER VALUE 46617

LINK TO NEXT VPATE 46619

VP NUMBER 46621

VPATE 45403 DETAIL

FIG. 466

U.S. Patent Apr. 24, 1984

Sheet 147 of 156

MAS OBJECT OVERVIEW

4,445,177

UNUSED STORAGE
48727
STO 46704 - : -
S-INTERPRETER
z PORTION OF FRAME MAS
u S 46713 FRAME
u OZ - 46709C
S8« MEDIATED FRAME
~r3z« HEADER 10414 —
Juz FHP ——
8 @ a - la—]
zi g @ 46702 MAS FRAME
3f<p 467008
$ 53] | LocALumk
28 | 46710
3 MAS FRAME
= 46709A
J 09 ——————= LINK 46704
BACK TO FRAME
IN ANOTHER
__——-/—\/\J Has onseet
FFO =t —
46719
PER-DOMAIN
INFORMATION
46707
MAS
— BASE
10410
KOS MAS HEADER
46705
MAS OBJECT UID ——p» J
46715

MAS OBJECT 46703

FIG. 467

U.S. Patent Apr. 24, 1984

Sheet 148 of 156

MAS BOSE DETAIL

)
FFO
46719

STORAGE AREA

46854

AAT 30201

SDOD

4,445,177

STATIC DATA
STORAGE 46867

¥3yv viva
NIVWNOQ-H43d

egg=e ESBOP g

— N
f_\/—\..‘

STATIC DATA FAULT HD LR PTR 46849

LINKAGE POINTERS
46865

STATIC DATA
BLOCK 46863

SEB 46864

VERIFY ROUTINE PTR. 46847

DEFAULT CLEAN UP PTR, 46845

STATIC HANDLER TBL PTR. 46843

DOMAIN ID 46841

INTERRUPT MASK 46839

FLAGS 46825

FORMAT INFO 46823

M
— T —

T
LZBIY OdNI
LNIWNOHIANT

1049% VIUVY
NOILYWHOANI
NIVNOQ-H3d

NIYINOQ

FRAME LABEL SEQ. 46819

UNUSED

AAT POINTER 30211

SIGNALLE PTR. 46813

DOM. ENV. INFO PTR. 46811

PROCESS UID 46809

STACK TOP OFFSET 46807

FIRST FRAME OFFSET 46806

PREVIOUS FRAME OFFSET 46805

FLAGS 46803

S0.9% HAANVH
103r80 Svw

FORMAT INFOR 46401

STACK BASE 10410

46827 | 46829 | 46831 | 46833 | 46835 RES

FLAGS 25

46827: PENDING INTERUPT

46829: DOMAIN DEAD .

4683 1: INVOKE VERIFY ON ENTRY
46833: INVOKE VERIFY ON EXIT
46835: DEFAULT HANDLER NON-NULL

NON-RES. PTR 46859

RES. PTR. 46861

AATE 30205

AAT 30201

46804

FLAGS 46803: 46804: DOMAIN ACTIVE

FIG. 468

U.S. Patent Apr. 24, 1984 Sheet 149 of 156

FP

MAS FRAME DETAIL

4,445,177

LOCAL STORAGE 10420 & f
2 _
>
=z 2R
LINKAGE POINTERS 10416 »2 E2
ax mo
28 ¢ b4
Yo &% oz
M 2 8 -0
©g 33
£
M m 5
e s
-h
-__._______.__-ggg 3
LIST AREA 46943 83k g
m
LINKAGE POINTERS 10416
FRAME LABEL 46935
PED POINTER 46933
DYNAMIC BACK POINTER 46931 x
& mm
a0
NUMBER OF ARGUMENTS 46929 £z 3
n Nmm
CATCH LIST OFF 46927 Z. ©
Tm
CLEAN UP LIST OFF 46925 g7 g
»
COND LIST OFF 46923 §| ju
b
FRAME TOP OFF 46921
NEXT FRAME OFF 46919
PREV. FRAME OFF 46917
FLAGS 46902
FORMAT INFO 46901 !
MAS FRAME 46709
146903 (46905 | 46907 46909 46911] 46913]46915] ReserveD

FLAGS 46902

46903: RESULT OF CROSS-DOMAIN
460905: IN SIGNALLER

46907: DO NOT RETURN
46909-15: LIST PRESENT FLAGS

FIG. 469

NOTE: IN A FRAME
RESULTING FROM
A CROSS-DOMAIN
CALL, PFO 17=0;
IN A FRAME
MAKING A CROSS-
DOMAIN CALL,
NFO =0

U.S. Patent

Apr. 24, 1984

Sheet 150 of 156

SS 10336 OVERVIEW

4,445,177

SSTD

47043 —a

SSFO

TOP ORDINARY FRAME 10510C

47045

RDFO

TOP CROSS DOMAIN
FRAME 47039C

47047 ~p»

SSFO

—~—
[~ ~—

CROSS-DOMAIN FRAME
470398

ORDINARY FRAME 105108

ORDINARY FRAME 10510A

CROSS-DOMAIN FRAME
470398

e

'_\-/_/

L£0.% IONIANDIAS NOILYIOANI NY HO 4 SANVYA

€00.P SINVYHL XOVLS FuNDIS

INITIALIZATION
FRAME HEADER 47035

47034

STORAGE AREA FOR
JP 10114 REGISTER
CONTENTS 47033

PROCESS
MICROSTATE 47017

|

LOOLt 3SVE NIVLS IHNDIS

TRACE INFO PTR 47031

START SIGNALLER PTR 47029

VPAT OFFSET 47027

DOMAIN NUMBER 47025

OFFSETS IN
STORAGE AREA 47023

XDFQ VAL 47022

SSFO VAL 47021

SSTO VAL 47019

PROCESS MICROSTATE 47017

NO X-DOM FRS 47016

PROCESS UID 47015

SSFO VALUE 47013

SECURE STACK

PREV FR OFF 47011

FLAGS 47009

HEADER 10512

SECURE STACK OBJECT 10336

FIG. 470

FORMAT INFO 47001

SECURE STACK HEADER 10512

U.S. Patent Apr. 24, 1984 Sheet 151 of 156 4,445,177

SECURE STACK 10336 FRAME DETAIL

(=]
§ N—’_\/_-\J T HPoRMATION 4714
e
4 NTP VALUE 47143
<
g» SIP VALUE 47141
z .
g PBP VALUE 47139
SDP VALUE 47137
MACROSTATE 105186
S-INTERP ENV PTR 47135
ORDINARY SS 10336 FRAME FP VALUE 47133
HEADER 10514
ENTRY DESC PTR 47131
PEP PTR 47129
END OF NY 47127
SYLLABLE SIZE 47125
MACROSTATE 10516
o
§ MICROSTATE INFO 47121
B S~ PREC X-DOMAIN FR OFF 47119
'E N/\/_/\/—‘
2 DOMAIN NO 47117
(-4
o TDFO 47113
=
NFO 47111
MACROSTATE 10516
PFO 47109
CROSS-DOMAIN 47107 FLAGS 47105
FRAME HEADER
47157 FORMAT INFO 47103
(]
- r ORDINARY SS FRAME HEADER 10514
(=]
w GOTO TAG 47155
<
" STO VALUE 47153 47121
r £
3 FHP VALUE 47151 47119
]
3 47117
[7:]
g 47113
o L
CROSS-DOMAIN FRAME 47039 NEXT X-DOM FR 47159
PREV X-D0M FR 47161
47107 47108
47103

CROSS-DOMAIN FRAME
HEADER 47157

FIG. 471

U.S. Patent Apr. 24, 1984 Sheet 152 of 156 4,445,177

PROCEDURE OBJECT OVERVIEW

AlA OFF 47201 GATELINE N N———— N
HEADER \rp
™ 10336
- NAME TABLES
. 10350
ENTRY DEC. OFF 47207
GATES
EXT. ENTRY
LOCAL GATE 47205 5 :>£sc.) NTR BINDER AREA
: 10340
BINDER AREA OFF 30323
47208
LINK GATE 47206
PBP— -
ARGUMENT
K 30305 LN 30307 SIA 30309 INFORMATION
ARRAY
NTP 30311 SOPP 30313 |_Peos 10352
10348
PBP 30315 SEPP 30316
PED 30303 J -t AIAE 47245
PBP OFF 47220 | FLAGS 47230 | 4723s|47237}47230]
INTERNAL
PEDO 47231 LOCAL DATR SIZE | ENTRY
DESCRIPTORS

ENTRY DESCRIPTION 47227 (ED’S) 10342

MAX. FORMATS
~—] MIN. ARGS 47247
CODE 47249
10344 ACCESS MODE ARRAY
J 47251
b AIAE 47245
SEB
= PROTOTYPE
47241 4] R w E
- AMAE PRIMITIVE ACCESS 47255
- 47253
1 ACCESS TYPE CODE
DATA LINKS 303189
STaTIC EXT ENDED ACCESS 47257
STATIC
| DATA
PROTOTYPE
STATIC DATA 30317
INITIALIZATION INFO
30321

47235: AIA PREVENT
47237: SEB PRESENT
47239: DO NOT CHECK ACCESS

FIG. 472

U.S. Patent Apr. 24, 1984 Sheet 153 of 156 4,445,177

INFORMATION USED IN CALLS FROM MICROCODE

NUMBER OF ENTRIES 47303

KFT

INDEX —#» POINTER TO A PROCEDURE
47309

KFTE 47307
KFTE
— ARRAY
47305
KERNAL FAULT TABLE 47301
UID FOR STATUS OBJECT 47313 CONDITION
- IDENTIFIER
CONDITION CODE 47317 47315

INFO MAX 47319 INFO LEN 47321

FAULT INFORMATION 47323

FAULT PACKET 47311

FIG. 473

U.S. Patent Apr. 24, 1984 Sheet 154 of 156 4,445,177

LISTS IN MEDIATED FRAMES

CONDITION INDENTIFIER 47315

W NEXT NODE OFFSET 47402

OTHER LOCAL DATA STATUS OBJECT UID 47403

CONDITION CODE 47405

L CLEANUP NODE 47405 POINTER TO HANDLER PROCEDURE 47407

POINTER TO MEDIATED FRAME 47409

COND NODE 47401C e CONDITION LIST NODE 47401

CATCH NODE 47409C

COND NODE 474018 -~ NEXT NODE OFFSET 47402

CATCH NODE 474098 POINTER TO REENTRY POINT 47413

COND NODE 474014 - FRAME LABEL VALUE 47415
LIST AREA FRAME OFFSET 47417

46943

STACK UID 47419

CATCH LIST NODE 47411
LINKAGE POINTERS

10416 NEXT NODE OFFSET 47402
POINTER TO CLEANUP PROC 47423
CLEANUP LIST NODE 47421
CATCH UIST OFF 46927
CLEANUP LIST OFF 46925

COND LIST OFF 46923

HEADER 10414

MEDIATED FRAME 46947

FIG. 474

U.S. Patent Apr. 24, 1984 Sheet 155 of 156 4,445,177

TRACE TABLE

TRACE TABLE POINTER 47502
Lo

VERSION 47503

S-OP FETCH TTDE 47513

NAME RESOLVE-EVAL TTDE 47515

TAT OFFSET| TRACE NO
47507
PROC ENTRANCE-EXIT TTDE 47517 K

OIS 47519 | ENTRIES 47511

DATA STORE TTDE 47519

TTDE 47505
DATA FETCH TTDE 47521

TRACE TABLE DESCRIPTOR 47501

TAT OFFSET
—

AREA LOCATION | TLT OFF | NO ENTRIES
47527 47529 47531

/%

TAT 47523

TLT OFFSET TLY OFFSET
L

PC VALUE

BIT ARRAY 47541

SIN TRACE LOC ENTRY 47535

NAME EVAL-RESOLVE

TLT 47537

[\—’—\’/\,

SIN TLT 47533

TLT OFFSET TLT OFFSET
L | I
TRACE TYPE 47551 R
OFFSET 47557 LENGTH 47559
ENTRY OFFSET 47549
FETCH-STORE LOC ENTRY
PROC TRACE LOC ENTRY 47547 47555
PROCEDURE ENTY-EXIT TLT 47545

FETCH OR STORE TLT 47553

TLTS 47532

FIG. 475

U.S. Patent Apr.24, 1984 Sheet 156 of 156 4,445,177

FU 10120 MICROINSTRUCTION FORMAT

0 123 67689 10 13141516 18 19 21 22 2526 2728 2030 31 32 33 3435 36 3738 40 41 43
? JPD- LEN | L- COM RIA| A- | O [ALUf oo | ALU
4 CTRL CTRL | IN EXT wiwl INj N IN -oP
|] I
PARITY DB CONTROL " RDEST DST FRAME
TIMING NB CONTROL R SOURCE SRC FRAME
aa 47 48 49 80
RAND |L LIT 32 {?1““ A
4849 51 52 55 56 57 63 64 66 67 717273 80
L|MEM| wmD DEVCMD | NAC | TEST LTS ffoFAU'-T FORMAT
|]
TRACE TRAP POLARITY
64 66 67 69 70 72 73 80
4
NAC |SNAC //// LTS FORMAT B
64 66 67 6970 72 73 80
NAC |sRce| sc MASK FORMAT C
64 66 67 80
NAC LIT 14 FORMAT D
64 65 , 80
'/ LIT 16 FORMAT E
2 s 64 73 77 78 80
“
FORMAT F
|
EADOR (0-3) EADDR (4-11)

FIG. A1

4,445,177

1

DIGITAL DATA PROCESSING SYSTEM
UTILIZING A UNIQUE ARITHMETIC LOGIC
UNIT FOR HANDLING UNIQUELY
IDENTIFIABLE ADDRESSES FOR OPERANDS
AND INSTRUCTIONS

CROSS REFERENCE TO RELATED
APPLICATIONS

The present patent application is related to other
patent applications assigned to the assignee of the pres-
ent application.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a digital data pro-
cessing system and, more particularly, to a multiprocess
digital data processing system suitable for use in a data
processing network and having a simplified, flexible
user interface and flexible, multileveled internal mecha-
nisms.

2. Description of Prior Art

A general trend in the development of data process-
ing systems has been towards systems suitable for use in
interconnected data processing networks. Another
trend has been towards data processing systems
wherein the internal structure of the system is flexible,
protected from users, and effectively invisible to the
user and wherein the user is presented with a flexible
and simplified interface to the system.

Certain problems and shortcomings affecting the
realization of such a data processing system have ap-
peared repeatedly in the prior art and must be overcome
to create a data processing system having the above
attributes. These prior art problems and limitations
include the following topics.

First, the data processing systems of the prior art
have not provided a system wide addressing system
suitable for use in common by a large number of data
processing systems interconnected into a network. Ad-
dressing systems of the prior art have not provided
sufficiently large address spaces and have not allowed
information to be permanently and uniquely identified.
Prior addressing systems have not made provisions for
information to be located and identified as to type or
format, and have not provided sufficient granularity. In
addition, prior addressing systems have reflected the
physical structure of particular data processing systems.
That is, the addressing systems have been dependent
upon whether a particular computer was, for example,
an 8, 16, 32, 64 or 128 bit machine. Since prior data
processing systems have incorporated addressing mech-
anisms wherein the actual physical structure of the
processing system is apparent to the user, the operations
a user could perform have been limited by the address-
ing mechanisms. In addition, prior processor systems
have operated as fixed word length machines, further
limiting user operations.

Prior data processing systems have not provided
effective protection mechanisms preventing one user
from effecting another user’s data and programs with-
out permission. Such protection mechanisms have not
allowed unique, positive identification of users request-
ing access to information, or of information, nor have
such mechanisms been sufficiently flexible in operation.
In addition, access rights have pertained to the users
rather than to the information, so that control of access
rights has been difficult. Finally, prior art protection

5

10

20

25

30

35

40

45

50

55

60

65

2

mechanisms have allowed the use of “Trojan Horse
arguments”. That is, users not having access rights to
certain information have been able to gain access to that
information through another user or procedure having
such access rights.

Yet another problem of the prior art is that of provid-
ing a simple and flexible interface user interface to a
data processing system. The character of user’s inter-
face to a data processing system is determined, in part,
by the means by which a user refers to and identifies
operands and procedures of the user’s programs and by
the instruction structure of the system. Operands and
procedures are customarily referred to and identified by
some form of logical address having points of reference,
and validity, only within a user’s program. These ad-
dresses must be translated into logical and physical
addresses within a data processing system each time a
program is executed, and must then be frequently re-
translated or generated during execution of a program.
In addition, a user must provide specific instructions as
to data format and handling. As such reference to oper-
ands or procedures typically comprise a major portion
of the instruction stream of the user’s program and
requires numerous machine translations and operations
to implement. A user’s interface to a conventional sys-
tem is thereby complicated, and the speed of execution
of programs reduced, because of the complexity of the
program references to operands and procedures.

A data processing system’s instruction structure in-
cludes both the instructions for controlling system oper-
ations and the means by which these instructions are
executed. Conventional data processing systems are
designed to efficiently execute instructions in one or
two user languages, for example, FORTRAN or CO-
BOL. Programs written in any other language are not
efficiently executable. In addition, a user is often faced
with difficult programming problems when using any
high level language other than the particular one or two
languages that a particular conventional system is de-
signed to utilize.

Yet another problem in conventional data processing
systems is that of protecting the system’s internal mech-
anisms, for example, stack mechanisms and internal
control mechanisms, from accidental or malicious inter-
ference by a user.

Finally, the internal structure and operation of prior
art data processing systems have not been flexible, or
adaptive, in structure and operation. That is, the inter-
nal structure structure and operation of prior systems
have not allowed the systems to be easily modified or
adapted to meet particular data processing require-
ments. Such modifications may include changes in inter-
nal memory capacity, such as the addition or deletion of
special purpose subsystems, for example, floating point
or array processors. In addition, such modifications
have significantly affected the users interface with the
system. Ideally, the actual physical structure and opera-
tion of the data processing system should not be appar-
ent at the user interface.

The present invention provides data processing sys-
tem improvements and features which solve the above-
described problems and limitations.

SUMMARY OF THE INVENTION

The present invention relates to structure and opera-
tion of a data processing system suitable for use in inter-
connected data processing networks, which internal

4,445,177

3

structure is flexible, protected from users, effectively
invisible to users, and provides a flexible and simplified
interface to users. The data processing system provides
an addressing mechanism allowing permanent and
unique identification of all information as objects gener-
ated for use in or by operation of the system, and an
extremely large address space which is accessible to and
common to all such data processing systems. The ad-
dressing mechanism provides addresses which, as par-
ticularly described with reference to the invention
claimed herein, are independent of the physical configu-
ration of the system and allow information to be com-
pletely identified, with a single address having an object
field for identifying the location of an object, together
with an offset field and a length field specifying, respec-
tively, the start of, and the number of bits in, the object
to be accessed. Accordingly, the information is com-
pletely identified by such address, to the bit granular
jevel and with regard to information type or format. As
further particularly described with reference to the
invention claimed herein, an arithmetic logic unit
(ALU) means includes general register means having
three vertically oriented parts for storing such respec-
tive fields. The present invention can be used in a sys-
tem which further provides a protection mechanism
wherein variable access rights are associated with indi-
vidual bodies of information. Information, and users
requesting access to information, are uniquely identified
through the system addressing mechanism. The protec-
tion mechanism also prevents use of Trojan Horse argu-
ments. And, the present invention can be used in a sys-
tem which provides an instruction structure wherein
high level user language instructions are transformed
into dialect coded, uniform, intermediate level instruc-
tions to provide equal facility of execution for a plural-
ity of user languages. Another feature of such a system
is the provision of an operand reference mechanism
wherein operands are referred to in user’s programs by
uniform format names which are transformed, by an
internal mechanism transparent to the user, into ad-
dresses. The present invention can be used in a system
which additionally provides multilevel control and
stack mechanisms protecting the system’s internal
mechanism from interference by users. Yet another
feature of such a system is a data processing system
having a flexible internal structure capable of perform-
ing multiple, concurrent operations and comprised of a
plurality of separate, independent processors. Each
such independent processor has a separate microin-
struction control and at least one separate and indepen-
dent port to a central communications and memory
node. The communications and memory node is also an
independent processor having separate and independent
microinstruction control. The memory processor is
internally comprised of a plurality of independently
operating, microinstruction controlled processors capa-
ble of performing multiple, concurrent memory and
communications operations. The present invention also
provides further data processing system structural and
operational features for implementing the above fea-
tures.

It is thus advantageous to incorporate the present
invention into a data processing system because the
present invention provides addressing méchanisms suit-
able for use in large interconnected data processing
networks. Additionally, the presént invention can be
used in a system which is advantageous in that it pro-
vides an information protection mechanism suitable for

20

25

30

35

40

45

55

65

4

use in large, interconnected data processing networks.
The present invention can be used in a system which is
further advantageous in that it provides a simplified,
flexible, and-more efficient interface to a data process-
ing system. The present invention can be used in a sys-
tem which is yet further advantageous in that it pro-
vides a data processing system which is equally efficient
with any user level language by providing a mechanism
for referring to operands in user programs by uniform
format names and instruction structure incorporating
dialect coded, uniform format intermediate level in-
structions. Additionally, such a system protects data
processing system internal mechanisms from user inter-
ference by providing multilevel control and stack
mechanisms. The present invention is yet further advan-
tageous in providing a flexible internal system structure
capable of performing multiple, concurrent operations,
comprising a plurality of separate, independent proces-
sors, each having a separate microinstruction control
and at least one separate and independent port to a
central, independent communications and memory pro-
cessor comprised of a plurality of independent proces-
sors capable of performing multiple, concurrent mem-
ory and communications operations.

1t is thus an object of the present invention to provide
an improved data processing system.

It is another object of the present invention to pro-
vide a data processing system capable of use in large,
interconnected data processing networks.

It is yet another object of the present invention to
provide an improved addressing mechanism suitable for
use in large, interconnected data processing networks.

It is a further object of the present invention to be
capable of use in a system which provieds an improved
information protection mechanism.

It is still another object of the present invention to
provide a simplified and flexible user interface to a data
processing system.

It is yet a further object of the present invention be
capable of use in a system which provides an improved
mechanism for referring to operands.

Tt is a still further object of the present invention to be
capable of use in a system which provides an instruction
structure allowing efficient data processing system op-
eration with a plurality of high level user languages.

It is a further object of the present invention to be
capable of use in a system which provides data process-
ing internal mechanisms protected from user interfer-
ence.

It is yet another object of the present invention to be
capable of use in a system which provides a data pro-
cessing system having a flexible internal structure capa-
ble of multiple, concurrent operations.

Other objects, advantages and features of the present
invention will be understood by those of ordinary skill
in the art, after referring to the following detailed de-
scription of the preferred embodiments and drawings
wherein:

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a partial block diagram of a computer sys-
tem incorporating the present invention;

FIG. 2 is a diagram illustrating computer system
addressing structure of the present invention;

FIG. 3 is a diagram illustrating the computer system
instruction stream of the present invention;

FIG. 4 is a diagram illustrating the control structure
of a conventional computer system;

4,445,177

FIG. 4A is a diagram illustrating the control structure
of a computer system incorporating the present inven-
tion;

FIG. 5-FIG. Al inclusive are diagrams all relating to
the present invention; .

FIG. § is a diagram illustrating a stack mechanism;

FIG. 6 is a diagram illustrating procedures, proce-
dure objects, processes, and virtual Processors;

FIG. 7 is a diagram illustrating operating levels and
mechanisms of the present computer;

FIG. 8 is a diagram illustrating a physical implemen-
tation of processes and virtual processors;

FIG. 9 is a diagram illustrating a process and process
stack objects;

FIG. 10 is a diagram illustrating operation of macros-
tacks and secure stacks;

FIG. 11 is a diagram illustrating detailed structure of
a stack;

FIG. 12is a diagram illustrating a physical descriptor;

FIG. 13 is a diagram illustrating the relationship be-
tween logical pages and frames in a memory storage
space;

FIG. 14 is a diagram illustrating access control to
objects;

FIG. 15 is a diagram illustrating virtual processors
and virtual processor swapping;

FIG. 16 is a partial block diagram of an 1/0 system of
the present computer system;

FIG. 17 is a diagram illustrating operation of a ring
grant generator;

FIG. 18 is a partial block diagram of a memory sys-
tem;

FIG. 19 is a partial block diagram of a fetch unit of
the present computer system;

FIG. 20 is a partial block diagram of an execute unit
of the present computer system;

FIG. 101 is a more detailed partial block diagram of
the present computer system;

FIG. 102 is a diagram illustrating certain information
structures and mechanisms of the present computer
system;

FIG. 103 is a diagram illustrating process structures;

FIG. 104 is a diagram illustrating a macrostack struc-
ture;

FIG. 105 is a diagram illustrating a secure stack struc-
ture;

FIGS. 106 A, B, and C are diagrams illustrating the
addressing structure of the present computer system;

FIG. 107 is a diagram illustrating addressing mecha-
nisms of the present computer system;

FIG. 108 is a diagram illustrating a name table entry;

FIG. 109 is a diagram illustrating protection mecha-
nisms of the present computer system;

FIG. 110 is a diagram illustrating instruction and
microinstruction mechanism of the present computer
system;

FIG.
system;

FIG. 202 is a detailed block diagram of a fetch unit;

FIG. 203 is a detailed block diagram of an execute
unit;

FIG.
tem;

FIG. 205 is a partial block diagram of a diagnostic
processor system,;

FIG. 206 is a diagram illustrating assembly of FIGS.
201-205 to form a detailed block diagram of the present
*omputer system;

201 is a detailed block diagram of a memory

204 is a detailed block diagram of an 1/0 sys-

10

20

25

30

35

40

45

50

60

65

FIG. 207 is a detailed block diagram of a memory
interface controller;

"FIG. 209 is a diagram of a memory to I/0 system
port interface;

FIG. 210 is a diagram of a memory operand port
interface;

FIG. 211 is a diagram of a memory instruction port
interface;

FIG. 212 is a detailed block diagram of a memory
system 1/0, operand, and instruction ports and request
multiplexer;

FIG. 213 is a block diagram of memory port request
logic, port wait flag logic, requestor priority selection
logic, address path selection logic, and abort logic;

FIG. 214 is a detailed block diagram of memory re-
quest manager;

FIG. 215 is a detailed block diagram of memory
trailor condition logic;

FIG. 216 is a detailed block diagram of memory miss
control logic; :

FIG. 217 is a detailed block diagram of memory read
queue logic;

FIG. 218 is a detailed block diagram of memory {oad
manager logic;

FIG. 219 is a detailed block diagram of memory by-
pass write and cache write control logic;

FIG. 220 is a detailed block diagram of memory
writeback control logic;

FIG. 221 is a detailed block diagram of memory by-
pass write control logic;

FIG. 222 is a detailed block diagram of memory
cache usage logic;

FIG. 223 is a detailed block diagram of memory byte
write select logic;

FIG. 224 is a detailed block diagram of memory data
path storing logic;

FIG. 225 is a detailed block diagram of memory read
data handshake logic;

FIG. 230 is a detailed block diagram of memory field
interface unit logic;

FIG. 231 is a diagram illustrating memory format
manipulation operations;

FIG. 232 is a detailed block diagram of a cache;

FIG. 233 is a diagram illustrating cache operation;

FIG. 234 is a detailed block diagram of a memory
array;

FIG. 235 is a diagram illustrating memory array ad-
dressing;

FIG. 236 is a diagram illustrating memory array oper-
ation and timing;

FIG. 237 is a detailed block diagram of a memory
bank controller;

FIG. 238 is a detailed block diagram of fetch unit
offset multiplexer;

FIG. 239 is a detailed block diagram of fetch unit bias
logic;

FIG. 240 is a detailed block diagram of a generalized
four way, set associative cache representing name
cache, protection cache, and address translation unit;

FIG. 241 is a detailed block diagram of portions of
computer system instruction and microinstruction con-
trol logic; :

FIG. 242 is a detailed block diagram of portions of
computer system microinstruction control logic;

FIG. 243 is a detailed block diagram of further por-
tions of computer system microinstruction control
logic;

4,445,177

7

FIG. 244 is a diagram illustrating computer system
states of operation;

FIG. 245 is & diagram illustrating computer system
states of operation for a trace trap request;

FIG. 246 is a diagram illustrating computer system
states of operation for a memory repeat interrupt;

FIG. 247 is a diagram illustrating priority level and
masking of computer system events;)

FIG. 248 is a detailed block diagram of event logic;

FIG. 249 is a detailed block diagram of microinstruc-
tion control store logic;

FIG. 250 is a diagram illustrating microinstruction
formats;

FIG. 251 is a diagram illustrating a return control
word stack word;

FIG. 252 is a diagram
words;

FIG. 253 is a detailed block diagram of a register
address generator;

FIG. 254 is a block diagram of interval and egg tim-

illustrating machine control

ers;

FIG. 255 is a detailed block diagram of execute unit
control logic;

FIG. 256 is a detailed block diagram of an execute
unit operand buffer;

FIG. 257 is a detailed block diagram of execute unit
multiplier data paths and memory;

FIG. 258 is a detailed block diagram of execute unit
multiplier arithmetic operation logic;

FIG. 259 is a detailed block diagram of execute unit
exponent operation and multiplier control logic;

FIG. 260 is a diagram illustrating operation of an
execute unit command queue load and interface to a
fetch unit;

FIG. 261 is a diagram illustrating operation of an
execute unit operand buffer load and interface toa fetch

unit;

FIG. 262 is a diagram illustrating operation of an
execute unit storeback or transfer of results and inter-
face to a fetch unit;

FIG. 263 is a diagram illustrating operation of an
execute unit check test condition and interface to a
fetch unit;

FIG. 264 is a diagram illustrating operation of an
execute unit exception test and interface to a fetch unit;

FIG. 265 is a block diagram of an execute unit arith-
metic operation stack mechanism;

FIG. 266 is a diagram illustrating execute unit and
fetch unit interrupt handshaking and interface;

FIG. 267 is a diagram illustrating execute unit and
fetch unit interface and operation for nested interrupts;

FIG. 268 is a diagram illustrating execute unit and
fetch unit interface and operation for loading an execute
unit control store;

FIG. 269 is a detailed block diagram and illustration
of operation of an 1/0 system ring grant generator;

FIG. 270 is a detailed block diagram of a fetch unit
micromachine of the present computer system;

FIG. 271 is a diagram illustrating a logical descriptor;

FIG. 272 is a diagram illustrating use of fetch unit
stack registers;

FIG. 273 is a diagram
ling event invocations;

FIG. 274 is a diagram
chine programs;

FIG. 301 is a diagram illustrating pointer formats;

FIG. 302 is a diagram illustrating an associated ad-
dress table;

illustrating structures control-

illustrating fetch unit microma-

5

10

15

20

25

30

35

45

55

65

8

FIG. 303 is a diagram illustrating & namespace over-
view of a procedure object;

FIG. 304 is a diagram illustrating name table entries;

FIG. 305 is a diagram illustrating an example of name
resolution;

FIG. 306 is a diagram illustrating name cache entries;

FIG. 307 is a diagram illustrating translation of S-
interpreter universal identifiers to dialect numbers;

FIG. 401 is a diagram illustrating operating systems
and system resources;

FIG. 402 is a diagram illustrating multiprocess oper-
ating systems;

FIG. 403 is a diagram illustrating an extended operat-
ing system and a kernel operating system;

FIG. 404 is a diagram illustrating an EOS view of
objects;

FIG. 405 is a diagram illustrating pathnames to uni-
versal identifier translation;

FIG. 406 is a diagram illustrating universal identifier
detail;

FIG. 407 is a diagram illustrating address translation
with an address translation unit, a memory hash table,
and a memory;

FIG. 408 is a diagram illustrating hashing in an active
subject table;

FIG. 409 is a diagram illustrating logical allocation
units and objects;

FIG. 410 is a diagram illustrating an active logical
allocation unit table and active allocation units;

FIG. 411 is a diagram illustrating a conceptual logical
allocation unit directory structure;

FIG. 412 is a diagram illustrating detail of a logical
allocation unit directory entry;

FIG. 413 is a diagram illustrating universal identifiers
and active object numbers;

FIG. 414 is a diagram illustrating an object manager
queue and an active object manager queue;

FIG. 415 is a diagram illustrating an active object
table implementation;

FIG. 416 is a diagram illustrating subject templates,
primitive access control list entries, and extended access
control list entries;

FIG. 417 is a diagram illustrating an active subject
table entry;

FIG. 418 is a diagram illustrating a domain table;

FIG. 419 is a diagram illustrating an active non-primi-
tive access table overview;

FIG. 420 is a diagram illustrating an active non-primi-
tive access table entry;

FIG. 421 is a diagram illustrating an active primitive
access matrix and an active primitive access matrix
entry,;

F1G.422is a
cess checking;

FIG. 423 is a diagram illustrating object pages, mem-
ory frames, and address translation;

FIG. 424 is a diagram illustrating a conceptual over-
view of a virtual memory manager;

FIG. 425 is a diagram illustrating virtual memory
manager components;

FIG. 426 is a diagram
table entry;

FIG. 427 is a diagram illustrating searching of a mem-
ory hash table;

FIG. 428 is a
manager queue;

FIG. 429 is a diagram
frame table;

diagram illustrating primitive data ac-

illustrating a memory hash

diagram illustrating a virtual memory

illustrating detail of 2 memory

4,445,177

9

FIG. 430 is a diagram illustrating a conceptual over-
view of a virtual memory manager coordinator;

FIG. 431 is a diagram illustrating start I/O and await
event counter blocks;]

FIG. 432 is a diagram illustrating a finish 1I/Q loop
block;

FIG. 433 is a diagram illustrating a look for frame
block; ‘

FIG. 434 is a diagram illustrating a process virtual
memory manager queue loop block;

FIG. 435 is a diagram illustrating a process object
manager queue loop block and a clean frame block;

FIG. 436 is a diagram illustrating a frame allocation
overview;

FIG. 437 is a diagram illustrating a detailed block
43601,

FIG. 438 is a diagram illustrating a detailed block
43602;

FIG. 439 is a diagram illustrating frame deallocation;

FIG. 440 is a diagram illustrating rearranging of a
memory hash table;

FIG. 447 is a diagram illustrating an overview of
processes;

FIG. 448 is a diagram illustrating event counters and
await entries;

FIG. 449 is a diagram illustrating an await table over-
view;

FIG. 450 is a diagram illustrating process synchroni-
zation with event counters and await entries;

FIG. 451 is a diagram illustrating locks;

FIG. 452 is a diagram illustrating message queues;

FIG. 453 is a diagram illustrating an overview of a
virtual processor;

FIG. 454 is a diagram illustrating virtual processor
synchronization;

FIG. 455 is a diagram illustrating detail of a process
object;

FIG. 456 is a diagram illustrating an overview of
process management;

FIG. 457 is a diagram illustrating process event table
entries and lists;

FIG. 458 is a diagram illustrating an implementation
of a clock event counter;

FIG. 459 is a diagram illustrating details of an out-
ward signals object;

FIG. 460 is a diagram illustrating a process manager
request queue;

FIG. 461 is a diagram illustrating messages from a
kernel operating system to an extended operating sys-
tem;

FIG. 462 is a diagram illustrating details of a virtual
processor state block;

FIG. 463 is a diagram illustrating an overview of a
virtual processor manager;

FIG. 464 is a diagram illustrating details of a virtual
processor information entry;

FIG. 465 is a diagram illustrating details of virtnal
processor lists;

FIG. 466 is a diagram illustrating details of a virtual
processor await table;

FIG. 467 is a diagram illustrating an overview of a
macrostack object;

FIG. 468 is a diagram illustrating details of a macros-
tack object base; ‘

FIG. 469 is a diagram illustrating details of a macros-
tack frame;

FIG. 470 is a diagram illustrating an overview of a
secure stack; ‘

—

5

20

25

30

35

40

45

50

65

10

FIG. 471 is a diagram illustrating details of a secure
stack frame;

FIG. 472 is a diagram illustrating an overview of
procedure object;

FIG. 473 is a diagram illustrating calls from micro-
code;

FIG. 474 is a diagram illustrating mediated frames;

FIG. 475 is a diagram illustrating a trace table; and,

FIG. Al is a diagram illustrating fetch unit microin-
struction formats.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The following description presents the structure and
operation of a computer system incorporating a pres-
ently preferred embodiment of the present invention.
As indicated in the following Table of Contents, certain
features of computer system structure and operation
will first be described in an Introductory Overview.
Next, these and other features will be described in fur-
ther detail in a more detailed Introduction to the de-
tailed descriptions of the computer system. Following
the Introduction, the structure and operation of the
computer system will be described in detail. The de-
tailed descriptions will present descriptions of the struc-
ture and operation of each of the major subsystems, or
elements, of the computer system, of the interfaces
between these major subsystems, and of overall com-
puter system operation. Next, certain features of the
operation of the individual subsystems will be presented
in further detail, followed by a more detailed descrip-
tion of overall computer system operation. Finally,
appendices will describe certain features of the opera-
tion of individual subsystems and of the overall system
in yet further detail. Of these appendices, Appendix A
presents a detailed description of the microcode opera-
tion of the present computer system. Appendix B pres-
ents a further detailed description of the overall opera-
tion of the present computer system. Appendix B is not
essential for one of ordinary skill in the art to gain a
complete understanding of the present invention and is
provided as a supplement to the following - detailed
description. Appendix A and Appendix B are provided
as separate documents which are not included in this
printed patent but which, reside in the prosecution his-
tory of the patent and thus are available to readers desir-
ing additional information contained therein,

Certain conventions are used throughout the follow-
ing descriptions to enhance clarity of presentation.
First, and with exception of the Introductory Over-
view, each figure referred to in the following descrip-
tions will be referred to by a three digit number. The
most significant digit represents the number of the chap-
ter in the following descriptions in which a particular
figure is first referred to. The two least significant digits
represent the sequential number of appearance of a
figure in a particular chapter. For example, FIG. 319
would be the nineteenth figure appearing in the third
chapter. Figures appearing in the Introductory Over-
view are referred to by a one or two digit number repre-
senting the order in which they are referred to in the
Introductory Overview. It should be noted that certain
figure numbers, for example, FIG. 208, do not appear in
the following figures and descriptions; the subject mat-
ter of these figures has been incorporated into other
figures and these figures deleted, during drafting of the
following descriptions, to enhance clarity of presenta-
tion.

319A, and “b”

numerals will be

C. Procedure Processes and Virtual Processors (FIG. 6)

4,445,177

11

Second, reference numerals comprise a two digit
number (00-99) preceded by the number of the figure in
which the corresponding elements first appear. For
example, reference numerals 31901 to 31999 would
refer to elements 1 through 99 appearing in FIG. 319.
Finally, interconnections between related circuitry is
represented in two ways. First, to enhance clarity of
presentation, interconnections between circuitry may
be represented by common signal names or references,
rather than by drawn representations of wires or buses.
Second, where related circuitry is shown in two or
more figures, the figures may share a common figure
number and will be distinguished by a letter designa-
tion, for example, FIGS. 319, 319A, and 319B. Common
electrical points between such circuitry may be indi-
cated by a bracket enclosing a lead to such a point and
a designation of the form “A-b”. “A” indicates other
figures having the same common point for example,
designates the particular common elec-
trical point. In cases of related circuitry shown in this
manner in two or more figures, reference numerals to
elements will be assigned in sequence through the group
of figures; the figure number portion of such reference
that of the first figure of the group of

25

w

10

20

figures.

INTRODUCTORY OVERVIEW

A. Hardware Overview (FIG. 1)

B. Individual Operating Features (FIGS. 2, 3, 4, 5, 6)

1. Addressing (FIG. 2)

2. S-Language Instructions and Namespace Address-
ing (FIG. 3)

3. Architectural Base Pointer Addressing

4. Stack Mechanisms (FIGS. 4-5)

D. CS 101 Overall Structure and Operation (FIGS. 7, 8,

9, 10, 11, 12, 13, 14, 15)

1. Introduction (FIG. 7)

2. Compilers 702 (FIG. 7)

3. Binder 703 (FIG. 7)

4. EOS 704 (FIG. 7)

5. KOS and Architectural Interface 708 (FIG. 7)

6. Processes 610 and Virtual Processors 612 (FIG. 8)

7. Processes 610 and Stacks (FIG. 9)

8. Processes 610 and Calls (FIGS. 19, 11)

9. Memory References and the Virtual Memory Man-
agement System (FIG. 12, 13)

10. Access Control (FIG. 14)

11. Virtual Processors and Virtual Processor Swap-
ping (FIG. 15)

E. CS 101 Structural Implementation (FIGS. 16, 17, 18,

19, 20)

1. (10S) 116 (FIGS. 16, 17)

2. Memory (MEM) 112 (FIG. 18)

3. Fetch Unit (FU) 120 (FIG. 19)

4. Execute Unit (EU) 122 (FIG. 20)

1. Introduction (FIGS. 101-110)

A. General Structure and Operation (FIG. 101)

a. General Structure

b. General Operation

c. Definition of Certain Terms

d. Multi-Program Operation

e. Multi-Language Operation

f. Addressing Structure

g. Protection Mechanism

B. Computer System 10110 Information Structure and
Mechanisms (FIGS. 102, 103, 104, 105)

45

50

55

65

12
a. Introduction (FIG. 102)
b. Process Structures 10210 (FIGS. 103, 104, 105)
1. Procedure Objects (FIG. 103)
2. Stack Mechanisms (FIGS. 104, 105)
3. FURSM 10214 (FIG. 103)
C. Virtual Processor State Blocks and Virtual Process
Creation (FIG. 102)
D. Addressing Structures 10220 (FIGS. 103, 106, 107,
108)
1. Objects, UID’s, AON’s, Names, and Physical Ad-
dresses (FIG. 106)
2. Addressing Mechanisms 10220 (FIG. 107)
3. Name Resolution (FIGS. 103, 108)
4. Evaluation of AON Addresses to Physical Ad-
dresses (FIG. 107)
E. CS 10110 Protection Mechanisms (FIG. 109)
F. CS 10110 Micro-Instruction Mechanisms (FIG. 110)
G. Summary of Certain CS 10110 Features and Alter-
nate Embodiments.

2. Detailed Description of CS 10110 Major Subsystems
(FIGS. 201-206, 207-274)

A. MEM 10110 (FIGS. 201, 206, 207-237)
a. Terminology
b. MEM 10112 Physical Structure (FIG. 201)
¢. MEM 10112 General Operation
d. MEM 10112 Port Structure
1. IO Port Characteristics
2. JO Port Characteristics
3. JI Port Characteristics
e. MEM 10112 Control Structure and Operation
(FIG. 207)
1. MEM 10112 Control Structure
2. MEM 10112 Control Operation
f. MEM 10112 Operations
g MEM 10112 Interfaces to JP 10114 and 10S 10116
(FIGS. 209, 210, 211, 204)
1. IO Port 20910 Operating Characteristics (FIGS.
209, 204)
2. JO Port 21010 Operating Characteristics (FIG.
210)
3. J1 Port 21110 Operating Characteristics (FIG.
211)
h. MIC 20122 Structure and Operation (FIGS. 207,
212-225)
1. JOPAR 20710, JIPR 20712, IOPAR 20714 and
PRMUX 20720 (FIG. 212)
2. Port Control 20716 (FIG. 213)
3. MIC 20122 Control Circuitry (FIGS. 214-237)
a.a. Request Manager 20722 (FIG. 214)
b.b. Trailer Condition Logic 21510 (FIG. 215)
c.c. Miss Control 20726 (FIG. 216)
d.d. Read Queue 20728 (FIG. 217)
e.e. Load Manager 20730 (FIG. 213)
f.f. Bypass Write and Cache Write Back Control
21910 (FIG. 219}
g.g. Write Back Control Logic 22010 (FIG. 220)
h.h. Byte Write Select Logic 22310 (FIG. 223)
i.i. Bypass Write Control 20718 (FIG. 221)
j.j. Memory Cache Usage Logic 22210 (FIG.
222)
k.k. Data Path Steering Logic 22410 (FIG. 224)
11 Read Data Handshake Logic 22510 (FIG.
225)
i. FIU 20120 (FIGS. 201, 230, 231)
j. Memory Cache 20116 (FIGS. 232, 233)
1. General Cache Operation (FIG. 233)
2. Memory Cache 20116’s Cache 23210 (FIG. 232)

4,445,177

13
k. Memory Arrays 20112 (FIGS. 234, 235, 236)
1. Bank Controller 20114 (FIG. 237)

B. Fetch Unit 10120 (FIGS. 202, 206, 101, 103, 104, 238)

1. Descriptor Processor 20210 (FIGS. 202, 101, 103,
104, 238, 239)
a. Offset Processor 20218 Structure
b. AON Processor 20216 Structure
c. Length Processor 20220 Structure
d. Descriptor Processor 20218 Operation

b.b.b. Machine Control Block (FIG. 252)
c.c.c. Register Address Generator 20288 (FIG.
253)

d.d.d. Timers 20296 (FIG. 258)
e.e.e. Fetch Unit 10120 Interface to Execute Unit

55

14
a.a. Commaid Queue 20342
bb. Command Queue Event Control Store
25514 and Command Queue Event Address
Control Store 25516
c.c. Execute Unit S-Interpreter Table 20344
d.d. Microcode Control Decode Register 20346
e€.e. Next Address Generator 20340
2. Operand Buffer 20322 (FIG. 256)
3. Multiplier 20314 (FIGS. 257, 258)

a.a. Offset Selector 20238 10 a.a. Multiplier 20314 1/0 Data Paths and Mem-
b.b. Offset Multiplexer 20240 Detailed Structure ory (FIG. 257)
(FIG. 238) a.a.a. Packed Decimal to Unpacked Decimal
c.c. Offset Multiplexer 20240 Detailed Operation Conversion
a.a.a. Internal Operation b.b.b. Container Size Check
b.b.b. Operation Relative to DESP 20210 15 c.c.c. Final Result Qutput Multiplexer 20324
e. Length Processor 20220 (FIG. 239) b.b. Multiplier 20314 Arithmetic Operation
a.a. Length ALU 20252 Logic (FIG. 258)
b.b. BIAS 20246 (FIG. 239) a.a.a. Multiplier 20314 Internal Data Paths and
f. AON Processor 20216 Multiply/Divide Operations (FIG. 258)
a.a. AONGRF 20232 20 b.b.b. Multiplication, Partial Products
b.b. AON Selector 20248 c.c.c. Main Working Register 20372
2. Memory Interface 20212 (FIGS. 106, 240) d.d.d. Multiplier ALU2 20374
a.a. Descriptor Trap 20256 and Data Trap 20258 e.c.e. Final Result Shifter 20362
b.b. Name Cache 10226, Address Translation Unit f.£f. Final Result Register 20336
10228, and Protection Cache 10234 (FIG. 106) 25 c.c. Multiplier 20314 Arithmetic Operations
c.c. Structure and Operation of Generalized Cache a.a.a. Floating Point Operations
and NC 10226 (FIG. 240) b.b.b. Decimal Operations
d.d. ATU 10228 and PC 10234 4. Exponent Logic 20316 and Multiplier Control
3. Fetch Unit Control Logic 20214 (FIG. 202) 20318—Floating Point Operations (FIG. 259)
a.a. Fetch Unit Control Logic 20214 Overall Struc- 30 a.a. Exponent Logic 20316 and Multiplier Con-
ture trol 20318 Structure (FIG. 259)
b.b. Fetch Unit Control Logic 20214 Operation b.b. Exponent Logic 20316 and Multiplier Con-
a.a.a. Prefetcher 20264, Instruction Buffer 20262, trol 20318 Operation
Parser 20264, Operation Code Register 20268, 5. Test and Interface Logic 20320 (FIGS. 260-268)
CPC 20270, IPC 20272, and EPC 20274 (FIG. 35 a.a. FU 10120/EU 10122 Interface ‘
241) aa.a. Loading of Command Queue 20342
b.b.b. Fetch Unit Dispatch Table 11010, Execute (FIG. 260)
Unit Dispatch Table 20266, and Operation b.b.b. Loading of Operand Buffer 20320 (FIG.
Code Register 20268 (FIG. 242 261)
c.c.c. Next Address Generator 24310 (FIG. 243) 40 c.c.c. Storeback (FIG. 262)
c.c. FUCTL 20214 Circuitry for CS 10110 Internal d.d.d. Test Conditions (FIG. 263)
Mechanisms (FIGS. 244-250) e.e.e. Exception Checking (FIG. 264)
a.a.a. State Logic 20294 (FIGS. 244A-2447) f.Lf. Idle Routine
b.b.b. Event Logic 20284 (FIGS. 245, 246, 247, &88 EU 10122 Stack Mechanisms (FIGS.
248) 45 265, 266, 267)
cc.c. Fetch Unit S-Interpreter Table 11012 h.h.h. Loading of Execute Unit S-Interpreter
(FIG. 249) Table 20344 (FIG. 268)
d.d.d. Microinstruction Word Formats (FIG. D. 1/0 System 10116 (FIGS. 204, 206, 269)
250) a. I/O System 10116 Structure (FIG. 204)
d.d. CS 10110 Internal Mechanism Control 50 b. I/0 System 10116 Operation (FIG. 269)
a.a.a. Return Control Word Stack 10358 (FIG. 1. Data Channel Devices
251) 2. I/0O Control Processor 20412

3. Data Mover 20410 (FIG. 269)
a.a. Input Data Buffer 20440 and Output Data
Buffer 20442
b.b. Priority Resolution and Control 20444 (FIG.
269)

10122 E. Diagnostic Processor 10118 (FIG. 101, 205)
C. Execute Unit 10122 (FIGS. 203, 255-268) F. CS 10110 Micromachine Structure and Operation
a. General Structure of Execute Unit 10122 60 (FIGS. 270-274)

a. Introduction
b. Overview of Devices Comprising FU Microma-
chine (FIG. 270)
1. Devices Used By Most Microcode
a.a. MOD Bus 10144, JPD Bus 10142, and DB
Bus 27021
b.b. Microcode Addressing
c.c. Descriptor Processor 20218 (FIG. 271)

1. Execute Unit 1/0 20312
2. Execute Unit Control Logic 20310
3. Multiplier Logic 20314
4. Exponent Logic 20316
5. Multiplier Control 20318 65
6. Test and Interface Logic 20320
b. Execute Unit 10122 Operation (FIG. 255)
1. Execute Unit Control Logic 20310 (FIG. 255)

4,445,177

15
d.d. EU 10122 Interface
2. Specialized Micromachine Devices
a.a. Instruction Stream Reader 27001
b.b. SOP Decoder 27003
c.c. Name Translation Unit 27015
d.d. Memory Reference Unit 27017
e.e. Protection Unit 27019
£.f. KOS Micromachine Devices
¢. Micromachine Stacks and Microroutine Calls and
Returns (FIGS. 272, 273)
1. Micromachine Stacks (FIG. 272)
2. Micromachine Invocations and Returns
3. Means of Invoking Microroutines
4. Occurrence of Event Invocations (FIG. 273)
d. Programming the Micromachine (FIG. 274)
e. Virtual Micromachines and Monitor Microma-
chine
1. Virtual Mode
2. Monitor Micromachine
f. Interrupt and Fault Handling
1. General Principles
2. Hardware Interrupt and Fault Handling in CS
10110
3. Monitor Mode: Differential Masking and Hard-
ware Interrupt Handling
g. FU Micromachine and CS 10110 Subsystems

3. Namespace, S-Interpreters and Pointers (FIGS.
301-307, 274)

A. Pointers and Pointer Resolution (FIGS. 301, 302)
a. Pointer Formats (FIG. 301)
b. Pointers in FU 10120 (FIG. 302)
c. Resolutions of Unresolved Pointers by Procedures
602
d. Descriptor to Pointer Conversion
B. Namespace and the S-Interpreters (FIGS. 303-307,
274)
a. Procedure Object 606 Overview (FIG. 303)
b. Resolution of Pointers in Procedure Objects 608
c. Namespace
1. Name Resolution and Evaluation
2. The Name Table (FIG. 304)
3. Architectural Base Pointers (FIGS. 305, 306,
274)
a.a. Resolving and Evaluating Names (FIG. 305)
b.b. Implementation of Name Evaluation and
Name Resolve in CS 10110
¢.c. Name Cache 10226 Entries (FIG. 306)
d.d. Name Cache 10226 Hits
e.e. Name Cache 10226 Misses
f.f. Flushing Name Cache 10226 (FIG. 274)
g.g. Fetching the Instruction Stream
h.h. Parsing the Instruction Stream
d. The S-Interpreters (FIG. 307)
1. Translating SIP into a Dialect Number (FIG.

307)
2. Dispatching
4. The Kernel Operating System

A. Introduction
a. Operating Systems (FIG. 401)
1. Resources Controlled by Operating Systems
(FIG. 402)
2. Resource Allocation by Operating Systems
b. The Operating System in CS 10110
c. Extended Operating System and the Kernel Oper-
ating System (FIG. 403)
B. Objects and Object Management (FIG. 404)

20

25

30

35

45

55

65

16
a. Objects and User Programs (FIG. 405)
b. UIDs 40401 (FIG. 406)
c. Object Attributes
d. Attributes and Access Control
c. Implementation of Objects
1. Introduction (FIGS. 407, 408)
2. Objects in Secondary Storage 10124 (FIGS. 409,
410)
a.a. Representation of an Object’s Contents on
Secondary Storage 10124
b.b. LAUD 40903 (FIGS. 411, 412)
¢.c. Qperations on LAUD 40903
a.a.a. Object Creation and Deletion
b.b.b. Reading and Changing an Object’s At-
tributes
3. Active Objects (FIG. 413)
a.a. UID 40401 to AON 41304 Translation
b.b. Active Object Manager Process 610 (FIG.
414) ‘
c.c. AOT 10712 and Logical Address Reduction

(LAR) (FIG. 415)
d.d. AOTE 41306

C. The Access Control System

a. Subjects
b. Domains
c. Access Control Lists
1. Subject Templates (FIG. 416)
2. Primitive Access Control Lists (PACLs)
a.a. Setting and Reading PACLs
b.b. Extended Access Rights and EACLs
c.c. Subjects, Domains, and Subject Templates
in the Present Embodiment
d. Acceleration of Access Checking in CS 10110.
1. Subjects and ASN’s (FIG. 408)
2. ASTEs 40806 (FI1G. 417)
3. Domain Table 41801 and Domain Numbers
(FIG. 418)
4. Pure Domains and Pure Subjects
5. Control Attribute Tables
a.a. ANPAT 10920 (FIG. 419)
b.b. ANPAT Entries 41907 (FIG. 420)
c.c. Operations Involving ANPAT 10970
d.d. APAM 10918 and Protection Cache 10234
(FIG. 421)
ee. Protection Cache 10234 and Protection
Checking (FIG. 422)

D. Virtual Memory Management (FIG. 423)

a. Components of the VMM System (FIG. 424)
b. Advantages of the VMM System
c. Detailed Overview of the VMM System (FIG.
425)
d. AON-offset Address 42305 to Frame Number-Dis-
placement Address 42307 Translation (FIG. 426)
e. Implementation of Address Translation
1. The LAT* SIN
2. Searching MHT 10716 (FIG. 427)
3. Page Faults
aa. VMMEC 42505 and VMMQ 42506 (FIG.
428)
b.b. Page Fault Microcode 42503 (FIGS. 426,
428)
f. VMM PROC 42405
1. MFT 10718 (FIG. 429)
2. VMM Coordinator 42512 (FIGS. 425, 426, 428,
429, 430)
a.a. Request to Send Block 43001 (FIGS. 425,
426, 428, 429, 431)

4,445,177

17
b.b. Await Event Counters Block 43002 (FIGS.
425, 426, 428, 429, 431)
c.c. Finish 1/0 Loop 43003 (FIGS. 425, 426, 428,
429, 432)
d.d. Look for Frame Block 43004 (FIGS. 425, 5
426, 428, 429, 433)
e.e. Process VMMQ Work List Loop Block
43005 (FIGS. 425, 426, 428, 429, 434)
f.f. Process OMQ Loop 43006 (FIGS. 425, 426,
428, 429, 435) 10
8.8. Frame Cleaner Block 43007 (FIGS. 425,
426, 428, 429, 435)
3. MEM 10112 Frame 42308 Allocation (FIGS.
425, 426, 428, 429, 436, 437, 438)
4. MEM 10112 Frame 42308 Deallocation (FIGS. 15
425, 426, 428, 429, 436, 439, 440)
E. Processes
a. Introduction (FIG. 402)
1. Processes 610 in CS 10110 (FIG. 447)
2. Synchronization of Processes 610 and Virtual 20
Processors 612
a.a. Event Counters 44801, Await Entries 44804,
and Await Tables (FIG. 448, 449)
b.b. Synchronization with Event Counters 44801
and Await Entries 44804 25
c.c. Event Counter 44801 Operations (FIG. 450)
d.d. Event Counters 44801 and Interrupts
e.e. Event Counters 44801 and System Clocks
f.f. Locks 45101 (FIG. 451)
g.2. Message Queues 45210 (FIG. 452) 30
3. Virtual Processors 612 (FIG. 453)
a.a. Virtual Processor Management (FIG. 453)
b.b. Virtual Processors 612 and Synchronization
(FIG. 454)
b. Implementation of Processes 610 35
1. Process Object 901 (FIG. 455)
2. Access to Process Objects 901
3. Process Manager Event Counters 44801, Await
Tables 44804, and Queues 45210 (FIG. 456)
a.a. PET 44705 (FIGS. 449, 457) 40
b.b. Process Manager Clock Event Counter
45615 Implementation (FIG. 458)
c¢.c. Outward Signals Object (OSO) 45409 and
Multiplexed Outword Signals Event Counter
45407 (FIG. 459) 45
d.d. Process Manager Request Queue (PMRQ)
45607 (FIG. 460)
e.e. Queues for Communicating with EOS
(FIGS. 456, 461)
4. Operations on Processes 610 50
a.a. Create Process Procedure 602 (FIG. 455)
b.b. Delete Process Procedure 602 (FIGS. 455,
457)
c.c. Procedures 602 which Set and Read Fields
of Process Object 901 (FIG. 455) 55
d.d. Process-level Operations on Event Counters
44801 and Sequencers 45102 (FIG. 457)
a.a.a. The Process-level Await Operation PM
Await (FIGS. 449, 455, 457)
b.b.b. The Process-level Advance Operation 60
PM Advance (FIGS. 449, 455, 457)
c.c.c. Operations on Sequencers 45102
e.e. Operations on a Pracess Object 901’s EACL
<. Implementation of Virtual Processors 612
1. VPSB 614 (FIG. 462) 65
2. Virtual Processor Management Data Bases
(FIG. 463)
a.a. VPIA 46301 (FIG. 464)

18

b.b. HVPL 46305 and MVPL 45309 (VPLs)
(FIG. 465)

c.c. VPAT 45401 (FIG. 466)

3. Operations on Virtual Processors 612

a.a. Request VP (FIGS. 462, 463, 464, 465)

b.b. Release VP (FIGS. 462, 463, 464, 465)

4. Operations on Processes 610 Which Involve

Virtual Processors 612

a.a, The Bind Process Operation (FIGS. 455,
462, 463, 464, 465)

b.b. The Unbind Process Operation (FIGS. 458,
462, 463, 464, 465)

c.c. The Run Process Operation (FIGS. 455, 456,
462, 463, 464, 465)

d.d. The Stop Operation (FIGS. 455, 456, 462,
463, 464, 465)

e.e. Killing a Process 610 (FIGS. 455, 456, 462,
463, 464, 465)

5. Virtual Processor-level Synchronization Opera-
tions

a.a. The Advance SIN (FIGS. 459, 462, 465, 466)

b.b. The Await SIN (FIGS. 459, 462, 465, 466)

c.c. Virtual Processor-level Synchronization
Using the System Clock (FIG. 458)

d.d. Begin Atomic Operation and End Atomic
Operation (FIG. 462)

e.c. Suspend (FIG. 462, 465)

f.f. Resume (FIGS. 462, 465)

8.8 KOS Dispatcher Microcode (FIGS. 4862,
465)

d. Process 610 Stack Manipulation
L. Introduction to Cail and Return
2. Macrostacks (MAS) 502 (FIG. 467)

a.a. MAS Base 10410 (FIG. 468)

b.b. Per-domain Data Area 46853 (FIG. 468)

c.c. MAS Frame 46709 Detail (FIG. 469)

3. S8 504 (FIG. 470)
a.a. 5S Base 47001 (FIG. 471)
b.b. SS Frames 47003 (FIG. 471)
a.a.a. Ordinary SS Frame Headers 10514
(FIG. 471)
b.b.b. Detailed Structure of Macrostate 10516
(FIG. 411)
c.c.c. Cross-domain SS Frames 47039 (FIG.
471)
4. Portions of Procedure Object 608 Relevant to
Call and Return (FIG. 472)
5. Execution of Mediated Calls

a.a. Mediated Call SINs

b b. Simple Mediated Calls (FIGS. 270, 468, 469,
470, 471, 472)

c.c. Invocations of Procedures 602 Requiring
SEBs 46864 (FIGS. 270, 468, 469, 470, 471,
472)

d.d. Cross-Procedure Object Calls (FIGS. 270,
468, 469, 470, 471, 472)

e.e. Cross-Domain Calls (FIGS. 270, 408, 418,
468, 469, 470, 471, 472)

£.f. Failed Cross-Domain Calls (FIGS. 270, 468,
469, 470, 471, 472)

6. Neighborhood Calls (FIGS. 468, 469, 472)
7. Calls from Microcode (FIGS. 270, 468, 4469, 470,

471, 472, 473)

8. Terminating Several Invocations

a.a. Lists in MAS Frame 46703 (FIG. 474)

b.b. Implementation of Non-local GOTO (FIG.
474)

4,445,177

19
a.a.a. Establishing Location to Which Non-
local GOTO May Transfer Control (FIG.
474)
b.b.b. Implementation of the
GOTO SIN (FIG. 474)
c.c. Conditions
a.a.a. Establishing Condition Handlers (FIG.
474)
* b.b.b. Signallers and the Execution of Condi-
_ tion Handlers (FIGS. 270, 468, 469, 470,
471, 472, 473, 474)
d.d. Crawl Outs (FIGS. 270, 468, 469, 470, 471,
472, 473, 474)
9. Interrupts
a.a. Establishing and Clearing Interrupts (FIGS.
455, 457, 468)
b.b. Interrupt Levels (FIGS. 455, 457, 468)
c.c. Processing Interrupts (FIGS. 455, 457, 468)
F. Debugging Aids in CS 10110
a. Overview of Debugging in CS 10110
b. Debugging Features Common to All CSs 10110
1. Trace Tables (FIG. 475)
2. Trace Table Pointer 47502
3. Information Returned to the Debugger by Trace
Event Microcode
4, Macrostate Available to the Debugger
c. Implementation of Debugger Operations in the
Present Embodiment
1. Enabling and Disabling Trace Event Signals
(FIGS. 273, 475)
2. Debugging Operations (FIGS. 273, 475) Appen-
dix A.

INTRODUCTORY OVERVIEW

The following overview will first briefly describe the
overall physical structure and operation of a presently
preferred embodiment of a digital computer system
incorporating the present invention. Then certain oper-
ating features of that computer system will be individu-
ally described. Next, overall operation of the computer
system will be described in terms of those individual
features. Finally, the computer system’s implementation
will be described in further detail.

A. Hardware Overview (FIG. 1)

Referring to FIG. 1, a block diagram of Computer
System (CS) 101 incorporating the present invention is
shown. Major elements of CS 101 are 1/0 System (10S)
116, Memory (MEM) 112, and Job Processor (JP) 114.
JP 114 is comprised of a Fetch Unit (FU) 120 and an
Execute Unit (EU) 122. CS 101 may also include a
Diagnostic Processor (DP), not shown or described in
the instant description.

Referring first to IOS 116, a primary function of IOS
116 is control of transfer of information between MEM
112 and the outside world. Information is transferred
from MEM 112 to IOS 116 through IOM Bus 130, and
from I0S 116 to MEM 112 through MIO Bus 129.
IOMC Bus 131 is comprised of bi-directional control
signals coordinating operation of MEM 112 and 10S
116. TOS 116 also has an interface to FU 120 through
IOJP Bus 132. IOJP Bus 132 is a bi-directional control
bus comprised essentially of two interrupt lines. These
interrupt lines allow FU 120 to indicate to IOS 116 that
a request for information by FU 120 has been placed in
MEM 112, and allows IOS 116 to inform FU 120 that
information requested by FU 120 has been transferred
into a location in MEM 112. MEM 112 is CS 101’s main

Non-local

20

25

30

40

45

55

65

20

memory and serves as the path for information transfer
between the outside world and JP 114. MEM 112 pro-
vides instructions and data to FU 120 and EU 122
through Memory Output Data (MOD) Bus 140 and
receives information from FU 120 and EU 122 through
Job Processor Data (JPD) Bus 142, FU 120 submits
read and write requests to MEM 112 through Physical
Descriptor (PD) Bus 146.

JP 114 is CS 101's CPU and, as described above, is
comprised of FU 120 and EU 122. A primary function
of FU 120 is executing operations of user’s programs.
As part of this function, FU 120 controls transfer of
instructions and data from MEM 112 and transfer of
results of JP 114 operations back to MEM 112. FU 120
also performs operating system type functions, and is
capable of operating as a complete, general purpose
CPU. EU 122 is primarily an arithmetic and logic unit
provided to relieve FU 120 of certain arithmetic opera-
tions. FU 120, however, is capable of performing EU
122 operations. In alternate embodiments of CS 101, EU
122 may be provided only as an option for users having
particular arithmetic requirements. Coordination of FU
120 and EU 122 operations is accomplished through
FU/EU (FUEU) Bus 148, which includes bi-directional
control signals and mutual interrupt lines. As described
further below, both FU 120 and EU 122 contain register
file arrays referred to respectively as CRF and ERF, in
addition to registers associated with, for example,
ALUs. :

A primary feature of CS 101 is that IOS 116, MEM
112, FU 120 and EU 122 each contain separate and
independent microinstruction control, so that I0S 116,
MEM 112, and EU 122 operate asynchronously under
the general control of FU 120. EU 122, for example,
may execute a complex arithmetic operation upon re-
ceipt of data and a single, initial command from FU 120.

Having briefly described the overall structure and
operation of CS 101, certain features of CS 101 will be
individually further described next below.

B. Individual Operating Features (FIGS. 2,3,4,5,6)

1. Addressing (FIG. 2)

Referring to FIG. 2, a diagramic representation of
portions of CS 101’s addressing structure is shown. CS
101’s addressing structure is based upon the concept of
Objects. An Object may be regarded as a container for
holding & particular type of information. For example,
one type of Object may contain data while another type
of Object may contain instructions or procedures, such
as a user program. Still another type of Object may
contain microcode. In general, a particular Object may
contain only one type or class of informtion. An Object
may, for example, contain up to 232 bits of information,
but the actual size of a particular Object is flexible. That
is, the actual size of a particular Object will increase as
information is written into that Object and will decrease
as information is taken from that Object. In general,
information in Objects is stored sequentially, that is
without gaps.

Each Object which can ever exist in any CS 101
system is uniquely identified by a serial number referred
to as a Unique Identifier (UID). AUID isa 128 bit value
comprised of a serial number dependent upon, for exam-
ple, the particular CS 101 system and user, and a time
code indicating time of creation of that Object. UIDs
are permanently assigned to Objects, no two Objects
may have the same UID, and UIDs may not be reused.
UIDs provide an addressing base common to all CS 101

4,445,177

21
systems which may ever exist, through which any Ob-
ject ever created may be permanently and uniquely
identified.

As described above, UIDs are 128 bit values and are
thus larger than may be conveniently handled in present
embodiments of CS 101. In each CS 101, therefore,
those Objects which are active (currently being used) in
that system are assigned 14 bit Active Object Numbers
(AONs). Each Object active in that system will have a
unique AON. Unlike UIDs, AONs are only temporarily
assigned to particular Objects. AONs are valid only
within a particular CS 101 and are not unique between
systems. An Object need not physically reside in a sys-
tem to be assigned an AON, but can be active in that
system only if it has been assigned an AON.

A particular bit within a particular Object may be
identified by means of a UID address or an AON ad-
dress. In CS 101, AONs and AON addresses are valid
only within JP 114 while UIDs and UID addresses are
used in MEM 112 and elsewhere. UID and AON ad-
dresses are formed by appending a 32 bit Offset (0) field
to that Object’s UID or AON. O fields indicate offset,
or location, of a particular bit relative to the start of a
particular Object.

Segments of information (sequences of information
bits) within particular Objects may be identified by
means of descriptors. A UID descriptor is formed by
appending a 32 bit Length (L) field of a UID address.
An AON, or logical descriptor is formed by appending
a 32 bit L field to an AON address. L fields identify
length of a segment of information bits within an Ob-
ject, starting from the information bit identified by the
UID or AON address. In addition to length informa-
tion, UID and logical descriptors also contain Type
fields containing information regarding certain charac-
teristics of the information in the information segment.
Again, AON based descriptors are used within JP 114,
while UID based descriptors are used in MEM 112,

Referring to FIGS. 1 and 2 together, translation be-
tween UID addresses and descriptors and AON ad-
dresses and descriptors is performed at the interface
between MEM 112 and JP 114. That is, addresses and
descriptors within JP 114 are in AON form while ad-
dresses and descriptors in MEM 112, I0S 116, and the
external world are in UID form. In other embodiments
of CS 101 using AONG, transformation from UID to
AON addressing may occur at other interfaces, for
example at the IOS 116 to MEM 112 interface, or at the
I0S 116 to external world interface. Other embodi-
ments of CS 101 may use UIDs throughout, that is not
use AONs even in JP 114.

Finally, information within MEM 112 is located
through MEM 112 Physical Addresses identifying par-
ticular physical locations within MEM 112’s memory
space. Both IOS 116 and JP 114 address information
within MEM 112 by providing physical addresses to
MEM 112. In the case of physical addresses provided
by JP 114, these addresses are referred to as Physical
Descriptors (PDs). As described below, JP 114 contains
circuitry to translate logical descriptors into physical
descriptors.

2. S-Language Instructions and Namespace Addressing
(FIG. 3)

CS 101 is both an S-Language machine and a Names-
pace machine. That is, operations to be executed by CS
101 are expressed as S-Language Operations (SOPs)
while operands are identified by Names. SOPs are of a

10

15

20

25

30

35

40

45

50

55

60

65

lower, more detailed, level than user language instruc-
tions, for example FORTRAN and COBOL, but of a
higher level than conventional machine language in-
structions. SOPs are specific to particular user lan-
guages rather than a particular embodiment of CS 101,
while conventional machine language instructions are
specific to particular machines. SOPs are in turn inter-
preted and executed by microcode. There will be an
S-Language Dialect, a set of SOPs, for each user lan-
guages. CS 101, for example, may have SOP Dialects
for COBOL, FORTRAN, and SPL. A particular dis-
tinction of CS 101 is that all SOPs are of a uniform,
fixed length, for example 16 bits, CS 101 may generally
contain one or more sets of microcode for each S-Lan-
guage Dialect. These microcode Dialect Sets may be
completely distinct, or may overlap where more than
one SOP utilizes the same microcode,

As stated above, in CS 101 all operands are identified
by Names, which are 8, 12, or 16 bit numbers. CS 101
includes one or more “Name Tables” containing an
Entry for each operand Name appearing in programs
currently being executed Each Name Table Entry con-
tains information describing the operand referred to by
a particular Name, and the directions necessary for CS
101 to translate that information into a corresponding
logical descriptor. As previously described, logical
descriptors may then be transformed into physical de-
scriptors to read and write operands from or to MEM
112. As described above, UIDs are unique for all CS 101
systems and AONs are unique within individual CS 101
systems. Names, however, are unique only within the
context of a user’s program. That is, a particular Name
may appear in two different user’s programs and, within
each program, will have different Name Table Entries
and will refer to different operands.

CS 101 may thereby be considered as utilizing two
sets of instructions. A first set is comprised of SOPs,
that is instructions selecting algorithms to be executed.
The second set of instructions are comprised of Names,
which may be regarded as entry points into tables of
instructions for making references regarding operands.

Referring to FIG.3, a diagramic representation of CS
101 instruction stream is shown. A typical SIN is com-
prised of an SOP and may include one or more Names
referring to operands. SOPs and Names allow user’s
programs to be expressed in very compact code. Fewer
SOPs than machine language instructions are required
to express a user’s program. Also, use of SOPs allows
easier and simpler construction of compilers, and facili-
tates adaption of CS 101 systems to new user languages.
In addition, use of Names to refer to operands means
that SOPs are independent of the form of the operands
upon which they operate. This in turn allows for more
compact code in expressing user programs in that SOPs
specifying operations dependent upon operand form are
not required.

3. Architectural Base Pointer Addressing

As will be described further below, a user’s program
residing in CS 101 will include one or more Objects.
First, a Procedure Object contains at least the SINs of
the user's programs and a Name Table containing
entries for operand Names of the program. The SINs
may include references, or calls, to other Procedure
Objects containing, for example, procedures available
in common to many users. Second, a Static Data Area
may contain static data, that is data having an existence
for at least a single execution of the program. And third,

4,445,177

23
a Macro-stack, described below, may contain local data,
that is data generated during execution of a program.
Each Procedure Object, the Static Data Area and the
Macro-stack are individual Objects identified by UIDs
and AONs and addressable through UID and AON
addresses and descriptors. ‘

Locations of information within a user’s Procedure
Objects, Static Data Area, and Macro-stack are ex-
pressed as offsets from one of three values, or base
addresses, referred to as Architectural Base Pointers
(ABPs). For example, location information in Name
Tables is expressed as offsets from one of the ABPs.
ABPs may be expressed as previously described.

The three ABPs are the Frame Pointer (FP), the
Procedure Base Pointer (PBP), and the Static Data
Pointer (SDP). Locations of data local to a procedure,
for example in the procedure’s Macrostack, are de-
scribed as offsets from FP. Locations of non-local data,
that is Static Data, are described as offsets from SDP.
Locations of SINs in Procedure Objects are expressed
as offsets from PBP; these offsets are determined as a
Program Counter (PC) value. Values of the ABPs vary
during program execution and are therefore not pro-
vided by the compiler converting a user's high level
language program into a program to be executed in a
CS 101 system. When the program is executed, CS 101
provides the proper values for the ABPs. When a pro-
gram is actually being executed, the ABP’s values are
stored in FU 120’s GRF.

Other pointers are used, for example, to identify the
top frame of CS 101’s Secure Stack (a microcode level
stack described below) or to identify the microcode
Dialect currently being used in execute the SINs of a
procedure. These pointers are similar to FP, SDP, and
PBP.

4. Stack Mechanisms (FIGS. 4-5)

Referring to FIG. 4 and 4A, diagramic representa-
tions of various control levels and stack mechanisms of,
respectively, conventional machines and CS 101, are
shown. Referring first to FIG. 4, top level of control is
provided by User Language Instructions 402, for exam-
ple in FORTRAN or COBOL. User Language Instruc-
tions 402 are converted into a greater number of more
detailed Machine Language Instructions 404, used
within a machine to execute user’s programs. Within the
machine, Machine Language Instructions 404 are inter-
preted and executed by Microcode Instructions 406,
that is sequences of microinstructions which in turn
directly control Machine Hardware 408. Some conven-
tional machines may include a Stack Mechanism 410
used to save current machine state, that is current mi-
croinstruction and contents of various machine regis-
ters, if a current Machine Language Instruction 404
cannot be executed or is interrupted. In general, ma-
chine state on the microcode and hardware level is not
saved. Execution of a current Machine Language In-
struction 404 is later resumed at start of the microin-
struction sequence for executing that Machine Lan-
guage Instruction 404.

Referring to FIG. 4A, top level control in CS 101 is
by User Language Instructions 412 asin a conventional
machine. In CS 101, however, User Language Instruc-
tions 412 are translated into SINs 414 which are of a
higher level than conventional machine language in-
structions. In general, a single User Language Instruc-
tion 412 is transformed into at most two or three SINs
414, as opposed to an entire sequence of conventional

20

25

35

40

45

50

55

65

24

Machine Language Instructions 404. SINs 414 are inter-
preted and executed by Microcode Instructions 416
(sequences of microinstructions) which directly control
CS 101 Hardware 418. CS 101 includes a Macro-stack
Mechanism (MAS) 420, at SINs 414 level, which is
comparable to but different in construction and opera-
tion from a conventional Machine Language Stack
Mechanism 410. CS 101 also includes Micro-code Stack
Mechanisms 422 operating at Microcode 416 level, so
that execution of an interrupted microinstruction of a
microinstruction sequence may be later resumed with
the particular microinstruction which was active at the
time of the interrupt. CS 101 is therefore more efficient
in handling interrupts in that execution of microinstruc-
tion sequences is resumed from the particular point that
a microinstruction sequence was interrupted, rather
than from the beginning of that sequence. As will be
described further below, CS 101’s Microcode Stack
Mechanisms 422 on microcode level is effectively com-
prised of two stack mechanisms. The first stack is Mi-
cro-instruction Stack (MIS) 424 while the second stack
is referred to as Monitor Stack (MOS) 426. CS 101 SIN
Microcode 428 and MIS 424 are primarily concerned
with execution of SOPs of user’s programs. Monitor
Microcode 430 and MOS 426 are concerned with oper-
ation of certain CS 101 internal functions.

Division of CS 101’s microcode stacks into an MIS
424 and 2 MOS 426 illustrates a further feature of CS
101. In conventional machines, monitor functions may
be performed by a separate CPU operating in conjunc-
tion with the machine’s primary CPU, In CS 101, a
single hardware CPU is used to perform both functions
with actual execution of both functions performed by
separate groups of microcode. Monitor microcode op-
erations may be initiated either by certain SINs 414 or
by control signals generated directly by CS 101’s Hard-
ware 418. Invocation of Monitor Microcode 430 by
Hardware 418 generated signals insures that CS 101’s
monitor functions may always be invoked.

Referring to FIG. 5, a diagramic representation of CS
101’s stack mechanisms for single user’s program, or
procedure, is shown. Basically, and with exception of
MOS 426, CS 101’s stacks reside in MEM 112 with
certain portions of those stacks accelerated into FU 120
and EU 122 to enhance speed of operation.

Certain areas of MEM 112 storage space are set aside
to contain Macro-Stacks (MASs) 502, stack mecha-
nisms operating on the SINs level, as described above.
Other areas of MEM 112 are set aside to contain Secure
Stack (SS) 504, operating on the microcode level, as
described above and of which MIS 424 is a part.

As described further below, both FU 120 and EU 122
contain register file arrays, referred to respectively as
GRF and ERF, in addition to registers associated with,
for example, ALUs. Referring to FU 120, shown
therein is FU 120's GRF 506. GRF 506 is horizontally
divided into three areas. A first area, referred to as
General Registers (GRs) 508 may in general be used in
the same manner as registers in a conventional machine.
A second area of GRF 506 is Micro-Stack (MIS) 424,
and is set aside to contain a portion of a Process’s SS
504. A third portion of GRF 506 is set aside to contain
MOS 426. Also indicated in FU 120 is a block referred
to as Microcode Control State (mCS) 510. mCS 510
represents registers and other FU 120 hardware con-
taining current operating state of FU 120 on the micro-
instruction and hardware level. mCS 510 may include,

4,445,177

25
for example, the current microinstruction controlling
operation of FU 120,

Referring to EU 122, indicated therein is a first block
referred to as Execute Unit State (EUS) 512 and a sec-
ond block referred to as SOP Stack 514. EUS 512 is
similar to mCS 510 in FU 120 and includes all registers
and other EU 122 hardware containing information
reflecting EU 122’s current operating state. SOP Stack
$18 is a portion of EU 122's ERF 516 which has been set
aside as a stack mechanism to contain a portion of a
process’s SS 504 pertaining to EU 122 operations.

Considering first MASs 502, as stated above MASs
502 operate generally upon the SINs level. MASs 502
are used in general to store current state of a process’s
(defined below) execution of a user’s program.

Referring next to MIS 424, in a present embodiment
of CS 101 that portion of GRF 506 set aside to contain
MIS 424 may have a capacity of eight stack frames.
That is, up to 8 microinstruction level interrupts or calls
pertaining to execution of a user’s program may be
stacked within MIS 424. Information stored in MIS 424
stack frames is generally information from GR 508 and
MCS 510. MIS 424 stack frames are transferred be-
tween MIS 424 and SS 504 such that at least one frame,
and no more than 8 frames, of SS 504 reside in GRF
506. This insures that at least the top-most frames of a
process’s SS 504 are present in FU 120, thereby enhanc-
ing speed of operation of FU 120 by providing rapid
access to those top frames. SS 504, residing in MEM
112, may contain, for all practical purposes, an unlim-
ited number of frames so that MIS 424 and SS 504 ap-
pear to a user to be effectively an infinitely deep stack.

MOS 426 resides entirely in FU 120 and, in a present
embodiment of CS 101, may have a capacity of 8 stack
frames. A feature of CS 101 operation is that CS 101
mechanisms for handling certain events or interrupts
should not rely in its operation upon those portions of
CS 101 whose operation has resulted in those faults or
interrupts. Among events handled by CS 101 monitor
microcode, for example, are MEM 112 page faults. An
MEM 112 page fault occurs whenever FU 120 makes a
reference to data in MEM 112 and that data is not in
MEM 112. Due to this and similar operations, MOS 426
resides entirely in FU 120 and thus does not rely upon
information in MEM 112.

As described above, GRs 508, MIS 424, and MOS
426 each reside in certain assigned portions of GRF 506.
This allows flexibility in modifying the capacity of GRs
508, MIS 424, and MOS 426 as indicated by experience,
or to modify an individual CS 101 for particular pur-
poses.

Referring finally to EU 122, EUS 512 is functionally
a part of a process’s SS 504. Also as previously de-
scribed, EU 122 performs arithmetic operations in re-
sponse to SINs and may be interrupted by FU 120 to aid
certain FU 120 operations. EUS 512 allows stacking of
interrupts. For example, FU 120 may first interrupt an
arithmetic SOP to request EU 122 to aid in evaluation
of a Name Table Entry. Before that first interrupt is
completed, FU 120 may interrupt again, and so on.

SOP Stack 514, is a single frame stack for storing
current state of EU 122 when an interrupt interrupts
execution of an arithmetic SOP. An interrupted SOP’s
state is transferred into SOP Stack 514 and the interrupt
begins execution in EUS $12. Upon occurrence of a
second interrupt (before the first interrupt is completed)
EU’s first interrupt state is transferred from EUS 512 to
a stack frame in SS 504, and execution of the second

—

0

20

25

30

35

40

45

50

55

60

65

26

interrupt begins in EUS 512. If a third interrupt occurs
before completion of second interrupt, EU’s second
interrupt state is transferred from EUS 512 to another
stack frame in SS 504 and execution of the third inter-
rupt is begun in EUS 512; and so on. EUS 512 and SS
504 thus provide an apparently infinitely deep micros-
tack for EU 122. Assuming that the third interrupt is
completed, state of second interrupt is transferred from
S8 504 to EUS 512 and execution of second interrupt
resumed. Upon completion of second interrupt, state of
first interrupt is transferred from SS 504 to EUS 512 and
completed. After completion of first interrupt, state of
the original SOP is transferred from SOP Stack 514 to
EUS 512 and execution of that SOP resumed.

C. Procedure Processes, and Virtual Processors (FIG.
6)

Referring to FIG. 6, a diagramic representation of
procedures, processes, and virtual processes is shown.
As described above, a user’s program to be executed is
compiled to result in a Procedure 602. A Procedure 602
includes a User’s Procedure Object 604 containing the
SOPs of the user’s program and a Name Table contain-
ing Entries for operand Names of the user’s program,
and a Static Data Area 606. A Procedure 602 may also
include other Procedure Objects 608, for example util-
ity programs available in common to many users. In
effect, a Procedure 602 contains the instructions (proce-
dures) and data of a user’s program.

A Process 610 includes, as described above, a Macro-
Stack (MAS) 502 storing state of execution of a user’s
Procedure 602 at the SOP level, and a Secure Stack
(SS) 504 storing state of execution of a user’s Procedure
602 at the microcode level. A Process 610 is associated
with a user’s Procedure 602 through the ABPs de-
scribed above and which are stored in the MAS 502 of
the Process 610. Similarly, the MAS 502 and SS 504 of
a Process 610 are associated through non-architectural
pointers, described above. A Process 610 is effectively a
body of information linking the resources, hardware,
microcode, and software, of CS 101 to a user’s Proce-
dure 602. In effect, a Process 610 makes the resources of
CS 101 available to a user’s Procedure 602 for executing
of that Procedure 602. CS 101 is a multi-program ma-
chine capable of accommodating up to, for example,
128 Processes 610 concurrently. The number of Pro-
cesses 610 which may be executed concurrently is de-
termined by the number of Virtual Processors 612 of CS
101. There may be, for example, up to 16 Virtual Pro-
cessors 612,

As indicated in FIG. 6, a Virtual Processor 612 is
comprised of a Virtual Processor State Block (VPSB)
614 associated with the SS 504 of a Process 612. A
VPSB 614 is, in effect, a body of information accessible
to CS 101’s operating system and through which CS
101’s operating system is informed of, and provided
with access to, a Process 610 through that Process 610’s
SS 504. A VPSB 614 is associated with a particular
Process 610 by writing information regarding that Pro-
cess 610 into that VPSB 614. CS 101’s operating system
may, by gaining access to a Process 610 through an
associated UPSP 614, read information, such as ABP"s,
from that Process 610 to FU 120, thereby swapping that
Process 610 onto FU 120 for execution. It is said that a
Virtual Processor 612 thereby executes a Process 610; a
Virtual Processor 612 may be regarded therefor, as a
processor having *“Virtual”, or potential, existence
which becomes “real” when its associated Process 610

4,445,177

27

is swapped into FU 120. In CS 101, as indicated in FIG.
6, only one Virtual Processor 612 may execute on FU
120 at a time and the operating system selects which
Virtual Processor 612 will excecute on FU 120 at any
given time. In addition, CS 101’s operating system se-
lects which Processes 610 will be associated with the
available Virtual Processors 612.

Having briefly described certain individual structural
and operating features of CS 101, the overall operation
of CS 101 will be described in further detail next below
in terms of these individual features.

D. CS 101 Overall Structure and Operation (FIGS. 1,8,
9, 10, 11, 12, 13, 14, 15)

1. Introduction (F1G. 7)

As indicated in FIG. 7, CS 101 is a multiple level
system wherein operations in one level are generally
transparent to higher levels. User 701 does not see the
S-Language, addressing, and protection mechanisms
defined at Architectural Level 708. Instead, he sees
User Interface 709, which is defined by Compilers 702,
Binder 703, and Extended (high level) Operating Sys-
tem (EOS) 704. Compilers 702 translate high-level lan-
guage code into SINs and Binder 703 translates sym-
bolic Names in programs into UID-offset addresses.

As FIG. 7 shows, Architectural Level 708 is not
defined by FU 120 Interface 711. Instead, the architec-
tural resources level are created by S-Language inter-
preted SINs when a program is executed; Name Inter-
preter 715 operates under control of S-Language Inter-
preters 705 and translates Names into logical descrip-
tors. In CS 101, both S-Language Interpreters 705 and
“Name Interpreter 715 are implemented as microcode
which executes on FU 120. S-Language Interpreters
705 may also use EU 122 to perform calculations. A
Kernel Operating System (KOS) provides CS 101 with
UID-offset addressing, objects, access checking, pro-
cesses, and virtual processors, described further below.
KOS has three kinds of components: KOS Microcode
710, KOS Software 706, and KOS Tables in MEM 112
KOS 710 components are microcode routines which
assist FU 120 in performing certain required operations.
Like other high-level language routines, KOS 706 com-
ponents contain SINs which are interpreted by S-Inter-
preter Microcode 705. Many KOS High-Level Lan-
guage Routines 706 are executed by special KOS pro-
cesses; others may be executed by any process. Both
KOS High-Level Language Routines 706 and KOS
Microcode 710 manipulate KOS Tables in MEM 112.

FU 120 Interface 711 is visible only to KOS and to
S-Interpreter Microcode 705. For the purposes of this
discussion, FU 120 may be seen as a processor which
contains the following main elements:

A Control Mechanism 725 which executes microcode
stored in Writable Control Store 713 and manipu-
lates FU 120 devices as directed by this microcode.

A GRF 506 containing registers in which data may be
stored.

A Processing Unit 715.

All microcode which executes on FU 120 uses these
devices; there is in addition a group of devices for per-
forming special functions; these devices are used only
by microcode connected with those functions. The
microcode, the specialized devices, and sometimes ta-
bles in MEM 112 make up logical machines for per-
forming certain functions. These machines will be de-
scribed in detail below.

20

25

35

45

50

55

65

28

In the following, each of the levels illustrated in FIG.
7 will be discussed in turn. First, the components at
User Interface 709 will be examined to see how they
translate user programs and requests into forms usable
by CS 101. Then the components below the User Inter-
face 709 will be examined to see how they create logical
machines for performing CS 101 operations.

2. Compilers 702 (FIG. 7)

Compilers 702 translate files containing the high-level
language code written by User 701 into Procedure Ob-
jects 608. Two components of a Procedure Object 608
are code (SOPs) and Names, previously described.
SOPs represent operations, and the Names represent
data. A single SIN thus specifies an operation to be
performed on the data represented by the Names.

3. Binder 703 (FIG. 7)

In some cases, Compiler 702 cannot define locations
as offsets from an ABP. For example, if a procedure
calls a procedure contained in another procedure ob-
ject, the location to which the call transfers control
cannot be defined as an offset from the PBP used by the
calling procedure. In these cases, the compiler uses
symbolic Names to define the locations. Binder 703 is a
utility which translates symbolic Names into UID-offset
addresses. It does so in two ways: by combining sepa-
rate Procedure Objects 608 into a single large Proce-
dure Object 608, and then redefining symbolic Names as
offsets from that Procedure Object 608’s ABPs, or by
translating symbolic Names when the program is exe-
cuted. In the second case, Binder 703 requires assistance
from EOS 704.

4. EOS 704 (FIG. T)

EOS 704 manages the resources that User 701 re-
quires to execute his programs. From User 701’s point
of view, the most important of these resources are files
and processes. EOS 704 creates files by requesting KOS
to create an object and then mapping the file onto the
object. When a User 701 performs an operation on a file,
EOS 704 translates the file operation into an operation
on an object. KOS creates them at EOS 704’s request
and makes them available to EOS 704, which in turn
makes them available to User 701. EOS 704 causes 2
process to execute by associating it a Virtual Processor
612. In logical terms, a Virtual Processor 612 is the
means which KOS provides EOS 704 for executing
Processes 610. As many Processes 610 may apparently
execute simultaneously in CS 101 as there are Virtual
Processors 612. The illusion of simultaneous execution
is created by multiplexing JP 114 among the Virtual
Processors; the manner in which Processes 610 and
Virtual Processors 610 are implemented will be ex-
plained in detail below.

5. KOS and Architectural Interface 708 (FIG. 7)

S-Interpreter Microcode 705 and Name Interpreter
Microcode 715 require an environment provided by
KOS Microcode 710 and KOS Software 706 to execute
SINs. For example, as previously explained, Names and
program locations are defined in terms of ABPs whose
values vary during execution of the program. The KOS
environment provides values for the ABPs, and there-
fore makes it possible to interpret Names and program
locations as locations in MEM 112. Similarly, KOS help
is required to transform logical descriptors into refer-
ences to MEM 112 and to perform protection checks.

4,445,177

29
The environment provided by KOS has the following
elements:

A Process 610 which contains the state of an execu-
tion of the program for a given User 701.

A Virtual Processor 612 which gives the Process 610
access to JP 114.

An Object Management System which translates
UIDs into values that are usable inside JP 114,

A Protection System which checks whether a Pro-
cess 610 has the right to perform an operation on an
Object.

A Virtual Memory Management System which
moves those portions of Objects which a Process
610 actually references from the outside world into
MEM 112 and translates logical descriptors into
physical descriptors.

In the following, the logical properties of this envi-

ronment and the manner in which a program is exe-
cuted in it will be explained.

6. Processes 610 and Virtual Processors 612 (FIG. 8)

Processes 610 and Virtual Processors 612 have al-
ready been described in logical terms; FIG. 8 gives a
high-level view of their physical implementation.

FIG. 8 illustrates the relationship between Processes
610, Virtual Processors 612, and JP 114. In physical
terms, a Process 610 is an area of MEM 112 which
contains the current state of a user’s execution of a
program. One example of such state is the current val-
ues of the ABPs and a Program Counter (PC). Given
the current value of the PBP and the PC, the next SOP
in the program can be executed; similarly, given the
current values of SDP and FP, the program’s Names
can be correctly resolved. Since the Process 610 con-
tains the current state of a program’s execution, the
program’s physical execution can be stopped and re-
sumed at any point. It is thus possible to control pro-
gram execution by means of the Process 610.

As already mentioned, a Process 610’s execution pro-
ceeds only when KOS has bound it to a Virtual Proces-
sor 612, that is, an area of MEM 112 containing the state
required to execute microinstructions on JP 114 hard-
ware. The operation of binding is simply a transfer of
Process 610 state from the Process 610’ area of MEM
112 to a Virtual Processor 612’s area of MEM 112,
Since binding and unbinding may take place at any time,
EOS 704 may multiplex Processes 610 among Virtual
Processors 612. In FIG. 8, there are more Processes 610
than there are Virtual Processors 612. The physical
execution of a Process 610 on JP 114 takes place only
while the Process 610’s Virtual Processor 612 is bound
to JP 114, i.e., when state is transferred from Virtual
Processor 612’s area of MEM 112 to JP 114's registers.
Just as EOS 704 multiplexes Virtual Processors 612
among Processes 610, KOS multiplexes JP 114 among
Virtual Processors 612. In FIG. 8, only one Process 610
is being physically executed. The means by which JP
114 is multiplexed among Virtual Processors 612 will be
described in further detail below.

7. Processes 610 and Stacks (FIG. 9)

In CS 101 systems, a Process 610 is made up of six
Objects: one Process Object 901 and Five Stack Objects
902 to 906. FIG. 9 illustrates a Process 610. Process
Object 901 contains the information which EOS 704
requires to manage the Process 610. EOS 704 has no
direct access to Process Object 901, but instead obtains
the information it needs by means of functions provided

20

25

35

40

45

50

55

65

30
to it by KOS 706, 710. Included in the information are
the UIDs of Stack Objects 902 through 906. Stack Ob-
Jjects 902 to 906 contain the Process 610's state.

Stack Objects 902 through 905, are required by CS
101’s domain protection method and comprise Process
610’s MAS 502. Briefly, a domain is determined in part
by operations performed when a system is operating in
that domain. For example, the system is in EOS 704
domain when executing EOS 704 operations and in
KOS 706, 710 domain when executing KOS 706, 710
operations. A Process 610 must have one stack for each
domain it enters. In the present embodiment, the num-
ber of domains is fixed at four, but alternate embodi-
ments may allow any number of domains, and corre-
spondingly, any number of Stack Objects. Stack Object
906 comprises Process 610°s Secure Stack 504 and is
required to store state which may be manipulated only
by KOS 706, 710.

Each invocation made by a Process 610 results in the
addition of frames to Secure Stack 504 and to Macro-
Stack 502. The state stored in the Secure Stack 504
frame includes the macrostate for the invocation, the
state required to bind Process 610 to a Virtual Processor
612. The frame added to Macro-Stack 502 is placed in
one of Stack Objects 902 through 905. Which Stack
Objects 902 to 905 gets the frame is determined by the
invoked procedure’s domain of execution.

FIG. 9 shows the condition of a Process 610's MAS
502 and Secure Stack 504 after the Process 610 has
executed four invocations. Secure Stack 504 has one
frame for each invocation; the frames of Process 610’s
MAS 502 are found in Stack Objects 902, 904, and 905,
As revealed by their locations, Frame 1 is for an invoca-
tion of a routine with KOS 706, 710 domain of execu-
tion, Frame 2 for an invocation of a routine with the
EOS 704 domain of execution, and Frames 3 and 4 for
invocations of routines with the User domain of execu-
tion. Process 610 has not yet invoked a routine with the
Data Base Management System (DBMS) domain of
execution. The frames in Stack Objects 902 through 905
are linked together, and a frame is added to or removed
from Secure Stack 504 every time a frame is added to
Stack Objects 902 through 905. MAS 502 and Secure
Stack 504 thereby function as a single logical stack even
though logically contained in five separate Objects.

8. Processes 610 and Calls (FIGS. 10, 11)

In the CS 101, calls and returns are executed by KOS
706, 710. When KOS 706, 710 performs a call for a
process, it does the following:

It saves the calling invocation’s macrostate in

frame of Secure Stack 504 (FIG. 9).

It locates the procedure whose Name is contained in
the call. The location of the first SIN in the proce-
dure becomes the new PBP,

Using information contained in the called procedure,
KOS 706, 710 creates a new MAS 502 frame in the
proper Stack Object 902 through 905 and a new
Secure Stack 504 frame in Secure Stack 504. FP is
updated to point to the new MAS 502. If necessary,
SDP is also updated.

Once the values of the ABPs have been updated, the
PC is defined, Names can be resolved, and execution of
the invoked routine can commence. On a return from
the invocation to the invoking routine, the stack frames
are deleted and the ABPs are set to the values saved in
the invoking routine’s macrostate. The invoking routine

the top

4,445,177

3

then continues execution at the
invocation.

A Process 610 may be illustrated in detail by putting
the FORTRAN statement A+B into a FORTRAN
routine called EXAMPLE and invoking it from an-
other FORTRAN routine named CALLER. To sim-
plify the example, .it is assumed that CALLER and
EXAMPLE both have the same domain of execution.
The parts of EXAMPLE which are of interest look like
this:

SUBROUTINE EXAMPLE)

INTEGER X,C

INTEGER A,B

point following the

A=B

RETURN

END
The new elements are a formal argument, C, and a new
local variable, X. A formal argument is a data item
which receives its value from a data item used in the
invoking routine. The formal argument’s value thus
varies from invocation to invocation. The portions of
INVOKER which are of interest look like this:

SUBROUTINE INVOKER

INTEGER Z
CALL EXAMPLE (2)

END

The CALL statement in INVOKER specifies the
Name of the subroutine being invoked and the actual
arguments for the subroutine’s formal arguments. Dur-
ing the invocation, the subroutine’s formal arguments
take on the values of the actual arguments. Thus, during
the invocation specified by this CALL statement, the
formal argument C will have the value represented by
the variable Z in INVOKER.

When INVOKER is compiled, the compiler pro-
duces a CALL SIN corresponding to the CALL state-
ment. The CALL SIN contains a Name representing 2
pointer to the beginning of the called routine’s location
in a procedure object and 8 list of Names representing
the call’s actual arguments. When CALL is executed,
the Names are interpreted to resolve the SIN's Names
as previously described, and KOS 710 microcode to
perform MAS 502 and Secure Stack 504 operations.

FIG. 10 illustrates the manner in which the KOS 710
call microcode manipulates MAS 502 and Secure Stack
504. FIG. 10 includes the following elements:

Call Microcode 1001, contained in FU 120 Writable

Control Store 1014.

PC Device 1002, which contains
belonging to the invocation of INVOKER
is executing the CALL statement.

Registers in FU Registers 1004. Registers 1004 con-
tents include the remainder of macrostate and the
descriptors corresponding to Names for EXAM-
PLE’s location and the actual argument Z.

Procedure Object 1006 contains the entries for IN-
VOKER and EXAMPLE, their Name Tables, and
their code.

Macro-Stack Object 1008 (MAS 502) and Secure
Stack Object 1010 (Secure Stack 504) contain the
stack frames for the invocations of INVOKER and
EXAMPLE being discussed here. EXAMPLE’s
frame is in the same Macro-Stack object as IN-
VOKER's frame because both routines are con-

part of macrostate
which

10

15

20

25

30

35

40

45

55

65

32
tained in the same Procedure Object 1006, and
therefore have the same domain of execution.

KOS Call Microcode 1001 first saves the macrostate
of INVOKER's invocation on Secure Stack 504. As
will be discussed later, when the state is saved, KOS 706
Call Microcode 1001 uses other KOS 706 microcode to
translate the location information contained in the mac-
rostate into the kind of pointers used in MEM 112. Then
Microcode 1001 uses the descriptor for the routine
Name to locate the pointer to EXAMPLE's entry in
Procedure Object 1006. From the entry, it locates point-
ers to EXAMPLE’s Name Table and the beginning of
EXAMPLE’s code. Microcode 1001 takes these point-
ers, uses other KOS 706 microcode to translate them
into descriptors, and places the descriptors in the loca-
tions in Registers 1004 reserved for the values of the
PBP and NTP. It then updates the values contained in
PC Device 1002 so that when the call is finished, the
next SIN to be executed will be the first SIN in EXAM-
PLE.

CALL Microcode 1001 next constructs the frames
for EXAMPLE on Secure Stack 504 and Macro-Stack
502. This discussion concerns itself only with Frame
1102 on Macro-Stack 502. FIG. 11 illustrates EXAM-
PLE’s Frame 1102. The size of Frame 1102 is deter-
mined by EXAMPLE’s local variables (X, A, and B)
and formal arguments (C). At the bottom of Frame 1102
is Header 1104. Header 1104 contains information used
by KOS 706, 710 to manage the stack. Next comes
Pointer 1106 to the location which contains the value
represented by the argument C. In the invocation, the
actual for C is the local variable Z in INVOKER. As is
the case with all local variables, the storage represented
by Z is contained in the stack frame belonging to IN-
VOKER'’s invocation. When a name interpreter re-
solved C's name, it placed the descriptor in a register.
Call Microcode 1001 takes this descriptor, converts itto
a pointer, and stores the pointer above Header 1104,

Since the FP ABP points to the location following
the last pointer to an actual argument, Call Microcode
1001 can now calculate that location, convert it into a
descriptor, and place it in a FU Register 1004 reserved
for FP. The next step is providing storage for EXAM-
PLE’s local variables. EXAMPLE's Procedure Object
1006 contains the size of the storage required for the
local variables, so Call Microcode 1001 obtains this
information from Procedure Object 1006 and adds that
much storage to Frame 1102. Using the new value of
FP and the information contained in the Name Table
Entries for the local data, Name Interpreter 715 can
now construct descriptors for the local data. For exam-
ple, A’s entry in Name Table specified that it was offset
32 bits from FP, and was 32 bits long. Thus, its storage
falls between the storage for X and B in FIG. 11.

9. Memory References and the Virtual Memory
Management System (FIGS. 12, 13)

As already explained, a logical descriptor contains an
AON field, an offset field, and a length field. FIG. 12
illustrates a Physical Descriptor. Physical Descriptor
1202 contains a Frame Number (FN) field, a Displace-
ment (D) field, and a Length (L) field. Together, the
Frame Number field and the Displacement field specify
the location in MEM 112 containing the data, and the
Length field specifies the length of the data.

As is clear from the above, the virtual memory man-
agement system must translate the AON-offset location
contained in a logical descriptor 1204 into a Frame

4,445,177

33

Number-Displacement location. It does so by associat-
ing logical pages with MEM 112 frames, (N.B: MEM
112 frames are not to be confused with stack frames).
FIG. 13, illustrates how Macrostack 502 Object 1302 is
divided into Logical Pages 1304 in secondary memory
and how Logical Pages 1304 are moved onto Frames
1306 in MEM 112. A Frame 1306 is a fixed-size, contig-
uous area of MEM 112. When the virtual memory man-
agement system brings data into MEM 112, it does so in
frame-sized chunks called Logical Pages 1308. Thus,
from the virtual memory system’s point of view, each
object is divided into Logical Pages 1308 and the ad-
dress of data on a page consists of the AON of the data’s
Object, the number of pages in the object, and its dis-
placement on the page. In FIG. 13, the location of the
local variable B of EXAMPLE is shown as it is defined
by the virtual memory system. B’s location is aUlID and
an offset, or, inside JP 114, an AON and an offset. As
defined by the virtual memory system, B’s location is
the AON, the page number 1308, and a displacement
within the page. When a process references the variable
B, the virtual memory management system moves all of
Logical Page 1308 into a MEM 112 Frame 1306. B’s
displacement remains the same, and the virtual memory
system translates its Logical Page Number 1308 into the
number of Frame 1306 in MEM 112 which contains the
page. :

The virtual memory management system must there-
fore perform two kinds of translations: (1) AON-offset
addresses into AON-page number-displacement ad-
dresses, and (2) AON-page number into a frame num-
ber.

10. Access Control (FIG. 14)

Each time a reference is made to an Object, KOS 706,
710 checks whether the reference is legal. The follow-
ing discusson will first present the logical structure of
access control in CS 101, and then discuss the micro-
code and devices which implement it. CS 101 defines
access in terms of subjects, modes of access, and Object
size. A process may reference a data item located in an
Object if three conditions hold:

(1) If the process’s subject has access to the Object.

(2) If the modes of access specified for the subject
include those required to perform the intended
operation. :

(3) If the data item is completely contained in the
Object, i.e., if the data item’s length added to the
data item’s offset do not exceed the number of bits
in the Object.

The subjects which have access to an Object and the
<inds of access they have to the Object are specified by
a data structure associated with the Object called the
Access Control List (ACL). An Object’s size is one of
1ts attributes. Neither an Object’s size nor its ACL is
contained in the Object. Both are contained in system
tables, and are accessible by means of the Object’s UID.

FIG. 14 shows the logical structure of access control
in CS 101. Subject 1408 has four components: Principal
1404, Process 1405, Domain 1406, and Tag 1407. Tag
1407 is not implemented in a present embodiment of CS
101, so the following description will deal only with
Principal 1404, Process 1405, and Domain 1406.

Principal 1404 specifies a user for which the process
which is making the reference was created;

Process 1405 specifies the process which is making
the reference; and,

35

40

45

50

55

60

65

34
Domain 1406 specifies the domain of execution of the
procedure which the process is executing when it
makes the reference.

Each component of the Subject 1408 is represented
by a UID. If the UID is a null UID, that component of
the subject does not affect access checking. Non-null
UIDs are the UIDs of Objects that contain information
about the subject components, Principal Object 1404
contains identification and accounting information re-
garding system users, Process Object 1405 contains
process management information, and Domain Object
1406 contains information about per-domain error han-
dlers.

There may be three modes of accessing an Object
1410: read, write, and execute. Read and write are self-
explanatory; execute is access which allows a subject to
execute instructions contained in the Object.

Access Control Lists (ACLs), 1412 are made up of
Entries 1414. Each entry has two components: Subject
Template 1416 and Mode Specifier 1418. Subject Tem-
plate 1416 specifies a group of subjects that may refer-
ence the Object and Mode Specifier 1418 specifies the
kinds of access these subjects may have to the Object.
Logically speaking, ACL 1412 is checked each time a
process references an Object 1410. The reference may
succeed only if the process’s current Subject 1408 is one
of those on Object 1410°s ACL. 1412 and if the modes in
the ACL Entry 1414 for the Subject 1408 allow the kind
of access the process wishes to make.

11. Virtual Processors and Virtual Processor Swapping
FIG. 15)

As previously mentioned, the execution of a program
by a Process 610 cannot take place unles EOS 704 has
bound the Process 610 to a Virtual Processor 612. Phys-
ical execution of the Process 610 takes place only while
the process’s Virtual Processor 612 is bound to JP 114,
The following discussion deals with the data bases be-
longing to a Virtual Processor 612 and the means by
which a Virtual Processor 612 is bound to and removed
from JP 114.

FIG. 15 illustrates the devices and tables which KOs
706, 710 uses to implement Virtual Processors 612. FU
120 WCS contains KOS Microcode 706 for binding
Virtual Processors 612 to JP 114 and removing them
from JP 114. Timers 1502 and Interrupt Line 1504 are
hardware devices which produce signals that cause the
invocation of KOS Microcode 706. Timers 1502 con-
tains two timing devices: Interval Timer 1506, which
may be set by KOS 706, 710 to signal when a certain
time is reached, and Egg Timer 1508, which guarantees
that there is a maximum time interval for which a Vir-
tual Processor 612 can be bound to JP 114 before it
invokes KOS Microcode 706. Interrupt Line 1504 be-
comes active when JP 114 receives a message from 10S
116, for example when IOS 116 has finished loading a
logical page into MEM 112.

FU 120 Registers 508 contain state belonging to the
Virtual Processor 612 currently bound to JP 114. Here,
this Virtual Processor 612 is called Virtual Processor A.
In addition, Registers 508 contain registers reserved for
the execution of VP Swapping Microcode 1510. ALU
1942 (part of FU 120) is used for the descriptor-to-
pointer and pointer-to-descriptor transformations re-
quired when one Virtual Processor 612 is unbound from
JP 114 and another bound to JP 114. MEM 112 contains
data bases for Virtual Processors 612 and data bases
used by KOS 706, 710 to manage Virtual Processors

4,445,177

35

612. KOS 706, 710 provides a fixed number of Virtual
Processors 612 for CS 101. Each Virtual Processor 612
is represented by a Virtual Processor State Block
(VPSB) 614. Each VPSB 614 contains information used
by KOS 706, 710 to manage the Virtual Processor 612,
and in addition contains information associating the
Virtual Processor 612 with a process. FIG. 15 shows
two VPSBs 614, one belonging to Virtual Processor
612A, and another belonging to Virtual Processor
612B, which will replace Virtual Processor 612A on JP
114. The VPSBs 614 are contained in VPSB Array
1512. The index of a VPSB 614 in VPSB Array 1512 is
Virtual Processor Number 1514 belonging to the Vir-
tual Processor 612 represented by a VPSB 614. Virtual
Processor Lists 1516 are lists which KOS 706, 710 uses
to manage Virtual Processors 612. If a Virtual Proces-
sor 612 is able to execute, its Virtual Processor Number
1514 is on a list called the Runnable List; Virtual Pro-
cessors 612 which cannot run are on other lists, depend-
ing on the reason why they cannot run. It is assumed
that Virtual Processor 612B’s Virtual Processor Num-
ber 1514 is the first one on the Runnable List.

When a process is bound to a Virtual Procesor 612,
the Virtual Processor Number 1514 is copied into the
process’s Process Object 901 and the AONs of the pro-
cess’s Process Object 901 and stacks are copied into the
Virtual Processor 612's VPSB 614. (AONs are used
because a process’s stacks are wired active as long as the
process is bound to a Virtual Processor 612). Binding is
carried out by KOS 706, 710 at the request of EOS 704,
In FIG. 15, two Secure Stack Objects 906 are shown,
one belonging to the process to which Virtual Proces-
sor 612A is bound, and one belonging to that to which
Virtual Processor 612B is bound.

Having described certain overall operating features
of CS 101, a present implementation of CS 101’s struc-
ture will be described further next below.

E. CS 101 Structural Implementation (FIGS.
16,17,18,19,20)

1. A0S 116 (FIGS. 16, 17)

Referring to FIG. 16, a partial block diagram of IOS
116 is shown. Major elements of IOS 116 include an
ECLIPSE ® Burst Multiplexer Channel (BMC) 1614
and a NOVA® Data Channel (NDC) 1616, an IO
Controller (IOC) 1618 and a Data Mover (DM) 1610.
1OS 116's data channel devices, for example BMC 1614
and NDC 1616, comprise 10S 116’s interface to the
outside world. Information and addresses are received
from external devices, such as disk drives, communica-
tions modes, or other computer systems, by I0S 116’s
data channel devices and are transferred to DM 1610
(described below) to be written intc MEM 112, Simi-
larly, information read from MEM 112 is provided
through DM 1619 to 10S 116’s data channel devices
and thus to the above described external devices. These
external devices are a part of CS 101’s addressable mem-
ory space and may be addressed through UID ad-
dresses.

JOC 1618 is a general purpose CPU, for example an
ECLIPSE ® computer available from Data General
Corporation. A primary function of [OC 1618 is control
of data transfer through 10S 116. In addition, I10C 1618
generates individual Maps for each data channel device
for translating external device addresses into physical
addresses within MEM 112. As indicated in FIG. 16,
each data channel device contains an individual Ad-
dress Translation Map (MAP) 1632 and 1636. This al-

20

25

30

35

45

60

65

36

lows IOS 116 to assign individual areas of MEM 112's
physical address space to each data channel device.
This feature provides protection against one data chan-
nel device writing into or reading from information
belonging to another data channet device. In addition,
JOC 1618 may generate overlapping address translation
Maps for two or more data channel devices to allow
these data channel devices to share a common area of
MEM 112 physical address space.

Data transfer between IOS 116’s data channel devices
and MEM 112 is through DM 1610, which includes a
Buffer memory (BUF) 1641. BUF 1641 allows MEM
112 and 1OS 116 to operate asychronously. DM 1610
also includes a Ring Grant Generator (RGG) 1644
which controls access of various data channel devices
to MEM 112. RGG 1644 is designed to be flexible in
apportioning access to MEM 112 among 10S 116’s data
channel devices as loads carried by various data channel
devices varies. In addition, RGG 1644 insures that no
one, or group, of data channel devices may monopolize
access to MEM 112.

Referring to FIG. 17, a diagramic representation of
RGG 1644’s operation is shown. As described further in
a following description, RGG 1644 may be regarded as
a commutator scanning a number of ports which are

-assigned to various channel devices. For example, ports

A, C, E, and G may be assigned to a BMC 1614, ports
B and F to a NDC 1616, and ports D and H to another
data channel device. RGG 1644 will scan each of these
ports in turn and, if the data channel device associated
with a particular port is requesting access to MEM 112,
will grant access to MEM 112 to that data channel
device. If no request is present at a given port, RGG
1644 will continue immediately to the next port. Each
data channel device assigned one or more ports is
thereby insured opportunity of access to MEM 112.
Unused ports, for example indicating data channel de-
vices which are not presently engaged in information
transfer, are effectively skipped over so that access to
MEM 112 is dynamically modified according to the
information transfer loads of the various data channel
devices. RGG 1644’s ports may be reassigned among
[OS 116's various data channel devices as required to
suit the needs of a particular CS 101 system. If, for
example, a particular CS 101 utilizes NDC 1616 more
than a BMC 1614, that CS 101’s NDC 1616 may be
assigned more ports while that CS 101's BMC 1614 is
assigned fewer ports.

2 Memory (MEM) 112 (FIG. 18)

Referring to FIG. 18, a partial block diagram of
MEM 112 is shown. Major clements of MEM 112 are
Main Store Bank (MSB) 1810, a Bank Controller (BC)
1814, a Memory Cache (MC) 1816, a Field Interface
Unit (FIU) 1820, and Memory Interface Controller
(MIC) 1822. Interconnections of these elements with
input and output buses of MEM 112 to 10S 116 and JP
114 are indicated.

MEM 112 is an intelligent, prioritizing memory hav-
ing a single port to 10S 116, comprised of IOM Bus 130,
MIO Bus 129, and IOMC Bus 131, and dual ports to JP
114. A first JP 114 port is comprised of MOD Bus 140
and PD Bus 146, and a second port is comprised of JPD
Bus 142 and PD Bus 146. In general, all data transfers
from and to MEM 112 by IOS 116 and JP 114 are of
single, 32 bit words; IOM Bus 130, MI1O Bus 129, MQOD
Bus 140, and JPD Bus 142 are each 32 bits wide. CS 101,

4,445,177

37

however, is a variable word length machine wherein
the actual physical width of data buses are not apparent
to a user. For example, a Name in a user’s program may
refer to an operand containing 97 bits of data. To the
user, that 97 bit data item will appear to be read from
MEM 112 t0 JP 114 in a single operation. In actuality,
JP 114 will read that operand from MEM 112 in a series
of read operations referred to as a string transfer. In this
example, the string transfer will comprise three 32 bit
read transfers and one single bit read transfer. The final
single bit transfer, containing a single data bit, will be of
a 32 bit word wherein one bit is data and 31 bits are fill.
Write operations to MEM 112 may be performed in the
same manner. If a single read or write request to MEM
112 specifies a data item of less than 32 bits of data, that
transfer will be accomplished in the same manner as the
final transfer described above., That is, a single 32 bit
word will be transferred wherein non-data bits are fill
bits.

Bulk data storage in MEM 112 is provided in MSB
1810, which is comprised of one or more Memory
Array cards (MAs) 1812. The data path into and out of
MA 1812 is through BC 1814, which performs all con-
trol and timing functions for MAs 1812. BC 1814’s func-
tions include addressing, transfer of data, controlling
whether a read or write operation is performed, refresh,
sniffing, and error correction code operations. All read
and write operations from and to MAs 1812 through BC
1814 are in blocks of four 32 bit words,

The various MAs 1812 comprising MSB 1810 need
not be of the same data storage capacity. For example,
certain MAs 1812 may have a capacity of 256 kilobytes
while other MAs 1812 may have a capacity of 512 kilo-
bytes. Addressing of the MAs 1812 in MSB 1810 is
automatically adapted to various MA 1812 configura-
tions. As indicated in FIG. 18, each MA 1812 contains
an address circuit (A) which receives an input from the
next lower MA 1812 indicating the highest address in
that next lower MA 1812, The A circuit on an MA 1812
also receives an input from that MA 1812 indicating the
total address space of that MA 1812. The A circuit of
that MA 1812 adds the highest address input from next
lower MA 1812 to its own input representing its own
capacity and generates an output to the next MA 1812
indicating its own highest address. All MAs 1812 of
MSB 1810 are addressed in parallel by BC 1814. Each
MA 1812 compares such addresses to its input from the
next lower MA 1812, representing highest address of
that next lower MA 1812, and its own output, represent-
ing its own highest address, to determine whether a
particular address provided by BC 1814 lies within the
range of addresses contained within that particular MA
1812. The particular MA 1812 whose address space
includes that address will then respond by accepting the
read or write request from BC 1814,

MC 1816 is the data path for transfer of data between
BC 1814 and 10S 116 and JP 114. MC 1816 contains a
high speed cache storing data from MSB 1810 which is
currently being utilized by either 108 116 or JP 114
MSB 1810 thereby provides MEM 112 with a large
storage capacity while MC 1816 provides the appear-
ance of a high speed memory. In addition to operating
15 a cache, MC 1816 includes a bypass write path which
tllows IOS 116 to write blocks of four 32 bit words
lirectly into MSB 1810 through BC 1814. In addition,
VC 1816 includes a cache write-back path which al-

ows data to be transferred out of MC 1816’s cache and
tored while further data is transferred into MC 1816’s

10

—

5

20

30

35

45

55

60

65

38
cache. Displaced data from MC 1816's cache may then
be written back into MSB 1810 at a later, more conve-
nient time. This write-back path enhances speed of op-
eration of MC 1816 by avoiding delays incurred by
transferring data from MC 1816 to MSB 1810 before
new data may be written into MC 1818,

MEM 112’s FIU 1820 allows manipulation of data
formats in writes to and reads from MEM 112 by both
JP 114 and 10S 116. For example, FIU 1820 may con-
vert unpacked decimal data to packed decimal data, and
vice versa. In addition, FIU 1820 allows MEM 112 to
operate as a bit addressable memory. For example, as
described all data transfers to and from MEM 112 are of
32 bit words. If a data transfer of less than 32 bits is
required, the 32 bit word containing those data bits may
be read from MC 1816 to FIU 1820 and therein manipu-
lated to extract the required data bits. FIU 1820 then
generates a 32 bit word containing those required data
bits, plus fill bits, and provides that new 32 bit word to
JP 114 or IOS 116. When writing into MEM 112 from
108 116 through FIU 1820, data is transferred onto
IOM Bus 130, read into FIU 1820, operated upon, trans-
ferred onto MOD Bus 140, and transferred from MOD
Bus 140 to MC 1816. In read operations from MEM 112
to IOS 116, data is transferred from MC 1816 to MOD
Bus 140, written into FIU 1820 and operated upon, and
transferred onto MIO Bus 129 to I0S 116. In a data read
from MEM 112 to JP 114, data is transferred from MC
1816 onto MOD Bus 140, transferred into FIU 1820 and
operated upon, and transferred again onto MOD Bus
140 to JP 114. In write operations from JP 114 to MEM
112, data on JPD Bus 142 is transferred into FIU 1820
and operated upon, and is then transferred onto MOD
Bus 140 to MC 1816. MOD Bus 140 is thereby utilized
as an MEM 112 internal bus for FIU 1820 operations.

Finally, MIC 1822 provides primary control of BC
1814, MC 1816, and FIU 1820. MIC 1822 receives con-
trol inputs from and provides control outputs to PD Bus
146 and IOMC Bus 131. MIC 1822 contains primary
microcode control for MEM 112, but BC 1814, MC
1816, and FIU 1820 each include internal microcode
control. Independent, internal microcode controls
allow BC 1814, MC 1816, and FIU 1820 to operate
independently of MIC 1822 after their operations have
been initiated by MIC 1822. This allows BC 1814 and
MSB 1810, MC 1816, and FIU 1820 to operate indepen-
dently and asynchronously, Efficiency and speed of
operation of MEM 112 are thereby enhanced by allow-
ing pipelining of MEM 112 operations.

3. Fetch Unit (FU) 120 (FIG. 19)

A primary function of FU 120 is to execute SINs. In
doing so, FU 120 fetches instructions and data (SOPs
and Names) from MEM 112, returns results of opera-
tions to MEM 112, directs operation of EU 122, exe-
cutes instructions of user’s programs, and performs the
various functions of CS 101’s operating systems. As part
of these functions, FU 120 generates and manipulates
logical addresses and descriptors and is capable of oper-
ating as a general purpose CPU.

Referring to FIG. 19, a major element of FU 120 is
the Descriptor Processor (DESP) 1910. DESP 1910
includes General Register File (GRF) 506. GRF 506 is
a large register array divided vertically into three parts
which are addressed in parallel. A first part, AONGRF
1932, stores AON fields of logical addresses and de-
scriptors. A second part, OFFGRF 1934, stores offset
fields of logical addresses and descriptors and is utilized

S

4,445,177

39
as a 32 bit wide general register array. A third portion
GRF 506, LENGRF 1936, is a 32 bit wide register
array for storing length fields of logical descriptors and
as a general register for storing data. Primary data path
from MEM 112 to FU 120 is through MOD Bus 144,
which provides inputs to OFFGRF 1934. As indicated
in FIG. 19, data may be transferred from OFFGRF
1934 to inputs of AONGRF 1932 and LENGRF 1936
through various interconnections. Similarly, outputs
from LENGRF 1936 and AONGRF 1932 may be trans-
ferred to inputs of AONGRF 1932, OFFGRF 1934,
and LENGRF 1936.

Output of OFFGRF 1934 is connected to inputs of
DESP 1910’s Arithmetic and Logic Unit (ALU) 1942.
ALU 1942 is a general purpose 32 bit ALU which may
be used in generating and manipulating logical ad-
dresses and descriptors, as distinct from general purpose
arithmetic and logic operands performed by MUX
1940. Output of ALU 1942 is connected to JPD Bus 142
to allow results of arithmetic and logic operations to be
transferred to MEM 112 or EU 122.

Also connected from output of OFFGRF 1934 is
Descriptor Multiplexer (MUX) 1940. An output of
MUX 1940 is provided to an input of ALU 1942. MUX
1940 is a 32 bit ALU, including an accumulator, for data
manipulation operations. MUX 1940, together with
ALU 1942, allows DESP 1910 to perform 32 bit arith-
metic and logic operations. MUX 1940 and ALU 1942
may allow arithmetic and logic operations upon oper-
ands of greater than 32 bits by performing successive
operations upon successive 32 bit words of larger oper-
ands.

Logical descriptors or addresses generated or pro-
vided by DESP 1910, are provided to Logical Descrip-
tor (LD) Bus 1902. LD Bus 1902 in turn is connected to
an input of Address Translation Unit (ATU) 1928. ATU
1928 is a cache mechanism for converting logical de-
scriptors to MEM 112 physical descriptors.

LD Bus 1902 is also connected to write input of
Name Cache (NC) 1926. NC 1926 is a cache mechanism
for storing logical descriptors corresponding to oper-
and Names currently being used in user’s programs. As
previously described, Name Table Entries correspond-
ing to operands currently being used in user’s programs
are stored in MEM 112. Certain Name Table Entries for
operands of a user’s program currently being executed
are transferred from those Name Tables in MEM 112to
FU 120 and are therein evaluated to generate corre-
sponding logical descriptors. These logical descriptors
are then stored in NC 1926. As will be described further
below, the instruction stream of a user’s program is
provided to FU 120’ Instruction Buffer (IB) 1962
through MOD Bus 140. FU 120’s Parser (P) 1964 scpa-
rates out, or parses, Names from 1B 1962 and provides
those Names as address inputs to NC 1924. NC 1924 in
turn provides logical descriptor outputs to LD Bus
1902, and thus to input of ATU 1928. NC 1926 input
from LD Bus 1902 allows logical descriptors resulting
from evaluation of Name Table Entries to be written
into NC 1926. FU 120’s Protections Cache (PC) 1934 is
a cache mechanism having an input connected from LD
Bus 1902 and providing information, as described fur-
ther below, regarding protection aspects of references
to data in MEM 112 by user’s programs. NC 1926, ATU
1928, and PC 1934 are thereby acceleration mechanisms
of, respectively, CS 101's Namespace addressing, logi-
cal to physical address structure, and protection mecha-
nism. .

20
' cesssive transfer of the string transfer, that portion of

25

40

45

50

55

60

65

40

Referring again to DESP 1910, DESP 1910 includes
BIAS 1952, connected from output of LENGREF 1936.
As previously described, operands containing more
than 32 data bits are transferred beteen MEM 112 and
JP 114 by means of string transfers. In order to perform
string transfers, it is necessary for FU 120 to generate a
corresponding succession of logical descriptors wherein
length fields of those logical descriptors is no greater
than 5 bits, that is, specify lengths of no greater than 32
data bits.

A logical descriptor describing a data item to be
transferred by means of a string transfer will be stored
in GRF 506. AON field of the logical descriptor will
reside in AONGRF 1932, O field in OFFGRF 1934,
and L field in LENGRF 1936. At each successive trans-
fer of a 32 bit word in the string transfer, O field of that
original logical descriptor will be incremented by the
number of data bits transferred while L field will be
accordingly decremented. The logical descriptor resid-
ing in GRF 506 will thereby describe, upon each suc-

the data item vet to be transferred. O field in OFFGRF
1934 will indicate increasingly larger offsets into that
data item, while L field will indicate successively
shorter lengths. AON and O fields of the logical de-
scriptor in GRF 506 may be utilized directly as AON
and O fields of the successive logical descriptors of the
string transfer. L field of the logical descriptor residing
in LENGRF 1936, however, may not be so used as L
fields of the successive string transfer logical descrip-
tors as this L field indicates remaining length of data
item yet to be transferred. Instead, BIAS 1952 generates
the 5 bit L fields of successive string transfer logical
descriptors while correspondingly decrementing L field
of the logical descriptor in LENGRF 1936. During
each transfer, BIAS 1952 generates L field of the next
string transfer logical descriptor while concurrently
providing L field of the current string transfer logical
descriptor. By doing so, BIAS 1952 thereby increases
speed of execution of string transfers by performing
pipelined L field operations. BIAS 1952 thereby allows
CS 101 to appear to the user to be a variable word
length machine by automatically performing string
transfers. This mechanism is used for transfer of any
data item greater than 32 bits, for example double preci-
sion floating point numbers.

Finally, FU 120 includes microcode circuitry for
controlling all FU 120 operations described above. In
particular, FU 120 includes a microinstruction sequence
control store (mC) 1920 storing sequences of microin-
structions for controlling step by step execution of all
FU 120 operations. In general, these FU 120 operations
fall into two classes. A first class includes those microin-
struction sequences directly concerned with executing
the SOPs of user’s programs. The second class includes
microinstruction sequences concerned with CS 101's
operating systems, including certain automatic, internal
FU 120 functions such as evaluation of Name Table
Entries.

As previously described, CS 101 is a multiple S-Lan-
guage machine. For example, mC 1920 may contain
microinstruction sequences for executing user’s SOPs in
at least four different Dialects. mC 1920 is comprised of
a writeable control store and sets of microinstruction
sequences for various Dialects may be transferred into
and out of mC 1920 as required for execution of various
user’s programs. By storing sets of microinstruction
sequences for more than one Dialect in mC 1920, it is

4,445,177

41

possible for user’s programs to be written in a mixture of
user languages. For example, a particular user's pro-
gram may be written primarily in FORTRAN but may
call certain COBOL routines. These COBOL routines
will be correspondingly translated into COBOL dialect
SOPs and executed by COBOL microinstruction se-
quences stored in mC 1920.

The instruction stream provided to FU 120 from
MEM 112 has been previously described with reference
to FIG. 3. SOPs and Names of this instruction stream
are transferred from MOD Bus 140 into IB 1962 as they
are provided from MEM 112. IB 1962 includes two 32
bit (one word) registers. IB 1962 also includes prefetch
circuitry for reading for SOPs and Names of the in-
struction stream from MEM 112 in such a manner that
IB 1962 shall always contain at least one SOPs or Name.
FU 120 includes (P) 1964 which reads and separates, or
parses, SOPs and Names from IB 1962. As previously
described, P 1964 provides those Names to NC 1926,
which accordingly provides logical descriptors to ATU
1928 50 as to read the corresponding operands from
MEM 112.

SOPs parsed by P 1964 are provided as inputs to
Fetch Unit Dispatch Table (FUDT) 1904 and Execute
Unit Dispatch Table (EUDT) 1966. Referring first to
FUDT 1904, FUDT 1904 is effectively a table for trans-
lating SOPs to starting addresses in mC 1912 of corre-
sponding microinstruction sequences. This intermediate
translation of SOPs to mC 1912 addresses allows effi-
cient packing of microinstruction sequences within mC
1912. That is, certain microinstruction sequences may
be common to two or more S-Language Dialects. Such
microinstruction sequences may therefore be written
into mC 1912 once and may be referred to by different
SOPs of different S-Language Dialects.

EUDT 1966 performs a similar function with respect
to EU 122. As will be described below, EU 122 contains
a mC, similar to mC 1912, which is addressed through
EUDT 1966 by SOPs specifying EU 122 operations. In
addition, FU 120 may provide such addresses mC 1912
to initiate EU 122 operations as required to assist certain
FU 120 operations. Examples of such operations which
may be requested by FU 120 include calculations re-
quired in evaluating Name Table Entries to provide
logical descriptors to be loaded into NC 1926,

Associated with both FUDT 1904 and EUDT 1966
are Dialect (D) registers 1905 and 1967. D registers
1905 and 1967 store information indicating the particu-
lar S-Language Dialect currently being utilized in exe-
cution of a user’s program. Outputs of D registers 1905
and 1967 are utilized as part of the address inputs to mC
1912 and EU 122's mC.

4. Execute Unit (EU) 122 (FIG. 20)

As previously described, EU 122 is an arithmetic and
logic unit provided to relieve FU 120 of certain arith-
metic operations. EU 122 is capable of performing addi-
tion, subtraction, multiplication, and division operations
on integer, packed and unpacked decimal, and single
and double precision floating operands. EU 122 is an
independently operating microcode controlled machine
including Microcode Control (mC) 2010 which, as de-
scribed above, is addressed by EUDT 1966 to initiate
EU 122 operations. mC 2010 also includes logic for
handling mutual interrupts between FU 120 and EU
122. That is, FU 120 may interrupt current EU 122
operations to call upon EU 122 to assist an FU 120
operation. For example, FU 120 may interrupt an arith-

5

20

25

35

50

60

65

42

metic operation currently being executed by EU 122 to
call upon EU 122 to assist in generating a logical de-
scriptor from a Name Table Entry. Similarly, EU 122
may interrupt current FU 120 operations when EU 122
requires FU 120 assistance in executing a current arith-
metic operation. For example, EU 122 may interrupt a
current FU 120 operation if EU 122 receives an instruc-
tion and operands requiring EU 122 to perform a divide
by zero.

Referring to FIG. 20, a partial block diagram of EU
122 is shown. EU 122 includes two arithmetic and logic
units. A first arithmetic and logic unit (MULT) 2014 is
utilized to perform addition, subtraction, multiplication,
and division operations upon integer and decimal oper-
ands, and upon mantissa fields of single and double
precision floating point operands. Second ALU (EXP)
2016 is utilized to perform operations upon single and
double precision floating point operand exponent fields
in parallel with operations performed upon floating
point mantissa fields by MULT 2014. Both MULT 2014
and EXP 2016 include an arithmetic and logic unit,
respectively MALU 2074 and EXPALU 2084. MULT
2014 and EXP 2016 also include register files, respec-
tively MRF 2050 and ERF 2080, which operate and are
addressed in parallel in a manner similar to AONGRF
1932, OFFGRF 1984 and LENGRF 1936.

Operands for EU 122 to operate upon are provided
from MEM 112 through MOD Bus 140 and are trans-
ferred into Operand Buffer (OPB) 2022. In addition to
serving as an input buffer, OPB 2022 performs certain
data format manipulation operations to transform input
operands into formats most efficiently operated with by
EU 122. In particular, EU 122 and MULT 2014 may be
designed to operate efficiently with packed decimal
operands. OPB 2022 may transform unpacked decimal
operands into packed decimal operands. Unpacked dec-
imal operands are in the form of ASCH characters
wherein four bits of each characters are binary codes
specifying a decimal value between zero and nine.
Other bits of each character are referred to as zone
fields and in general contain information identifying
particular ASCII characters. For example, zone field
bits may specify whether a particular ASCII character
is a number, a letter, or punctuation. Packed decimal
operands are comprised of a series of four bit fields
wherein each field contains a binary number specifying
a decimal value of between zero and nine. OPB 2022
converts unpacked decimal to packed decimal operands
by extracting zone field bits and packing the four nu-
meric value bits of each character into the four bit fields
of a packed decimal number.

EU 122 is also capable of transforming the results of
arithmetic operands, for example in packed decimal
format, into unpacked decimal format for transfer back
to MEM 112 or FU 120. In this case, a packed decimal
result appearing at output of MALU 2074 is written into
MRF 2050 through a multiplexer, not shown in FIG.
20, which transforms the four bit numeric code fields of
the packed decimal results into corresponding bits of
unpacked decimal operand characters, and forces
blanks into the zone field bits of those unpacked decimal
characters. The results of this operation are then read
from MRF 2050 to MALU 2074 and zone field bits for
those unpacked decimal characters are read from Con-
stant Store (CST) 2060 to MALU 2074. These inputs
from MRF 2050 and CST 2060 are added by MALU
2074 to generate final result outputs in unpacked deci-
mal format. These final results may then be transferred

4,445,177

onto JPD Bus 142 through Output Multiplexer (OM)
2024
Considering first floating point operations, in addition

or subtraction of floating point operands it is necessary
to equalize the values of the floating point operand
exponent fields. This is referred to as prealignment. In
floating point operations, exponent fields of the two
operands are transferred into EXPALU 2034 and com-
pared to determine the difference between exponent
fields. An output representing difference between expo-
nent fields is provided from EXPALU 2034 to an input
of floating point control (FPC) 2002. FPC 2002 in turn
provides control outputs to MALU 2074, which has
received the mantissa fields of the two operands.
MALU 2074, operating under direction of FPC 2002,
accordingly right or left shifts one operand’s mantissa
field to effectively align that operand’s exponent field
with the other operand’s exponent field. Addition or
subtraction of the operand’s mantissa fields may then

proceed.

EXPALU 2034 also performs addition or subtraction
of floating point operand exponent fields in multiplica-
tion or division operations, while MALU 2074 performs
multiplication and division of the operand mantissa
fields. Multiplication and division of floating point oper-
and mantissa fields by MALU 2074 is performed by
successive shifting of one operand, corresponding gen-
eration of partial products of the other operand, and
successive addition and subtraction of those partial
products.

Finally, EU 122 performs normalization of the results
of floating point operand operations by left shifting of a
final result’s mantissa field to eliminate zeros in the most
significant characters of the final result mantissa field,
and corresponding shifting of the final result exponent
fields. Normalization of floating point operation results
is controlled by FPC 2002. FPC 2002 examines an un-
normalized floating point result output of MALU 2074
to detect which, if any, of the most significant charac-
ters of that results contain zeros. FPC 2002 then accord-
ingly provides control outputs to EXPALU 2034 and
MALU 2074 to correspondingly shift the exponent and
mantissa fields of those results so as to eliminate leading
character zeros from the mantissa field. Normalized
mantissa and exponent fields of floating point results
may then be transferred from MALU 2074 and EX-
PALU 2034 to JPD Bus 142 through OM 2024.

As described above, EU 122 also performs addition,
subtraction, multiplication, and division operations on
operands. In this respect, EU 122 uses a leading zero
detector in FPC 2002 in efficiently performing multipli-
cation and division operations. FPC 2002s leading zero
detector examines the characters or bits of two oper-
ands to be multiplied or divided, starting from the high-
est, to determine which, if any, contain zeros so as not
to require a multiplication or division operation. FPC
2002 accordingly left shifts the operands to effectively
eliminate those characters or bits, thus reducing the
number of operations to multiply or divide the operands
and accordingly reducing the time required to operate
upon the operands.

Finally, EU 122 utilizes a unique method, with associ-
ated hardware, for performing arithmetic operations on
decimal operands by utilizing circuitry which is other-
wise conventionalily used only to perform operations
upon floating point operands. As described above,
MULT 2074 is designed to operate with packed decimal
operands, that is operands in the form of consecutive

—

5

20

K14]

40

45

50

55

60

65

blocks of four bits wherein each block of four bits con-
tains a binary code representing numeric values of be-
tween zero and nine. Floating point operands are simi-
larly in the form of consecutive blocks of four bits. Each
block of four bits in a floating point operand, however,
contains a binary number representing a hexadecimal
value of between zero and fifteen. As an initial step in
operating with packed decimal operands, those oper-
ands are loaded, one at a time, into MALU 2074 and,
with each such operand, a number comprised of all
hexadecimal sixes is loaded into MALU 2074 from CST
2060. This CST 2060 number is added to each packed
decimal operand to effectively convert those packed
decimal operands into hexadecimal operands wherein
the four bit blocks contain numeric values in the range
of six to fifteen, rather than in the original range of zero
to nine. MULT 2014 then performs arithmetic opera-
tion upon those transformed operands, and in doing so
detects and saves information regarding which four bit
characters of those operands have resulted in genera-
tion of carries during the arithmetic operations. In a
final step, the intermediate result resulting from comple-
tion of those arithmetic operations upon those trans-
formed operands are reconverted to packed decimal
format by subtraction of hexadecimal sixes from those
characters for which carries have been generated. Ef-
fectively, EU 122 converts packed decimal operands
into “Excess Six” operands, performs arithmetic opera-
tions upon those “Excess Six” operands, and reconverts
“Excess Six” results of those operations back into
packed decimal format.

Finally, as previously descibed FU 120 controls
transfer of arithmetic results from EU 122 to MEM 112
In doing so, FU 120 generates a logical descriptor de-
scribing the size of MEM 112 address space, or “con-
tainer”, that result is to be transferred into. In certain
arithmetic operations, for example integer operations,
an arithmetic result may be larger than anticipated and
may contain more bits than the MEM 112 “container”.
Container Size Check Circuit (CSC) 2052 compares
actual size of arithmetic results and L fields of MEM
112 “container” logical descriptors. CSC 2052 gener-
ates an output indicating whether an MEM 112 “con-
tainer” is smaller than an arithmetic result.

Having briefly described certain features of CS 101
structure and operation in the above overview, these
and other features of CS 101 will be described in further
detail next below in a more detailed introduction of CS
101 structure and operation. Then, in further descrip-
tions, these and other features of CS 101 structure and
operation will be described in depth.

1. Introduction (FIGS. 101-110)
A. General Structure and Operation (FIG. 101)
a. General Structure

Referring to FIG. 101, a partial block diagram of
Computer System (CS) 10110 is shown. Major elements
of CS 10110 are Dual Port Memory (MEM) 10112, Job
Processor (JP) 10114, Input/Output System (10S)
10116, and Diagnostic Processor (DP) 10118. JP 10114
includes Fetch Unit (FU) 10120 and Execute Unit (EU)
10122

Referring first to 10S 10116, 1I0S 10116 is intercon-
nected with External Devices (ED) 10124 through
Input/Output (1/0) Bus 10126. ED 10124 may include,
for example, other computer systems, keyboard/display
units, and disc drive memories. 10S 10116 is intercon-

4,445,177

45
nected with Memory Input/Output (MIO) Port 10128
of MEM 10112 through Input/Output to Memory
(IOM) Bus 10130 and Memory to Input/Output MIO)
Bus 10129, and with FU 10120 through I/0 Job Proces-
sor (IOJP) Bus 10132,

DP 10118 is interconnected with, for example, exter-
nal keyboard/CRT Display Unit (DU) 10134 through
Diagnostic Processor Input/Qutput (DPIO) Bus 10136,
DP 10118 is interconnected with IOS 10116, MEM
10112, FU 10120, and EU 10122 through Diagnostic
Processor (DP) Bus 10138,

Memory to Job Processor (MJP) Port 10140 of Mem-
ory 10112 is interconnected with FU 10120 and EU
10122 through Job Processor Data (JPD) Bus 10142.
An output of MJP 10140 is connected to inputs of FU
10120 and EU 10122 through Memory Output Data
(MOD) Bus 10144. An output of FU 10120 is connected
to an input of MJP 10140 through Physical Descriptor
(PD) Bus 10146. FU 10120 and EU 10122 are intercon-
nected through Fetch/Execute (F/E) Bus 10148.

b. General Operation
As will be discussed further below, I0S 10116 and

MEM 10112 operate independently under general con- -

trol of JP 10114 in executing multiple user’s programs.
In this regard, MEM 10112 is an intelligent, prioritizing
memory having separate and independent ports MIO
10128 and MJP 10140 to 10S 10116 and JP 10114 re-
spectively. MEM 10112 is the primary path for informa-
tion transfer between External Devices 10124 (through
IOS 10116) and JP 10114. MEM 10112 thus operates
both as a buffer for receiving and storing various indi-
vidual user’s programs (e.g., data, instructions, and re-
sults of program execution) and as a main memory for
JP 10114,

A primary function of I0S 10116 is as an input/out-
put buffer between CS 10110 and ED 10124 Data and
instructions are transferred from ED 10124 to IOS
10116 through 1/0 Bus 10126 in a manner and format
compatible with ED 10124. I0S 10116 receives and
stores this information, and manipulates the information
into formats suitable for transfer into MEM 10112, I0S
10116 then indicates to MEM 10112 that new informa-
tion is available for transfer into MEM 10112. Upon
acknowledgement by MEM 10112, this information is
transferred into MEM 10112 through IOM Bus 10130
and MIO Port 10128. MEM 10112 stores the informa-
tion in selected portions of MEM 10112 physical ad-
dress space. At this time, IOS 10116 notifies JP 10114
that new information is present in MEM 10112 by pro-
viding a “semaphore” signal to FU 10120 through IQJP
Bus 10132. As will be described further below, CS
10110 manipulates the data and instructions stored in
MEM 10112 into certain information structures used in
executing user’s programs. Among these structures are
certain structures, discussed further below, which are
used by CS 10110 in organizing and controlling flow
and execution of user programs.

FU 10120 and EU 10122 are independently operating
microcode controlled “machines” together comprising
the CS 10110 micromachine for executing user’s pro-
grams stored in MEM 10112, Among the principal func-
tions of FU 10120 are: (1) fetching and interpreting
instructions and data from MEM 10112 for use by FU
10120 and EU 10122; (2) organizing and controlling
flow of user programs; (3) initiating EU 10122 opera-
tions; (4) performing arithmetic and logic operations on
lata; (5) controlling transfer of data from FU 10120 and

20

25

35

45

50

55

60

65

46

EU 10122 to MEM 10112; and,
“stack” and “register” mechanisms, described below.
FU 10120 “cache” mechanisms, also described below,
are provided to enhance the speed of operation of JP
10114. These cache mechanisms are acceleration cir-
cuitry including, in part, high speed memories for stor-
ing copies of selected information stored in MEM
10112. The information stored in this acceleration cir-
cuitry is therefore more rapidly available to JP 10114,
EU 10122 is an arithmetic unit capable of executing
integer, decimal, or floating point arithmetic operations.
The primary function of EU 10122 is to relieve FU
10120 from certain extensive arithmetic operations, thus
enhancing the efficiency of CS 10110,

In general, operations in JP 10114 are executed on a
memory to memory basis; data is read from MEM
10112, operated upon, and the results returned to MEM
10112. In this regard, certain stack and cache mecha-
nisms in JP 10114 (described below) operate as exten-
sions of MEM 10112 address space.

In operation, FU 10120 reads data and instructions
from MEM 10112 by providing physical addresses to
MEM 10112 by way of PD Bus 10146 and MJP Port
10140. The instructions and data are transferred to FU
10120 and EU 10122 by way of MJP Port 10140 and
MOD Bus 10140. Instructions are interpreted by FU
10120 microcode circuitry, not shown in FIG. 101 but
described below, and when necessary, microcode in-
structions are provided to EU 10122 from FU 10120’s
microcode control by way of F/E Bus 10148, or by way
of JPD Bus 10142,

As stated above, FU 10120 and EU 10122 operate
asynchronously with respect to each other’s functions.
A microinstruction from FU 10120 microcode circuitry
to EU 10122 may initiate a selected operation of EU
10122. EU 10122 may then proceed to independently
execute the selected operation. FU 10120 may proceed
to concurrently execute other operations while EU
10122 is completing the selected arithmetic operation.
At completion of the selected arithmetic operation, EU
10122 signals FU 10120 that the operation results are
available by way of a “handshake” signal through F/E
Bus 10148. FU 10120 may then receive the arithmetic
aperation results for further processing or, as discussed
momentarily, may directly transfer the arithmetic oper-
ation results to MEM 10112. As described further be-
low, an instruction buffer referred to as a “queue” be-
tween FU 10120 and EU 10122 allows FU 10120 to
assign a sequence of arithmetic operations to be per-
formed by EU 10122.

Information, such as results of executing an instruc-
tion, is written into MEM 10112 from FU 10120 or EU
10122 by way of JPD Bus 10142. FU 10120 provides a
“physical write address” signal to MEM 10112 by way
of PD Bus 10146 and MJP Port 10140, Concurrently,
the information to be written into MEM 10112 is placed
on JPD Bus 10142 and is subsequently written into
MEM 10112 at the locations selected by the physical
write address.

FU 10120 places a semaphore signal on IOJP Bus
10132 to signal to IOS 10116 that information, such as
the results of executing a user’s program, is available to
be read out of CS 10110. IOS 10116 may then transfer
the information from MEM 10112 to I0S 10116 by way
of MIO Port 10128 and IOM Bus 10130, Information
stored in IOS 10116 is then transferred to ED 10124
through 1/0 Bus 10126, -

(6) maintaining certain

4,445,177

47

During execution of a user’s program, certain infor-
mation required by JP 10116 may not be available in
MEM 10112. In such cases as further described in a
following discussion, JP 10114 may write a request for
information into MEM 10112 and notify 10S 10116, by
way of IOJP Bus 10132, that such a request has been
made. IOS 10116 will then read the request and transfer
the desired information from ED 10124 into MEM
10112 through IOS 10116 in the manner described
above. In such operations, 108 10116 and JP 10114
operate together as a memory manager wherein the
memory space addressable by JP 10114 is termed virtual
memory space, and includes both MEM 10112 memory
space and all external devices to which JOS 10116 has
access.

As previously described, DP 10118 provides a second
interface between Computer System 10110 and the
external world by way of DPIO Bus 10136. DP 10118
allows DU 10134, for example a CRT and keyboard
unit or a teletype, to perform all functions which are
conventionally provided by a hard (i.e., switches and
lights) console. For example, DP 10118 allows DU
10134 to exercise control of Computer System 10110 for
such purposcs as system initialization and start up, exe-
cution of diagnostic processes, and fault monitoring and
identification. DP 10118 has read and write access to
most memory and register portions within each of I0S
10116, MEM 10112, FU 10120, and EU 10122 by way of
DP Bus 10138. Memories and registers in CS 10110 can
therefore be directly loaded or initialized during system
start up, and can be directly read or loaded with test and
diagnostic signals for fault monitoring and identifica-
tion. In addition, as described further below, microin-
structions may be loaded into JP 10114’s microcode
circuitry at system start up or as required.

Having described the general structure and operation
of Computer System 10110, certain features of Com-
puter System 10110 will next be briefly described to aid
in understanding the following, more detailed descrip-
tions of these and other features of Computer System
10110.

¢. Definition of Certain Terms

Certain terms are used relating to the structure and
operation of CS 10110 throughout the following discus-
sions. Certain of these terms will be discussed and de-
fined first, to aid in understanding the following de-
scriptions. Other terms will be introduced in the follow-
ing descriptions as required.

A procedure is a sequence of operational steps, of
instructions, to be executed to perform some operation.
A procedure may include data to be operated upon in
performing the operation.

A program is a static group of one or more proce-
dures. In general, programs may be classified as user
programs, utility programs, and operating system pro-
grams. A user program is a group of procedures gener-
ated by and private to one particular user of a group of
users interfacing with CS 10110. Utility programs are
commonly available to all users; for example, a com-
piler comprises a set of procedures for compiling a user
language program into an S-language program. Operat-
ing system programs are groups of procedures internal
to CS 10110 for allocation and control of CS 10110
resources. Operating system programs also define inter-
faces within CS 10110. For example, as will be dis-
cussed further below all operands in a program arc
referred to by “NAME”. An operating system program

15

25

35

40

45

53

65

48
translates operand NAME into the physical locations of
the operands in MEM 10112. The NAME translation
program thus defines the interface between operand
NAME (name space addresses) and MEM 10112 physi-
cal addresses.

A process is an independent locus of control passing
through physical, logical or virtual address spaces, or,
more particularly, a path of execution through a series
of programs (i.¢., procedures). A process will generally
include a user program and data plus one or more utility
programs {e.g., & compiler) and operating system pro-
grams necessary to execute the user program.

An object is a uniquely identifiable portion of “data
space” accessible to CS 10110. An object may be re-
garded as a container for information and may contain
data or procedure information or both. An object may
contain for example, an entire program, or set of proce-
dures, or a single bit of data. Objects need not be contig-
uously located in the data space accessible to CS 10110,
and the information contained in an object need not be
contiguously located in that object.

A domain is a state of operation of CS 10110 for the
purposes of CS 10110’s protection mechanisms. Each
domain is defined by a set of procedures having access
to objects within that domain for their execution. Each
object has a single domain of execution in which it is
executed if it is a procedure object, or used, if it is a data
object. CS 10110 is said to be operating in a particular
domain if it is executing a procedure having that domain
of execution. Each object may belong to one or more
domains; an object belongs to 2 domain if a procedure
executing in that domain has potential access to the
object. CS 10110 may, for example have four domains:
User domain, Data Base Management System (DBMS)
domain, Extended Operating System (EOS) domain,
and Kernel Operating System (KOS) domain. User
domain is the domain of execution of all user provided
procedures, such as user or utility procedures. DBMS
domain is the domain of execution for operating system
procedures for storing, retrieving, and handling data.
EOS domain is the domain of execution of operating
system procedures defining and forming the user level
interface with CS 10110, such as procedures for con-
trolling and executing files, processes, and 1/0 opera-
tions. KOS domain is the domain of execution of the
low level, secure operating system which manages and
controls CS 10110’s physical resources. Other embodi-
ments of CS 10110 may have fewer or more domains
than those just described. For example, DBMS proce-
dures may be incorporated into the EOS domain or
EOS domain may be divided by incorporating the 1/0
procedures into an 1/0 domain. There is no hardware
enforced limitation on the number of, or boundaries
between, domains in CS 10110. Certain CS 10110 hard-
ware functions and structures are, however, dependent
upon domains.

A subject is defined, for purposes of CS 10110’s pro-
tection mechanisms, as a combination of the current
principle (user), the current process being executed, and
the domain the process is currently being executed in.
In addition to principle, process, and domain, which are
identified by UIDs, subject may include a Tag, which is
a user assigned identification code used where added
security is required. For a given process, principle and
process are constant but the domain is determined by
the procedure currently being executed. A process’s
associated subject is therefore variable along the path of
execution of the process.

4,445,177

49

Having discussed and defined the above terms, cer-
tain features of CS 10110 will next be briefly described.

d. Multi-Program Operation

CS 10110 is capable of concurrently executing two or
more programs and selecting the sequence of execution
of programs to make most effective use of CS 10110’s
resources. This is referred to as multiprogramming. In
this regard, CS 10110 may temporarily suspend execu-
tion of one program, for example when a resource or
certain information required for that program is not
immediately available, and proceed to execute another
program until the required resource or information
becomes available. For example, particular information
required by a first program may not be available in
MEM 10112 when called for. JP 10114 may, as dis-
cussed further below, suspend execution of the first
program, transfer a request for that information to I0S
10116, and proceed to call and execute a second pro-
gram. 10S 10116 would fetch the requested information
from ED 10124 and transfer it into MEM 10112. At
some time after IOS 10116 notifies JP 10114 that the
requested information is available in MEM 10112, jP
10114 could suspend execution of the second program
and resume execution of the first program.

e. Multi-Language Operation

As previously described, CS 10110 is a multiple lan-
guage machine. Each program written in a high level
user language, such as COBOL or FORTRAN, is com-
piled into a corresponding Soft (S) Language program.
That is, in terms of a conventional computer system,
each user level language has a corresponding machine
language, classically defined as an assembly language.
In contrast to classical assembly languages, S-Lan-
Buages are mid-level languages wherein each command
in a user’s high level language is replaced by, in general,
two or three S-Language instructions, referred to as
SINs. Certain SINs may be shared by two or more high
level user languages. CS 10110, as further described in
following discussions, provides a set, or dialect, of mi-
crocode instructions (S-Interpreters) for each S-Lan-
guage. S-Interpreters interpret SINs and provide corre-
sponding sequences of microinstructions for detailed
control of CS 10110. CS 10110's instruction set and
operation may therefore be tailored to each user’s pro-
gram, regardless of the particular user language, so as to
most efficiently execute the user’s program. Computer
System 10110 may, for example, execute programs in
both FORTRAN and COBOL with comparable effi-
ciency. In addition, a user may write a program in more
than one high level user language without loss of effi-
ciency. For example, a user may write a portion of his
program in COBOL, but may wish to write certain
portions in FORTRAN. In such cases, the COBOL
portions would be compiled into COBOL SINs and
executed with the COBOL dialect S-Interpreter. The
FORTRAN portions would be compiled into FOR-
TRAN SINs and executed .with a FORTRAN dialect
S-Interpreter. The present embodiment of CS 10110
utilizes a uniform format for all SINs. This feature al-

lows simpler S-Interpreter structures and increases effi-

ciency of SIN interpretation because it is not necessary
to provide means for interpreting each dialect individu-
ally.

20

40

45

50

6

50

f. Addressing Structure

Each object created for use in, or by operation of, a
CS 10110 is permanently assigned a Unique Identifier
(UID). An object’s UID allows that object to be
uniquely identified and located at any time, regardless
of which particular CS 10110 it was created by or for or
where it is subsequently located. Thus each time a new
object is defined, a new and unique UID is allocated,
much as social security numbers are allocated to indi-
viduals. A particular piece of information contained in
an object may be located by a logical address compris-
ing the object’s UID, an offset from the start of the
object of the first bit of the segment, and the length
(number of bits) of the information segment. Data
within an object may therefore be addressed on a bit
granular basis. As will be described further in following
discussions, UID’s are used within a CS 10110 as logical
addresses, and, for example, as pointers. Logically, all
addresses and pointers in CS 10110 are UID addresses
and pointers. As previously described and as described
below, however, short, temporary unique identifiers,
valid only within JP 10114 and referred to as Active
Object Numbers are used within JP 10114 to reduce the
width of address buses and amount of address informa-
tion handled.

An object becomes active in CS 10110 when it is
transferred from backing store ED 10124 to MEM
10112 for use in executing a process. At this time, each
such object is assigned an Active Object Number
(AON). AONs are short unique identifiers and are re-
lated to the object’s UIDs through certain CS 10110
information structures described below. AONs are used
only within JP 10114 and are used in JP 10114, in place
of UIDs, to reduce the required width of JP 10114’s
address buses and the amount of address data handled in
JP 10114. As with UID logical addresses, a piece of data
in an object may be addressed through a bit granular
AON logical address comprising the object’s AON, an
offset from the start of the object of the first bit of the
piece, and the length of the piece.

The transfer of logical addresses, for example point-
ers, between MEM 10112 (UIDA) and JP 10114
(AONs) during execution of a process requires transla-
tions between UIDs and AONs. As will be described in
a later discussion, this translation is accomplished, in
part, through the information structures mentioned
above. Similarly, translation of logical addresses to
physical addresses in MEM 10112, to physically access
information stored in MEM 10112, is accomplished
through CS 10110 information structures relating AON
logical addresses to MEM 10112 physical addresses.

Each operand appearing in a program is assigned a
Name when the program is compiled. Thereafter, all
references to the operands are through their assigned
Names. As will be described in detail in a later discus-
sion, CS 10110’s addressing structure includes a mecha-
nism for recognizing Names as they appear in an in-
struction stream and Name Tables containing directions
for resolving Names to AON logical addresses. AON
logical addresses may then be evaluated, for example
translated into a MEM 10112 physical address, to pro-
vide actval operands. The use of Names to identify
operands in the instructions stream (process) (1) allows
a complicated address to be replaced by a simple refer-
ence of uniform format; (2) does not require that an
operation be directly defined by data type in the instruc-
tion stream; (3) allows repeated references to an oper-

4,445,177

51

and to be made in an instruction stream by merely re-
peating the operand's Name; and, (4) allows partially
completed Name to address translations to be stored in
a cache to speed up operand references. The use of
Names thereby substantially reduces the volume of
information required in the instruction stream for oper-
and references and increases CS 10110 speed and effi-
ciency by performing operands references through a
paraliel operating, underlying mechanism.

Finally, CS 10110 address structure incorporates a set
of Architectural Base Pointers (ABPs) for each process.
ABPs provide an addressing framework to locate data
and procedure information belonging to a process and
are used, for example, in resolving Names to AON
logical addresses.

g. Protection Mechanism

CS 10110’s protection mechanism is constructed to
prevent a user from (1) gaining access to ot disrupting
another user's process, including data, and (2) interfer-
ing with or otherwise subverting the operation of CS
10110. Access rights to each particular active object are
dynamically granted as a function of the currently ac-
tive subject. A subject is defined by a combination of
the current principle (user), the current process being
executed, and the domain in which the process is cur-
rently being executed. In addition to principle, process,
and domain, subject may include a Tag, which is a user
assigned identification code used where added security
is required. For a given process, the principle and pro-
cess are constant but the domain is determined by the
procedure currently being executed. A process’s associ-
ated subject is therefore variable along the path of exe-
cution of the process.

In a present embodiment of CS 10110, procedures
having KOS domain of execution have access to objects
in KOS, EOS, DBMS, and User domains; procedures
having EOS domain of execution have access to objects
in EOS, DBMS, and User domains; procedures having
DBMS domain of execution have access t0 objects in
DBMS and User domains; and procedures having User
domain of execution have access only to objects in User
domain. A user cannot, therefore, obtain access to ob-
jects in KOS domain of execution and cannot influence
CS 10110’s low level, secure operating system. The
user’s process may, however, call for execution of a
procedure having KOS domain of execution. At this
point the process’s subject is in the KOS domain and the
procedure will have access to certain objects in KOS
domain.

In a present embodiment of CS 10110, also described
in a later discussion, each object has associated with it
an Access Control List (ACL). An ACL contains an
Access Control Entry (ACE) for each subject having
access to that object. ACEs specify, for each subject,
access rights a subject has with regard to that object.

There is normally no relationship, other than that
defined by an object’s ACL, between subjects and ob-
jects. CS 10110, however, supports Extended Type
Objects having Extended ACLs wherein a user may
specifically define which subjects have what access
rights to the object.

In another embodiment of CS 10110, described in a
following discussion, access rights are granted on a
dynamic basis. In executing a process, 2 procedure may
call a second procedure and pass an argument to the
called procedure. The calling procedure will also pass
selected access rights to that argument to the called

15

20

25

S0

55

65

52
procedure. The passed access rights exist only for the
duration of the call.

In the dynamic access embodiment, access rights are
granted only at the time they are required. In the ACL
embodiment, access rights are granted upon object cre-
ation or upon specific request. In either embodiment,
each procedure to which arguments may be passed in a
cross-domain call has associated with it an Access In-
formation Array (AIA). A procedure’s AIA states what
access rights a calling procedure (subject) must have
before the called procedure can operate on the passed
argument. CS 10110’s protection mechanisms compare
the calling procedure’s access rights to the rights re-
quired by the called procedure. This ensures that a
calling procedure may not ask a called procedure to do
what the calling procedure is not allowed to do. Effec-
tively, a calling procedure can pass to a called proce-
dure only the access rights held by the calling proce-
dure.

Having described the general structure and operation
and certain features of CS 10110, those and other fea-
tures of CS 10110 operation will next be described in
greater detail.

B. Computer System 10110 Information Structures and
Mechanisms (FIGS. 102, 103, 104, 105)

CS 10110 contains certain information structures and
mechanisms to assist in efficient execution of processes.
These structures and mechanisms may be considered as
falling into three general types. The first type concerns
the processes themselves, i.e. procedure and data ob-
jects comprising 2 user’s process or directly related to
execution of a user’s process. The second type are for
management, control, and execution of processes.
These structures are generally shared by all processes
active in CS 10110. The third type are CS 10110 mi-
cromachine information structures and mechanisms.
These structures are concerned with the internal opera-
tion of the CS 10110 micromachine and are private to
the CS 10110 micro-machine.

a. Introduction (FIG. 102)

Referring to FIG. 102, a pictorial representation of
Cs 10110 (MEM 10112, FU 10120, and EU 10122) is
shown with certain information structures and mecha-
nisms depicted therein. It should be understood that
these information structures and mechanisms transcend
or “cut across” the boundaries between MEM 10112,
FU 10120, EU 10122, and IOS 10116. Referring to the
upper portion of FIG. 102 Process Structures 10210
contains those information structures and mechanisms
most closely concerned with individual processes, the
first and third types of information structures described
above. Process Structures 10210 reside in MEM 10112
and Virtual Processes 10212 include Virtual Processes
(VP) 1 through N. Virtual Processes 10212 may con-
tain, in a present embodiment of CS 10110, up to 256
VP's. As previously described, each VP includes cer-
tain objects particular to a single user’s process, for
example stack objects previously described and further
described in a following description. Each VP also
includes a Process Object containing certain informa-
tion required to execute the process, for example point-
ers to other process information.

Virtual Processor State Blocks (VPSBs) 10218 in-
clude VPSBs containing certain tables and mechanisms
for managing execution of VPs selected for execution
by CS 10110.

4,445,177

53

A particular VP is bound into CS 10110 when a Vir-
tual Process Dispatcher, described in a following dis-
cussion selects that VP as eligible for execution. The
selected VPs Process Object, as previously described, is
swapped into a VPSB. VPSBs 10218 may contain, for
example 16 or 32 State Blocks so that CS 10110 may
concurrently execute up to 16 or 32 VPs, When a VP
assigned to a VPSB is to be executed, the VP is
swapped onto the information structures and mecha-
nisms shown in FU 10120 and EU 10122. FU Register
and Stack Mechanism (FURSM) 10214 and EU Regis-
ter and Stack Mechanism (EURSM) 10216, shown re-
spectively in FU 10120 and EU 10122, comprise register
and stack mechanisms used in execution of VPs bound
to CS 10110. These register and stack mechanisms, as
will be discussed below, are also used for certain CS
10110 process management functions. Procedure Ob-
jects (POs) 10213 contains Procedure Objects (POs) 1
to N of the processes executing in CS 10110.

Addressing Mechanisms (AM) 10220 are a part of CS
16110’s process management system and are generally
associated with Computer System 10110 addressing
functions as described in following discussions. UID-
/AON Tables 10222 is a structure for relating UID’s
and AON’s, previously discussed. Memory Manage-
ment Tables 10224 includes structures for (1) relating
AON logical addresses and MEM 10112 physical ad-
dresses; (2) managing MEM 10112’s physical address
space; (3) managing transfer of information between
MEM 10112 and CS 10110’s backing store (ED 10124)
and, (4) activating objects into CS 10110; Name Cache
(NC) 10226 and Address Translation Cache (ATC)
10228 are acceleration mechanisms for storing address-
ing information relating to the VP currently bound to
CS 10110. NC 10226, described further below, contains
information relating operand Names to AON addresses.
ATC 10228, also discussed further below, contains in-
formation relating AON addresses to MEM 10112
physical addresses.

Protection Mechanisms 10230, depicted below AM
10220, include Protection Tables 10232 and Protection
Cache (PC) 10234. Protection Tables 10232 contain
information regarding access rights to each object ac-
tive in CS 10110. PC 10234 contains protection informa-
tion relating to certain objects of the VP currently
bound to CS 10110.

Microinstruction Mechanisms 10236, depicted below
PM 10230, includes Micro-code (m Code) Store 10238,
FU (Micro-code) m Code Structure 10240, and EU
Micro-code (m Code) Structure 10242. These structures
contain microinstruction mechanisms and tables for
interpreting SINs and controlling the detailed operation
of CS 10110. Micro-instruction Mechanisms 10236 also
provide microcode tables and mechanisms used, in part,
in operation of the low level, secure operating system
that manages and controls CS 10110’s physical re-
sources.

Having thus briefly described certain CS 10110 infor-
mation structures and mechanisms with the aid of FIG.
102, those information structures and mechanisms will
next be described in further detail in the order men-
tioned above. In these descriptions it should be noted
that, in representation of MEM 10112 shown in FIG.
102 and in other figures of following discussions, the
addressable memory space of MEM 10112 is depicted.
Certain portions of MEM 10112 address space have
been designated as containing certain information struc-
tures and mechanisms. These structures and mecha-

10

20

30

35

40

45

50

55

60

65

54

nisms have real physical existence in MEM 10112, but
may vary in both location and volume of MEM 10112
address space they occupy. Assigning position of a
single, large memory to contain these structures and
mechanisms allows these structures and mechanisms to
be reconfigured as required for most efficient operation
of CS 10110. In an alternate embodiment, physically
scparate memories may be used to contain the structures
and mechanisms depicted in MEM 10112, rather than
assigned portions of a single memory.

b. Process Structures 10210 (FIGS. 103, 104, 105)

Referring to FIG. 103, a partial schematic representa-
tion of Process Structures 10210 is shown. Specifically,
FIG. 103 shows a Process (P) 10310 selected for execu-
tion, and its associated Procedure Objects (POs) 10213.
P 10310 is represented in FIG. 103 as including four
procedure objects in POs 10213. It is to be understood
that this representation is for clarity of presentation; a
particular P 10310 may include any number of proce-
dure objects. Also for clarity of presentation, EURSM
10216 is not shown as EURSM 10216 is similar to
FURSM 10214. EURSM 10216 will be described in
detail in the following detailed discussons of CS 10110’s
structure and operation.

As previously discussed, each process includes cer-
tain data and procedure object As represented in FIG.
103 for P 10310 the procedure objects reside in POs
10213. The data objects include Static Data Areas and
stack mechanisms in P 10310. POs, for example KOS
Procedure Object (KOSPO) 10318, contain the various
procedures of the process, each procedure being a se-
quence of SINs defining an operation to be performed
in executing the process. As will be described below,
Procedure Objects also contain certain information
used in executing the procedures contained therein.
Static Data Areas (SDAs) are data objects generally
reserved for storing data having an existence for the
duration of the process. P 10310’s stack mechanisms
allow stacking of procedures for procedure calls and
returns and for swapping processes in and out of JP
10114. Macro-Stacks (MAS) 10328 to 10334 are gener-
ally used to store automatic data (data generated during
execution of a procedure and having an existence for
the duration of that procedure). Although shown as
separate from the stacks in P 10310, the SDAs may be
contained with MASs 10328 to 10334. Secure Stack
(SS) 10336 stores, in general, CS 10110 micro-machine
state for each procedure called. Information stored in
§S 10336 allows machine state to be recovered upon
return from a called procedure, or when binding (swap-
ping) a VP into CS 10110.

As shown in P 10310, each process is structured on a
domain basis. A P 10310 may therefore include, for each
domain, one or more procedure objects containing pro-
cedures having that domain as their domain of execu-
tion, an SDA and an MAS. For example, KOS domain
of P 10310 includes KOSPO 10318, KOSSDA 10326,
and KOSMAS 10334. P 10310’s SS 10336 does not
reside in any single domain of P 10310, but instead is a
stack mechanism belonging to CS 10110 micromachine.

Having described the overall structure of a P 10310,
the individual information structures and mechanisms
of a P 10310 will next be described in greater detail.

1. Procedure Objects (FIG. 103)

KOSPO 10318 is typical of CS 10110 procedure ob-
jects and will be referred to for illustration in the fol-

s

4,445,177

55
lowing discussion. Major components of KOSPO 10318
are Header 10338, External Entry Descripter (EED)
Area 10340, Internal Entry Descripter (IED) Area
10342, S-Op Code Area 10344, Procedure Environment
Descripter (PED) 10348, Name Table (NT) 10350, and
Access Information Array (AIA) Area 10352.

Header 10338 contains certain information identify-
ing PO 10318 and indicating the number of entries in
EED area 10340, discussed momentarily.

EED area 10340 and IED area 10342 together con-
tain an Entry Descripter (ED) for each procedure in
KOSPO 10318. KOSPO 10318 is represented as con-
taining Procedures 1, 2, and 11, of which Procedure 11
will be used as an example in the present discussion.
ED:s effectively comprise an index through which cer-
tain information in KOSPO 10318 can be located. IEDs
form an index to all KOSPO 10318 procedures which
may be called only from other procedures contained in
KOSPO 10318. EEDs form an index to all KOSPO
10318 procedures which may be called by procedures
external to KOSPO 10318. Externally callable proce-
dures are distinguished aid, as described in 2 following
discussion of CS 10110’s protection mechanisms, in
confirming external calling procedure’s access rights.

Referring to ED 11, ED for procedure 11, three fields
are shown therein. Procedure Environment Descripter
Offset (PEDO) field indicates the start, relative to start
of KOSPO 10318, of Procedure 11's PED in PED Area
10348. As will be discussed further below, a procedure’s
PED contains a set of pointers for locating information
used in the execution of that procedure. PED Area
10348 contains a PED for each procedure contained in
10318. In the present embodiment of CS 10110, a single
PED may be shared by two or more procedures. Code
Entry Point (CEP) ficld indicates the start, relative to
Procedure Base Pointer (PBP) which will be discussed
below, of Procedure 11’s SIN Code and SIN Code Area
10344. Finally, ED 11’s Initial Frame Size (IFS) field
indicates the required Initial Frame Size of the KOS-
MAS 10334 frame storing Procedure 11’s automatic
data.

PED 11, Procedure 11's PED in PED Area 10348,
contains a set of pointers for locating information used
in execution of Procedure 11. The first entry in PED 11
is a header containing information identifying PED 11.
PED 1I's Procedure Base Pointer (PBP) entry is a
pointer providing a fixed reference from which other
information in PO 10318 may be located. In a specific
example, Procedure 11’s CEP indicates the location,
relative to PBP, of the start of Procedure 11's S-Op
code in S-Op Code Area 10344. As will be described
further below, PBP is a CS 10110 Architectural Base
Pointer (ABP). CS 10110’s ABP’s are a set of architec-
tural pointers used in CS 10110 to facilitate addressing
of CS 10110°s address space. PED 11's Static Data
Pointer (SDP) entry points to data, in PO 10318, speci-
fying certain parameters of P 10310’ KOSSDA 10326.
Name Table Pointer (NTP) entry is a pointer indicating
the location, in NT 10350, of Name Table Entry's
(NTE’s) for Procedure 11’s operands. NT 10350 and
NTE’s will be described in greater detail in the follow-
ing discussion of Computer System 10110’s Addressing
Structure. PED 11’s S-Interpreter Pointer (SIP) entry is
a pointer, discussed in greater detail in a following dis-
cussion of CS 10110’s microcode structure, pointing to
the particular S-Interpeter (SINT) to be used in inter-
preting Procedure 11’s SIN Code.

20

25

45

50

S5

60

65

56

Referring finally to AIA 10352, AIA 10352 contains,
as previously discussed, information pertaining to ac-
cess rights required of any external procedure calling a
10318 procedure. There is an AIA 10352 entry for each
PO 10318 procedure which may be called by an exter-
nal procedure. A particular AIA entry may be shared
by one or more procedures having an ED in EED Area
10340. Each EED contains certain information, not
shown for clarity of presentation, indicating that that
procedure’s corresponding AIA entry must be referred
to, and the calling procedure’s access rights confirmed,
whenever that procedure is called.

2. Stack Mechanisms (FIGS. 104, 105)

As previously described, P 10310’s stack mechanisms
include SS 10336, used in part for storing machine state,
and MAS’s 10328 to 10334, used to store local data
generated during execution of P 10310’s procedures. P
10310 is represented as containing an MAS for each CS
10110 domain. In an alternate embodiment of CS 10110,
a particular P 10310 will include MAS’s only for those
domains in which that P 10310 is executing a procedure.

Referring to MAS’s 10328 to 10334 and SS 10336, P
10310 is represented as having had eleven procedure
calls. Procedure 0 has called Procedure 1, Procedure 1
has called Procedure 2, and so on. Each time a proce-
dure is called, a corresponding stack frame is con-
structed on the MAS of the domain in which the called
procedure is executed. For example, Procedures 1, 2,
and 11 execute in KOS domain; MAS frames for Proce-
dures 1, 2, and 11 therefore are placed on KOSMAS
10334. Similarly, Procedures 3 and 9 execute in EOS
domain, so that their stack frames are placed on EOS-
MAS 10332. Procedures 5§ and 6 exegute in DBMS
domain, so that their stack frames are placed on
DBMSMAS 10330. Procedures 4, 7, 8, and 10 execute
in User domain with their stack frames being placed on
USERMAS 10328. Procedure 11 is the most recently
called procedure and procedure 11’s stack frame on
KOSMAS 10334 is referred to as the current frame.
Procedure 11 is the procedure which is currently being
executed when VP 10310 is bound to CS 10110.

SS 10336, which is a stack mechanism of CS 10110
micromachine, contains a frame for each of Procedures
1 to 11. Each SS 10336 frame contains, in part, CS 10110
operating state for its corresponding procedure.

Referring to FIG. 104, a schematic representation of
a typical MAS, for example KOSMAS 10334, is shown.
KOSMAS 10334 includes Stack Header 10410 and a
Frame 1Q0412 for each procedure on KOSMAS 10334.
Each Frame 10412 includes a Frame Header 10414, and
may contain a Linkage Pointer Block 10416, a Local
Pointer Block 10418, and a Local (Automatic) Data
Block 10420.

KOSMAS 10334 Stack Header 10410 contains at
least the following information:

(1) an offset, relative to Stack Header 10410, indicat-
ing the location of Frame Header 10414 of the first
frame on KOSMAS 10334,

(2) a Stack Top Offset (STO) indicating location,
relative to start of KOSMAS 10334, of the top of KOS-
MAS 10334; top of KOSMAS 10334 is indicated by
pointer STO pointing to the top of the last entry of
Procedure 11 Frame 10412’s Local Data Block 10420;

(3) an offset, relative to start of KOSMAS 10334,
indicating location of Frame Header 10414 of the cur-
rent top frame of KOSMAS 10334; in FIG. 104 this

4,445,177

57
offset is represented by Frame Pointer (FP), an ABP
discussed further below;

(4) the VP 10310’s UID;

(5) a UID pointer indicating location of certain do-
main environment information, described further in a
following discussion;

(6) a signaller pointer indicating the location of cer-
tain routines for handling certain CS 10110 operating
system faults;

(7) a UID pointer indicating location of KOSSDA
10326; and

(8) a frame label sequencer containing pointers to
headers of frames in other domains; these pointers are
used in executing non-local go-to operations.

KOSMAS 10334 Stack Header 10410 thereby con-
tains information for locating certain important points
in KOSMAS 10334’s structure, and for locating certain
information pertinent to executing procedures in KOS
domain.

Each Frame Header 10414 contains at least the fol-
lowing information:

(1) offsets, relative to the Frame Header 10414, indi-
cating the locations of Frame Headers 10414 of the
previous and next frames of KOSMAS 10334;

(2) an offset, relative to the Frame Header 10414,
indicating the location of the top of that Frame 10412;

(3) information indicating the number of passed argu-
ments contained in that Frame 10412;

(4) a dynamic back pointer, in UID/Offset format, to
the previous Frame 10412 if that previous Frame 10412
resides in another domain; '

(5) a UID/Offset pointer to the environmental de-
scripter of the procedure calling that procedure;

(6) a frame label sequence containing information
indicating the locations of other Frame Headers 10414
in KOSMAS 10334; this information is used to locate
other frames in KOSMAS 10334 for the purpose of
executing local go-to operations. Frame Headers 10414
thereby contain information for locating certain impor-
tant points in KOSMAS 10334 structure, and certain
data pertinent to executing the associated procedures.
In addition, Frame Headers 10414, in combination with
Stack Header 10410, contain information for linking the
activation records of each VP 10310 MAS, and for
linking together the activation records of the individual
MAS’s.

Linkage Pointer Blocks 10416 contain pointers to
arguments passed from a calling procedure to the called
procedure. For example, Linkage Pointer Block 10416
of Procedure 11's Frame 10412 will contain pointers to
arguments passed to Procedure 11 from Procedure 10.
The use of linkage pointers in CS 10110’s addressing
structure will be discussed further in a following discus-
sion of CS 10110’s Addressing Structure. Local Data
Pointer Blocks 10418 contain pointers to certain of the
associated procedure’s local data. Indicated in FIG. 104
is a pointer, Frame Pointer (FP), pointing between top
most Frame 10412’s Linkage Pointer Block 10416 and
Local Data Pointer Block 10418. FP, described further
in following discussions, is an ABP to MAS Frame
10412 of the process’s current procedure.

Each Frame 10412’s Local (Automatic) Data Block
10420 contains certain of the associated procedure’s
automatic data.

As described above, at each procedure call a MAS
frame is constructed on top of the MAS of the domain
in which the called procedure is executed. For example,
when Procedure 10 calls Procedure 11 a Frame Header

—

;)

20

25

35

45

50

55

60

65

58
10414 for Procedure 11 is constructed and placed on
KOSMAS 10334. Procedure 11’s linkage pointers are
then generated, and placed in Procedure 11's Linkage
Pointer Block 10416. Next Procedure 11’s local pointers
are generated and placed in Procedure 11's Local
Pointer Block 10418. Finally, Procedure 11’s local data
is placed in Procedure 11's Local Data Block 10420.
During this operation, USERMAS 10328’s frame label
sequence is updated to include an entry pointing to
Procedure 11's Frame Header 10414. KOSMAS
10334’s Stack Header 10410 is updated with respect to
STO to the new top of KOSMAS 10334. Procedure 2’s
Frame Header 10414 is updated with respect to offset to
Frame Header 10414 of Procedure 11 Frame 10412, and
with respect to frame label sequence indicating location
of Procedure 11’s Frame Header 10414. As Procedure
11 is then the current procedure, FP is updated to a
point between Linkage Pointer Block 10416 and Local
Pointer Block 10418 of Procedure 11's Frame 10412,
Also, as will be discussed below, a new frame is con-
structed on SS 10336 or Procedure 11. CS 10110 will
then proceed to execute Procedure 11. During execu-
tion of Procedure 11, any further local data generated
may be placed on the top of Procedure 11’s Local Data
Block 10420. The top of stack offset information in
Procedure 11's Frame Header 10414 and in KOSMAS
10334 Stack Header 10410 will be updated accordingly.

MAS’s 10328 to 10334 thereby provide a per domain
stack mechanism for storing data pertaining to individ-
ual procedures, thus allowing stacking of procedures
without loss of this data. Although structured on a
domain basis, MAS’s 10328 to 10334 comprise a unified
logical stack structure threaded together through infor-
mation stored in MAS stack and frame headers.

As described above and previously, SS 10336 is a CS
10110 micromachine stack structure for storing, in part,
CS 10110 micromachine state for each stacked VP
10310 procedure. Referring to FIG. 105, a partial sche-
matic representation of a SS 10336 Stack Frame 10510 is
shown. SS 10336 Stack Header 10512 and Frame Head-
ers 10514 contain information similar to that in MAS
Stack Headers 10410 and Frame Headers 10414. Again,
the information contained therein locates certain points
within SS 10336 structure, and threads together SS
10336 with MAS’s 10328 to 10334.

SS 10336 Stack Frame 10510 contains certain infor-
mation used by the CS 10110 micromachine in execut-
ing the VP 10212 procedure with which this frame is
associated. Procedure Pointer Block 10516 contains
certain pointers including ABPs, used by CS 10110
micromachine in locating information within VP
10310’s information structures. Micro-Routine Frames
(MRFs) 10518 together comprise Micro-Routine Stack
(MRS) 10520 within each SS 10336 Stack Frame 10510.
MRS Stack 10520 is associated with the internal opera-
tion of CS 10110 microroutines executed during execu-
tion of the VP 10212 procedure associated with the
Stack Frame 10510. SS 10336 is thus a dual function CS
10110 micromachine stack. Pointer Block 10516 entries
effectively define an interface between CS 10110 mi-
cromachine and the current procedure of the current
process. MRS 10520 comprise a stack mechanism for
the internal operations of CS 10110 micromachine.

Having briefly described Virtual Processes 10212,
FURSM 10214 will be described next. As stated above,
EURSM 10216 is similar in operation to FURSM 10214
and will be described in following detailed descriptions
of CS 10110 structure and operation.

4,445,177

59

3. FURSM 10214 (FIG. 103)

Referring again to FIG. 103, FURSM 10214 includes
CS 10110 micromachine information structures used
internally to CS 10110 micromachine in executing the
procedures of a P 10310. When a VP, for example P
10310, is to be executed, certain information regarding
that VP is transferred from the Virtual Processes 10212
to FURSM 10214 for use in executing that procedure.
In this respect, FURSM 10214 may be regarded as an
acceleration mechanism for the current Virtual Process
10212.

FURSM 10214 includes General Register File (GRF)
10354, Micro Stack Pointer Register Mechanism
(MISPR) 10356, and Return Control Word Stack
(RCWS) 10358. GRF 10354 includes Global Registers
(GRs) 10360 and Stack Registers (SRs) 10362. GR
10360 include Architectural Base Registers (ABRs)
10364 and Micro-Control Registers (MCRs) 10366.
Stack Registers 10362 include Micro-Stack (MIS) 10368
and Monitor Stack (MOS) 10370.

Referring first to GRF 10354, and assuming for exam-
ple that Procedure 11 of P 10310 is currently being
executed, GRF 10354 primarily contains certain point-
ers to P 10310 data used in execution of Procedure 11.
As previously discussed, CS 10110’s addressing struc-
ture includes certain Architectural Base Pointers
(ABP's) for each procedure. ABPs provide a frame-
work for accessing CS 10110’s address space. The
ABPs of each procedure include a Frame Pointer (FP),
a Procedure Base Pointer (PBP), and a Static Data
Pointer (STP). As discussed above with reference to
KOSPO 10318, these ABPs reside in the procedure’s
PEDs. When a procedure is called, these ABP’s are
transferred from that procedure’s PED to ABR’s 10364
and reside therein for the duration of that procedure. As
indicated in FIG. 103, FP points between Linkage
Pointer Block 10416 and Local Pointer Blocks 10418 of
Procedure 11’s Frame 10412 on KOSMAS 10334. PBP

20

25

30

35

points to the reference point from which the elements of 40

KOSPO 10318 are located. SDP points to KOSSDA
10326. If Procedure 11 calls, for example, a Procedure
12, Procedure 11's ABPs will be transferred onto Pro-
cedure Pointer Block 10516 of SS 10336 Stack Frame
10510 for Procedure 11. Upon return to Procedure 11,
Procedure 11’s ABPs will be transferred from Proce-
dure Pointer Block 10516 to ABR’s 10364 and execu-
tion of Procedure 11 resumed.

MCRs 10336 contain certain pointers used by CS
10110 micromachine in executing Procedure 11. CS
10110 micromachine pointers indicated in FIG. 103
include Program Counter (PC), Name Table Pointer
(NTP), S-Interpreter Pointer (SIP), Secure Stack
Pointer (SSP), and Secure Stack Top Offset (SSTO).
NTP and SIP have been previously described with
reference to KOSPO 10318 and reside in KOSPO
10318. NTP and SIP are transferred into MCR’s 10366
at start of execution of Procedure 11. PC, as indicated in
FIG. 103, is a pointer to the Procedure 11 SIN currently
being executed by CS 10110. PC is initially generated
from Procedure 11's PBP and CEP and is thereafter
incremented by CS 10110 micromachine as Procedure
11’s SIN sequences are executed. SSP and SSTO are, as
described in a following discussion, generated from
information contained in SS 10336's Stack Header
10512 and Frame Headers 10514. As indicated in FIG.
103 SSP points to start of SS 10336 while SSTO indi-
cates the current top frame on SS 10336, whether Pro-

43

50

65

60
cedure Pointer Block 10516 or a MRF 10518 of MRS
10520, by indicating an offset relative to SSP. If Proce-
dure 11 calls a subsequent procedure, the contents of
MCR’s 10366 are transferred into Procedure 11’s Proce-
dure Pointer Block 10516 on SS 10336, and are returned
to MCR's 10366 upon return to Procedure 11.

Registers 10360 contain further pointers, described in
following detailed discussions of CS 10110 operation,
and certain registers which may be used to contain the
current procedure’s local data.

Referring now to Stack Registers 10362, MIS 10368
is an upward extension, or acceleration, of MRS 10520
of the current procedure. As previously stated, MRS
10520 is used by CS 10110 micromachine in executing
certain microroutines during execution of a particular
procedure. MIS 10368 enhances the efficiency of CS
10110 micromachine in executing these microroutines
by accelerating certain most recent MRFs 10518 of that
procedure’s MRS 10520 into FU 10120. MIS 10368 may
contain, for example, up to the eight most recent MRFs -
10518 of the current procedures MRS 10520. As various
microroutines are called or returned from, MRS 10520
MRF’s 10518 are transferred accordingly between SS
10336 and MIS 10368 so that MIS 10368 always con-
tains at least the top MRF 10518 of MRS 10520, and at
most eight MRFs 10518 of MRS 10520. MISPR 10356 is
a CS 10110 micromachine mechanism for maintaining
MIS 10368. MISPR 10356 contains a Current Pointer, a
Previous Pointer, and a Bottom Pointer. Current
Pointer points to the top-most MRF 10518 on MIS
10368. Previous Pointer points to the previous MRF
10518 on MIS 10368, and Bottom Pointer points to the
bottom-most MRF 10518 on MIS 10368. MISPR
10356’s Current, Previous and Bottom Pointers are
updated as MRFs 10518 are transferred between SS
10336 and MIS 10368. If Procedure 11 calls a subse-
quent procedure, all Procedure 11 MRFs 10518 are
transferred from MIS 10368 to Procedure 11's MRS
10520 on SS 10336. Upon return to Procedure 11, up to
seven of Procedure 11’'s MRFs 10518 frames are re-
turned from SS 10336 to MIS 10368.

Referring to MOS 10370, MOS 10370 is a stack mech-
anism used by CS 10110 micromachine for certain mi-
croroutines for handling fault or error conditions.
These microroutines always run to completion, so that
MOS 10370 resides entirely in FU 10120 and is not an
extension of a stack residing in a P 10310 in MEM
10112, MOS 10370 may contain, for example, eight
frames. If more than eight successive fault or error
conditions occur, this is regarded as a major failure of
CS 10110. Control of CS 10110 may then be transferred
to DP 10118. As will be described in a following discus-
sion, diagnostic programs in DP 10118 may then be
used to diagnose and locate the CS 10110 faults or er-
rors. In other embodiments of CS 10110 MOS 10370
may contain more or fewer stack frames, depending
upon the degree of self diagnosis and correction capa-
bility desired for CS 10110.

RCWS 10358 is a two-part stack mechanism. A first
part operates in parallel with MIS 10368 and a second
part operates in parallel with MOS 10370. As previ-
ously described, CS 10110 is a microcode controlled
system. RCWS is a stack for storing the current micro-
instruction being executed by CS 10110 micromachine
when the current procedure is interrupted by a fault or
error condition, or when a subsequent procedure is
called. That portion of RCWS 10358 associated with
MIS 10368 contains an entry for each MRF 10518 resid-

4,445,177

61 ‘

ing in MIS 10368. These RCWS 10358 entries are trans-
ferred between SS 10336 and MIS 10368 in parallel with
their associated MRFs 10518, When resident in SS
10336, these RCWS 10358 entries are stored within
their associated MRFs 10518. That portion of RCWS
10358 associated with MOS 10370 similarly operates in
parallel with MOS 10370 and, like MOS 10370, is not an
extension of an MEM 10112 resident stack.

In summary, each process active in CS 10110 exists as
a separate, complete, and self-contained entity, or Vir-
tual Process, and is structurally organized on a domain
basis. Each Virtual Process includes, besides procedure
and data objects, a set of MAS’s for storing local data of
that processes procedures. Each Virtual Process also
includes a CS 10110 micromachine stack, SS 10336, for
storing CS 10110 micromachine state pertaining to each
stacked procedure of the Virtual Process. CS 10110
micromachine includes a set of information structures,
register 10360, MIS 10368, MOS 10370, and RCWS
10358, used by CS 10110 micromachine in executing the
Virtual Process’s procedures. Certain of these CS 10110
micromachine information structures are shared with
the currently executing Virtual Process, and thus are
effectively acceleration mechanisms for the current
Virtual Process, while others are completely internal to
CS 10110 micromachine.

A primary feature of CS 10110 is that each process’
macrostacks and secure stack resides in MEM 10112.
CS 10110’s macrostack and secure stacks are therefore
effectively unlimited in depth.

Yet another feature of CS 10110 micromachine is the
use of GRF 10354. GRF 10354 is, in an embodiment of
CS 10110, 2 unitary register array containing for exam-
ple, 256 registers. Certain portions, or address locations,
of GRF 10354 are dedicated to, respectively, GRs
10360, MIS 10368, and MOS 10370. The capacities of
GR 10360, MIS 10368, and MOS 10370, may therefore
be adjusted, as required for optimum CS 10110 effi-
ciency, by reassignment of GRF 10354’s address space.
In other embodiments of CS 10110, GRs 10360, MIS
10368, and MOS 10370 may be implemented as func-
tionally separate registers arrays.

Having briefly described the structure and operation
of Process Structures 10210, VP State Block 10218 will
be described next below.

C. Virtual processor State Blocks and Virtual Process
Creation (FIG. 102)

Referring again to FIG. 102, VP State Blocks 10218
is used in management and control of processes. VP
State Blocks 10218 contains a VP State Block for each
Virtual Process (VP) selected for execution by CS
10110. Each such VP State Block contains at least the
following information:

(1) the state, or identification number of a VP,

(2) entries identifying the particular principle and
particular process of the VP;

(3) an AON pointer to that VP’s secure stack (e.g., SS
10336);

(4) the AON’s of that VP’s MAS stack objects (e.g.,
MAS’s 10328 to 10334); and,

(5) certain information used by CS 10110's VP Man-
agement System.

The information contained in each VP State Block
thereby defines the current state of the asociated VP,

A Process is loaded into CS 10110 by building a prim-
itive access record and loading this access record into
CS 10110 to appear as an already existing VP. A VP is

5

20

30

35

40

45

50

55

60

65

: 62

created by creating a Process Object, including pointers
to macro-and secure-stack objects created for that VP,
micromachine state entries, and a pointer to the user’s
program. CS 10110’s KOS then generates Macro- and
Secure-Stack Objects with headers for that process and,
as described further below, loads protection informa-
tion regarding that process’ objects into Protection
Structures 10230. CS 10110’s KOS then copies this
primitive machine state record into a vacant VPSB
selected by CS 10110’s VP Manager, thus binding the
newly created VP into CS 10110. At that time a KOS
Initializer procedure completes creation of the VP for
example by calling in the user’s program through a
compiler. The newly creatd VP may then be executed
by CS 10110.

Having briefly described VP State Blocks 10218 and
creation of a VP, CS 10110’s Addressing Structures
10220 will be described next below.

D. Addressing Structures 10220 (FIGS. 103, 106, 107,
108)

L. Objects, UID’s, AON’s, Names, and Physical
Addresses (FIG. 106)

As previously described, the data space accessible to
CS 10110 is divided into segments, or containers, re-
ferred to as objects. In an embodiment of CS 10110, the
addressable data space of each object has a capacity of
232 information and is structured into 218 pages with
each page containing 214 bits of information.

Referring to FIG. 106A, a schematic representation
of CS 10110’s addressing structure is shown. Each ob-
Ject created for use in, or by operation of, a CS 10110 is
permanently assigned a unique identifier (UID). An
object’s UID allows an object to be uniquely identified
and located at any future point in time. Each UID is an
80 bit number, so that the total addressable space of all
CS 10110’s includes 280 objects wherein each object
may contain up to 232 bits of information. As indicated
in FIG. 106, each 80 bit UID is comprised of 32 bits of
Logical Allocation Unit Identifier (LAUID) and 48 bits
of Object Serial Number (OSN). LAUIDs are associ-
ated with individual CS 10110 systems. LAUIDs iden-
tify the particular CS 10110 system generating a partic-
ular object. Each LAUID is comprised of a Logical
Allocation Unit Group Number (LAUGN) and a Logi-
cal Allocation Unit Serial Number (LAUSN).
LAUGN:S are assigned to individual CS 10110 systems
and may be guaranteed to be unique to a particular
system. A particular system may, however, be assigned
more than one LAUGN so that there may be a time
varying mapping between LAUGNs and CS 10110
systems. LAUSNS are assigned within a particular sys-
tem and, while LAUSNs may be unique within a partic-
ular system, LAUSNSs need not be unique between sys-
tems and need not map onto the physical structure of a
particular system.

OSNs are associated with individual objects created
by an LAU and are generated by an Architectural
Clock in each CS 10110. Architectural clock is defined
as a 64 bit binary number representing increasing time.
Least significant bit of architectural clock represents
increments of 600 picoseconds, and most significant bit
represents increments of 127 years. In the present em-
bodiment of CS 10110, certain most significant and least
significant bits of architectural clock time are disre-
garded as generally not required practice. Time indi-
cated by architectural clock is measured relative to an

4,445,177

63

arbitrary, fixed point in time. This point in time is the
same for all CS 10110s which will ever be constructed.
All CS 10110s in existence will therefore indicate the
same architectural clock time and all UIDs generated
will have a common basis. The use of an architectural
clock for generation of OSNs is advantageous in that it
avoids the possibility of accidental duplication of OSNs
if a CSC 10110 fails and is subsequently reinitiated.

As stated above, each object generated by or for use
in a CS 10110 is uniquely identified by its associated
UID. By appending Offset (O) and Length (L) informa-
tion to an object’s UID, a UID logical address is gener-
ated which may be used to locate particular segments of
data residing in a particular object. As indicted in FIG.
106, O and L fields of a UID logical address are each 32
bits. O and L fields can therefore indicate any particular
bit, out of 232—! bits, in an object and thus allow bit
granular addressing of information in objects.

As indicated in FIG. 106 and as previously described,
each object active in CS 10110 is assigned a short tem-
porary unique identifier valid only within JP 10114 and
referred to as an Active Object Number (AON). Be-
cause fcwer objects may be active in a CS 10110 than
may exist in a CS 10110’s address space, AON’s are, in
the present embodiment of CS 10110, 14 bits in length.
A particular CS 10110 may therefore contain up to 214
active objects. An object’s AON is used within JP
10114 in place of that object’s UID. For example, as
discussed above with reference to process structures
10210, a procedure’s FP points to start of that proce-
dure’s frame on its process’ MAS. When that FP is
residing in SS 10336, it is expressed as a UID. When that
procedure is to be executed, FP is transferred from SS
10336 to ABR’s 10364 and is translated into the corre-
sponding AON. Similarly, when that procedure is
stacked, FP is returned to SS 10336 and in doing so is
translated into the corresponding UID. Again, a partic-
ular data segment in an object may be addressed by
means of an AON logical address comprising the ob-
ject’s AON plus associated 32 bit Offset (O) and Length
(L) fields.

Each operand appearing in a process is assigned a
Name and all references to a process’s operands are
through those assigned Names. As indicated in FIG.
106B, in the present embodiment of CS 10110 each
Name is an 8, 12, or 16 bit number. All Names within a
particular process will be of the same length As will be
described in a following discussion, Names appearing
during execution of a process may be resolved, through
a procedure’s Name Table 10350 or through Name
Cache 10226, to an AON logical address As described
below, an AON logical address corresponding to an
operand Name may then be evaluated to a MEM 10112
physical address to locate the operand referred to.

The evaluation of AON logical addresses to MEM
10112 physical addresses is represented in FIG. 106C.
An AON logical address’s L field is not involved in
evaluation of an AON logical address to a physical
address and, for purposes of clarity of presentation, is
therefore not represented in FIG. 106C. AON logical
address L field is to be understood to be appended to the
addresses represented in the various steps of the evalua-
tion procedure shown in FIG. 106C.

As described above, objects are 232 bits structured
into 2!8 pages with each page containing a 214 bits of
data. MEM 10112 is similarly physically structured into
frames with, in the present embodiment of CS 10110,
each frame containing 214 bits of data. In other embodi-

20

30

35

40

45

50

60

64
ments of CS 10110, both pages and frames may be of
different sizes but the translation of AON logical ad-
dresses to MEM 10112 physical addresses will be simi-
lar to that described momentarily.

An AON logical address O field was previously de-
scribed as a 32 bit number representing the start, rela-
tive to start of the object, of the addressed data scgment
within the object. The 18 most significant bits of O field
represent the number (P) of the page within the object
upon which the first bit of the addressed data occurs.
The 14 least significant bits of O field represent the
offset (Op), relative to the start of the page, within that
page of the first bit of the addressed data. AON logical
address 0 field may therefore, as indicated in FIG.
106C, be divided into an 18 bit page (P) field and a 14 bit
offset within page (Op) field. Since, as described above,
MEM 10112 physical frame size is equal to object page
size, AON logical address Opfield may be used directly
as an offset within frame (OF) field of the physical ad-
dress. As will be described below, an AON logical
address AON and P fields may then be related to the
frame number (FN) of the MEM 10112 frame in which
that page resides, through Addressing Mechanisms
10220.

Having briefly described the relationships between
UIDs, UID Logical Addresses, Names, AONs, AON
Logical Addresses, and MEM 10112 Physical Ad-
dresses, Addressing Mechanisms 10220 will be de-
scribed next below.

2. Addressing Mechanisms 10220 (FIG. 107)

Referring to FIG. 107, a schematic representation of
Computer System 10110’s Addressing Mechanisms
10220 is shown. As previously described, Addressing
Mechanisms 10220 comprise UID/. AON Tables 10222,
Memory Management Tables 10224, Name Cache
10226, and Address Translation Unit 10228.

UID/AON Tables 10222 relate each object’s UID to
its assigned AON and include AOT Hash Table
(AOTHT) 10710, Active Object Table (AOT) 10712,
and Active Object Table Annex (AOTA) 10714.

An AON corresponding to a particular UID is deter-
mined through AOTHT 10710. The UID is hashed to
provide a UID index into AOTHT 10710, which then
provides the corresponding AON. AOTHT 10710 is
effectively an acceleration mechanism of AOT 10712
to, as just described, provide rapid translation of UIDs
to AONs. AONs are used as indexes into AOT 10712,
which provides a corresponding AOT Entry (AOTE).
An AOTE as described in following detailed discus-
sions of CS 10110, includes, among other information,
the UID corresponding to the AON indexing the
AOTE. In addition to providing translation between
AONSs and UIDs, the UID of an AOTE may be com-
pared to an original UID to determine the correctness
of an AON from AOTHT 10710.

Associated with AOT 10712 is AOTA 10714. AOTA
10714 is an extension of AOT 10712 and contains cer-
tain information pertaining to active objects, for exam-
ple the domain of execution of each active procedure
object.

Having briefly described CS 10110’s mechanism for
relating UIDs and AONs, CS 10110’s mechanism for
resolving operand Names to AON logical addresses
will be described next below.

4,445,177

65
3. Name Resolution (FIGS. 103, 108)

Referring first to FIG. 103, each procedure object in
a VP, for example KOSPO 10318 in VP 10310, was
described as containing a Name Table (NT) 10350.
Each NT 10350 contains a Name, Table Entry (NTE)
for each operand whose Name appears in its procedure.
Each NTE contains a description of how to resolve the
corresponding Name to an AON Logical Address, in-
cluding fetch mode information, type of data referred to
by that Name, and length of the data segment referred
to.

Referring to FIG. 108, a representation of an NTE is
shown. As indicated, this NTE contains seven informa-
tion fields: Flag, Base (B), Predisplacement (PR),
Length (L), Displacement (D), Index (I), and Inter-ele-
ment Spacing (IES). Flag Field, in part, contains infor-
mation describing how the remaining fields of the NTE
are to be interpreted, type of information referred to by
the NTE, and how that information is to be handled
when fetched from MEM 10112. L Field, as previously
described, indicates length, or number of bits in, the
data segment. Functions of the other NTE fields will be
described during the following discussions.

In a present embodiment of CS 10110, there are five
types of NTE: (1) base (B) is not a Name, address reso-
lution is not indirect; (2) B is not a Name, address reso-
lution is indirect; (3) B is a Name, address resolution is
indirect; (4) B is a Name, address resolution is indirect.
A fifth type is an NTE selecting a particular element
from an array of elements. These five types of NTE and
their resolution will be described below, in the order
mentioned.

In the first type, B is not a Name and address resolu-
tion is not indirect, B Field specifies an ABR 10364
containing an AON plus offset (AON/0) Pointer. The
contents of D Field are added to the O Field of this
pointer, and the result is the AON Logical Address of
the operand. In the second type, B is not a Name and
address resolution is indirect, B Field again specifies an
ABR 10364 containing an AON/O pointer. The con-
tents of PR Field are added to the O Field of the
AON/O pointer to provide an AON Logical Address
of a Base Pointer. The Base Pointer AON Logical Ad-
dress is evaluated, as described below, and the Base
Pointer fetched from MEM 10112. The contents of D
Field are added to the O Field of the Base Pointer and
the result is the AON Logical Address of the operand.

NTE types 3 and 4 correspond, respectively to NTE
types 1 and 2 and are resolved in the same manner ex-
cept that B Field contains a Name. The B Field Name is
resolved through another NTE to obtain an AON/O
pointer which is used in place of the ABR 10364 point-
ers referred to in discussion of types 1 and 2.

The fifth type of NTE is used in references to ele-
ments of an array. These array NTEs are resolved in the
same manner as NTE types 1 through 4 above to pro-
vide an AON Logical Address of the start of the array.
I and IES Fields provide additional information to lo-
cate a particular element in the array. I Field is always
Name which is resolved to obtain an operand value
representing the particular element in the array. IES
Field provides information regarding spacing between
elements of the array, that is the number of bits between
adjacent element of the array. IES Field may contain
the actual IES value, or it may contain a Name which is
resolved to an AON Logical Address leading to the
inter-element spacing value The I and IES values, ob-

20

25

30

40

45

50

55

65

66

tained by resolving the I and IES Fields as just de-
scribed, are multiplied together to determine the offset,
relative to the start of the array, of the particular ele-
ment referred to by the NTE. This within array offset is
added to the O Field of the AON Logical Address of
the start of the array to provide the AON Logical Ad-
dress of the element.

In the current embodiment of CS 10110, certain NTE
fields, for example B, D, and Flag fields, always contain
literals. Certain other fields, for example, IES, D, PRE,
and L fields, may contain either literals or names to be
resolved Yet other fields, for example I field, always
contain names which must be resolved.

Passing of arguments from a calling procedure to a
called procedure has been previously discussed with
reference to Virtual Processes 10212 above, and more
specifically with regard to MAS’s 10328 1o 10334 of VP
0310 Passing of arguments is accomplished through the
calling and called procedure’s Name Tables 10350. In
illustration, a procedure W(a,b,c) may wish to pass
arguments a, b, and c to procedure X(u,v,w), where
arguments, v and w correspond to arguments a, b, and
c. At compilation, NTEs are generated for arguments g,
b, and ¢ in Procedure W'’s procedure object, and NTEs
are generated for arguments u, v and w in Procedure
X’s procedure object Procedure X’s NTEs for u, v, and
w are constructed to resolve to point to pointers in
Linkage Pointer Block 10416 of Procedure X’s Frame
10412 in MAS. To pass arguments a, b, and ¢ from
Procedure W to Procedure X, the NTEs of arguments
a, b, and c are resolved t AON Logical Addresses (e,
AON/O form). Arguments a, b, and c’s AON Logical
Addresses are then translated to corresponding UID
addresses which are placed in Procedure X’s Linkage
Pointer Block 10416 at those places pointed to by Pro-
cedure X's NTE:s for u, v, and w. When Procedure X is
executed, the resolution of Procedure X's NTEs for u,
v, and w will be resolved to locate the pointers, in Pro-
cedure X’s Linkage Pointer Block 10416 to arguments
a, b, and c. When arguments are passed in this manner,
the data type and length information are obtained from
the called procedure’s NTEs, rather than the calling
procedure’s NTEs. This allows the calling procedure to
pass only a portion of, for example, arguments a, b, or ¢,
to the called procedure and thus may be regarded as a
feature of CS 10110’s protection mechanisms.

Having briefly described resolution of Names to
AON/Offset addresses, and having previously de-
scribed translation of UID addresses to AON addresses,
the evaluation of AON addresses to MEM 10112 physi-
cal addresses will be described next below.

4. Evaluation of AON Addresses to Physical Addresses
(FIG. 107)

Referring again to FIG. 107, a partial schematic rep-
resentation of CS 10110’s Memory Management Table
10224 is shown. Memory Hash Table (MHT) 10716 and
Memory Frame Table (MFT) 10718 are concerned
with translation of AON addresses into MEM 10112
physical addresses and will be discussed first. Working
Set Matrix (WSM) 10720 and Virtual Memory Manager
Request Queue (VMMRQ) 10722 are concerned with
management of MEM 10112’s available physical ad-
dress base and will be discussed second. Active Object
Request Queue (AORQ) 10728 and Logical Allocation
Unit Directory (LAUD) 10730 are concerned with
locating inactive objects and management of which
objects are active in CS 10110 and will be discussed last.

4,445,177

67

Translation of AON/O Logical Addresses to MEM
10112 physical addresses was previously discussed with
reference to FIG. 106C. As stated in that discussion,
objects are divided into pages. Correspondingly, the
AON/O Logical Address’ O Field is divided into an 18
bit page number (P) Field and a 14 bit offset within a
page (Op) Field. MEM 10112 is structured into frames,
each of which in the present embodiment of CS 10110 is
equal to a page of an object. An AON/O address’ Op
Field may therefore be used directly as an offset within
frame (OF) of the corresponding physical address. The
AON and P fields of an AON address must, however,
be translated into a MEM 10112 frame represented by a
corresponding Frame Number (FN).

Referring now to FIG. 107, an AON address’ AON
and P Fields are “hashed” to generate an MHT index
which is used as an index into MHT 10716. Briefly,
“hashing” is a method of indexing, or locating, informa-
tion in a table herein indexes to the information are
generated from the information itself through a “hash-
ing function”. A hashing function maps each piece of
information to the corresponding index generated from
it through the hashing function. MHT 10716 then pro-
vides the corresponding FN of the MEM 10112 frame
in which, that page is stored. FNs are used as indexes
-into MET 10718, which contains, for each FN, an entry
describing the page stored in that frame. This informa-
tion includes the AON and P of the page stored in that
MEM 10112 frame. An FN from MHT 10716 may
therefore be used as an index into MFT 10718 and the
resulting AON/P of MFT 10718 compared to the origi-
nal AON/P to confirm the correctness of the FN ob-
tained from MHT 10716. MHT 10716 is an effectively
acceleration mechanism of MFT 10718 to provide rapid
translation of AON address to MEM 10112 physical
addresses.

MFET 10718 also stores “used” and “modified” infor-
mation for each page in MEM 10112. This information
indicates which page frames stored therein have been
used and which have been modified. This information is
used by CS 10110 in determining which frames may be
deleted from MEM 10112, or are free, when pages are
to be written into MEM 10112 from backing store (ED
10124). For example, if a page’s modified bit indicates
that that page has not been written into, it is not neces-
sary to write that page back into backing store when it
is deleted from MEM 10112; instead, that page may be
simply erased.

Referring finally to ATU 10228, ATU 10228 is an
acceleration mechanism for MHT 10716. AON/O ad-
dresses are used directly, without hashing, as indexes
into ATU 10228 and ATU 10228 correctly provides
corresponding FN and Opoutputs. A CS 10110 mecha-
nism, described in a following detailed discussion of CS
10110 operation, continually updates the contents of
ATU 10228 so that ATU 10228 contain the FN’s and
Op; (OF;s) of the pages most frequently referenced by
the current process. If ATU 10228 does not contain a
corresponding entry for a given AON input, an ATU
fault occurs and the FN and Of information may be
obtained directly from MHT 10716.

Referring now to WSM 10720 and VMMRQ 10722,
as previously stated these mechanisms are concerned
with the management of MEM 10112's available ad-
dress space. For example, if MHT 10716 and MFT
10718 do not contain an entry for a page referenced by
the current procedure, an MHT/MFT fault occurs and
the reference page must be fetched from backing store

20

25

40

45

55

65

: 68

(ED 10124) and read into MEM 10112. WSM 10720
contains an entry for each page resident in MEM 10112.
These entries are accessed by indexes comprising the
Virtual Processor Number (VPN) of the virtual process
making a page reference and the P of the page being
referenced. Each WSM 10720 entry contains 2 bits
stating whether the particular page is part of a VP’s
working set, that is, used by that VP, and whether that
page has been referenced by that VP. This information,
together with the information contained in that MFT
10718 entries described above, is used by CS 10110’
Virtual Memory Manager (VMM) in transferring pages
into and out of MEM 10112.

CS 10110’s VMM maintains VMMRQ 10722, which
is used by VMM to control transfer of pages into and
out of MEM 10112. VMMRQ 10722 includes Virtual
Memory Request Counter (VMRC) 10724 and a4 Queue
of Virtual Memory Request Entries (VMREs) 10726.
As will be discussed momentarily, VMRC 10724 tracks
the number of currently outstanding request for pages.
Each VMRE 10726 describes a particular page which
has been requested. Upon occurrence of a MHT/MFT
(or page) fault, VMRC 10724 is incremented, which
initiates operation of CS 10110’s VMM, and a VMRE
10726 is placed in the queue. Each VMRE 10726 com-
prises the VPN of the process requesting the page and
the AON/O of the page requested. At this time, the ve
making the request is swapped out of JP 10114 and
another VP bound to JP 10114. VMM allocates MEM
10112 frame to contain the requested page, using the
previously described information in MFT 10718 and
WSM 10720 to select this frame. In doing so, VMM
may discard a page currently resident in MEM 10112
for example, on the basis of being the oldest page, an
unused page, or an unmodified page which does not
have to be written back into backing store. VMM then
requests an 1/0 operation to transfer the requested page
into the frame selected by the VMM. While the 1/0
operation is proceeding, VMM generates new entries in
MHT 10716 and MFT 10718 for the requested page,
cleans the frame in MEM 10112 which is to be occupied
by that page, and suspends operation. I0S 10116 will
proceed to execute the 1/0 operation and writes the
requested page directly into MEM 10112 in the frame
specified by VMM. 10S 10116 then notifies CS 10110°s
VMM that the page now resides in memory and can be
referenced. At some later time, that VP requesting that
page will resume execution and repeat that reference.
Going first to ATU 10228, that VP will take an ATU
10228 fault since VP 10212 has not yet been updated to
contain that page. The VP will then go to MHT 10716
and MFT 10718 for the required information and, con-
currently, WSM 10720 and ATU 10228 will be updated.

In regard to the above operations, each VP active in
CS 10110 is assigned a Page Fault Frequency Time
Factor (PFFT) which is used by CS 10110’s VMM to
adjust that VP’s working set so. that the interval be-
tween successive page faults for that VP lies in an opti-
mum time range. This assists in ensuring CS 10110’s
VMM is operating most efficiently and allows CS
10110’s VMM to be tuned as required.

The above discussions have assumed that the page
being referenced, whether from a UID/O address, an
AON/O address, or a Name, is resident in an object
active in CS 10110. While an object need not have a
page in MEM 10112 to be active, the object must be
active to have a page in MEM 10112, A VP, however,
may reference a page in an object not active in CS

4,445,177

69
10110. If such a reference is made, the object must be
made active in CS 10110 before the page can be brought
into MEM 10112. The result is an operation similar to
the page fault operation described above. CS 10110
maintains an Active Object Manager (AOM), including
Active Object Request Queue (AORQ) 10728, which
are similar in operation to CS 10110’s VMM and
VMMRQ 10722. CS 10110’s AOM and AORQ 10728
operate in conjunction with AOTHT 10710 and AOT
10712 to locate inactive objects and make them active
by assigning them AON’s and generating entries for
them in AOTHT 10710, AOT 10712, and AOTA 10714,

Before a particular object can be made active in CS
10110, it must first be located in backing store (ED
10124). All objects on backing store are located through
a Logical Allocation Unit Directory (LAUD) 10730,
which is resident in backing store. An LAUD 10730
contains entries for each object accessible to the partic-
ular CS 10110. Each LAUD 10730 entry contains the
information necessary to generate an AOT 10712 entry
for that object. An LAUD 10730 is accessed through a
UID/O address contained in CS 1011¢’s VMM. A ref-
erence to an LAUD 10730 results in MEM 10112
frames being assigned to that LAUD 10730, and LAUD
10730 being transferred into MEM 10112. If an LAUD
10730 entry exists for the referenced inactive object, the
LAUD 10730 entry is transferred into AOT 10712, At
the next reference to a page in that object, AOT 10712
will provide the AON for that object but, because the
page has not yet been transferred into MEM 10112, a
page fault will occur. This page fault will be handled in
the manner described above and the referenced page
transferred into MEM 10112.

Having briefly described the structure and operation
of CS 10110’s Addressing Structure, including the rela-
tionship between UIDs, Names, AONSs, and Physical
Addresses and the mechanisms by which CS 10110
manages the available address space of MEM 10112, CS
10110°s protection structures will be described next
below.

E. CS 10110 Protection Mechanisms (FIG. 109)

Referring to FIG. 109, a schematic representation of
Protection Mechanisms 10230 is shown. Protection
Tables 10232 include Active Primitive Access Matrix
(APAM) 10910, Active Subject Number Hash Table
{ASNHT) 10912, and Active Subject Table (AST)
10914. Those portions of Protection Mechanism 10230
resident in FU 10120 include ASN Register 10916 and
Protection Cache (PC) 10234,

As previously discussed, access rights to objects are
arbitrated on the basis of subjects. A subject has been
defined as a particular combination of a Principle, Pro-
cess, and Domain (PPD), each of which is identified by
a corresponding UID. Each object has associated with
it an Access Control List (ACL) 10918 containing an
ACL Entry (ACLE) for each subject having access
rights to that object.

When an object becomes active in CS 10110 (i-e., is
assigned an AON) each ACLE in that object’s ACL
10918 is written into APAM 10910. Concurrently, each
subject having access rights to that object, and for
which there is an ACLE in that object's ACL 10918, is
assigned an Active Subject Number (ASN). These
ASNSs are written into ASNHT 10912 and their corre-
sponding PPDs are written into AST 10914. Subse-
quently, the ASN of any subject requesting access to
that object is obtained by hashing the PPD of that sub-

5

20

25

30

45

55

60

65

: 70
ject to obtain a PPD index into ASNHT 10912,
ASNHT 10912 will in turn provide & corresponding
ASN. An ASN may be used as an index into AST
10914. AST 10914 will provide the corresponding PPD,
which may be compared to an original PPD to confirm
the accuracy of the ASN.

As described above, APAM 10910 contains an ACL
10918 for each object active in CS 10110. The access
rights of any particular active subject to a particular
active object are determined by using that subject’s
ASN and that object’s AON as indexes into APAM
10910. APAM 10910 in turn provides a 4 bit output
defining whether that subject has Read (R) Write (W)
or Execute (E) rights with respect to that object, and
whether that particular entry is Valid (V).

ASN Register 10916 and PC 10234 are effectively
acceleration mechanisms of Protection Tables 10232,
ASN Register 10916 stores the ASN of a currently
active subject while PC 10234 stores certain access
right information for objects being used by the current
process. PC 10234 entries are indexed by ASNs from
ASN register 10916 and by a mode input from JP 10114.
Mode input defines whether the current procedure
intends to read, write, or execute with respect to a par-
ticular object having an entry in PC 10234, Upon re-
ceiving ASN and mode inputs, PC 10234 provides a
go/nogo output indicating whether that subject has the
access rights required to execute the intended operation
with respect to that object.

In addition to the above mechanism, each procedure
to which arguments may be passed in a cross-domain
call has associated with it an Access Information Array
(AIA) 10352, as discussed with reference to Virtual
Processes 10212. A procedure’s AIA 10352 states what
access rights a calling procedure (subject) must have to
a particular object (argument) before the called proce-
dure can operate on the passed argument CS 10110’s
protection mechanisms compare the calling procedures
access rights to the rights required by the called proce-
dure. This insures the calling procedure may not ask a
called procedure to do what the calling procedure is not
allowed to do. Effectively, a calling procedure can pass
to a called procedure only the access rights held by the
calling procedure.

Finally, PC 10234, APAM 10910, or AST 10914
faults (i.e., misses) are handled in the same manner as
described above with reference to page faults in discus-
sion of CS 10110’s Addressing Mechanisms 10220. As
such, the handling of protection misses will not be dis-
cussed further at this point.

Having briefly described structure and operation of
CS 10110’s Protection Mechanisms 10230, CS 10110’s
Micro-Instruction Mechanisms 10236 will be described
next below.

F. CS 10110 Micro-Instruction Mechanisms (FIG. 110)

As previously described, CS 10110 is a multiple lan-
guage machine. Each program written in a high level
user language is compiled into a corresponding S-Lan-
Buage program containing instructions expressed as
SINs. CS 10110 provides a set, or dialect, of microcode
instructions, referred to as S-Interpreters (SINTs) for
each S-Language. SINTs interpret SINs and provide
corresponding sequences of microinstructions for de-
tailed control of CS 10110,

Referring to FIG. 110, a partial schematic representa-
tion of CS 10110’s Micro-Instruction Mechanisms 10236
is shown. At system initialization all CS 10110 micro-

4,445,177

71

code, including SINTs and all machine assist micro-
code, is transferred from backing store to Micro-Code
Control Store (mCCS) 10238 in MEM 10112. The Mi-
cro-Code is then transferred from mCCS 10238 to FU
Micro-Code Structure (FUmC) 10240 and EU Micro-
Code Structure (EUmC) 10242. EUmC 10242 is similar
in structure and operation to FUmC 10240 and thus will
be described in following detailed descriptions of CS
10110’s structure and operation. Similarly, CS 10110
machine assist microcode will be described in following
detailed discussions. The present discussion will con-
cern CS 10110°s S-Interpreter mechanisms.

CS 10110’s S-Interpreters (SINTs) are loaded into
S-Interpret Table (SITT) 11012, which is represented in
FIG. 110 as containing S-Interpreters 1 to N. Each SIT
contains one or more sequences of micro-code; each
sequence of microcode corresponds to a particular SIN
in that S-Language dialect. S-Interpreter Dispatch
Table (SDT) 11010 contains S-Interpreter Dispatchers
(SDs) 1 to N. There is one SD for each SINT in SITT
11012, and thus a SD for each S-Language dialect. Each
SD comprises a set of pointers. Each pointer in a partic-
ular SD corresponds to a particular SIN of that SD’s
dialect and points to the corresponding sequence of
microinstructions for interpreting that SIN in that dia-
lect's SIT in SITT 11012. In illustration, as previously
discussed when a particular procedure is being executed
the SIP for that procedure is transferred into one of
mCR’s 10366. That SIP points to the start of the SD for
the SIT which is to be used to interpret the SINs of that
procedure. In FIG. 110, the SIP in mCRs 10366 is
shown as pointing to the start of SD2. Each S-Op ap-
pearing during execution of that procedure is an offset,
relative to the start of the selected SD, pointing to a
corresponding SD pointer. That SD pointer in turn
points to the corresponding sequence of microinstruc-
tions for interpreting that SIN in the corresponding SIT
in SITT 11012. As will be described in following discus-

_sions, once the start of a microcode sequence for inter-
preting an SIN has been selected, CS 10110 microma-
chine then proceeds to sequentially call the microin-
structions of that sequence from SITT 11012 and use
those microinstructions to control operation of CS
10110.

G. Summary of Certain CS 10110 Features and
Alternate Embodiments

The above Introductory Overview has described the
overall structure and operation and certain features of
CS 101, that is, CS 10110. The above Introduction has
further described the structure and operation and fur-
ther features of CS 10110 and, in particular, the physical
implementation and operation of CS 10110’ informa-
tion, control, and addressing mechanisms. Certain of
these CS 10110 features are summarized next below to
briefly state the basic concepts of these features as im-
plemented in CS 10110. In addition, possible alternate
embodiments of certain of these concepts are described.

First, CS 10110 is comprised of a plurality of indepen-
dently operating processors, each processor having 2
separate microinstruction control. In the present em-
bodiment of CS 10110, these processors include FU
10120, EU 10122, MEM 10112 and IOS 10116. Other
such independently operating processors, for example,
special arithmetic processors such as an array proces-
sor, or multiple FU 10120’s, may be added to the pres-
ent CS 10110.

—

0

—

5

25

40

45

55

60

65

72

In this regard, MEM 10112 is a multiport processor
having one or more separate and independent ports to
each processor in CS 10110. All communications be-
tween CS 10110's processors are through MEM 10112,
so that MEM 10112 operates as the central communica-
tions node of CS 10110, as well as performing memory
operations. Further separate and independent ports may
be added to MEM 10112 as further processors are
added to CS 10110, CS 10110 may therefore be de-
scribed as comprised of a plurality of separate, indepen-
dent processors, each having a separate microinstruc-
tion control and having a separate and independent port
to a central communications and memory node which
in itself is an independent processor having a separate
and independent microinstruction control. As will be
further described in a following detailed description of
MEM 10112, MEM 10112 itself is comprised of a plural-
ity of independently operating processors, each per-
forming memory related operations and each having a
separate microinstruction control. Coordination of op-
erations between CS 10110’s processors is achieved by
passing “messages” between the processors, for exam-
ple, SOP’s and descriptors.

CS 10110’s addressing mechanisms are based, first,
upon UID addressing of objects That is, all information
generated for use in or by operation of a CS 10110, for
example, data and procedures, is structured into objects
and each object is assigned a permanent UID. Each
UID is unique within a particular CS 10110 and be-
tween all CS 10110’s and is permanently associated with
a particular object. The use of UID addressing provides
a permanent, unique addressing means which is com-
mon to all CS 10110’s, and to other computer systems
using CS 10110’s UID addressing.

Effectively, UID addressing means that the address
{or memory) space of a particular CS 10110 includes the
address space of all systems, for example disc drives or
other CS 10110s, to which that particular CS 10110 has
access. UID addressing allows any process in any CS
10110 to obtain access to any object in any CS 10110 to
which it has physical access, for example, another CS
10110 on the other side of the world. This access is
constrained only by CS 10110’s protection mechanism.
In alternate embodiments of CS 10110, certain UIDs
may be set aside for use only within a particular CS
10110 and may be unique only within that particular CS
10110. These reserved UIDs would, however, be a
limited group known to all CS 10110 systems as not
having uniqueness between systems, s0 that the unique
object addressing capability of CS 10110’s UID address-
ing is preserved.

As previously stated, AONs and physical descriptors
are presently used for addressing within a CS 10110,
effectively as shortened UIDs. In alternate embodi-
ments of CS 10110, other forms of AONs may be used,
or AONs may be discarded entirely and UIDs used for
addressing within as well as between CS 10110s.

CS 10110’s addressing mechanisms are also based
upon the use of descriptors within and between CS
10110s. Each descriptor includes an AON or UID field
to identify a particular object, an offset field to specify
a bit granular offset within the object, and a length field
to specify a particular number of bits beginning at the
specified offset. Descriptors may also include a type, or
format field identifying the particular format of the data
referred to by the descriptor. Physical descriptors are
used for addressing MEM 10112 and, in this case, the

4,445,177

73
AON or UID field is replaced by a frame number field
referring to a physical location in MEM 10112,

As stated above, descriptors are used for addressing
within and between the separate, independent proces-
sors (FU 10120, EU 10122, MEM 10112, and IOS
10116) comprising CS 10110. thereby providing com-
mon, system wide bit granular addressing which in-
cludes format information, In particular, MEM 10112
responds to the type information fields of descriptors by
performing formatting operations to provide requestors
with data in the format specified by the requestor in the
descriptor. MEM 10112 also accepts data in a format
specified in a descriptor and reformats that data into a
format most efficiently used by MEM 10112 to store the
data.

As previously described, all operands are referred to
in CS 10110 by Names wherein all Names within a
particular S-Language dialect are of a uniform, fixed
size and format. A K valye specifying Name size is
provided to FU 10120, at each change in S-Language
dialect, and is used by FU 10120 in parsing Names from
the instruction stream. In an alternate embodiment of
CS 10110, all Names are the same size in all S-Language
dialects, so that K values, and the associated circuitry in
FU 10120’s parser, are not required.

Finally, in descriptions of CS 10110s use of SOPs,
FU 10120's microinstruction circuitry was described as
storing one or more S-Interpreters. S-Interpreters are
sets of sequences of microinstructions for interpreting
the SOPs of various S-Language dialects and providing
corresponding sequences of microinstructions to con-
trol CS 10110. In an alternate embodiment of CS 10110,
these S-Interpreters (SITT 11012) would be stored in
MEM 10112. FU 10120 would receive SOPs from the
instruction stream and, using one or more S-Interpreter
Base Pointers (that is, architectural base pointers point-
ing to the SITT 11012 in MEM 10112), address the
SITT 11012 stored in MEM 10112. MEM 10112 would
respond by providing, from the SITT 11012 in MEM
10112, sequences of microinstructions to be used di-
rectly in controlling CS 10110. Alternately, the SITT
11012 in MEM 10112 could provide conventional in-
structions usable by a conventional CPU, for example,
Fortran or machine language instructions. This, for
example, would allow FU 10120 to be replaced by a
conventional CPU, such as a Data General Corporation
Eclipse ®). ’

Having briefly summarized certain features of CS
10110, and alternate embodiments of certain of these
features, the structure and operation of CS 10110 will be
described in detail below.

2. DETAILED DESCRIPTION OF CS 10110
MAJOR SUBSYSTEMS (FIGS. 201-206, 207-274)

Having previously described the overall structure
and operation of CS 10110, the structure and operation
of CS 10110°s major subsystems will next be individu-
ally described in further detail. As previously discussed,
CS 10110’s major subsystems are, in the order in which
they will be described, MEM 10112, FU 10120, EU
10122, I0S 10116, and DP 10118. Individual block dia-
grams of MEM 10112, FU 10120, EU 10122, 10S 10116,
and DP 10118 are shown in, respectively, FIGS. 201
through 205. FIGS. 201 through 205 may be assembled
as shown in FIG. 206 to construct a more detailed block
diagram of CS 10110 corresponding to that shown in
FIG. 101. For the purposes of the following descrip-
tions, it is assumed that FIGS. 201 through 205 have

20

25

30

35

40

45

50

55

60

65

i 74
been assembled as shown in FIG. 206 to construct such
a block diagram. Further diagrams will be presented in
following descriptions as required to convey structure
and operation of CS 10110 to one of ordinary skill in the
art. .

As previously described, MEM 10112 is an intelli-
gent, priortizing memory having separate and indepen-
dent ports MIO 10128 and MJP 10140 to, respectively,
IOS 10116 and JP 10114. MEM 10112 is shared by and
is accessible to both JP 10114 and IOS 10116 and is the
primary memory of CS 10110. In addition, MEM 10112
is the primary path for information transferred between
the external world (through 1I0S 10116) and JP 10114.

As will be described further below, MEM 10112 is a
two-level memory providing fast access to data stored
therein. MEM 10112 first level is comprised of a large
set of random access arrays and MEM 10112 second
level is comprised of a high speed cache whose opera-
tion is generally transparent to memory users, that is JP
10114 and I0S 10116. Information stored in MEM
10112, in either level, appears to be bit addressable to
both JP 10114 and 10S 10116. In addition, MEM 10112
presents simple interfaces to both JP 10114 and IOS
10116. Due to a high degree of pipe lining (concurrent
and overlapping memory operations) MEM 10112 in-
terfaces to both JP 10114 and I0S 10116 appear as if
each JP 10114 and IOS 10116 have full access to MEM
10112. This feature allows data transfer rates of up to,
for example, 63.6 megabytes per second from MEM
10112 and 50 megabytes per second to MEM 10112,

In the following descriptions, certain terminology
used on those descriptions will be introduced first, fol-
lowed by description of MEM 10112 physical organiza-
tion. Then MEM 10112 port structures will be de-
scribed, followed by descriptions of MEM 10112’s con-
trol organization and control flow. Next, MEM 10112’s
interfaces to JP 10114 and 10S 10116 will be described.
Following these overall descriptions the major logical
structures of MEM 10112 will be individually de-
scribed, starting at MEM 10112’s interfaces to JP 10114
and JOS 10116 and proceeding inwardly to MEM
10112's first (or bulk) level of data stored. Finally, cer-
tain features of MEM 10112 microcode control struc-
ture will be described.

A. MEM 10112 (FIGS. 201, 206, 207-237)
a. Terminology

Certain terms are used throughout the following
descriptions and are defined here below for reference
by the reader.

A word is 32 bits of data

A byte is 8 bits of data

A block is 128 bits of data (that is, 4 words).

A block is always aligned on a block boundary, that is
the low order 7 bits of logical or physical address are
zero (see Chapter 1, Sections A.f and D. Descriptions of
CS 10110 Addressing).

The term aligned refers to the starting bit address of
a data item relative to certain address boundaries. A
starting bit address is block aligned when the low order
7 bits of starting bit address are equal to zero, that is the
starting bit address falls on a boundary between adja-
cent blocks. A word align starting bit address means
that the low order 5 bits of starting bit address are zero,
the starting bit address points to a boundary between
adjacent words. A byte aligned starting bit address
means that the low order 3 bits of starting bit address

4,445,177

75
are zero, the starting bit address points to a boundary
between adjacent bytes.

Bit granular data has a starting bit address falling
within a byte, but not on a byte boundary, or the ad-
dress is aligned on a byte boundary but the length of the
data is bit granular, that is not a multiple of & bits.

b. MEM 10112 Physical Structure (FIG. 201)

Referring to FIG. 201, a partial block diagram of
MEM 10112 is shown. Major functional units of MEM
10112 are Main Store Bank (MSB) 20110, including
Memory Arrays (MA’s) 20112, Bank Controller (BC)
20114, Memory Cache (MC) 20116, including Bypass
Write File (BYF) 20118, Field Isolation Unit (FIU)
20120, and Memory Interface Controller (MIC) 20122

MSB 20110 comprises MEM 10112’s first or bulk
level of storage. MSB 20110 may include from one to,
for example, 16 MA 20112's. Each MA 20112 may have
a storage capacity, for example, 256 K-byte, 512 K-byte,
1 M-byte, or 2 M-bytes of storage capacity. As will be
described further below, MA 20112’s of different capac-
ities may be used together in MSB 20110 Each MA
20112 has a data input connected in parallel to Write
Data (WD) Bus 20124 and a data output connected in
parallel to Read Data (RD) Bus 20126. MA's 20112 also
have control and address ports connected in parallel to
address and control (ADCTL) Bus 20128. In particular,
Data Inputs 20124 of Memory Arrays 20112 are con-
nected in parallel to Write Data (WD) Bus 20126, and
Data Qutputs 20128 of Memory Arrays 20112 are con-
nected in parallel to Read Data (RD) Bus 20130. Con-
trol Address Ports 20132 of Memory Arrays 20112 are
connected in parallel to Address and Control
(ADCTL) Bus 20134.

Data Output 20136 of Bank Controller 20114 is con- '

pected to WD Bus 20126 and Data Input 20138 of BC
20114 is connected to RD Bus 20130 Control and Ad-
dress Port 20140 of BC 20114 is connected to ADCTL
Bus 20134. BC 20114’s Data Input 20142 is connected to
MC 20116’s Data Output 20144 through Store Back
Data (SBD) Bus 20146. BC 20114’ Store Back Address
Input 20148 is connected to MC 20116 Store Back Ad-
dress Output 20150 through Store Back Address (SBA)
Bus 20152. BC 20114's Read Data Output 20154 is con-
nected to MC 20116’s Read Data Input 20156 through
Read Data Out (RDO) Bus 20158. BC 20114’s Control
Port 20160 is connected to Memory Control (MCNTL)
Bus 20164.

MC 20116 has Output 20166 connected to MIO Bus
10131 through MIO Port 10128, and Port 20168 con-
nected to MOD Bus 10144 through MJP Port 10140.
Control Port 20170 of MC 20116 is connected to
MCNTL Bus 20164, Input 20172 of BYF 20118 is con-
nected to IOM Bus 10130 through MIO Port 10128, and
Output 20176 is connected to SBD Bus 20146 through
Bypass Write In (BWI) Bus 20178.

Finally, FIU 20120 has an Output 20180 and an Input
20182 connected to, respectively, MIO Bus 10129 and
IOM Bus 10130 through MIO Port 10128. Input 20184
and Port 20186 are connected to, respectively, JPD Bus
10142 and MOD Bus 10144 through MJP Port 10140.
Control Port 20188 is connected to MCNTL Bus 20164.
Referring finally to MIC 20122, MIC 20122 has Control
Port 20190 and Input 20192 connected to, respectively,
IOMC Bus 10131 and IOM Bus 10130 through MIO
Port 10128. Control Port 20194 and Input 20196 are
connected, respectively, to JPMC Bus 10147 and Physi-
cal Descriptor (PD) Bus 10146 through MJP Port

5

30

40

45

50

60

65

76
10140. Control Port 20198 is connected to MCNTL Bus
20164.

c. MEM 10112 General Operation

Referring first to MEM 10112's interface to 1OS
10116, this interface includes MIO Bus 10129, IOM Bus
10130, and IOMC Bus 10131 Read and Write Ad-
dresses and data to be written into MEM 10112 are
transferred from I0S 10116 to MEM 10112 through
IOM Bus 10130. Data read from MEM 10112 is trans-
ferred to 10S 10116 through MIO Bus 10129. IOMC
10131 is a Bi-directional Control bus between MEM
10112 and 10S 10116 and, as described further below,
transfers control signals between MEM 10112 and 1I0S
10116 to control transfer of data between MEM 10112
and 10S 10116.

MEM 10112's interface to JP 10114 is MJP Port
10140 and includes JPD Bus 10142, MOD Bus 10144,
PD Bus 10146, and JPMC Bus 10147. Physical descrip-
tors, that is MEM 10112 physical read and write ad-
dresses, are transferred from JP 10114 to MEM 10112
through PD Bus 10146. S Ops, that is sequences of S
Instructions and operand names, are transferred from
MEM 10112 to JP 10114 through MOD Bus 10144
while data to be written into MEM 10112 from JP
10114 is transferred from JP 10114 to MEM 10112
through JPD Bus 10142. JPMC Bus 10147 is a By-direc-
tional Control bus for transferring command and con-
trol signals between MEM 10112 and JP 10114 for con-
trolling transfer of data between MEM 10112 and JP
10114. As will be described further below, MJP Port
10140, and in particular MOD Bus 10144 and PD Bus
10146, is generally physically organized as a single port
that operates as a dual port. In a first case, MJP Port
10140 operates as a Job Processor Instruction (JT) Port
for transferring S Ops from MEM 10112 to JP 10114. In
a second case, MOD 10144 and PD 10146 operate as a
Job Processor Operand (JO) Port for transfer of oper-
ands, from MEM 10112 to JP 10114, while JPD Bus
10142 and PD Bus transfer operands from JP 10114 to
MEM 10112.

Referring to MSB 20110, MSB 20110 contains MEM
10112’s first, or bulk, level of storage capacity. MSB
20110 may contain from one to, for example, 16 MA’s
20112. Each MA 20112 contains a dynamic, random
access memory array and may have a storage capacity
of, for example 256 Kilo-bytes, 512 Kilo-bytes, 1 Mega-
bytes, or 2 Mega-bytes. MEM 10112 may therefore
have a physical capacity of up to, for example, 16 Mega-
bytes of bulk storage. As will be described further
below MA 20112’s of different capacity may be used
together in MSB 20110, for example, four 2 Mega-byte
MA 20112's and four 1 Mega-byte MA 20112’s.

BC 20114 controls operation of MA’s 20112 and is the
path for transfer of data to and from MA’s 20112. In
addition, BC 20114 performs errof detection and cor-
rection on data transferred into and out of MA’s 20112,
refreshes data stored in MA’s 20112, and, during a re-
fresh operations, performs error detection and correc-
tion of data stored in MA’s 20112.

MC 20116 comprises MEM 10112's second, or cache,
level of storage capacity and contains, for example 8
Kilo-bytes of high speed memory. MC 20116, including
BYF 20118, is also the path for data transfer between
MSB 20110 (through BC 20114) and JP 10114 and 10S
10116. In general, all read and write operations between
JP 10114 and 1I0S 10116 are through MC 20116. 108
10116 may, however, perform read and write opera-

4,445,177

77 ‘

tions of complete blocks by-passing MC 20116. Block
write operations from I0S 10116 are accomplished
through BYF 20118 while block read operations are
performed through a data transfer path internal to MC
20116 and shown and described below. All read and
write operations between MEM 10112 and JP 10114,
however, must be performed through the cache internal
to MC 20116, as will be shown and described further
below.

As also shown and described below, FIU 20120 in-
cludes write data registers for receiving data to be writ-
ten into MEM 10112 from JP 10114 and I0S 10116, and
circuitry for manipulating data read from MSB 20110 so
that MEM 10112 appears as a bit addressable memory.
FIU 20120, in addition to providing bit addressability of
MEM 10112, performs right and left alignment of data,
zero fill of data, sign extension operations, and other
data manipulation operations described further below.
In performing these data manipulation operations on
data read from MEM 10112 to JP 10114, MOD Bus
10144 is used as a data path internal to MEM 10112 for
transferring of data from MC 20116 to FIU 20120, and
from FIU 20120 to MC 20116, That is, data to be trans-
ferred to JP 10114 is read from MC 20116, transferred
through MOD Bus 10144 to FIU 20120, manipulated by
FIU 20120, and transferred from FTU 20120 to JP 10114
through MOD Bus 10144.

MIC 20122 contains circuitry controlling operation
of MEM 10112 and, in particular, controls MEM
10112’s interface with JP 10114 and 10S 10116. MIC
20122 receives MEM 10112 read and write request, that
is read and write addresses through PD Bus 10146 and
IOM Bus 10130 and control signals through JPMC Bus
10147 and IOMC Bus 10131, and provides control sig-
nals to BC 20114, MC 20116, and FIU 20120 through
MCNTL Bus 20164,

Having described the overall structure and operation
of MEM 10112, the structure and operation of MEM
10112’s Port, MIO Port 10128, and MJP Port 10140,
will be described next, followed by descriptions of
MEM 10112’s control structure and the control and
flow of MEM 10112 read and write requests.

d. MEM 10112 Port Structure

MEM 10112 port structure is designed to provide a
simple interface to JP 10114 and IOS 10116. While
providing fast and flexible operation in servicing MEM
10112 read and write requests from JP 10114 and IOS
10116. In this regard, MEM 10112, as will be described
further below, may handle up to 4 read and write re-
quests concurrently and up to, for example, a 63.6 M-
byte per second data rate. In addition MEM 10112 is
capable of performing bit granular addressing, block
read and write operations, and data manipulations, such
as alignment and filling, to enable JP 10114 and IOS
10116 to operate most efficiently.

MEM 10112 effectively services requests from three
ports. These ports are MIO Port 10128 to IOS 10116,
hereafter referred to as 10 Port, and JI and JO Ports,
described above, to JP 10114. These three ports share
the entire address base of MEM 10112, but I0S 10116,
for example, may be limited from making full use of
MEM 10112’s address space. Each port has a different
set of allowed operations. For example, JO Port can use
bit granular addresses but can reference only 32 bits of
data on each request. JI Port can make read requests
only to word align 32 bit data items. IO Port may refer-
ence bit granular data, and, as described further below,

15

35

40

45

50

55

60

65

78

may read or write up to 16 bytes on each read or write
request. The characteristics of each of these ports will
be discussed next below.

1. 10 Port Characteristics

108 10116 may access MEM 10112 in either of two
modes. The first mode is block transfers by-passing or
through the cache in MC 20116, and the second is non-
block transfer through the cache in MC 20116,

Block by-passes may occur for both read and write
operations. A read or write operation is eligible for a
block by-pass if the data is on block boundaries, is 16
bytes long, and the read or write request is not accom-
panied by a control signal indicating that an encache
(load into MC 20116’s cache) operation is to be per-
formed. A by-pass operation takes place only if the
block address, that is the physical address of the block
in MEM 10112 does not address a currently encached
block, that is the block is not present in MC 20116’s
cache. If the block is encached in MC 20116’s cache, the
read or write transfer is to MC 20116’s cache.

Partial block references, that is non-full block trans-
fers will go through MC 20116’s cache. If a cache miss
occurs, that is the reference data is not present in MC
20116’s cache, MEM 10112’s control structures transfer
the data to or from MSB 20110 and update MC 20116’s
cache. It should be noted that partial blocks may be as
short as one byte, or up to 15 bytes long. A starting byte
address may be anywhere within a block, but the partial
block’s length may not cross a block boundary.

Bit length transfers, that is transfers of data items
having a length of 1 to 16 bits and not a multiple of a
byte, or where address is not on a byte boundary, go
through MC 20116’s cache. These operations may cross
byte, word, or block boundaries but may not cross page
boundaries. These specific operations requested by 10
port determines whether a read or write request is a
partial block or bit length transfer.

2. JO Port Characteristics

All read or write requests from JO Port must go
through MC 20116’s cache; by-pass operations may not
be performed. The data transferred between MEM
10112 and JP 10114 is always 32 bits in length but, of the
32 bits passed, from zero to 32 bits may be valid data. JP
10114 determines the location of valid data within the
32 bits by referring to certain FIU specification bits
provided as part of the read or write request. As will be
described further below, FIU specification bits, and
other control bits, are provided to MIC 20122 by JP
10114 through JPMC Bus 10147 when each read or
write request is made.

While MEM 10112 does not perform block by-pass
operations to JP 10114, MEM 10112 may perform a
cache read-through operation. Such operations occur
on a JP 10114 read request wherein the requested data
is not present in MC 20116’s cache. If the JP 10114 read
request is for a full word, which is word aligned, MEM
10112’s Load Manager, discussed below, transfers the
requested data directly to JP 10114 while concurrently
loading the requested data into MC 20116’s cache. This
operation is referred to as a “hand-off” operation. These
operations may also be performed by 10 Port for 16 bit
half words aligned on the right hand half word of a 32
bit word, or if a full block is handed left and loaded into
MC 20116’s cache.

4,445,177

79
3. JI Port Characteristics

All J1 Port requests are satisfied through MC 20116's
cache; MEM 10112 does not perform by-pass opera-
tions to JI Port. JI Port requests are always read re-
quests for full-word aligned words and are handed off,
as described above, if a cache miss occurs. In most other
respects, JI Port requests are similar to JO Port re-
quests.

Having described the overall structure and operation
of MEM 10112, including MEM 10112's input and out-
put ports to JP 10114 and 10S 10116, MEM 10112’s
control structure will be described next below.

e. MEM 10112 Control Structure and Operation (FIG.
207)

Referring to FIG. 207, a more detailed block diagram
of MIC 20116 is shown. FIG. 207 will be referred to in
conjunction with FIG. 201 in the following discussion
of MEM 10112’s control structure

1. MEM 10112 Control Structure

Referring first to FIG. 207, MCNTL Bus 20164 is
represented as including MCNTL-BC Bus 20164A,
MCNTL-MC Bus 20164B, and MCNTL-FIU Bus
20164C. Buses 20164A, 20164B, and 20164C are
branches of MCNTL Bus 20164 connected to, respec-
tively, BC 20114, MC 20116, and FIU 20120. Also rep-
resented in FIG. 207 are PD Bus 10146 and J PMC Bus
10147 to JP 10114, and IOM Bus 10130 and IOMC Bus
10131 to 1I0S 10116.

JO Port Address Register (JOPAR) 20710 and JI
Port Address Register JIPAR) 20712 have inputs con-
nected from PD Bus 10146. IO Port Address Register
(IOPAR) 20714 has an input connected from IOM Bus
10130. Port Control Logic (PC) 20716 has bi-directional
input/outputs connected from J PC 10147 and IOMC
Bus 10131. By-pass Read/Write Control Logic
(BR/WC) 20718 has a bi-directional input/output con-
nected from IOMC Bus 10131.

Outputs of JOPAR 20710, JIPAR 20712, and IOPAR
20714 are connected to inputs of Port Request Multi-
plexer (PRMUX) 20720 through, respectively, Buses
20732, 20734, 20736. PRMUX 20720’s output in turn is
connected to Bus 20738. Branches of Bus 20738 are
connected to inputs of Load Pointers (LF) 20724, Miss
Control (MISSC) 20726, and Request Manager (RM)
20722, and to Buses MCNTL-MC 20164B and
MCNTL-FIU 20164C.

Outputs of PC 20716 are connected to inputs of
JOPAR 20710, JIPAR 20712, IOPAR 20714, PRMUX
20720, and LP 20724 through Bus 20738. Bus 20740 is
connected between an input/output of PC 20716 and an
input/output of RM 20722.

An output of BR/WC 20718 is connected to
MCNTL-MC Bus 20164B through Bus 20742. Inputs of
BR/WC 20718 are connected from outputs of RM
20722 and Read Queue (RQ) 20728 through, respec-
tively, Buses 20744 and 20746.

RM 20722 has outputs connected to MCNTL-BC
Bus 20164A, MCNTL-FIU Bus 20164C, and input of
MISSC 20726, and an input of LP 20724 through, re-
spectively, Buses 20748, 20750, 20752, and 20754
MISSC 20726’s output is connected to MCNTL-BC
Bus 20164A. Outputs of LP 20724 are connected to
MCNTL-MC Bus 20164B and to an input of LM 20730
through, respectively, Buses 20756 and 20758. RQ
20728’s input is connected from MCNTL-MC Bus

20

25

30

35

45

50

55

60

65

80
20164B through Bus 20760 and RQ 20728 has outputs
connected to an input of LP 20724, through Bus 20762,
and as previously described to an input of BR/WC
20718 through Bus 20746. Finally, LM 20730's output is
connected to MCNTL-MC Bus 20164B through Bus
20764.

Having described the structure of MIC 20122 with
reference to FIG. 207, and having previously described
the structure of MEM 10112 with reference to FIG.
201, MEM 10112's control structure operation will next
be described with reference to both FIGS. 201 and 207.

2. MEM 10112 Control Operation

Referring first to FIG. 207, JOPAR 20710, JIPAR
20712, and IOPAR 20714 are, as previously described,
connected from PD Bus 10146 from JP 10114 and IOM
Bus 10130 from IOS 10116. JPAR 20710, JIPAR 20712,
and IOPAR 20714 receive read and write request ad-
dresses from JP 10114 and I0S 10116 and store these
addresses for subsequent service by MEM 10112. As
will be described further below, these address inputs
from JP 10114 and I0S 10116 include FIU information
specifying what data manipulation operations must be
performed by FIU 20120 before requested data is trans-
ferred to the requestor or written into MEM 10112,
information regarding the destination data read from
MEM 10112 is to be provided to, information regarding
the type of operation to be performed by MEM 10112,
and information regarding operand length. Request
address information received and stored in JOPAR
20710, JIPAR 20712, and IOPAR 20714 is retained
therein until MEM 10112 has initiated service of the
corresponding requests. MEM 10112 will accept fur-
ther request address information into a given port regis-
ter only after a previous request into that port has been
serviced or aborted. Address information outputs from
JOPAR 20710, JIPAR 20712, and JOPAR 20714 are
transferred through PRMUX 20720 to Bus 20738 and
from there to RM 20722, MC 20116, and FIU 20120 as
service of individual requests is initiated. As will be
described below, this address information will be trans-
ferred through PRMUX 20720 and Bus 20738 to LP
20724 for use in servicing a cache miss upon occurrence
of a MC 20116 miss.

PC 20716 receives command and control signals per-
tinent to each requested memory operation from JP
10114 and IOS 10116 through JPMC Bus 10147 and
IOMC Bus 10131. PC 20716 includes request arbitration
logic and port state logic. Request arbitration logic
determines the sequence in which IO, JI, JO ports are
serviced, and when each port is to be serviced. In deter-
mining the sequence of port service, request drbitration
logic uses present port state information for each port
from the port state logic, information from JPMC Bus
10147 and IOMC Bus 10131 regarding each incoming
request, and information from RM 20722 concerning
the present state of operation of MEM 10112. Port state
logic selects each particular port to be serviced and, by
control signals through Bus 20738, enables transfer of
each port’s request address information from JOPAR
20710, JIPAR 20712, and IOPAR 20714 through
PRMUX 20720 to Bus 20738 for use by the remainder
of MEM 10112’s control logic in servicing the selected
port. In addition to request information received from
JP 10114 and 10S 10116 through JPMC Bus 10147 and
JOMC Bus 10131, port state logic utilizes information
from RM 20722 and, upon occurrence of a cache miss,
from LM 20730 (for clarity of presentation, this connec-

4,445,177

81
tion is not represented in FIG. 207). Port state logic also
controls various port state flag signals, for example port
availability signals, signals indicating valid requests, and
signals indicating that various ports are waiting service.

RM 20722 controls execution of service for each
request. RM 20722 is a microcode controlled “micro-
machine” executing programs called for by requested
MEM 10112 operations. Inputs of RM 20722 include
request address information from IOPAR 20714,
JIPAR 20212, and JOPAR 20210, including informa-
tion regarding the type of MEM 10112 operation to be
performed in servicing a particular request, interrupt
signals from other MEM 10112 control elements, and,
for example, start signals from PC 20716’s request arbi-
tration logic. RM 20722 provides control signals to FIU
20120, MC 20116, and most other parts of MEM 10112’s
control structure.

Referring to FIG. 201, MC 20116’s cache is, for ex-
ample, an 8 Kilo-byte, four set associative cache used to
provide rapid access to a subset of data stored in MSB
20110. The subset of MSB 20110 data stored in MC
20116’s cache at any time is the data most recently used
by JP 10114 or I0S 10116. MC 20116’s cache, described
further below, includes tag store comparison logic for
determining encached addresses, a data store containing
corresponding encached data, and registers and logic
necessary to up-date cache contents upon occurrence of
a cache miss. Registers and logic for servicing cache
misses includes logic for determining the least recently
used cache entry and registers for capture and storage
of information regarding missed cache references, for
example modify bits and replacement page numbers.
Inputs to MC 20116 are provided from RM 20722, LM
20730 (discussed further below), FIU 20120, MSB
20110 (through BC 20114), LP 20724 (described further
below) and address information from PRMUX 20720.
Outputs of MC 20116 include data and go to FIU 20120
(through MOD Bus 10144), the data requestors (JP
10114 and IOS 10116), and a MC 20116 Write Back File
(described further below).

As previously described, FIU 20120 includes logic
necessary to make MEM 10112 appear bit addressable.
In addition, FIU 20120 includes logic for performing
certain data manipulation operations as required by the
requestors (JP 10114 or IOS 10116). Data is transferred
into FIU 20120 from MC 20116 through that portion of
MOD Bus 10144 internal to MEM 10112, is manipu-
lated as required, and is then transferred to the re-
questor through MOD Bus 10144 or MIO Bus 10129. In
the case of writes requiring read-modify-write of en-
cached data, the data is transferred back to MC 20116
through MOD Bus 10144 after manipulation. In gen-
eral, data manipulation operations include locating re-
quested data onto selected MOD Bus 10144 or MIO Bus
10129 lines and filling unused bus lines as specified by
the requestor. Data inputs to FIU 20120 may be pro-
vided from MC 20116 or JP 10114 through MOD Bus
10144 or from IOS 10116 through IOM Bus 10130, Data
outputs from FIU 20120 may be provided to MC 20116,
JP 10114, or JOS 10116 through these same buses. Con-
trol information is provided to FIU 20120 from RM
20722 through Bus 20748 and MCNTL-FIU Bus
20164C. Address information may be provided to FIU
20120 from JOPAR 20710, JIPAR 20712, or IOPAR
20714 through PRMUX 20720, Bus 20738, and
MCNTL-FIU Bus 20164C.

Returning to FIG. 207, MISSC 20726 is used in han-
dling MC 20116 misses. In the event of a request refer-

20

25

30

45

50

65

82

ring to data not in MC 20116’s cache, MISSC 20726
stores a block address of the reference and type of oper-
ation to be performed, this information being provided
from an address register in MC 20116 and from RM
20722. MISSC 20726 utilizes this information in gener-
ating a command to BC 20114, through MCNTL-BC
Bus 20164A, for a data read from MSB 20110 to obtain
the referenced data. BC 20114 places this command in a
queue, or register, and subsequently executes the com-
manded read operation. MISSC 20726 also generates an
entry into RQ 20728 (described further below) indicat-
ing the type of operation to be performed when refer-
enced data is subsequently read from MSB 20110.

RQ 20728 is, for example, a three-level deep queue
storing information indicating operations associated
with data being read from MSB 20110. Two kinds of
operation may be indicated: block by-pass reads and
cache loads. If a cache load is specified, that is a read
and store to MC 20116’s cache, is indicated, RM 20722
is interrupted and forced to place other MEM 10112
operations in idle until cache load is completed. A block
by-pass read operation results in by-pass read control
(described below) assuming control of the data from
MSB 20110. Inputs to RQ 20728 are control signals
from RM 20722, MISSC 20726, and BC 20114. RQ
20728 provides control outputs to LP 20724 (described
below) LM 20730 (described below) RM 20722, and
by-pass read control (described below).

LP 20724 is a set of registers for storing information
necessary for servicing MC 20116 misses that result in
order to load MC 20116’s tag store. LM 20730 uses this
information when data stored in MSB 20110 and read
from MSB 20110 to service a MC 20116 cache miss,
becomes available through BC 20114. Inputs to LP
20724 include the address of the missing reference, pro-
vided from JOPAR 20710, JIPAR 20712, or IOPAR
20714 through PRMUX 20720 and Bus 20738, com-
mands from RM 20722, and a control signal from RQ
20728. LP 20724 outputs include addresses of missed
references to MC 20116, through Bus 20756 and
MNCTL-MC 20164B, and command signals to LM
20730 and BR/WC 20718.

LM 20730, referred to above, controls loading of MC
20116’s cache with data from MSB 20110 after occur-
rence of a cache miss. RQ 20728, referred to above,
indicates, for each data read from MSB 20110, whether
the data read is the result of a MC 20116 cache miss. If
the data is read from MSB 20110 as a result of a cache
miss, LM 20730 proceeds to issue a sequence of control
signals for loading the data from MSB 20110 and its
associated address into MC 20116’s cache. This data is
transferred into MC 20116’s cache data store while the
block address, from LP 20724 is transferred into the tag
store (described in the following discussion) of MC
20116’s cache. If the transfer of data into MC 20116’s
cache replaces data previously resident in that cache,
and that previous data is “dirty”, that is has been writ-
ten into so as to be different from an original copy of the
data stored on MSB 20110, the modified data resident in
MC 20116’s cache must be written back into MSB
20110. This operation is performed through a Write
Back File contained in MC 20116 and described below.
In the event of such an operation, LM 20730 initiates a
write back operation by MC 20116 and BC 20114, also
as described below.

As will be described further in a following descrip-
tion, all MC 20116 cache load operations are full 4 word
blocks. A request resulting in a MC 20116 cache miss

4,445,177

83

may result in a “hand-off”, that is a read operation of a
full 4 word block. Handoff operations also may be of
single 32 bit words wherein a 32 bit word aligned word
is transferred from JP 10114 or a 16 bit operand aligned
on the right half-word is transferred from 10S 10116. In
such a handoff operation, LM 20730 will send a valid
request signal to the requesting port and a handoff oper-
ation will be performed. Otherwise, a waiting signal
will be sent to the requesting port and the request will
re-enter the priority queue of PC 20716 for subsequent
execution. To accomplish these operations, LM 20730
receives input from RQ 20728, (not shown in FIG. 207
for clarity of presentation) and LP 20724. LM 20730
provides outputs to port state logic of PC 20716, to MC
20116, MC 20116’s Write Back File and MC 20116’s
Write Back Address Register and to BC 20114.

Referring to FIG. 201, as previously discussed 10S
10116 may request a full block write operation directly
to MSB 20110, Such a by-pass write request may be
honored if the block being transferred is not encached
in MC 20116’s cache. In such a case, RM 20722 will
initiate the transfer setting up By-Pass Write Control
logic in BR/WC 20718, and may then pass control of
the operation over to BR/WC 20718’s By-Pass Write
Control logic for completion. By-Pass Write Control
may then accept the remaining portion of the data block
from I0OS 10116, generating appropriate hand shaking
signals through JOMC Bus 10131, in load the data block
into BYF 20118 and MC 20116. MISSC 20726 will
provide a by-pass write command to BC 20114, through
MNCTL-PC Bus 20164A. BC 20114 will then transfer
the data block from BYF 20118 and into MA's 20112 in
MSB 20110.

As previously described, BYF 20118 receives data
from IOM Bus 10130 and provides data output to BC
20114 through BWI Bus 20178 and SBD Bus 20146.
BYF 20118 is capable of simultaneously accepting data
from IOM Bus 10130 while reading data out to BC
20114. Control of writing data into BYF 20118 is pro-
vided from BR/WC 20718’s By-Pass Write Control
logic.

10S 10116 may, as previously described, request a
full block read operation by-passing MC 20116’s cache.
In such a case, BR/WC 20718’s by-pass read control
handles data transfer to 1OS 10116 and generates re-
quired hand shaking signals to IOS 10116 through
IOMC Bus 10131. The data path for by-pass read opera-
tions is through a data path internal to MC 20116, rather
than through BYF 20118. This internal data path is
RDO Bus 20158 to MIO Bus 10129.

As previously described, BC 20114 manages all data
transfers to and from MA’s 20112 in MSB 20110. BC
20114 receives requests for data transfers from RM
20722 in an internal queue register. All data transfers to
and from MSB 20110 are full block transfers with block
aligned addresses. On data write operations, BC 20114
receives data from BWF 20118 or from MC 20116
Write Back File and transfers the data into MA’s 20112.
During read operations, BC 20114 fetches the data
block from MA's 20112 and places the data block on
RDO Bus 20158 while signalling to MIC 20122 that the
data is available. As described above, MIC 20122 tracks
and controls transfer of data and BYF 20118, MC
20116, and MC 20116’s Write Back File, and directs
data read from MSB 20110 to the appropriate destina-
tion, MC 20116’s Data Store, JP 10114, or IOS 10116.

In addition to the above operations, BC 20114 con-
trols refresh of MA's 20112 and performs error detec-

—

5

35

40

45

50

60

65

84

tion and correction operations. In this regard, BC 20114
performs two error detection and correction opera-
tions. In the first, BC 20114 detects single and double bit
errors in data read from MSB 20110 and corrects single
bit errors. In the second, BC 20114 reads data stored in
MA’s 20112 during refresh operations and performs
single bit error detection. Whenever an error is de-
tected, during either read operations or refresh opera-
tions, BC 20114 makes a record of that error in an error
log contained in BC 20114 (described further in a fol-
lowing description). Both JP 10114 and I0S 10116 may
read BC 20114’s error log, and information from BC
20114's error log may be recorded in a CS 10110 main-
tenance log and to assist in repair and trouble shooting
of CS 10110. BC 20114's error log may be addressed
directly by RM 20722 and data from BC 20114’s error
log is transferred to JP 10114 or 10S 10116 in the same
manner as data stored in MSB 20110.

Referring finally to MA’s 20112, each MA 20112
contains an array of dynamic semiconductor random
access memories. BEach MA 20112 may contain 256
Kilo-bytes, 512 Kilo-bytes, 1 Mega-bytes, or 2 Mega-
bytes of data storage. The storage capacity of each MA
20112 is organized as segments of 256 Kilo-bytes each.
In addressing a particular MA 20112, BC 20114 selects
that particular MA 20112 as will be described further
below. BC 20114 concurrently selects a segment within
that MA 20112, and a block of four words within that
segment. Each word may comprise 39 bits of informa-
tion, 32 bits of data and 7 bits of error correcting code.
The full 39 bits of each MA 20112 word are transferred
between BC 20114 and MA's 20112 during each read
and write operation. Having briefly described the gen-
eral structure and operation of MEM 10112, certain
types of operations which may be performed by MEM
10112 will be described next below.

f. MEM 10112 Operations

MEM 10112 may perform two general types of oper-
ation. The first type are data transfer operations and the
second type are memory maintenance operations. Data
transfer operations may include read, write, and read
and set. Memory maintenance operations may include
read error log, repair block, and flush cache. Except
during a flush cache operation, the existence of MC
20116 and its operation is invisible to the requestors,
that is JP 10114 and IOS 10116.

A MEM 10112 read operation transfers data from MS
10112 to a requestor, either JP 10114 or 10S 10116. A
read data transfer is asynchronous in that the requestor
cannot predict elapsed time between submission of a
memory operation request and return of requested data.
Operation of a requestor in MEM 10112 is coordinated
by a requested data available signal transmitted from
MEM 10112 to the requestor.

A MEM 10112 write operation transfers data from
either JP 10114 or 10S 10116 to MEM 10112. During
such operations, JP 10114 is not required to wait for a
signal from MEM 10112 that data provided to MEM
10112 from JP 10114 has been accepted. JP 10114 may
transfer data to MEM 10112's JO Port whenever a JO
Port available signal from MEM 10112 is present; read
data is accepted immediately without further action or
waiting required of JP 10114. Word write operations
from 10S 10116 are performed in a similar manner. On
block write operations, however, IOS 10116 is required
to wait for a data taken signal from MEM 10112 before
sending the 2nd, 3rd and 4th words of a block.

4,445,177

85

MEM 10112 has a capability to perform “lock bit”
operations. In such operations, a bit granular read of the
data is performed and the entire operand is transmitted
to the requestor. At the same time, the most significant
bit of the operand, that is the Lock Bit, is set to one in
the copy of data stored in MEM 10112. In the operand
sent to the requestor, the lock bit remains at its previous
value, the value before the current read and set opera-
tion. Test and set operations are performed by perform-
ing read and set operations wherein the data item length
is specified to be one bit.

As previously described, MEM 10112 performs cer-
tain maintenance operations,
MEM 10112’s Error Log in BC 20114 is a 32 bit register
containing an address field and an error code field. On

a first error to occur, the error type and in some cases, -

such as ERCC errors on read data stored in MSB 20110,
the address of the data containing the error is stored in
BC 20114’s Error Log Register. An interrupt signal
indicating detection of an error is raised at the same that
information regarding the error is stored in the Error
Log. If multiple errors occur before Error Log is read
and reset, the information regarding the first error will
be retained and will remain valid The Error Log code
field will, however, indicate that more than one error
has occurred.

JP 10114 may request a read Error Log operation
referred to as a “Read Log and Reset” operation. In this
operation, MEM 10112 reads the entire contents of
Error Log to JP 10114, resets Error Log Register, and
resets the interrupt signal indicating presence of an
error. IOS 10116, as discussed further below, is limited
to reading 16 bits at a time from MEM 10112. It there-
fore requires two read operations to read Error Log.
First read operation to IOS 10116 reads an upper 16 bits
of Error Log data and does not reset Error Log. The
second read operation is performed in the same manner
as a JP 10114 Read Log and Reset operation, except
that only the low order 16 bits of Error Log are read to
I0S 10116.

MEM 10112 performs repair block operations to
correct parity or ERCC errors in data stored in MC
20116’s Cache or in data stored in MA’s 20112. In a
repair block procedure, parity bits for data stored in
MC 20116’s Cache, or ERCC check bits of data stored
in MA’s 20112, are modified to agree with the data bits
of data stored therein. In this regard, repaired uncor-
rectible errors, such as two bit errors of data in MA’s
20112, will have good ERCC and parity values. Until a
repair block operation is performed, any read request
directed to bad data, that is data having parity or ERCC
check bits indicating invalid data, will be flagged as
invalid. Repair block operations therefore allow such
data to be read as valid, for example to be used in a data
correction operation. Errors are ignored and not logged
in BC 20114’s Error Log in repair block operations, A
write operation into an area containing bad data may be
accomplished if MEM 10112’s internal operation does
not require a read-modified-write procedure. Only byte
aligned writes of integral byte length data residing in
MC 20116 and word aligned writes of integral word
lengths of data in MSP 20110 do not require read-modi-
fied-write operation. By utilizing such write operations,
it is therefore possible to overwrite bad data by use of
normal write operations before or instead of repair
block operations.

MEM 10112 performs a cache flush operation in
event of a power failure, that is when MEM 10112 goes

including error detection. .

25

30

35

45

50

55

60

65

. 86

into battery back-up operation. In such an event, only
MA'’s 20112 and BC 20114 remain powered. Before JP
10114 and IOS 10116 lose power, JP 10114 and IOS
10116 must transfer to MEM 10112 any data, including
operating state, to be saved. This is accomplished by
using a series of normal write operations. After concly-
sion of these write operations, both JP 10114 and IOS
10116 transmit a flush cache request to MEM 10112,
Upon receiving two flush cache requests, MEM 10112
flushes MC 20116’s Cache so that all dirty data en-
cached in MC 20116's Cache is transferred into MA’s
20112 before power is lost. If only JP 10114 or I0S
10116 is operating, DP 10118 will detect this fact and
will have transmitted an enabling signal (FLUSHOK)
to MEM 10112 during system initialization. FLUSHOK
enables MEM 10112 to perform cache flush upon re-
ceiving a single flush cache request. After a cache flush
operation, no further MEM 10112 operations are possi-
ble until DP 10118 resets a power failure lock-out signal
to enable MEM 10112 to resume normal operation,

Having described MEM 10112’s overall structure and
operation and certain operations which may be per-
formed by MEM 10112, MEM 101125 interfaces to JP
10114 and IOS 10116 will be described next below.

g- MEM 1012 Interfaces to JP 10114 and IOS 10116
(FIGS. 209, 210, 211, 204)

As previously described, MJP Port 10140 and MIO
Port 10128 logically function as three independent
ports. These ports are an I0 Port to I0S 10116, a JP
Operand Port to JP 10114 and a JP Instruction Port to
JP 10114. Referring to FIGS. 209, 210, and 211, dia-
gramic representations of 10 Port 20910, JP Operand
(JPO) Port 21010, and JP Instruction (JPI) Port 21110
are shown respectively.

IO Port 20910 handles all IOS 10116 requests to
MEM 10112, including transfer of both instructions and
operands. JPO Port 21010 is used for read and write
operations of operands, for example numeric values, to
and from JP 10114. JPI Port 21110 is used to read SINS,
that is SOPs and operand NAMEs, from MEM 10112 to
JP 10114. Memory service requests to a particular port
are serviced in the order that the requests are provided
to the Port. Serial order is not maintained between
requests to different ports, but ports may be serviced in
the order of their priority. In one embodiment of the
present invention, I0 Port 20910 is accorded highest
priority, followed by JPO Port 21010, and lastly by JPI
Port 21110, with requests currently contained in a port
having priority over incoming requests. As described
above and will be described in more detail in following
descriptions, MEM 10112 operations are pipelined. This
pipelining allows interleaving of requests from IO Port
20910, JPO Port 21010, and JPI Port 21110, as well as
overlapping service of requests at a particular port. By
overlapping operations it is meant that one operation
servicing a particular port begins before a previous
operation servicing that port has been completed.

1. IO Port 20910 Operating Characteristics (FIGS. 209,
204)

Referring first to FIG. 209, a diagramic representa-
tion of 10 Port 20910 is shown., Signals are transmitted
between IO Port 20910 and 10S 10116 through MIO
Bus 10129, IOM Bus 10130, and IOMC Bus 10131. MIO
Bus 10129 is a unidirectional bus having inputs from
MC 20116 and FIU 20120 and dedicated to transfers of
data and instructions from MEM 10112 to I0S 10116,

4,445,177

87

IOM Bus 10130 is likewisc a unidirectional bus and is
dedicated to the transfer, from 108 10116 to MEM
10112, of read addresses, write addresses, and data to be
written into MEM 10112. IOM Bus 10130 provides
inputs to BYF 20118, FIU 20120, and MIC 20122.
IOMC Bus 10131 is a set of dedicated signal lines for the
exchange of control signals between 10S 10116 and
MEM 10112

Referring first to MIO Bus 10129, MIO Bus 10129 is
a 36 bit bus receiving read data inputs from MC 20116’s
Cache and from FIU 20120. A single read operation
from MEM 10112 to IOS 10116 transfers one 32 bit
word (or 4 bytes) of data (MIO(0-31)) and four bits of
odd parity (MIOP(0-3)), or one parity bit per byte.

Referring next to IOM Bus 10130, a single transfer
from IOS 10116 to MEM 10112 includes 36 bits of infor-
mation which may comprise either a memory request
comprising a physical address, a true length, and com-
mand bits. These memory requests and data are multi-
plexed onto IOM 10130 by IOS 10116.

Data transfers from 10S 10116 to MEM 10112 each
comprise a single 32 bit data word (TOM(0-31)) and
four bits of odd parity (IOMP(0-3)) or one parity bit per
byte. Such data transfers are received by either BYF
20118 or FIU 20120.

Each 10S 10116 memory request to MEM 10112, as
described above, includes an address field, a length
field, and an operation code field. Address and length
fields occupy the 32 IOM Bus 10130 lines used for trans-
fer of data to MEM 10112 in IOS 10116 write opera-
tions. Length field includes four bits of information
occupying bits (IOM(0-3)) of IOM Bus 10130 and ad-
dress field contains 27 bits of information occupying bits
(IOM(4-31)) of IOM Bus 10130. Together, address and
length field specify a physical starting address and true
length of the particular data jtem to be written into or
read from MEM 10112, Operation code field specifies
the type of operation to be performed by MEM 10112,
Certain basic operation codes comprise 3 bits of infor-
mation occupying bits (IOMP (32-36)) of IOM Bus
10130; as described above. These same lines are used for
transfer of parity bits during data transfers. Certain
operations which may be requested of MEM 10112 by
10S 10116 are, together with their corresponding com-
mand code fields, are;

000 =read,

001 =read and set,

010=write,

011 =error,

100=read error log (first half),

101 =read error log (second half) and reset,

110=repair block, and

111 =flush cache.

Two further command bits may specify further oper-
ations to be performed by MEM 10112. A first com-
mand bit, indicates to MEM 10112 during write opera-
tions whether it is desirable to encache the data being
written into MEM 10112 in MC 20116’s Cache. I0S
10116 may set this bit to zero if reuse of the data is
unlikely, thereby indicating to MEM 10112 that MEM
10112 should avoid enchaching the data. 10S 10116
may set this bit to one if the data is likely to be reused,
thereby indicating to MEM 10112 that it is preferable to
encache the data. A second command bit is referred to
a CYCLE. CYCLE command bit indicates to MEM
10112 whether a particular data transfer is a single cycle
operation, that is a bit granular word, or a four cycle

—

0

20

25

30

40

45

50

55

60

63

88
operation, thatis a block aligned block or a byte aligned
partial block.

IOMC 10131 includes a set of dedicated lines for
exchange of control signals between I0S 10116 and
MEM 10112 to coordinate operation of 10S 10116 and
MEM 10112, A first such signal is Load I0 Request
(LIOR) from I0S 10116 to MEM 10112. When JOS
10116 wishes to load a memory request into MEM
10112, IOS 10116 asserts LIOR to MEM 10112. 10S
10116 must assert LIOR during the same system cycle
during which the memory request, that is address,
fength, and command code fields, are valid. If LIOR
and 10 Port Available (IOPA) signals, described below,
are asserted during the same clock cyle, MEM 10112’s
port is loaded from IOS 10116 and IOPA is dropped,
indicating the request has been accepted. If a load of 2
request is attempted and TOPA is not asserted, MEM
10112 remains unaware of the request, LIOR remains
active, and the request must then be repeated when
IOPA is asserted.

IOPA is a signal from MEM 10112 to 10S 10116
which is asserted by MEM 10112 when MEM 10112 is
available to accept a new request from 10S 10116.
IOPA may be asserted while 2 previous request from
IOS 10116 is completing operation if the address,
length, and operation code fields of the previous request
are no longer required by MEM 10112, for example in
servicing bypass operations.

10 Data Taken (TIOMD) is a signal from MEM
10112 to I0S 10116 indicating that MEM 10112 has
accepted data from 108 10116. IOS 10116 places a first
data word on IOM Bus 10130 on the next system clock
cycle after a write request is loaded; that is, LIOR has
been asserted, a memory request presented, and IOPA
dropped.- MEM 10112 then takes that data word on the
clock edge beginning the next system clock cycle. At
this point, MEM 10112 asserts TIOMD to indicate the
data has been accepted. On a single word operations
TIOMD is not used by 10S 10116 as a first data word is
always accepted by MEM 10112 if IO Port 20910 was
available. On block operations, a first data word is al-
ways taken but a delay may occur between acceptance
of first and second words. I0S 10116 is required to hold
the second word valid on IOM Bus 10130 until MEM
10112 responds with TIOMD to indicate that the block
operation may proceed.

Data Available for 10 (DAVIO) is a signal asserted
by MEM 10112 to IOS 10116 indicating that data re-
quested by I0S 10116 is available. DAVIO is asserted
by MEM 10112 during the system clock cycle in which
MEM 10112 places the requested data on MIO Bus
10129. In any single word type transfer, DAVIO is
active for a single system clock transfer. In block type
transfers, DAVIO is normally active for four consecu-
tive system clock cycles. Upon event of a single cycle
“bubble” resulting from detection and correction of an
ERCC error by BC 20114, DAVIO will remain high for
four non-consecutive system clock cycles and with a
single cycle bubble, a non-assertion, in DAVIO corre-
sponding to the detection and correction of the error.

10 Memory Interrupt IMINT) is 2 signal asserted by
MEM 10112 to 10S 10116 when BC 20114 places a
record of a detected error in BC 20114’s Error Log, as
described above.

Previous MIO Transfer Invalid (PMIOI) signal is
similarly a signal asserted by MEM 10112 to 10S 10116
regarding errors in data read from MEM 10112 to 108
10116. If an uncorrectible error appears in such data,

4,445,177

89
that is an error in two or more data bits, the incorrect
data is read to IOS 10116 and PMIOI signal asserted by
MEM 10112. Correctible, or single bit, errors in data do
not result in assertion of PMIOL MEM 10112 will assert
PMIOI to IOS 10116 of the next system clock cycle
following MEM 10112’s assertion of DAVIO.

Having described MEM 10112’s interface to I0S
10116, and certain operations which I0OS 10116 may
request of MEM 10112, certain MEM 10112 operations
within the capability of the interface will be described
next. First, operand transfers, for example of numeric
data, between MEM 10112 and IOS 10116 may be bit
granular with any length from one to sixteen bits. Oper-
and transfers may cross boundaries within a page but
may not cross physical page boundaries. As previously
described, MIO Bus 10129 and IOM Bus 10130 are
capable of transferring 32 bits of data at a time. The least
significant 16 bits of these buses, that is bits 16 to 31, will
contain right justified data during operand transfers.
The contents of the most significant 16 bits of these
buses is generally not defined as MEM 10112 generally
does not perform fill oerations on read operations to IO
Port 20910, nor does IOS 10116 fill unused bits during
write operations. During a read or write operation, only
those data bits indicated by length field in the corre-
sponding memory request are of significance. In all
cases, however, parity must be valid on all 32 bits of
MIOQ Bus 10129 and IOM Bus 10130.

Referring to FIG. 204A, 10S 10116 includes Data
Channels 20410 and 20412 each of which will be de-
scribed further in a following detailed description of
I0S 10116. Data Channels 20410 and 20412 each pos-
sess particular characteristics defining certain 10 Port
20910 operations. Data Channel 20410 operates to read
and write block aligned full and partial blocks. Full
blocks have block aligned addresses and lengths of 16
bytes. Partial blocks have byte aligned addresses and
lengths of 1 to 15 bytes; a partial block transfer must be
within a block, that is not cross block boundaries. A full
4 word block will be transferred between 10S 10116
and MEM 10112 in either case, but only those blocks
indicated by length of field in a corresponding MEM
10112 request are of actual significance in a write opera-
tion. Non-addressed bytes in such operations may con-
tain any information so long as parity is valid for the
entire data transfer. Data Channel 20412 preferably
reads or writes 16 bits at a time on double byte bound-
aries. Such reads and writes are right justified on MIO
Bus 10129 and IOM Bus 10130. The most significant 16
bits of these buses may contain any information during
such operations so long as parity is valid for the entire
32 bits. Data Channel 20412 operations are similar to
IOS 10116 operand read and write operations with
double byte aligned addresses and lengths of 16 bits.
Finally, instructions, for example controlling IOS 10116
operation, are read from MEM 10112 to IOS 10116 a
block at a time. Such operations are identical to a full
block data read.

Having described the operating characteristics of IO
Port 20910, the operating characteristics of JPO Port
21010 will be described next.

2. JPO Port 21010 Operating Characteristics (FIG. 210)

Referring to FIG. 210, a diagramic representation of
JPO Port 21010 is shown. As previously described, JPO
Port 21010 is utilized for transfer of operands, for exam-
ple numeric data, between MEM 10112 and JP 10114,
JPO Port 21010 includes a request input (address,

—

5

25

30

35

50

60

65

90
length, and operation information) to MIC 20122 from
36 bit PD Bus 10146, a write data input to FIU 20120
from 32 bit JPD Bus 10142, a 32 bit read data output
from MC 20116 and FIU 20120 to 32 bit MOD Bus
10144, and bi-directional control inputs and outputs
between MIC 20122 and JPMC Bus 10147.

Referring first to JPO Port 21010°s read data output
to MOD Bus 10144, MOD Bus 10144 is used by JPO
Port 21010 to transfer data, for example operands, to JP
10114. MOD Bus 10144 is also utilized internal to MEM
10112 as a bi-directional bus to transfer data between
MC 20116 and FIU 20120. In this manner, data may be
transferred from MC 20116 to FIU 20120 where certain
data format operations are performed on the data before
the data is transferred to JP 10114 through MOD Bus
10144. Data may also be used to transfer data from FIU
20120 to MC 20116 after a data format operation is
performed in a write operation. Data may also be trans-
ferred directly from MC 20116 to JP 10114 through
MOD Bus 10144. Internal to MEM 10112, MOD Bus
10144 is a 36 bit bus for concurrent transfer of 32 bits of
data, MOD Bus 10144 bits (MOD(0-31)), and 4 bits of
odd parity, 1 bit per byte, MOD Bus 10144 bits
(MODP(0-3)). External to MEM 10112, MOD Bus
10144 is a 32 bit bus, comprising bits (MOD(0-31));
parity bits are not read to JP 10114.

Data is written into MEM 10112 through JPD Bus
10142 to FIU 20120. As just described, data format
operations may then be performed on this data before it
is transferred from FIU 20120 to MC 20116 through
MOD Bus 10144. In such operations, JPD Bus 10142
operates as a 32 bit bus carrying 32 bits of data, bits
(JPD (0-31)), with no parity bits. JO Port 21010 gener-
ates parity for JPD Bus 10142 data to be written into
MEM 10112 as this data is transferred into MEM 10112.

Memory requests are also transmitted to MEM 10112
from JP 10114 through JPD Bus 10142, which operates
in this regard as a 40 bit bus. Each such request includes
an address field, a length field, an FIU field specifying
data formating operations to be performed, operation
code field, and a destination code field specifying desti-
nation of data read from MEM 10112. Address field
includes a 13 bit physical page number field,
(JPPN(0-12)), and a 14 bit physical page offset field,
(JPPO(0-13)). Length field includes 6 bits of length
information, (JLNG(0-5)), and expresses true length of
the data item to be written to or read from MEM 10112.
As JPD Bus 10142 and MOD Bus 10144 are each capa-
ble of transferring 32 bits of data in a single MEM 10112
read or write cycle, 6 bits of length information are
required to express true length. As will be described in
a following description, JP 10114 may provide physical
page offset and length information directly to MEM
10112, perform logical page number to physical page
number translations, and may perform a Protection
Mechanism 10230 check on the resulting physical page
number. As such, MEM 10112 expects to receive
(JPPN(0-12)) later than (JPPO(0-13)) and
(JLNG(0-5)). (JPPO(0-13)) and (JLNG(0-5)) should,
however, be valid during the system clock cycle in
which a JP 10114 memory request is loaded into MEM
10112,

Operation code field provided to MEM 10112 from
JP 10114 is a 3 bit code, GMCMD(0-2)) specifying an
operation to be formed by MEM 10112. Certain opera-
tions which JP 10114 may request of MEM 10112, and
their corresponding operation codes, are:

000 =read;

4,445,177

91

001 =read and set;

010=write;

011 =error;

100=error;

101 =read error log and reset;

110=repair block; and,

111 =flush cache.

Two bit FIU field, (JFIU(0-1)) specifies data manipu-
lation operations to be performed in executing read and
write operations. Among the data manipulation opera-
tions which may be requested by JP 10114, and their
FIU fields, are:

00=right justified, zero fill;

01 =right justified, sign extend;

10=left justify, zero fill; and,

11=left justify, blank fill.

For write operations, JPO Port 21010 may respond
only to the most significant bit of FIU field, that is the
FIU field bit specifying alignment.

Finally, destination field is a two bit field specifying a
JP 10114 destination for data read from MEM 10112.
This field is ignored for write operations to MEM
10112. A first bit of destination field, JPMDST, identi-
fies the destination to be FU 10120, and the second field,
EBMDST, specifies EU 10122 as the destination.

JPMC Bus 10147 includes dedicated lines for ex-
change of control signals between JPO Port 21010 and
JP 10114. Among these control signals is Load JO Re-
quest (LJOR), which is asserted by JP 10114 when JP
10114 wishes to load a request into MEM 10112. LJOR
is asserted concurrently with presentation of the mem-
ory request to MEM 10112 through PD Bus 10146. JO
Port Available (JOPA) is asserted by MEM 10112 when
JPO Port 21010 is available to accept a new memory
request from JP 10114. If LYOR and JOPA are asserted
concurrently, MEM 10112 accepts the memory request
from JP 10114 and MEM 10112 drops JOPA to indicate
that memory request has been accepted. As previously
discussed, MEM 10112 may assert JOPA while a previ-
ous request is being executed and the PD Bus 10146
information, that is the memory request previously pro-
vided concerning the previous request, is no longer
required.

If JP 10114 submits a memory request and JOPA is
not asserted by MEM 10112, MEM 10112 does not
accept the request and JP 10114 must resubmit that
request when JOPA is asserted. Because, as described
above, JPPN field of a memory request from JP 10114
may arrive late compared to the other fields of the
request, MEM 10112 will delay loading of JPPN field
for a particular request until the next system clock cycle
after the request was initially submitted. MEM 10112
may also obtain this JPPN field at the same time it is
being loaded into the port register by by-passing the
port register.

JP 10114 may abort a memory request upon asserting
Abort JP Request (ABJR). ABIR will be accepted by
MEM 10112 during system clock cycle after accepting
memory request from JP 10114 and ABJR will result in
cancellation of the requested operation. A single ABJR
line is provided for both JPO Port 21010 and J PI Port
1110 because, as described in a following description,
MEM 10112 may accept only a single request from JP
10114, to either JPQ Port 21010 or to JPI Port 21110,
during a single system clock cycle.

Upon completion of an operand read operation re-
quested through JPO Port 21010 MEM 10112 may
assert either of two data available signals to JP 10114.

15

20

25

30

35

40

45

50

55

65

92

These signals are data available for FA(DAVFA) and
data available for EB(DAVEB). As previously de-
scribed, a part of each read request from JP 10114 in-
cludes a destination field specifying the intended desti-
nation of the requested data. As will be described fur-
ther below, MEM 10112 tracks such destination infor-
mation for read requests and returns destination infor-
mation with corresponding information in the form of
DAVFA and DAVEB. DAVFA indicates a destina-
tion in FU 10120 while DAVEB indicates a destination
in BU 10122. MEM 10112 may also assert signal zero
filled (ZFILL) specifying whether read data for JPO
Port 21010 is zero filled. ZFILL is valid only when
DAVERB is asserted.

For a JPO Port 21010 write request, the associated
write data word should be valid on the same system
clock cycle as the request, or one system clock cycle
later. JP 10114 asserts Load JP Write Data (LJWD)
during the system clock cycle when JP 10114 places
valid write data on JPD Bus 10142.

As previously discussed, when MEM 10112 detects
an error in servicing a JP 10114 request MEM 10112
places & record of this error in MC 20116’s Error Log.
When an entry is placed in Error Log for either JPO
Port 21010 or IO Port 20910, MEM 10112 asserts an
interrupt flag signal indicating a valid Error Log entry
is present. DP 10118 detects this flag signal and may
direct the flag signal to either JP 10114 or JOS 10116, or
both. 10S 10116 or JP 10114, as selected by DP 10118,
may then read and reset Error Log and reset the flag.
The interrupt flag signal is not necessarily directed to
the requestor, JP 10114 or I0S 10116, whose request
resulted in the error.

If an uncorrectible MEM 10112 error, that is an error
in twp or more bits of a single data word, is detected in
a read operation the incorrect data is read to JP 10114
and,an invalid data signal asserted. A signal, Previous
MOD Transfer Invalid (PMODI), is asserted by MEM
10112 on the next system clock cycle following either
DAVFA or DAVEB. PMODI is not asserted for single
bit errors, ‘instead the data is corrected and the cor-
rected data read to JP 10114.

Having described JPO Port 21010°s structure, and
characteristics, JPI Port 21110 will be described next
below.

3, JPI Port 21110 Operating Characteristics (FIG. 211)

Referring to FIG. 211, a diagramic representation of
JPI Port 21110 is shown. JPI Port 21110 includes an
address input from PD Bus 10146 to FIU 20120, a data
output to MOD Bus 10144 from MC 20116, and bi-
directional control inputs and outputs from MIC 20122
to JPMC Bus 10147. As previously described, a primary
function of JPI Port 21110 is the transfer of SOPs and
operand NAMEs from MEM 10112 to JP 10114 upon
request from JP 10114. JPI Port thereby performs only
read operations wherein each read operation is a trans-
fer of a single 32 bit word having a word aligned ad-
dress.

Referring to JPI Port 21110 input from PD Bus
10146, read requests to MEM 10112 by JP 10114 for
SOPs and operand NAMEs each comprise a 21 bit
word address. As described above, each JPI Port 21110
read operation is of a single 32 bit word. As such, the
five least significant bits of address are ignored by
MEM 10112. For the same reason, a JPI Port 21110
request to MEM 10112 does not include a length field,
an operation code field, an FIU field, or a destination

4,445,177

93
code field. Length, operation code, and FIU code fields
are not required since JPI Port 21110 performs only a
single type of operation and destination code field is not
required because destination is inherent in a JPI Port
21110 request.

The 32 bit words read from MEM 10112 in response
to JPI Port 21110 requests are transferred to JP 10114
through MC 20116’s 32 bit output to MOD Bus 10144,
As in the case of JPO 21010 read outputs to JP 10114,
JPI Port 21110 does not provide parity information to
JP 10114,

Control signals exchange between JP 10114 and JPI
Port 21110 through JPMC Bus 10147 include Load JI
Request (LJIR) and JI Port Available (JIPA), which
operate in the same manner as discussed with reference
to JPO Port 21010. As previously described, JPO Port
21010 and JPI Port 21110 share a single Abort JP Re-
quest (ABJR) command. Similarly, JPO Port 21010 and
JPI Port 21110 share Previous MOD Transfer Invalid
(PMODI) from MEM 10112. As described above, a JPI
Port 21110 request does not include a destination field
as destination is implied. MEM 10112 does, however,

20

provide a Data Available Signal (DAVFI) to JP 10114 .

when a word read from MEM 10112 in response to a
JPI Port 21110 request is present on MOD Bus 10144
and valid.

Having described the overall structure and operation
of MEM 10112, and the structure and operation of
MEM 10112’s interfaces to JP 10114 and I0OS 10116, the
structure and operation of each major functional block
of MEM 10112 will next be described in further detail,
In general, these discussions will begin at MEM 10112’s
interfaces to JP 10114 and 10S 10116, and will progress
inwards to MA’s 20112. As such, MIC 20122 will be
described first, followed by descriptions of MC 20116,
FIU 20120, BC 20114, and MA’s 20112, in that order.

h. MIC 20122 Structure and Operation (FIGS. 207,
212-225)

MIC 20122, as previously described with reference to
FIG. 207, provides primary control for MEM 10112,
Among the functions controlled by MIC 20122 are:
selection and control of service of requests to 10 Port
20910, JPO Port 21010, and JPI Port 21110; interroga-
tion and service of MC 20116; control of data formating
operations by FIU 20120; control of data paths through
MEM 10112; and, initiation of BC 20114 operations in
Tésponse to request to MEM 10112. MIC 20122 is mi-
crocode controlled with primary control residing in
RM 20722. RM 20722 may initiate operations of subor-
dinate MIC 20122 circuits for example BR/WC 20718,
and subsequently execute operations in parallel with
those operations initiated by RM 20722. This division of
control responsibility, that is the capability of RM 20722
to initiate subordinate operations while executing paral-
lel operations, allows MEM 10112 to, for example,
overlap block transfers to and from IOS 10116 while
executing read and write operations between MC 20116
and JP 10114.

During the following descriptions, the sequence of
MIC 20122 operations executed for each MEM 10112
operation will be described together with the MIC
20122 structures involved in these operations. The fol-
lowing descriptions will begin at those portions of IO
Port 20714, JPI Port 20712, and JPO Port 20710 resi-
lent in MIC 20122, and will progress through, for ex-
tmple, RM 20722, LM 20730, and MIC 20122’s inter-
ace to BC 20114. FIG. 207 will be referred to during

25

30

40

45

60

65

94
these descriptions, together with other figures showing
portions of MIC 20122 in further detail, which will be
introduced as required.

1. JOPAR 20710, JIPAR 20712, IOPAR 20714, and
PRMUX 20720 (FIG. 212)

Referring to FIGS. 212 and 212A, those portions of
IO Port 20910, JPO Port 21010, and JPI Port 21110
residing in MIC 20122, and PRMUX 20720, are shown
together with other MIC 20122 logic circuitry which
will be discussed further below.

As indicated in FIG. 212, JOPAR 20710, JIPAR
20712, and IOPAR 20714 are each composed of a set of
registers (for example, SN745194s) for receiving and
storing address, length, operation code, FIU code, and
destination code fields of memory requests. As de-
scribed above, inputs of JOPAR 20710, JIPAR 20712,
and IOPAR 20714 are connected from, respectively,
PD Bus 10146 and IOM Bus 10130. The memory re-
quest fields received and stored by JOPAR 20710,
JIPAR 20712, and IOPAR 20714, together with their
corresponding inputs from JO, JI and IO Ports, are
indicated in FIG. 212, Outputs of JOPAR 20710,
JIPAR 20712, and IOPAR 20714 are connected to in-
puts of PRMUX 20720, which is comprised of corre-
sponding sets of tri-state driver circuits (for example,
SN748244s).

The various outputs of PRMUX 20720 comprising
Bus 20738 are indicated in FIG. 212, Among these buses
are certain buses shared by IO Port 20910, JPO Port
21010, and JPI Port 21110, Tag Store Address (TSA)
Bus 21210 is a 20 bit bus for, in part, distributing block
address portions of address fields within MEM 10112
Next Data Store Word (NEXTDSW) Bus 21212,isa2
bit bus for distributing word within block information
of address fields within MEM 10112, Bit length infor-
mation from length fields of memory requests are dis-
tributed through MEM 10112 by five bit Bit Length
Number (BLN) Bus 21214. Finally, requested operation
information from operation code fields of memory re-
quests are distributed through 4 bit Request Operation
(REQOP) Bus 21216. Other buses comprising Bus
20738 will be described below as required.

Referring first to 10 Port 20910, including IOPAR
20714, IO Port Request Registers (IOPRR) 21218 re-
ceive 36 bits of request information from IOM Bus
10130. This information includes Physical Page Num-
ber (PPN), Physical Page Offset (PPO), Length Field
(BLN), and an Encache Bit indicating whether data to
be written into MEM 10112 is to be encached in MC
20116 and is loaded directly into IOPRR 21218. Adder
21240 receives BLN and the five least significant bits of
PPO and adds these inputs to generate a five bit Final
Bit Within-A-Word Address (FBA(0-4)), which is then
loaded into JOPRR 21218,

As will be described in a following description,
FBA(04) actually points one bit past actual final bit
address and is subsequently corrected in later request
processing. If calculation of FBA(0—4) resultsin a carry,
and FBA(0—4) is not 0, then the memory request is a
cross word reference, that is the data item extends
across a word boundary. This occurence is indicated by
setting to one an IO Cross Word (IOCW) flag which is
stored in IOPRR 21218,

Encode Logic (ENC) 21242 is a Read Only Memory
(ROM) and combinatorial logic receiving the three bit
operation code field, five least significant bits of PPQ of
address, and four bits of BLN. ENC 21242 encodes this

4,445,177

95

information to generate a four bit Next 10 Operation
(OP) code which is subsequently loaded into IOPRR
21218, Operation code field of an 10S 10116 request
indicates only the general type of MEM 10112 opera-
tion to be executed in servicing a particular request. The
actual operation performed by MEM 10112 will depend
upon the specific operation command and the address
boundaries of the data item referred to in the particular
memory request. For example, a byte granular length
with a starting address aligned on a word boundary may
require MEM 10112 to exccute a different operation
than does a word granular length aligned on a word
boundary.

IOPA input to JOPRR 21218 is, as previously dis-
cussed, a signal generated by MEM 10112 indicating
that 10 Port 20910 is available to accept a memory
request from I0S 10116. IOPA is used in [OPRR 21218
as an enabling signal and, when asserted, allows a mem-
ory request from IOS 10116 to be transferred into
IOPRR 21218.

Three enabling signals to Gates 21224 of PRMUX
20720 gate the contents of IOPRR onto Bus 20738,
which, as indicated in FIG. 212, is comprised of certain
sub-buses. These enabling signals are generated by
other portions of MIC 20122 logic described in a fol-
lowing description. These enabling signals, the portions
of JOPRR 21218’s contents gated onto each of Bus
20738’s sub-bus by each signal, and Bus 20738’s sub-
buses, are:

IO Port Select IOPORTSEL)

(1) IOPORTSEL gates the low order five bits of
PPO onto Starting Bit Address (SBA) Bus 21226,
which transfers this information to FIU 20120. These
low order five bits of PPO define a starting bit address
within a word or, for block transfers, define a starting
byte address within a block.

(2) IOPORTSEL gates BLN (Length) onto BLN Bus
21214. Because 10S 10116 reads or writes at most 16
bits, or 16 bytes on block transfers, at a time the most
significant bit of length information on BLN Bus 21214
is forced to zero.

(3) IOPORTSEL gates FBA (Final Bit Address)
onto FBA Bus 21228 of Bus 20738. FBA defines a final
bit address within a word or a final byte within a block
address when block transfers are performed.

(4) IOPORTSEL gates encoded requestor operation
(NEXTOP) onto four bit Requestor Operation
(REQOP) Bus 21216 of Bus 20738.

(5) IOPORTSEL gates 1O Cross Word (IOCW) onto
Cross Word (CROSSWORD) Line 21230 of Bus 20738.
JOCW, together with any NEXTOP, are used within
MIC 20122 to control the operation performed by
MEM 10112 when the corresponding memory request
is serviced.

(6) IOS 10116 expects all data to be right aligned, half
words with no fill or extension, or block aligned, 32 bit
block transfers. As such, when servicing an I0S 10116
request, IOPORTSEL forces zeros onto two bit Align-
ment (ALIGN) Bus 21232 of Bus 20738. ALIGN Bus
21232, as described further below, transmits alignment
information to FIU 20120 where it is used in selecting
data formating operations performed by FIU 20120 in
servicing memory requests.

IO Block Selet IOBLKSEL)

(1) IOBLKSEL gates two bits of word and block
address information from PPO field of memory request

20

25

30

40

50

S5

60

65

96

onto NEXTDSW Bus 21212 through Word Address
Multiplexer (WAM) 21234. WAM 21234 also receives a
two bit word within block address information from
JOPAR 20710, and a two bit Load Sequence (LOAD-
SEQ) Word and Block Address generated by MIC
20122. As will be discussed further below, LOADSEQ
is generated by MIC 20122 during MC 20116 block load
operations, and is used to select blocks to be loaded into
MC 20116's cache. The selection of which WAM
21234’s inputs is transferred onto NEXTDSW Bus
21212 is determined by a two bit control input compris-
ing signals Load Active (LOADACT) and Automatic
Word Operation (AUTOWORDOP). AUTOWOR-
DOP selects whether NEXTDSW Bus 21212 will re-
ceive two bits of word and block address information
from one of requestor JOPAR 20710, JIPAR 20712,
and JIOPAR 20714, or from Request Manager RM)
20722. LOADACT selects WAM 21234 input LOAD-
SEQ during block loads of MC 20116. NEXTDSW Bus
21212 two bit word address information is, as described
in a following description, used to determine a next
word to be referenced in MC 20116’s cache.

(2) IOBLKSEL gates seven bits of block on page
address information onto bits 13 to 19 of TSA Bus 21210
from PPO field of IOPRR 21218.

IO Page Select (IOPAGESEL)

(1) IOPAGESEL gates 13 bits of PPN field from
IOPRR 21218 onto bits 0 to 12 of TSA Bus 21210.

As previously described, I0S 10116 may suggest to
MEM 10112 whether MEM 10112 should encache data
access by block operations that might otherwise by-pass
MC 20116’s cache. Encache bit of I0S 10116 memory
request is received and stored in IOPRR 21218 and
passed directly from there to other portions of MIC
20122 through single bit 10 Encache (IOENCACHE)
Bus 21236. If IOENCACHE bit is set to 1, MEM 10112
may not perform a MC 20116 cache by-pass operation
in servicing that particular memory request. If IOENC-
ACHE bit is not set to one, MEM 10112, and in particu-
lar MIC 20122, decides whether a block access opera-
tion must go through MC 20116’s cache, depending
upon whether the referenced data is presently encached
or not.

Referring to JOPAR 20710, JPO Port 21010 requests
are received and stored in Job Processor Operand Port
Request Register (J POPRR) 21233. Contents of
JPOPRR 21238 include a PPN field, a PPO field, a
BLN field and a FIU field, a destination (DEST) field,
an OP field, and a CROSSWORD field PPO field in-
cludes a 7 bit block-within-physical-page (PLA) field, a
two bit word-within-block (WD) field, and a 5 bit bit-
within-word (BIT) field. The PPN, PPO, BLN, FIU,
and DEST fields into JPOPRR 21233 are received
directly from JP 10114 as, respectively, J PPN(0-12),
JPPO(90-13), JLNG(0-5), JFIU10-1), and JMDST or
EBMDST, which have been previously discussed with
reference to MEM 10112’s interface to JP 10114. FBA
and CROSSWORD fields of JPOPRR 21233 are gener-
ated by Adder 21240 from the five least significant bits
of JPPO(0-13) and the 6 bits of JLNG({(0-5) in a manner
similar to that discussed with reference to IOPAR
20714. NEXTOP field is generated by Encoder (ENC)
21242 from the five least significant bits of JPPO(0-13),
the 6 bits of JLN(0-5) and 3 bit J MCMD(0-2).

JPO Port 21010 request information, that is JPOPRR
2123%'s fields and PPN field JPPN (0-12)) from PD
Bus 10146, are gated onto Bus 20738 through Gates

4,445,177

97
21244 of PRMUX 20720. Enabling signals JO Port
Select, JO Port Block Select, JO Page Select, and JO
Late Page Select gate JOP Port 21010 request informa-
tion onto certain Bus 20738 sub-buses. These enabling
signals, the memory request fields gated by each, and
the corresponding sub-buses of Bus 20738 are:

JO Port Select (JOPORTSEL)

(1) JOPORTSEL gates 5 bit Starting Bit Address
(SBA) comprising BIT field of PPO field onto five bit
Starting Bit Address (SBA) Bus 21226. As previously
described, starting bit address information is provided
by SBA Bus 20226 to FIU 20120 for use in executing
data formating operations.

(2) JOPORTSEL gates length information, that is 5
bit BLN field, onto BLN Bus 21214. As previously
described, BLN Bus 21214 provides length information
to FIU 20120 for use in data formating operations.

(3) JOPORTSEL gates 5 bit FBA field onto FBA
Bus 21228 for use in by FIU 20120 in executing data
formating operations.

(4) JOPORTSEL gates 2 bit FIU field onto ALIGN
Bus 21232 to FIU 20120 for use in data formating opera-
tions. It should be noted, as described further below,
that ALIGN Bus 21232 does not go directly to FIU
20120, but to RM 20722 which generates corresponding
control signals to FIU 20120.

(5) JOPORTSEL gates 4 bit NEXTJPOP field onto
REQOP Bus 21216. As previously described, next oper-
ation information on REQOP Bus 21216 is used by MIC
20122 in determining what type of MEM 10112 opera-
tion is to be performed in servicing the associated mem-
ory request.

(6) JOPORTSEL gates CROSSWORD onto single
bit CROSSWORD Bus 21230, where it is used by MIC
20122 to determine whether the requested memory
operation involves crossing word boundaries.

JO Block Select (JOBLKSEL)

(1) JOBLKSEL gates BLK field of PPO field onto
bits 13 to 19 of TSA Bus 21210. As previously de-
scribed, TSA Bus 21210 transfers BLK field to MC
20116 for use in addressing MC 20116’s cache.

(2) JOBLKSEL gates WD field of PPO field to an
input of WAM 21234. As previously described, WAM
21234 may then switch WD field onto NEXTDSW Bus
21212 to MC 20116 for use in addressing MC 20116’s
cache.

JOPAGESEL

(1) JOPAGESEL gates 13 bit PPN field onto bits
0-12 of TSA Bus 21210, which in turn provides PPN
field to MC 20116 for use in addressing MC 20116’s
cache. TSA Bus 21210 also provides PPN field to Load
Pointer (LP) 20724 and to Increment Register (IN-
CREGQG) 21211.

JOLATEPAGESEL

(1) LATEPAGESEL may gate PPN (JPPN(0-12))
directly from PD Bus 10146 to bits 0-12 of TSA Bus
21210. LATEPAGESEL may do s0, for example,
when MEM 10112 and, in particular, MIC 20122 begins
execution of a request from JP 10114 on the clock cycle
immediately following the request. PPN (JPPN(0-12))
will always arrive one clock cycle after the request, as
described in a following description, and will be landed
into JPOPAR 21233, or JPIPRR 21248. LATEPAGE-
SEL allows PPN to by pass JPOPRR 21233 and

10

20

30

35

40

45

50

55

65

98
JPIPRR 21248 to TSA Bus 21210 to be available for use
during the same clock cycle in which it is received. It
should be noted that PPN is loaded into JPOPRR 21233
by TOOKIJO, rather than by JOPORTAYV.

Finally, 2 bit DEST field, IMDST, and EBMDST,
are provided directly to MIC 20122 through JP Oper-
and Destination (JODEST) Bus 21246 as two bit signal
JODEST. JODEST is used by MIC 20122 in generat-
ing control signals DAVEA and DAVESB to JP 10114
in indicating destination of data being read from MEM
10112 in response to the associated memory request.

Referring to JPI Port 21110, JPI Port 21110 may
accept only one type of memory request, a 32 bit, word
aligned read request. As will be described in a following
description of JP 10114, destination of all JPI 21110
memory requests is an instruction buffer in JP 10114,
JPI Port Request Register (JPIPRR) 21248 therefore
contains only a 13 bit PPN field (JPPN(0-12)) and a 14
bit PPO field (JPPO(0-13)), both received from PD Bus
10146. In addition, PPO field in JPIPRR 21248 stores
only 7 bit block within page field (BLK) and 2 bit word
within block field (WD). JPIPRR 21248 is enabled to
accept a memory request input from PD Bus 10146 by
enable signal inputs IPORTAV previously discussed,
and Took JI Port (TJIP) in a manner as previously
described with reference to JPO Port 21010,

Enable signals JI Page Select (J IPAGESEL), JI
Block Select (JIBLKSEL), and JI Port Select JI-
PORTSEL) gate JPIPRR 21248 contents, and a hard
wire control signal described below, through Gates
21250 of PRMUX 20720. These enable signals, the
JPIRR 21248 fields gated by these enabling signals, and
the sub-buses of Bus 20738 to which these fields are
gated, are:

JIPORTSEL

(1) JIPORTSEL gates 4 bit hard wired signal B,
binary code 1011, onto REQOP Bus 21216. As previ-
ously described, information on REQOP Bus 21216 is
used within MIC 20122 to select the particular MEM
10112 operation to be executed in servicing a particular
memory request. Binary code 1011 forces MIC 20122 to
select a 32 bit, word aligned read to JP 10114.

JIBLKSEL

(1) JIBLKSEL enables WD field of PPO field to an
input of WAM 21234 where it may be subsequently
gated onto NEXTDSW Bus 21212 as previously de-
scribed.

(2) JIBLKSEL gates block on page field BLK of
PPO field onto bits 13 to 19 of TSA Bus 21210, where
in turn it is provided to MC 20116 for use in addressing
MC 20116’s cache.

JIPAGESEL

(1) JIPAGESEL gates 13 bit PPN field onto bits 0-12
of TSA Bus 21210, where this information is provided
in turn to MC 20116’s for use in addressing MC 20116’s
cache.

Referring to LDPTR 20724, LDPTR 20724 data
inputs are connected from outputs of PRMUX 20720 to
receive 13 bits of PPN field and 7 bits of BLK field from
IOPRR 21218, JPOPRR 21238, and JPIPRR 21248.
LDPTR receives and stores PPN and BLK fields of the
memory request in an outstanding cache load to be
serviced. In particular, LDPTR stored PPN and BLK
fields of the currently outstanding cache load operation
being performed by MEM 10112 in servicing a memory

4,445,177

99
request. Enable signal Any Load (ANYLOAD) enables
LDPTR 20724 to receive PPN and BLK fields of any
memory request currently being serviced Load Address
Select (LOADADRSEL) enable signal to gates 21252
of PRMUX 20720 may transfer the stored PPN and
BLK fields of LPTR 20724 onto, respectively, bits 0-12
and bits 13-19 of TSA Bus 21210 As previously de-
scribed, PPN and BLK information on TSA Bus 21210

is transferred to MC 20116 for addressing of MC

20116's cache.

PPN and BLK fields of LDPTR 20724 are used by
LM 20730, described below, to provide addressing in-
formation to MC 20116’s data cache during cache load
operations. LDPTR normally samples TSA Bus 21210’s
PPN and BLK fields during service of each memory
request until a MC 20116 cache miss occurs. Upon oc-
currence of such a miss, LDPTR is locked, storing PPN
and BLK fields of the memory request resulting in a
MC 20116 cache miss. LM 20730 may subsequently use
LDPTR 20724’s PPN and BLK fields to load the data
from MSB 20110 into MC 20116. Upon return of the
necessary data from MSB 20110 to MC 20116, LM
20730 may use LDPTR 20724's PPN and BLK fields to
update MC 20116’s cache tag store and address MC
20116’s cache and for loading the data into MC 20116’s
cache.

Associated with LDPTR 20724 is comparator 21254,
Comparator 21254 compares BLK fields currently pres-
ent on bits 14-19 of TSA Bus 21210 to LDPTR 20724’s
BLK field. Comparison of TSA Bus 21210 and LDPTR
20724 BLK fields detects the event of an attempted
access to an MC 20116 cache slot currently awaiting
updating by transfer of data from MSB 20110. Such a
“collision” will result in the conflicting, or second,
request to await execution until MC 20116’s cache is
updated by being loaded with data from MSB 20110.
Service of the second, colliding, request is delayed to
prevent a change in usage and dirty bit state of the MC
20116 cache block currently waiting updating and
which was determined at the time of the original MC
20116 cache miss. A pending MC 20116 cache update
does not affect access to other blocks in MC 20116’s
cache.

Referring to Increment Register (INCREG) 21211,
INCREG 21211 is used by RM 20722 to generate MC
20116 addresses, that is a PPN, BLK, and WD field, for
memory requests crossing word boundaries and for
flushing of MC 20116’s cache. Upon occurrence of a
memory request crossing word boundaries, two least
significant bits of PPN field the 7 bits of BLK field and
2 bits of WD field from IOPRR 21218, JPOPRR 21233,
or JPIPRR 21248 are read from PSA Bus 21210 to a
first input of Adder 21256. Two other inputs to Adder
21256 are single bit inputs ADDFOUR and ADDONE.
In event of cross word memory request, MC 20122
asserts input ADDONE to Adder 21256. Adder 21256
then generates an output equal to the word address, that
is PPN, BLK and WD fields, of the cross word memory
address plus one. Word address output of Adder 21256
is thereby that of the second word of the cross word
memory request. Adder 21256 output is then transferred
into INCREG 21211 upon occurrence of enabling sig-
nal Increment Register Enable (INCREGE). In servic-
ing the cross word memory request, RM 20722 will
transfer PPN, BLK, and WD fields of IOPRR 21218,
JPOPRR 21238, or JPIPRR 21248 to TSA Bus 21210 as
first word address of the cross word memory request.
Subsequently, RM 20722 will transfer BLK and WD

10

20

35

45

55

65

100
field of INCREG 21211 to TSA Bus 21210 as second
word address of the cross word memory request. Con-
tents of INCREG 21211 are transferred onto TSA Bus
21210 through Gates 21258 of PRMUX 20720. En-
abling signals Increment Block Select (INCBLKSEL)
and. Increment Page Select INCPAGESEL) to Gates
21258 are used, respectively, to transfer BLK and WD
fields and PPN field to TSA Bus 21210. The original
PPN is not incremented as a cross word operation and
can not cross page boundaries.

As previously stated, RM 20722 may also use IN-
CREG 21211 in flushing MC 20116’s cache. In such
flush operations, MC 20116’s cache is scanned to deter-
mine which words stored therein are “dirty”, that is
have been written on to so as to contain different data
than the original copies of these words stored in MSB
20110. For these purposes, PPN, BLK and WD fields of
INCREG 21211, that is starting address of MC 20116
cache locations, and ADDFOUR input to 21256 is
enabled. INCBLKSEL and INCPAGESEL are then
asserted to transfer address onto TSA Bus 21210. Ad-
dresses transferred onto TSA Bus 21210 are fed back to
Adder 21256's first input, and increased by four by
Adder 21256's ADDFOUR input, and transferred into
INCREGE 21211 by enable input INCREG. INCREG
21211 thereby generates successive word addresses
incremented by four, and thereby generates successive
block addresses for MC 20116 cache. Whenever, as will
be described in the following description, MC 20116
detects a “dirty” block during a “FLUSH” operation,
that block is written back into MSB 20110.

Having described the structure and operation of
JOPAR 20710, JIPAR 20712, IOPAR 20714, PRMUX
20720, LDPTR 20724, and INCREG 21211, Port Con-
trol (PC) 20716 will be described next below.

2. Port Control 20716 (FIG. 213)

Referring to FIG. 213, Port Control (PC) 20716 is
shown. Due to the large number of interconnections
between logic elements of PC 20716, and between PC
20716 and other circuits of MIC 20122, signal intercon-
nections are not shown by connecting lines but, for
clarity of presentation, are indicated by commonality of
signal names between common electrical points.

Major functional elements of PC 20716, and certain
of their functions, are:

(1) Port Request State Logic (PRS) 21310; PRS
21310 determines and tracks validity of each memory
request received by 10 Port 20910, JPO Port 21010, or
JPI Port 21110.

(2) Port Wait Flag Logic (PWF) 21312, PWF 21312
generates port waiting signals, discussed previously,
whenever RM 20722 attempts to service a request at a
memory port and is unable to do so. Any port having an
asserted waiting flag signal is masked from the priority
queue, described below, that is inhibited from receiving
service, until that port’s waiting flag is removed.

(3) Request Priority Selection Logic (RPS) 21314;
RPS 21314 determines requesting port’s priority, that is
relative priority for IO Port 20910 JPO Port 21010, and
JPI Port 21110 and selects that port having highest
priority for service.

Referring to PRS 21310, PRS 21310 includes logic
for each MEM 10112 Port, that is 10 Port 20910, JPO
Port 21010, and JPI Port 21110, for determining and
tracking the validity of each request to each of these
ports and availability of each of these ports to JP 10114
and TOS 10116. A first set of signals generated by PRS

4,445,177

101

21310, IOPA and IOPA, JOPA and JOPA, JIPA and
JIPA, indicate, respectively, whether 10 Port 20910,
JPO Port 21010, and JPI Port 21110 are available to
accept memory requests. A second set of signals, IO
Request Valid (JIOREQVALID), JO Request Valid
(JOREQVALID), and JI Request Valid (JIREQ-
VALID) indicate whether a particular memory request
to, respectively 10 Port 20910, JPO Port 21010, or JPI
Port 21110, is valid. Port Available and Port Request
Validity signals are generated concurrently by PRS
21310.

Inputs to PRS 21310 include IOREQVALID,
JOREQVALID, and JIREQVALID from outputs of
Register 21320. These inputs serve PRS 21310 as an
indicator of a current state of Port availability as previ-
ously determined by PRS 21310. Input Hand-Off-Next
(HANDOFFNXT) from another portion of MIC 20122
(described below) indicates that a next operation to be
performed is a Hand Off operation as previously de-
scribed. Input Reset Request (RESETREQ) is a reset
signal generated by MIC 20122 indicating that a cur-
rently serviced request valid flag is to be reset, that is
terminated. Inputs IO Port Select (IOPORTSEL) and
IO Previous Port (IOPREVPORT) are MIC 20122
generated signals indicating, respectively, that IO Port
20910 is currently selected for service and that IO Port
20910 was the port to be serviced selected for service on
the previous clock cycle. Input (TMLOCKIO) is pro-
vided via FIU 20120 and indicates that the request valid
flag and port available signal for I0 Port 20910 is to
remain unchanged; this is a test and diagnostic function.
Load Port (LOADPORT) is a two bit input generated
by another portion of MIC 20122 and indicating which
Port, of 10 Port 20910, JPO Port 21010 or JPI Port
21110, is currently having data loaded into MC 20116’s
Cache on its behalf. LOADPORT is provided from
LOAD POINTER 20724, and is used to determine
which request valid to reset on a handoff. Taking IO
Requests (TAKINGIOREQ) is an MIC 20122 gener-
ated signal indicating that an IO Port 20910 request is
currently being accepted and setting the IO request
valid flag. JOPORTSEL and JIPORTSEL, JOPREV-
PORT and JIPREVPORT, TMLOCKJO and
TMLOCKIJI, and TAKINGJOREQ and TAKING-
JIREQ are similar in function and operation to, respec-
tively, IOPORTSEL, IOPREVPORT, TMLOCKIO,
and TAKINGIOREQ. Inputs JO Aborted (JOA-
BORTED) and JI Aborted (JIABORTED) are MIC
20122 generated signals indicating, respectively, that a
JPO Port 21010 or JPI Port 21110 request has been
aborted. Input Request Finish (REQFINISH) is gener-
ated by other portions of MIC 20122 to indicate conclu-
sion of servicing of a memory request. Input Keep Re-
quest Valid (KEEPREQVLD) is generated by other
portions of MIC 20122 to indicate that while a current
request may not be serviced immediately, for example
due to a need to transfer requested data from MSB
20110 to MC 20114, the request will be retained and
serviced when possible. KEEPREQVLD also resets
the reset valid flag, which would have been reset in
anticipation of completion of the request. Input TMDE-
PEXAM is a test and diagnostic signal set by DP 10118
to force all ports to appear busy to the requestors.

In summary, as described above and as previously
described, PRS 21310’s Port availability outputs, that is
IOPA, IOPA, JOPA, JOPA, JIPA and JIPA, indicate
when a particular port is available to receive 2 memory
request. PRS 21310’s request valid outputs, that is

5

20

25

30

40

45

50

55

65

‘ 102
IOREQVALID, JOREQVALID, and JIREQVALID
indicate when a particular port has a currently out-
standing valid request. A LOADPORT Signal, that is
LIOR, LJOR, or LJIR, from JP 10114 or 10S 10116
will result in the corresponding port availability flag
being set and the corresponding request entering the
priority queue for service. Either RM 20722 or JP 10114
may reset the corresponding port availability and re-
quest valid flag for JP 10114. JP 10114 may abort a
memory request for either JPO Port 21010 or JPI Port
21110. An abort resets both the corresponding ports
validity and availability flag, and terminates processing
the corresponding request. There is one flag per port, as
described, and both the request valid and port available
signals are derived from the same signal. RM 20722 may
reset a particular port availability and port request flag
to indicate request not valid and port available on the
last sequence of the service sequence for that particular
port request. If the request valid flag is set by DP 10118,
it will remain set and continuously executed; if it is reset
by DP 10118, it cannot be set by a requestor. In addi-
tion, FIU 20120 may send signals TMLOCKIO,
TMLOCKJO, or TMLOCKIJ], to PRS 21310 to lock,
respectively, 10 Port 20910, JPO Port 21010, or JPI
Port 21110 and prevent the port from changing state. A
port so locked results in PRS 21310 indicating that the
port is unavailable. In general, TMLOCKIO,
TMLOCKJO, and TMLOCKJI are used for test and
diagnosis of MEM 10112. It should be noted that, in
general, PRS 21310’s request validity and port availabil-
ity outputs are based upon current information loaded
into JOPAR 20710, JIPAR 20712, and IOPAR 20714
and thus represent each particular port’s validity and
availability state, that is the current state of the request
being serviced for a particular port.

It may be necessary to suspend service of a particular
port’s request because RM 20722 is currently unable to
service that request. Such events may occur, for exam-
ple, when an IO request “collides”, that is conflicts
with, a MC 20116 cache load or because of a conflict
with a by-pass read operation. PWF 21312 includes
combinatorial logic for generating flags indicating
when particular ports are forced to wait for service.
These flags are I0 Wait For Bypass Read (IOWAIT-
BYRD), I0 Wait For Cache Load (IOWAITLOAD),
JO Waiting Cache Load (JOWAITING), and JI Wait-
ing Cache Load (JIWAITING). These signals are gen-
erated as outputs of PWF 21312 and stored in 4 bit PWF
Registers (PWFR) 21322. Inputs to PWF 21312 include
Set Wait For Bypass Read (SETWATBYRD) gener-
ate