6/081582 A2 | IV 0O 0 O

—

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 August 2006 (03.08.2006)

lﬂb A 00 O

(10) International Publication Number

WO 2006/081582 A2

(51) International Patent Classification:
GOGF 9/455 (2006.01)

(21) International Application Number:
PCT/US2006/003587

(22) International Filing Date: 27 January 2006 (27.01.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/045,524 28 January 2005 (28.01.2005) US
(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-

vard, Santa Clara, California 95052 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): ANDERSON, An-
drew [US/US]; 677 SE 68th Ave, Hillsboro, Oregon 97123
(US).

(74) Agents: VINCENT, Lester J. et al; BLAKELY
SOKOLOFF TAYLOR & ZAFMAN, 12400 Wilshire
Boulevard, 7th Floor, Los Angeles, California 90025 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A METHOD AND APPARATUS FOR SUPPORTING ADDRESS TRANSLATION IN A VIRTUAL MACHINE EN-

VIRONMENT

(57) Abstract: In one embodiment, a method includes receiving control transitioned from a virtual machine (VM) due to a priv-
& ileged event pertaining to a translation-lookaside buffer (TLB), and determining which entries in a guest translation data structure
were modified by the VM. The determination is made based on metadata extracted from a shadow translation data structure main-
tained by a virtual machine monitor (VMM) and attributes associated with entries in the shadow translation data structure. The
method further includes synchronizing entries in the shadow translation data structure that correspond to the modified entries in the
guest translation data structure with the modified entries in the guest translation data structure.

5

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

A METHOD AND APPARATUS FOR SUPPORTING ADDRESS TRANSLATION
IN A VIRTUAL MACHINE ENVIRONMENT

Field
[0001] Embodiments of the invention relate generally to virtual machines, and

more specifically to supporting address translation in a virtual machine environment.

Background
[0002] A conventional virtual-machine monitor (VMM) typically runs on a

computer and presents to other software the abstraction of one or more virtual machines.
Each virtual machine may function as a self-contained platform, running its own “guest
operating system” (i.e., an operating system (OS) hosted by the VMM) and other software,
collectively referred to as guest software. The guest software expects to operate as if it
were running on a dedicated computer rather than a virtual machine. That is, the guest
software expects to control various events and have access to hardware resources such as
physical memory and memory-mapped input/output (I/O) devices. For example, the guest
software expects to maintain control over address-translation operations and have the
ability to allocate physical memory, provide protection from and between guest
applications, use a variety of paging techniques, etc. However, in a virtual-machine
environment, the VMM should be able to have ultimate control over the computer’s

resources to provide protection from and between virtual machines.

Brief Description of the Drawings

[0003] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

[0004] Figure 1 illustrates one embodiment of a virtual-machine environment, in
which the present invention may operate;

[0005] Figure 2 illustrates operation of a virtual TLB, according to one
embodiment of the present invention;

[0006] Figures 3A and 3B illustrate a process of creating and maintaining
metadata for a shadow PT hierarchy, according to two alternative embodiments of the

present invention;

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

[0007] Figure 4 is a flow diagram of one embodiment of a process for
synchronizing guest translation data structure and shadow translation data structure;

[0008] Figure 5 is a flow diagram of one embodiment of a process for maintaining
metadata for a shadow translation data structure;

[0009] Figure 6 is a flow diagram of one embodiment of a process for facilitating
a change of an address space;

[0010] Figure 7 is a flow diagram of one embodiment of a process for
synchronizing entries of two translation data structures for a specified address;

[0011] Figure 8 is a flow diagram of one embodiment of a process for removing a
shadow PT hierarchy from a working set of shadow PT hierarchies maintained by the
VMM;

[0012] Figure 9 is a flow diagram of one embodiment of a process for adding an
entry to a PD of a shadow PT hierarchy;

[0013] Figure 10 is a flow diagram of one embodiment of a process for removing
an entry from a PD of a shadow PT hierarchy;

[0014] Figure 11 is a flow diagram of one embodiment of a process for adding an
entry to a PT of a shadow PT hierarchy;

[0015] Figure 12 is a flow diagram of one embodiment of a process for removing
an entry from a PT of a shadow PT hierarchy;

[0016] Figure 13 is a flow diagram of one embodiment of a process for
monitoring a PTE of a shadow PT hierarchy; and

[0017] Figure 14 is a flow diagram of one embodiment of a process for removing

monitoring from a PTE of a shadow PT hierarchy.

Description of Embodiments

[0018] A method and apparatus for supporting address translation in a virtual
machine environment is described. In the following description, for purposes of
explanation, numerous specific details are set forth in order to provide a thorough
understanding of the present invention. It will be apparent, however, to one skilled in the
art that the present invention can be practiced without these specific details.

[0019] Some portions of the detailed descriptions that follow are presented in
terms of algorithms and symbolic representations of operations on data bits within a

computer system’s registers or memory. These algorithmic descriptions and

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

representations are the means used by those skilled in the data processing arts to convey
most effectively the substance of their work to others skilled in the art. An algorithm is
here, and generally, conceived to be a self-consistent sequence of operations leading to a
desired result. The operations are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally for reasons of common usage,
to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or
the like.

[0020] It should be borne in mind, however, that all of these and similar terms are
to be associated with the appropriate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated otherwise as apparent from the
following discussions, it is appreciated that throughout the present invention, discussions
utilizing terms such as "processing" or "computing” or "calculating" or "determining" or
the like, may refer to the action and processes of a computer system, or similar electronic
computing device, that manipulates and transforms data represented as physical
(electronic) quantities within the computer system's registers and memories into other data
similarly represented as physical quantities within the computer-system memories or
registers or other such information storage, transmission or display devices.

[0021] In the following detailed description of the embodiments, reference is made
to the accompanying drawings that show, by way of illustration, specific embodiments in
which the invention may be practiced. In the drawings, like numerals describe
substantially similar components throughout the several views. These embodiments are
described in sufficient detail to enable those skilled in the art to practice the invention.
Other embodiments may be utilized and structural, logical, and electrical changes may be
made without departing from the scope of the present invention. Moreover, it is to be
understood that the various embodiments of the invention, although different, are not
necessarily mutually exclusive. For example, a particular feature, structure, or
characteristic described in one embodiment may be included within other embodiments.
The following detailed description is, therefore, not to be taken in a limiting sense, and the
scope of the present invention is defined only by the appended claims, along with the full

scope of equivalents to which such claims are entitled.

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

[0022] Although the below examples may describe providing support for address
translation in a virtual machine environment in the context of execution units and logic
circuits, other embodiments of the present invention can be accomplished by way of
software. For example, in some embodiments, the present invention may be provided as a
computer program product or software which may include a machine or computer-
readable medium having stored thereon instructions which may be used to program a
computer (or other electronic devices) to perform a process according to the present
invention. In other embodiments, processes of the present invention might be performed
by specific hardware components that contain hardwired logic for performing the
processes, or by any combination of programmed computer components and custom
hardware components.

[0023] Thus, a machine-readable medium may include any mechanism for storing
or transmitting information in a form readable by a machine (e.g., a computer), but is not
limited to, floppy diskettes, optical disks, Compact Disc, Read-Only Memories (CD-
ROMs), and magneto-optical disks, Read-Only Memories (ROMs), Random Access
Memories (RAMs), Erasable Programmable Read-Only Memories (EPROMs),
Electrically Erasable Programmable Read-Only Memories (EEPROM:s), magnetic or
optical cards, flash memories, a transmission over the Internet, electrical, optical,
acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital
signals, etc.) or the like.

[0024] Further, a design may go through various stages, from creation to
simulation to fabrication. Data representing a design may represent the design in a
number of manners. First, as is useful in simulations, the hardware may be represented
using a hardware description language or another functional description language.
Additionally, a circuit level model with logic and/or transistor gates may be produced at
some stages of the design process. Furthermore, most designs, at some stage, reach a level
of data representing the physical placement of various devices in the hardware model. In
the case where conventional semiconductor fabrication techniques are used, data
representing a hardware model may be the data specifying the presence or absence of
various features on different mask layers for masks used to produce the integrated circuit.
In any representation of the design, the data may be stored in any form of a machine-
readable medium. An optical or electrical wave modulated or otherwise generated to

transmit such information, a memory, or a magnetic or optical storage such as a disc may

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

be the machine readable medium. Any of these mediums may “carry” or “indicate” the
design or software information. When an electrical carrier wave indicating or carrying the
code or design is transmitted, to the extent that copying, buffering, or re-transmission of
the electrical signal is performed, a new copy is made. Thus, a communication provider or
a network provider may make copies of an article (a carrier wave) embodying techniques
of the present invention.

[0025] Figure 1 illustrates one embodiment of a virtual-machine environment 100,
in which the present invention may operate. In this embodiment, bare platform hardware
116 comprises a computing platform, which may be capable, for example, of executing a
standard operating system (OS) or a virtual-machine monitor (VMM), such as a VMM
112.

[0026] The VMM 112, typically implemented in software, may emulate and export
a bare machine interface to higher level software. Such higher level software may
comprise a standard or real-time OS, may be a highly stripped-down operating
environment with limited operating system functionality, may not include traditional OS
facilities, etc. Alternatively, for example, the VMM 112 may be run within, or on top of,
another VMM. VMMSs may be implemented, for example, in hardware, software,
firmware or by a combination of various techniques.

[0027] The platform hardware 116 can be of a personal computer (PC),
mainframe, handheld device, portable computer, set-top box, or any other computing
system. The platform hardware 116 includes a processor 118 and memory 120.

[0028] Processor 118 can be any type of processor capable of executing software,
such as a microprocessor, digital signal processor, microcontroller, or the like. The
processor 118 may include microcode, programmable logic or hardcoded logic for
performing the execution of method embodiments of the present invention. Although
Figure 1 shows only one such processor 118, there may be one or more processors in the
system.

[0029] Memory 120 can be a hard disk, a floppy disk, random access memory
(RAM) (e.g., dynamic RAM (DRAM) or static RAM (SRAM)), read only memory
(ROM), flash memory, any combination of the above devices, or any other type of
machine medium readable by processor 118. Memory 120 may store instructions and/or

data for performing the execution of method embodiments of the present invention. “

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

[0030] The VMM 112 presents to other software (i.e., “guest” software) the
abstraction of one or more virtual machines (VMs), which may provide the same or
different abstractions to the various guests. Figure 1 shows two VMs, 102 and 114. The
guest software running on each VM may include a guest OS such as a guest OS 104 or
106 and various guest software applications 108 and 110. Each of the guest OSs 104 and
106 expects to access physical resources (e.g., processor registers, memory and I/O
devices) within the VMs 102 and 114 on which the guest OS 104 or 106 is running and to
perform other functions. For example, the guest OS 104 or 106 expects to have access to
all registers, caches, structures, I/O devices, memory and the like, according to the
architecture of the processor and platform presented in the VM 102 and 114. The
resources that can be accessed by the guest software may either be classified as
“privileged” or “non-privileged.” For privileged resources, the VMM 112 facilitates
functionality desired by guest software while retaining ultimate control over these
privileged resources. Non-privileged resources do not need to be controlled by the VMM
112 and can be accessed directly by guest software.

[0031] Further, each guest OS expects to handle various fault events such as
exceptions (e.g., page faults, general protection faults, etc.), interrupts (e.g., hardware
interrupts, software interrupts), and platform events (e.g., initialization (INIT) and system
management interrupts (SMIs)). Some of these fault events are “privileged” because they
must be handled by the VMM 112 to ensure proper operation of VMs 102 and 114 and for
protection from and among guest software.

[0032] When a privileged fault event occurs or guest software attempts to access a
privileged resource, control may be transferred to the VMM 112. The transfer of control
from guest software to the VMM 112 is referred to herein as a VM exit. After facilitating
the resource access or handling the event appropriately, the VMM 112 may return control
to guest software. The transfer of control from the VMM 112 to guest software is referred
to as a VM entry.

[0033] In one embodiment, the processor 118 controls the operation of the VMs
102 and 114 in accordance with data stored in a virtual machine control structure (VMCS)
125. The VMCS 125 is a structure that may contain state of guest software, state of the
VMM 112, execution control information indicating how the VMM 112 wishes to control
operation of guest software, information controlling transitions between the VMM 112

and a VM, etc. The processor 118 reads information from the VMCS 125 to determine the

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

execution environment of the VM and to constrain its behavior. In one embodiment, the
VMCS is stored in memory 120. In some embodiments, multiple VMCS structures are
used to support multiple VMs.

[0034] During address translation operations, the VM 102 or 114 expects to
allocate physical memory, provide protection from and between guest software
applications (e.g., applications 108 or 110), use a variety of paging techniques, etc. Ina
non-virtual machine environment, an address translation mechanism expected by an OS
may be based on a translation lookaside buffer (TLB) 122 controlled by the processor 118
and a translation data structure, such as a page-table (PT) hierarchy, controlled by the OS
and used to translate virtual memory addresses into physical memory addresses when
paging is enabled.

[0035] The architecture of the Intel® Pentium® 4 Processor supports a number of
paging modes. The most commonly used paging mode supports a 32-bit linear address
space using a two-level hierarchical paging structure (referred to herein as a two-level
hierarchy paging mode). Embodiments of the invention are not limited to this paging
mode, but instead may be employed by one skilled in the art to virtualize other paging
modes (e.g., Physical Address Extension (PAE) mode, Intel® Extended Memory 64
Technology (EM64T) mode, etc.) and implementations (e.g., hashed page tables). In one
embodiment based on a TLB, translation of a virtual memory address into a physical
memory address begins with searching the TLB 122 using either the upper 20 bits (for a 4
KB page frame) or the upper 10 bits (for a 4MB page frame) of the virtual address. If a
match is found (a TLB hit), the upper bits of a physical page frame that are contained in
the TLB 122 are conjoined with the lower bits of the virtual address to form a physical
address. The TLB also contains access and permission attributes associated with the
mapping. If no match is found (a TLB miss), the processor consults the PT hierarchy to
determine the virtual-to-physical translation, which is then cached in the TLB 122. Entries
in the PT hierarchy may include some attributes that are automatically set by the processor
on certain accesses.

[0036] If the PT hierarchy is modified, the TLB 122 may become inconsistent with
the PT hierarchy if a corresponding address translation exists in the TLB 122. The OS
may expect to be able to resolve such an inconsistency by issuing an instruction to the
processor 118. For example, in the instruction set architecture (ISA) of the Intel®

Pentium® 4 (referred to herein as the IA-32 ISA), a processor allows software to invalidate

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

cached translations in the TLB by issuing the INVLPG instruction. In addition, the OS
may expect to request the processor 118 to change the address space completely, which
should result in the removal of all translations from the TLB 122. For example, in the IA-
32 ISA, an OS may use a MOV instruction or a task switch to request a processor to load
CR3 (which contains the base address of the PT hierarchy), thereby removing all
translations from the TLB. Different levels of the page table hierarchy may have different
names based upon mode and implementation. In the two-level hierarchy paging mode,
there are two levels of paging structures. The CR3 register points to the base of the page
directory page. Entries in the page directory may either specify a mapping to a large-size
page (e.g., a 4MB superpage, a 2MB superpage, 1GB superpage, etc.), or a reference to a
page table. The page table in turn may contain mappings to small-size pages.

[0037] As discussed above, in the virtual-machine environment, the VMM 112
should be able to have ultimate control over physical resources including the TLB 122.
Embodiments of the present invention address the conflict between the expectations of the
VMs 102 and 114 and the role of the VMM 112 by using a virtual TLB that emulates the
functionality of the processor’s physical TLB.

[0038] The virtual TLB includes the TLB 122 and a set of shadow PT hierarchies
controlled by the VMM 112. The set of shadow PT hierarchies derive its format and
content from guest PT hierarchies that may be currently used or not used by the VM 102
or 114. If the VM 102 or 114 modifies the content of the guest PT hierarchies, this
content becomes inconsistent with the content of the shadow PT hierarchies. The
inconsistencies between the guest PT hierarchies and the shadow PT hierarchies are
resolved using techniques analogous to those employed by the processor 118 in managing
the TLB 122. Some of these techniques force the VM 102 or 114 to issue an event
indicating an attempt to manipulate the TLB (e.g., INVLPG, page fault, and load CR3).
Such events are privileged and, therefore, result in a VM exit to the VMM 112. The
VMM then evaluates the event and synchronizes all maintained shadow PT hierarchies
with the current guest state if needed. We will refer to the set of maintained shadow PT
hierarchies as the working set. As multiple processes may use the same guest page table, it
is possible for the same shadow PT to be a part of multiple guest PT hierarchies. The
corresponding shadow PT will in turn be a member of multiple shadow PT hierarchies.

[0039] Note that synchronization performed by the VMM may update shadow

page table or page directory entries for a shadow PT hierarchy that is not currently in-use.

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

Likewise synchronization may be required to guest pages that are not part of the in-use
guest PT hierarchy.

[0040] In one embodiment, the VMM 112 includes an address translation module
126 that is responsible for creating and maintaining a working set of shadow PT
hierarchies for each of the VM 102 and 114 in a virtual TLB (VTLB) data store 124. The
working set of shadow PT hierarchies is maintained for corresponding active processes of
the VM 102 or 114 (i.e., processes that are likely to be activated in the near future by the
VM 102 or 114). With the IA32 ISA, the only explicitly defined guest hierarchy is that
defined by the currently used paging structures. In practice there is a high deal of temporal
locality for guest processes and their address spaces. The VMM may employ heuristics or
explicit information to determine a set of active process.

[0041] When the VM 102 or 114 enables a guest PT hierarchy for one of the active
processes of the VM 102 or 114, the address translation module 126 identifies a
corresponding shadow PT hierarchy in the working set and requests the processor 118 to
load its base address. When applicable, the address translation module 126 can then reuse
previously computed mappings that are stored in the shadow PT hierarchies.

[0042] If the VM 102 or 114 activates a new process, the address translation
module 126 derives a new shadow PT hierarchy from a corresponding guest PT hierarchy
and adds it to the working set. Alternatively, if the VM 102 or 114 de-activates an
existing process, the address translation module 126 removes information corresponding
to the guest PT hierarchy from the working set.

[0043] In one embodiment, the address translation module 126 is responsible for
extracting metadata from each new shadow PT hierarchy, storing the metadata in the
VTLB data store 124, and updating the metadata when the shadow PT hierarchy is
modified. In one embodiment, the metadata includes a PT vector (PTV), a PD vector
(PDV), an active PTE list, and an active PDE list.

[0044] The PTV and PDV track the guest frames that are used as PTs and PDs. In
one embodiment, this information is encoded in bit vectors. The PTV may be indexed by
page frame number (PFN), with each entry bit being set if a corresponding PFN is a PT.
The PDV may be indexed by a page frame number (PFN), with each entry bit being set if
a corresponding PFN is a PD.

[0045] The active PTE list is a list of PT entries (PTEs) in the shadow PT
hierarchy that point to frames holding PTs and PD. The active PDE list identifies PD

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

entries (PDEs) in the shadow PT hierarchy that point to PTs containing PT entries
identified in the active PTE list.

[0046] In one embodiment, active PDE and PTE lists contain additional metadata
describing whether the mapping is to a PD or PT frame.

[0047] One skilled in the art will understand that embodiments of this invention
may use a variety of data structures which may be more or less space or time efficient than
those described herein. One skilled in the art will also recognize the extension of tracking
structures to support additional paging modes. For example, an EM64T paging mode maps
a 64-bit virtual address to a physical address through a four-level hierarchical paging
structure. The actual number of bits supported in the virtual or physical address spaces
may be implementation dependent and may be less than 64 bits in a particular
iﬁqplementation. As will be discussed in more detail below, an EM64T implementation
may require additions of a page-map level 4 (PML4) page vector and a page directory
pointer (PDP) page vector to track the additional page tables used in the EM64T paging
structure. Likewise, one skilled in the art will recognize that the active PTE list will be
extended to include entries which map any page used within the paging structures (e.g.,
PML4 or PDP pages for EM64T).

[0048] In one embodiment, active PTE/PDE list metadata is maintained to track
the number of PD and PT frames that are mapped through a page table. When the number
of mappings per page is incremented from 0, then PDEs which map the PT must be added
to the active PDE list, and when the number of mappings is decreased to zero, then PDEs
that map this PT must be removed from the active PDE list.

[0049] In one embodiment, the address translation module 126 is responsible for
synchronizing a current shadow PT hierarchy with a current guest PT hierarchy when such
synchronization is needed. The address translation module 126 performs the
synchronization by determining which entries in the guest PT hierarchy have recently been
modified and then updating corresponding entries in the shadow PT hierarchy accordingly.
The address translation module 126 determines which entries in the guest PT hierarchy
have recently been modified based on the metadata extracted from the shadow PT
hierarchy and attributes associated with the entries of the shadow PT hierarchy. In one
embodiment, the attributes include access attributes associated with PD entries in the
shadow PT hierarchy and update attributes associated with PT entries in the shadow PT

hierarchy.

10

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

[0050] Figure 2 illustrates operation of a virtual TLB 204, according to one
embodiment of the present invention. Virtual TLB 204 includes a shadow translation data
structure represented by a shadow PT hierarchy 206 and a physical TLB 208. The shadow
PT hierarchy 206 derives its structure and content from a guest translation data structure
represented by a guest PT hierarchy 202. In one embodiment, the VMM maintains a
working set of shadow PT hierarchies for active processes of the VM.

[0051] In one embodiment, when the VM requests the processor to enable a
different guest PT hierarchy (e.g., by issuing MOV to CR3 or task switch in the [A-32
ISA), control transitions to the VMM, which instructs the processor to load the base
address 214 of a shadow PT hierarchy 206 corresponding to the requested guest PT
hierarchy 202. In some embodiments, this shadow PT hierarchy 206 is synchronized with
the guest PT hierarchy 202 using relevant metadata and attributes, as will be discussed in
greater detail below.

[0052] In one embodiment, the virtual TLB maintains access and update attributes
in the entries of the shadow PD and PTs. These attributes are also referred to as an
accessed (A) bit and a dirty (D) bit. In one embodiment, when a page frame is accessed
by guest software for the first time, the processor sets the accessed (A) attribute in the
corresponding PT entry or PD entry in the shadow PT hierarchy 206. If guest software
attempts to write a page frame, the processor sets the dirty (D) attribute in the
corresponding shadow PT entry.

[0053] Guest software is allowed to freely modify the guest PT hierarchy 202
including changing virtual-to-physical mapping, permissions, etc. Accordingly, the
shadow PT hierarchy 206 may not be always consistent with the guest PT hierarchy 202.
When a problem arises from an inconsistency between the hierarchies 202 and 206, the
guest OS, which treats the virtual TLB 204 as a physical TLB, attempts to change the
virtual TLB 204 by requesting a processor to perform an operation defined by a relevant
ISA. For example, in the IA-32 ISA, such operations include the INVLPG instruction,
CR3 loads, paging activation (modification of CR0.PG), modification of global paging
(toggling of the CR4.PGE bit), etc. The operations attempting to change the virtual TLB
204 are configured by the VMM as privileged (e.g., using corresponding execution
controls stored in the VMCS), and, therefore, result in a VM exit to the VMM. The VMM
then determines the cause of the VM exit and modifies the content of the shadow PT

hierarchy 206 if necessary. For example, if the VM exit occurs due to a page fault that

11

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

should be handled by the guest OS (e.g., a page fault caused by an access not permitted by
the guest PT hierarchy 202), the page fault is injected to the guest OS for handling.
Alternatively, if the VM exit occurs due to a page fault (or any other operations such as
INVLPG) resulting from an inconsistency between the entries of the hierarchies 202 and
206, the VMM may need to remove stale entries, add new entries, or modify existing
entries, as will be discussed in more detail below. Page faults caused by the guest PT
hierarchy are referred to herein as ‘real’ page faults, and page faults that would not have
occurred with direct usage of the guest page tables are referred to herein as ‘induced’ page
faults.

[0054] Figure 3A illustrates a process of creating and maintaining metadata for a
shadow PT hierarchy in a two-level hierarchy paging mode, according to one embodiment
of the present invention.

[0055] Referring to Figure 3A, a number of physical page frames identified by
distinct letters (letters A through W) is illustrated. Some guest page frames may contain a
PD (e.g., frame A). Other guest page frames may contain a PT (e.g., frames A, B, C, and
L). A hierarchy 302 is a guest PT hierarchy.

[0056] Figure 3A shows a shadow PT hierarchy 304 created based on a guest PT
hierarchy 302. Each PD or PT in the guest PT hierarchy 302 includes a corresponding PD
or PT in the shadow PT hierarchy 304. Note that in general a shadow page is not required
for each page in the guest PT. Some embodiments may choose to restrict shadow pages
according to usage statistics (e.g., only generate shadow pages for guest PT pages that
have been used), or according to resource constraints (e.g., maintaining only a set of
shadow pages based on available memory). Separate shadow tables are maintained for PD
and PT tables derived from the same physical frame. For example, separate tables 330 and
332 are maintained for PD 306 and PT 308 that are derived from the same physical frame
314. The PD and PT entries in the shadow PT hierarchy 304 contain transformed
mappings for the guest frames 314 through 324.

[0057] In the guest PT hierarchy 302, frames 316 and 318 are used as PTs 310 and
312, and frame 314 is used both as PD 306 and PT 308. This usage is illustrated as “PT”
and “PD/PT” in the page frames 314 through 316 shown under the shadow PT hierarchy
304.

[0058] The shadow PT hierarchy 304 is associated with an active PTE list 342 and
an active PDE list 344. In one embodiment, the active PTE list 342 identifies PT entries in

12

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

the shadow PT hierarchy 304 that map PT and PD page frames from the guest PT
hierarchy 302. In particular, the active PTE list 342 identifies entries in the PT 332 that
map page frames 314 through 318. In one embodiment, the active PDE list 344 identifies
PD entries in the shadow PT hierarchy that point to PTs with entries identified in the
active PTE list 342. In particular, the active PDE list 344 includes entries in the PD 330
that point to the PT 332. The active PTE list 342 and the active PDE list 344 are
components of the metadata of the shadow PT hierarchy 304.

[0059] The shadow PT hierarchy 304 is associated with a PT bit vector (PTV) 362
and a PD bit vector (PDV) 364. In one embodiment, the PTV 362 tracks the guest page
frames that are used as PTs. In particular, the PTV 362 includes page frames 314 through
318 which are used as PTs in the guest PT hierarchy 302. In one embodiment, the PDV
364 tracks the guest page frames that are used as PDs. In particular, the PDV 364 includes
page frame 314 that is used as PD in the guest PT hierarchy 302. In one embodiment, the
PTV 362 and PDV 364 represent all shadow PT hierarchies in the working set and track
the capacity in which shadow pages are employed in the working set (e.g., if a shadow
page has not been allocated for a guest PT, then the PTV will not reflect the guest PT
page, even if it appears in the guest paging structures).

[0060] In one embodiment, if the guest OS adds a new PT to the guest PT
hierarchy 302, the VMM may detect this addition (e.g., on the next or subsequent VM exit
related to TLB manipulation) and add a corresponding PT to the shadow PT hierarchy
304. For example, if a new PT 352 derived from a frame 319 is added to the guest PT
hierarchy 302, with a mapping for a new frame 354, the VMM may add a corresponding
PT 360 with transformed mappings to the shadow PT hierarchy 304 and update the
metadata to reflect this change. In particular, the VMM adds an entry mapping frame 319
in the PT 332 to the active PTE list 342, and an entry pointing to the PT 360 in the PD 330
to the active PDE list 344. Also, the VMM adds frame 319 to PTV 362, which tracks
guest frames (i.e., here frame 319) used as PTs.

[0061] Figure 3B illustrates a process of creating and maintaining metadata for a
shadow PT hierarchy in the EM64T paging mode, according to one embodiment of the
present invention.

[0062] Referring to Figure 3B, the base of the paging structure is a PML4 page
(e.g., frame A). Each entry in the PML4 page may reference a PDP page (e.g., frames B
and C). Each entry in the PDP page may reference a page directory (PD) page (e.g., frame

13

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

D or E), each entry of which in turn may reference a page in a page table (PT) page (e.g.,
frame F, G, H or I).

[0063] Each PML4, PDP, PD or PT page may be 4KB in size. In order to support
physical address spaces larger than 32 bits, the entry size may be increased relative to the
32-bit paging mode. Specifically, there may be 512 entries per page, requiring that 9 bits
of the virtual address be used at each level to select the appropriate entry. This selector
size may lead to a large page size of 2MB instead of 4MB as described previously.

[0064] In one embodiment, the creation of metadata in the EM64T paging mode
includes the generation of several vectors, an active entry list, and several active directory
lists. The vectors include a PML4YV vector identifying frames used as PML4 pages, a
PDPV vector identifying frames used as PDP pages, a PDV vector identifying frames uséd
as PD pages, and a PTV vector identifying frames used as PT pages. The active entry list
is an active PTE list including all mappings which map a PML4, PDP, PD or PT page.
The active directory lists include lists identifying higher level mapping structures
referencing a lower level structure through which the guest page corresponding to a
shadow structure can be accessed. In particular, the active directory lists consist of an
active PDE list including those PDEs that reference a page containing active PTE list
entries, an active PDPE list including active PDPE entries which reference a PD
containing an active PDE list entry, and an active PMLA4E list including entries which map
a PDP containing elements in the active PDPE list.

[0065] In one embodiment, the synchronization of the shadow page tables begins
with checking each entry in the active PMLAE list associated with the used shadow PT
hierarchy. If the entry has been accessed, each element in the active PDPE list
corresponding to the accessed PML4 entry is checked, and then the processing continues
as previously described.

[0066] In an alternative embodiment, active lists are not maintained and/or
processed for one or more of the upper levels of the hierarchy. For example, in a system
in which only a single entry is populated in the uppermost paging structure, the use of an
active list for each level of the hierarchy will cause this single entry to be always accessed,
thereby allowing no reduction in the amount of processing required for lower levels in the
hierarchy. To accommodate this usage model, the synchronization may instead begin by
processing an active list lower in the hierarchy. For example, in one embodiment, active

PDPE list elements may first be processed followed by active PDE list elements or active

14

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

. PTE list elements associated with a used shadow PT hierarchy. In one embodiment, the

initial layer processed on synchronization may be predetermined. In another embodiment,
the initial layer to be processed may be determined by dynamic profiling of the guest's
page table usage.

[0067] Various other paging modes may be used with embodiments of the present
invention. For example, IA-32 supports an additional paging mode in which a 32-bit
virtual address is mapped to a larger physical address. In this additional mode of
operation, the page table base register is configured to point to a PDP page which contains
four elements. Entry sizes and behaviors in this additional mode of operations are similar
to those described above for the 64-bit virtual address mode. As this additional mode does
not make use of PML4 pages, the PML4V and active PMLAE list are not required.

[0068] Figure 4 is a flow diagram of one embodiment of a process 400 for
synchronizing a guest translation data structure and a shadow translation data structure.
The process may be performed by processing logic that may comprise hardware (e.g.,
dedicated logic, programmable logic, microcode, etc.), software (such as that run on a
general purpose computer system or a dedicated machine), or a combination of both. In
one embodiment, the process is performed by an address translation module 126 of Figure
1.

[0069] Referring to Figure 4, process 400 begins with processing logic receiving
control transitioned from a VM due to an event pertaining to manipulation of the TLB
(processing block 402). Examples of such events may include a request to change the
current address space (e.g., CR3 load), a request to adjust inconsistent translations for a
specified virtual address in the TLB (e.g., INVLPG), a page fault, etc.

[0070] At processing box 404, processing logic determines whether the event
pertaining to the manipulation of the TLB should be handled by the VM. If 0 (e.g., the
event is a page fault caused by a problematic mapping in a guest translation data
structure), control is returned to the VM for handling the event (processing block 406). If
not, processing logic determines whether the event is associated with a specified
problematic address (processing box 408).

[0071] If the event does not need to be handled by the VM, it may be associated
with a specified problematic address. Examples of such an event may include an event
caused by the INVLPG instruction that takes a problematic address as an operand, an

event caused by an induced page fault (e.g., a page fault resulting from an inconsistency

15

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

between the two translation data structures with respect to a specific mapping, a page fault
caused by a need to virtualize A/D bits in the guest translation data structure, etc.), etc. If
the event is associated with a specified problematic address, processing logic makes
corrections in the shadow translation data structure for the specified address (e.g., removes
a stale mapping for the specified address or adds a new mapping for the specified address)
to conform to the guest translation data structure (processing block 410). One
embodiment of a process for synchronizing entries of two translation data structures for a
specified address is discussed in more detail below in conjunction with Figure 7.

[0072] If the event is not associated with any specific address (e.g., the event is
caused by a request of the VM to change the address space, which flushes all TLB entries
in IA32), processing logic determines which entries of the guest translation data structure
have been modified (processing block 412). The determination is made using metadata
extracted from the shadow translation data structure and attributes associated with the
entries of the shadow translation data structure (processing block 412). The metadata
includes vectors and active lists for various levels of the shadow translation data structure.
A vector for a specific level of the shadow translation data structure identifies frames used
as pages at this level of the guest translation data structure. The active lists include an
active entry list and one or more active directory lists. The active entry list includes
mappings that map pages used by the guest in forming the guest translation data structure.
The active directory lists identify higher level mapping structures referencing a lower level
structure through which a guest page corresponding to a shadowed paging structure can be
accessed. As discussed above, in the two-level hierarchy paging mode, the metadata
includes, in one embodiment, vectors PTV and PDV, an active entry list (a PTE list), and
an active directory list (a PDE list). In the EM64T paging mode, the metadata includes, in
one embodiment, vectors PTV, PDV, PDPV and PMLAYV, an active entry list (a PTE list),
and active directory lists (an active PDE list, an active PDPE list and an active PML4E
list).

[0073] One embodiment of a process for identifying recently modified entries of
the guest translation data structure using metadata is discussed in more detail below in
conjunction with Figure 6.

[0074] At processing block 414, processing logic synchronizes corresponding
entries in the shadow translation data structure with the modified entries of the guest

translation data structure. Accordingly, processing logic only needs to synchronize the

16

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

entries that were modified, rather than re-populating the entire content of the shadow
translation data structure.

[0075] In one embodiment extra storage is used to maintain some guest PD and/or
PT contents as they were last synchronized. This permits the VMM to determine where
modifications have been made without calculating or looking up additional relocation or
permission information.

[0076] Note that certain modifications to the guest page tables do not require
modifications to the shadow page tables. For example, if a guest PT contains a not present
mapping which is subsequently modified, no change is required to the corresponding
shadow PT.

[0077] Figures 5-14 illustrate various processes performed to support address
translation in a virtual machine environment using the two-level hierarchy paging mode,
according to different embodiments of the present invention. These processes may be
performed by processing logic that may comprise hardware (e.g., dedicated logic,
programmable logic, microcode, etc.), software (such as that run on a general purpose
computer system or a dedicated machine), or a combination of both. In one embodiment,
each of these processes is performed by an address translation module 126 of Figure 1.

[0078] Figure 5 is a flow diagram of one embodiment of a process 500 for
maintaining metadata for a shadow translation data structure such as a shadow PT
hierarchy.

[0079] Referring to Figure 5, process 500 begins with processing logic creating a

shadow page for each PD or PT page from the guest PT hierarchy (processing block 502).

[0080] At processing block 504, processing logic tracks page frames used as PDs
or PTs in the guest PT hierarchy. In one embodiment, processing logic sets an entry in the
PDV if a corresponding PFN is a PD in the guest PT hierarchy. Similarly, processing logic
sets an entry in the PTV if a corresponding PFN is a PT in the guest PT hierarchy.

[0081] At processing block 506, processing logic tracks mappings to any Dynamic
Random Access Memory (DRAM) backed page (to identify pages that can potentially be
PDs or PTs). In one embodiment, processing logic tracks mappings to DRAM based
pages using an inverted page table (IPT) and an inverted page directory (IPD). The IPT is
indexed by a PFN of a data page frame, with each entry containing a list of addresses of
PTEs that map the data ‘page frame. The IPD is indexed by a PFN of the page table, with
each entry containing a list of addresses of PDEs that reference the PFN as a page table.

17

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

[0082] In one embodiment, at processing block 508, processing logic identifies
4MB pages in the guest PT hierarchy and creates a page table in the shadow PT hierarchy
for each 4MB page to avoid large page mappings and thereby reduce future
synchronization time. Otherwise, an update of a 4MB page would cause the
synchronization of every PD and PT page within the 4MB. In one embodiment, an
inverted expansion table (IET) is used to track which PDEs in the guest PT hierarchy point
to a 4MB page. The IET is indexed by a PFN and attribute bits, with every entry listing
PDE:s that point to the exploded 4MB page.

[0083] In an embodiment of the invention the IPD may be indexed by the address

of the shadow PFN to minimize required address translation steps.

[0084] In IA32, memory type information (e.g., cacheability information) can be
stored in PAT bits within the PDE/PTE that maps a page. This type information is not
captured in a PDE that is a page-table pointer. Hence, if two 4MB pages were to map the
same region with different PAT attributes, then separate page tables would be required to
convey the correct PAT attributes. Using separate expansion tables for each set of
attributes resolves this issue.

[0085] At processing block 510, processing logic identifies PTEs in the shadow PT
hierarchy that map pages used as PD or PT in the guest PT hierarchy and creates an active
PTE list.

[0086] At processing block 512, processing logic identifies PDEs in the shadow
PT hierarchy that point to PTs with PTEs identified in the active PTE list and creates an
active PDE list.

[0087] Subsequently, at processing block 514, if the guest OS modifies the
structure of the guest PT hierarchy (e.g., adds or removes a PD or PT), processing logic
changes the above active PTE and PDE lists accordingly.

[0088] Figure 6 is a flow diagram of one embodiment of a process 600 for
facilitating a change of an address space. Note that in IA32 the same CR3 value may also
be reloaded to force a flush of stale TLB mappings. Similar processing steps are taken for
a change of CR3 or for a CR3 reload.

[0089] Referring to Figure 6, process 600 begins with processing logic
determining that a VM exit occurred due to a request of the VM to enable a different guest

PT hierarchy (e.g., by issuing a CR3 load request) (processing block 602).

18

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

[0090] In response, processing logic scans all active PDEs corresponding to the
currently in-use shadow PT hierarchy identified in the active PDE list of the metadata to
find which of these PDEs have been accessed (have an access attribute set to an access
value) (processing block 604), and then initializes the access attributes of the accessed
PDEs (processing block 606). In IA32, non-leaf paging tables do not support a dirty bit.
If the accessed bit is clear, then no page within the 4MB region has been read or written,
so any guest page table or page directory cannot have been modified. However, the
accessed bit does not distinguish between reads and writes, so 4MB regions which have
been accessed should be further processed even though it is possible that nothing has been
modified. In architectures supporting a dirty bit for non-leaf page tables, the dirty bit is
checked instead, and only regions which had been written to require further processing.

[0091] Next, for each accessed PDE, processing logic scans all shadow PTEs
corresponding to the accessed active PDE in the active PTE list of the metadata to find
which of these PTEs include mappings for an updated page (have an update attribute set
to an update value) (processing block 608).

[0092] Further, for each updated page, processing logic compares PD/PT entries in
the guest PT hierarchy with corresponding entries in the shadow PT hierarchy (processing
block 610) and changes the corresponding entries of the shadow PT hierarchy to conform
to the modified entries of the guest PT hierarchy (e.g., by removing from the shadow PT
hierarchy a PTE/PDE absent in the guest PT hierarchy, by adding to the shadow PT
hierarchy a new PTE/PDE recently added to the guest PT hierarchy, etc.) (processing
block 612). Note that adding PDEs may require the allocation and initialization of
additional shadow PTs. This in turn may require updates to the various metadata structures
maintained by the address translation module 126.

[0093] At processing block 614, processing logic initializes update attributes that
were set to an update value. Updated mappings identify the pages that were modified by
the guest OS.

[0094] At processing block 616, processing logic synchronizes the shadow
mappings based on modified guest pages and updates the metadata if needed due to the
above modifications.

[0095] At processing logic 618, processing logic determines whether a working set
maintained by the VMM includes a shadow PD corresponding to the new guest PD
requested by the VM. If so, processing logic requests the processor to load the base

19

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

address of this shadow PT hierarchy (processing block 620). If not, processing logic
allocates a new shadow PT hierarchy corresponding to the requested guest PT hierarchy
(processing block 622), adds the PD of the new shadow PT hierarchy to the PDV
(processing block 624), adds each valid PDE to the PD of the new shadow PT hierarchy
(processing block 626), configures the active PDE and PTE lists to monitor the PTEs that
map this PD for PD coverage (processing block 628), and then requests the processor to
load the base address of this shadow PT hierarchy (processing block 620). One
embodiment of a process for monitoring a PTE is discussed in more detail below in
conjunction with Figure 13.

[0096] Figure 7 is a flow diagram of one embodiment of a process 700 for
synchronizing entries of two translation data structures for a specified address. Process
700 may be performed, for example, as a result of the INVLPG instruction issued by the
VM or as a result of an induced page fault.

[0097] Referring to Figure 7, process 700 begins with processing logic
determining whether the mapping in the shadow PT hierarchy for the specified address is
stale (i.e., there is valid mapping that does not correspond to the current contents of the
guest page table) (processing box 702). If not, processing logic proceeds to processing
box 712. If so, processing logic determines whether the stale entry mapped a PD or PT
page (processing box 704). If the stale entry did not map a PD or PT page, processing
logic removes the stale entry (processing block 710) and proceeds to processing box 712.

[0098] If the stale entry did map a PD or PT page, processing logic further
determines whether the mapped page has been updated (processing box 706). If not,
processing logic proceeds to processing block 710. If so, processing logic updates,
synchronizes, or removes the modified PD or PT shadow(s) (processing block 708) and
proceeds to processing block 710. In one embodiment, the page is marked for future
synchronization.

[0099] At processing box 712, processing logic determines whether the guest PT
hierarchy contains a new mapping for the specified address. If not, process 700 ends. If
so, processing logic adds the new mapping as a corresponding PTE or PDE and, if
necessary, creates a shadow page and updates the metadata according to the addition

(processing block 714).

20

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

[00100] Figure 8 is a flow diagram of one embodiment of a process 800 for

removing a shadow PT hierarchy from a working set of shadow PT hierarchies maintained

by the VMM.

[00101] /A shadow PT hierarchy may be removed from the working set upon
detecting a deactivation of a corresponding process by the VM. The deactivation may be
detected using heuristic defined for a relevant OS or employing a set of checks based on
clues provided by the behavior of the guest VM with respect to the current address space.
If the VM supports an interface through which the OS or a driver notifies the VMM of
deactivations, then a heuristic may be avoided. A shadow PT hierarchy may also be
removed due to resource constraints, e.g., because the amount of memory used for shadow

structures exceeds a target threshold.

[00102] Referring to Figure 8, processing logic begins with removing each
valid PDE from the PD in the shadow PT hierarchy (processing block 802).

[00103] At processing block 804, processing logic clears a corresponding
entry in the PDV.

[00104] At processing block 806, processing logic deallocates the PD page

and removes the translation from a PD translation table (PDTT). The PDTT is used to
track the address and type (e.g., PD or PT) of a page. The PDTT is indexed by a guest
PFN, with each entry containing a physical PFN and metadata.

[00105] At processing block 808, processing logic removes monitoring from
the PTEs that map the PD. One embodiment of a process for removing monitoring from a
PTE is discussed in more detail below in conjunction with Figure 14.

[00106] Figure 9 is a flow diagram of one embodiment of a process 900 for
adding an entry to a PD of a shadow PT hierarchy. For illustration, we will consider a

present entry which maps a page table.

[00107] Referring to Figure 9, processing logic begins with adding an entry
for the PDE to the IPD (processing block 902).
[00108] At processing box 904, processing logic determines if the PT

mapped by this PDE is set in the PTV. If so, the appropriate shadow PT is looked up in
the PTTT (processing block 916), the new shadow PDE is created (processing block 914)
and process 900 ends. If not, processing logic sets a corresponding vector in the PTV
(processing block 906), allocates a shadow page and initializes the translation (processing

block 908), populates the new shadow page table (processing block 910), updates active

21

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

PTE/PDE lists and metadata to reflect that the guest page used as a page table by the
current guest PDE is to be monitored (processing block 912), and adds the new PDE,
adding it to the active PDE list if the shadow page table contains any active PTE list
elements (processing block 914). One embodiment of a process for monitoring a PTE is
discussed in more detail below in conjunction with Figure 13.

[00109] Figure 10 is a flow diagram of one embodiment of a process 1000
for removing an entry from a PD of a shadow PT hierarchy.

[00110] Referring to Figure 10, processing logic begins with removing an
entry for this PDE from the IPD PDE list (processing block 1002). If the PDE is in the
active PDE list, then the active PDE list must be updated.

[00111] At processing box 1004, processing logic determines whether the
PDE was the last entry to map the corresponding PT. If not, process 1000 ends. If so,
processing logic clears the entry for the PT in the PTV (processing block 1006), removes
each valid PTE (processing block 1008), updates the active PTE/PDE lists that map this
PT for PT coverage (processing block 1010), and removes the shadow page translation
and free the memory used to store the PT shadow page (processing block 1010).

[00112] Figure 11 is a flow diagram of one embodiment of a process 1100
for adding an entry to a PT of a shadow PT hierarchy.

[00113] Referring to Figure 11, processing logic begins with adding an
entry for this PTE to the IPT (processing block 1102).

[00114] At processing box 1106, processing logic creates the shadow
mapping and proceeds to processing box 1108.

[00115] At processing box 1108, processing logic determines whether a
corresponding entry in the PDV or PTV is set. If not, process 1100 ends. If so, processing
logic adds this entry to the active PTE list and updates associated metadata indicating if it
maps a PD and/or PT page (processing block 1110). If the active PTE entry just created is
the first for this page table, then the IPD must be consulted and each PDE which maps this
page table page added to the active PDE list.

[00116] Figure 12 is a flow diagram of one embodiment of a process 1200
for removing an entry from a PT of a shadow PT hierarchy.

[00117] Referring to Figure 12, processing logic begins with determining
whether this PTE maps a page set in the PDV or PTV (processing block 1202). If not,

processing logic proceeds to processing block 1206. If so, processing logic removes the

22

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

PTE from the active PTE list. If this was the last active PTE list element in the PT, then
PDEs referencing this PT are removed from the active PDE list. (processing block 1204),
and proceeds to processing block 1206.

[00118] At processing block 1206, processing logic removes the
corresponding entry from the IPT.

[00119] Figure 13 is a flow diagram of one embodiment of a process 1300
for monitoring a PTE of a shadow PT hierarchy. The steps shown in Figure 13 represent
the processing that may be required when the monitor recognizes that a page which has
been mapped as a data page is being used as a page directory or page table page. This
process will therefore be triggered by a status change for the page mapped by the PTE.

[00120] Referring to Figure 13, processing logic begins with determining
whether the PTE is identified in the active PTE list (processing box 1302). If so,
processing logic adds the previously missing coverage (processing block 1304). This flow
is triggered by a status change of the mapped page. Since this PTE was already in the
active PTE list, it must be the case that this PTE was previously in use as a PT or PD, and
is now in use in the other capacity as well. Such information may be explicitly stored with
the entry or in associated metadata. If the PTE is not in the active PTE list, processing
logic adds the PTE to the active PTE list and updates metadata accordingly (processing
block 1306).

[00121] Next, at processing box 1308, processing logic determines whether
the PTE is the first active PTE list entry for this PT. If not, process 1300 ends. If so,
processing logic adds, to the active PDE list, entries that map this PT (as found through
the IPD) (processing block 1310).

[00122] Figure 14 is a flow diagram of one embodiment of a process 1400
for decreasing the monitoring coverage provided by a PTE of a shadow PT hierarchy.
This process might be invoked when a process is removed from the working set, or the last
PDE to reference a page table is removed, resulting in a change of status of a previously
monitored page directory or page table page.

[00123] Referring to Figure 14, processing logic begins with determining
whether this PTE had monitored a page that was both a page table and page directory page
(processing box 1402). If so, processing logic reduces the coverage level, indicating that
the PTE now monitors a page as either a PT or as a PD, but not both (processing block
1404). If not, processing logic removes the PTE from the active PTE list (procéssing

23

10

15

20

WO 2006/081582 PCT/US2006/003587

block 1406). Note that if the PTE was an element for a page tracked for its use in a single
capacity, then it must now be the case that the page no longer requires monitoring.

[00124] Next, if the last active PTE list element in the PT was removed
(processing box 1408), processing logic removes the corresponding entries which mapped
this page table from the active PDE list (as found through the IPD) (processing block
1410).

[00125] As discussed above, the physical or virtual platform may comprise
multiple processors. Each processor may in turn comprise one or more threads or logical
processors. The processes discussed above can be used in a single-threaded system
supporting a single-threaded VM or in a physical system with multiple logical processors
that supports one or more VMs each containing a single virtual logical processor. Note
that each VM has its own set of metadata, shadow page tables, etc. and that
synchronization steps are confined to a given VM.

[00126] Thus, a method and apparatus for supporting address translation in a
virtual machine environment have been described. It is to be understood that the above
description is intended to be illustrative, and not restrictive. Many other embodiments will
be apparent to those of skill in the art upon reading and understanding the above
description. The scope of the invention should, therefore, be determined with reference to
the appended claims, along with the full scope of equivalents to which such claims are

entitled.

24

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

CLAIMS

What is claimed is:
1. A method comprising:

receiving control transitioned from a virtual machine (VM) due to a privileged
event pertaining to a translation-lookaside buffer (TLB);

determining which entries in a guest translation data structure were modified by
the VM, based on metadata extracted from a shadow translation data structure maintained
by a virtual machine monitor (VMM) and attributes associated with entries in the shadow
translation data structure; and

synchronizing entries in the shadow translation data structure that correspond to
the modified entries in the guest translation data structure with the modified entries in the

guest translation data structure.

2. The method of claim 1 wherein:

the guest translation data structure is used by the VM for address translation
operations; and

content of the shadow translation data structure is used by a processor to cache

address translations in the TLB.

3. The method of claim 1 further comprising:

maintaining a working set of shadow translation data structures, each shadow
translation data structure in the working set being associated with one of a plurality of
active processes of the VM; and

reusing content of a shadow translation data structure from the working set that is
associated with one of the plurality of active processes when a guest translation data

structure associated with the one of the plurality of active processes is enabled.

4, The method of claim 3 wherein the privileged event is any one of a request of the
VM to enable a different guest translation data structure, a page fault caused by one or
more inconsistencies between entries of the guest translation data structure and entries of
the shadow translation data structure, and a request of the VM to invalidate one or more

address translations in a translation-lookaside buffer (TLB).

25

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

5. The method of claim 3 further comprising:

determining that the privileged event is any one of a page fault, an INVLPG
instruction, and a request to enable a new guest translation data structure;

creating a new shadow translation data structure based on the new guest translation
data structure; and

deriving metadata from the new shadow translation data structure.

6. The method of claim 3 further comprising:

determining that one of the plurality of the active processes of the VM is
deactivated; and

removing a shadow translation data structure associated with the active process

being deactivated from the working set.

7. The method of claim 3 further comprising:
determining one of the shadow translation data structures is no longer used; and

removing the one of the shadow translation data structures from the working set.

8. The method of claim 1 wherein the metadata includes a set of vectors, an active

entry list, and one or more active directory lists.

9. The method of claim § wherein:

each vector in the set identifies frames used as pages at a corresponding level of
the guest translation data structure;

the active entry list identifies mappings that map pages used in forming the guest
translation data structure for which a shadow translation data structure exists; and

the one or more active directory lists identify higher level mapping structures
referencing a lower level structure through which the shadow translation data structure can

be accessed.

10. The method of claim 9 wherein:

the active entry list is an active page table (PT) entry list, the active PT entry (PTE)
list identifying PTEs in the shadow translation data structure that map PT pages and PD
pages from the guest translation data structure, and

26

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

the one or more active directory lists include an active page directory (PD) entry
list, the active PD entry (PDE) list identifying PDEs in the shadow translation data
structure that point to PTs having the PTEs from the active PTE list.

11. The method of claim 9 wherein:

the active entry list is an active page table (PT) entry list, the active PT entry (PTE)
list identifying mappings that map any of page map level 4 (PML4) pages, page directory
pointer (PDP) pages, page directory (PD) pages, and PT pages; and

the one or more active directory lists include an active PD entry (PDE) list
containing PDEs that reference a page with active PTE list entries, an active PDP entry
(PDPE) list containing active PDPE entries which reference a PD with an active PDE list
entry, and an active PML4E entry (PMLAE) list containing entries which map a PDP with
elements from the active PDPE list.

12. The method of claim 10 wherein the attributes associated with entries in the
shadow translation data structure include access attributes associated with PDEs in the
shadow translation data structure and update attributes associated with PTEs in the shadow

translation data structure.

13. The method of claim 12 wherein determining which entries in the guest translation
data structure were modified by the VM comprises:
identifying one or more PDEs from the active PDE list corresponding to the active
PT hierarchy being synchronized that have access attributes set to an access value; and
for each of the identified PDEs, finding corresponding PTEs from the active PTE

list that have update attributes set to an update value.

14. The method of claim 13 further comprising:
initializing the access attributes; and

initializing the update attributes.

15. A method comprising:
creating a shadow page table (PT) hierarchy based on a guest PT hierarchy used by

a guest operating system for address translation operations; and

27

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

deriving metadata from the shadow PT hierarchy to determine subsequently which
entries of the guest PT hierarchy that are represented in the shadow PT hierarchy were
modified, the metadata comprising an active entry list identifying mappings that map
pages used by the guest operating system in forming the guest PT hierarchy, and one or
more active directory lists identifying higher level mapping structures referencing a lower

level structure through which the shadow PT hierarchy is to be accessed.

16. The method of claim 15 wherein:

the active entry list is an active PT entry (PTE) list identifying PTEs in the shadow
PT hierarchy, which map PT pages and page directory (PD) pages from the guest PT
hierarchy, and

the one or more active directory lists include an active PD entry (PDE) list
identifying PDEs in the shadow PT hierarchy, which point to PTs with the identified
PTEs.

17. The method of claim 15 wherein: \

the active entry list is an active PT entry (PTE) list identifying PTEs in the shadow
PT hierarchy, which map any of page map level 4 (PML4) pages, page directory pointer
(PDP) pages, page directory (PD) pages, and PT pages; and

the one or more active directory lists include an active PD entry (PDE) list
containing PDEs that reference a page with active PTE list entries, an active PDP entry
(PDPE) list containing active PDPE entries which reference a PD with an active PDE list
entry, and an active PMLAE entry (PMLA4E) list containing entries which map a PDP with
elements from the active PDPE list.

18. The method of claim 16 further comprising:

tracking pages used by the guest operating system in forming the guest PT
hierarchy; and

tracking mappings to any Dynamic Random Access Memory (DRAM) backed

page frame.

19. The method of claim 15 further comprising:

identifying one or more large-size pages in the guest PT hierarchy; and

28

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

creating a PT table in the shadow PT hierarchy for each of the one or more large-

size pages.

20. The method of claim 15 further comprising:
detecting a change in a structure of the guest PT hierarchy; and
modifying the metadata to reflect the change.

21. The method of claim 15 wherein:
content of the shadow PT hierarchy is used by a processor to cache address

translations in the TLB.

22. An apparatus comprising:

a guest translation data structure used by a virtual machine (VM) for address
translation operations;

a shadow translation data structure maintained by a virtual machine monitor
(VMM), the shadow translation data structure deriving a format and strucfure from the
guest translation data structure; and

an address translation module to determine, based on metadata extracted from the
shadow translation data structure, which entries in the guest translation data structure were
modified by the VM, and to synchronize entries in the shadow translation data structure
that correspond to the modified entries in the guest translation data structure with the

modified entries in the guest translation data structure.

23. The apparatus of claim 22 wherein the address translation module is further to
maintain a working set of shadow translation data structures, each shadow translation data
structure in the working set being associated with one of a plurality of active processes of
the VM, and to reuse content of a shadow translation data structure from the working set
that is associated with one of the plurality of active processes when a guest translation data

structure associated with the one of the plurality of active processes is enabled.

24. The apparatus of claim 23 wherein the privileged event is any one of a request of
the VM to enable a different guest translation data structure, a page fault caused by one or

more inconsistencies between entries of the guest translation data structure and entries of

29

10

15

20

25

30

WO 2006/081582 PCT/US2006/003587

the shadow translation data structure, and a request of the VM to invalidate one or more

address translations in a translation-lookaside buffer (TLB).

25. A system comprising:

a dynamic random access memory (DRAM) to store a guest translation data
structure used by a virtual machine (VM) for address translation operations, and a shadow
translation data structure deriving a format and structure from the guest translation data
structure; and

a processor, coupled to the DRAM, to determine, based on metadata extracted
from the shadow translation data structure, which entries in the guest translation data
structure were modified by the VM, and to synchronize entries in the shadow translation
data structure that correspond to the modified entries in the guest translation data structure

with the modified entries in the guest translation data structure.

26. The system of claim 25 wherein the processor is further to maintain a working set
of shadow translation data structures, each shadow translation data structure in the
working set being associated with one of a plurality of active processes of the VM, and to
reuse content of a shadow translation data structure from the working set that is associated
with one of the plurality of active processes when a guest translation data structure

associated with the one of the plurality of active processes is enabled.

27. The system of claim 26 wherein the privileged event is any one of a request of the
VM to enable a different guest translation data structure, a page fault caused by one or
more inconsistencies between entries of the guest translation data structure and entries of
the shadow translation data structure, and a request of the VM to invalidate one or more

address translations in a translation-lookaside buffer (TLB).

28. A machine-readable medium containing instructions which, when executed by a
processing system, cause the processing system to perform a method, the method
comprising:

receiving control transitioned from a virtual machine (VM) due to a privileged

event pertaining to a translation-lookaside buffer (TLB);

30

10

15

20

WO 2006/081582 PCT/US2006/003587

determining which entries in a guest translation data structure were modified by
the VM, based on metadata extracted from a shadow translation data structure maintained
by a virtual machine monitor (VMM) and attributes associated with entries in the shadow
translation data structure; and

synchronizing entries in the shadow translation data structure that correspond to
the modified entries in the guest translation data structure with the modified entries in the

guest translation data structure.

29. The machine-readable medium of claim 28 wherein the method further comprises:
maintaining a working set of shadow translation data structures, each shadow
translation data structure in the working set being associated with one of a plurality of
active processes of the VM, and
reusing content of a shadow translation data structure from the working set that is
associated with one of the plurality of active processes when a guest translation data

structure associated with the one of the plurality of active processes is enabled.

30. The machine-readable medium of claim 29 wherein the privileged event is any one
of a request of the VM to enable a different guest translation data structure, a page fault
caused by one or more inconsistencies between entries of the guest translation data
structure and entries of the shadow translation data structure, and a request of the VM to

invalidate one or more address translations in a translation-lookaside buffer (TLB).

31

WO 2006/081582

1/15

/110\

108
(N
App.1 App. 2 App. 1 App. 2
104 108
OS #2

PCT/US2006/003587

/ 100

Virtual Machine

Virtual Machine

/‘

Abstraction 1 Abstraction 2

Virtual-Machine Monitor (VMM) 112
Address Translation
Module 126

/‘1 16

Processor 118 Memory 120

VTLB Data || VMCS
TLB 122 Store 124 125

Bare Platform Hardware

FIG. 1

PCT/US2006/003587

WO 2006/081582

2/15

¢ DIA

Id

2N

oweyy ofed =
Jiqeraded = 14
A10300mp o3ed = (g

d

Ld

ad

= Ld

[AY A

SSOIppY
oseq

1s8n9)

702 Aydaeiany o[qe)-o3ed jsonn)

002 \

Ld

d

4/ pessaooe

.‘

ad ‘AJIp j08
ssiw gL

_ uo Jal

SSOIpPY
vlc—|_°sed
mopeys

90¢ Ayorerany o[qel-o3ed mopeys

d1L

80z —’

70T W11 TEMMIA,,

PCT/US2006/003587

WO 2006/081582

3/15

Ve Ol

-
BLE /

\v/
v1e

O
9le ., 80ELd

e)

d
8le

= 0
0zg -/

3 I Id pm—
e 8 v/ wead
e L

1

W] \-TE Ld

yGe
20¢€ AyoteiaiH 1d 1seng

1 29¢
6l¢ 1d NAld

e
ple JLdiad 75 79¢

5 \usnalg A

L\ 9oy
A 1d \ __

de //,_.::NmmE

d A—
gle /| 1d %2

1817 3ad

e n SAOY

0z¢ —/ f——
o

3 $EE1d 1

zze —/ 1 7/ e ad
s /ﬁ 1d
¥Zg T
\-09¢ 1d

W

yGg

¥0€ Ayotelsiq 1 4 mopeys

PCT/US2006/003587

WO 2006/081582

4/15

d¢ ol
A\

| 1d
1Sr1
= 31d
H JALLOY
1d
5]
)
ld
=
ld
A
9. AQd
1sI7
o) - Sag | /\dad
FA—. BALOY 1s AVIAd
g, T 3dad 18I
/m_>_5 N
AN JALLOV
vﬁ.s_n_ =
1 A o 7ONd
S
A aad Adad
(
=13 so|qe | abed mopeys

Q| T

L

O|| Al W

m

<

ULl

()

O

(R

1]

so|qe] abed 1seno

WO 2006/081582 PCT/US2006/003587
5/15

400
/

START 100
~

RECEIVE CONTROL TRANSITIONED FROM VM
DUE TO AN EVENT PERTAINING TO TLB

404 /-406

EVENT TRANSITION
SHOULD BE § CONTROL TO THE
HANDLED BY ™ VM FOR HANDLING
VM? THE EVENT
Y 410
408 MAKE CORRECTIONS
SROBLEMATIC IN THE SHADOW
ADDRESS Y—» TRANSLATION DATA
SPECIFIED? STRUCTURE FOR THE
SPECIFIED ADDRESS

N /-412

DETERMINE WHICH ELEMENTS OF GUEST
TRANSLATION DATA STRUCTURE WERE MODIFIED

414
SYNCHRONIZE CORRESPONDING ELEMENTS
OF SHADOW TRANSACTION DATA STRUCTURE
WITH MODIFIED ELEMENTS OF THE GUEST
TRANSLATION DATA STRUCTURE

l¢
<

END

FIG. 4

WO 2006/081582

PCT/US2006/003587
6/15

/ 500

{ START)

! (302
CREATE A SHADOW PAGE FOR EACH PD OR PT PAGE
FROM THE GUEST PT HIERARCHY
! 504
TRACK PAGES USED AS PDs OR PTs
IN THE GUEST PT HIERARCHY UPDATING THE
APPROPRIATE VECTORS
! 306
TRACK MAPPINGS TO ANY DRAM BACKED PAGE
FRAME
508

IDENTIFY 4MB PAGES IN THE GUEST PT
HIERARCHY AND CREATE A PAGE TABLE IN
THE SHADOW PT HIERARCHY FOR EACH 4MB PAGE

! 510

IDENTIFY PTEs IN THE SHADOW PT HIERARCHY THAT
MAP PAGES USED AS PD OR PT IN THE GUEST PT
HIERARCHY AND CREATE AN ACTIVE PTE LIST

512

IDENTIFY PDEs IN THE SHADOW PT HIERARCHY THAT
POINT TO PTs WITH PTEs IDENTIFIED IN THE ACTIVE
PT LIST AND CREATE AN ACTIVE PDE LIST

| 514

CHANGE THE METADATA LISTS AND VECTORS IF
GUEST OS MODIFIES STRUCTURE OF GUEST PT
HIERARCHY

Y

END

FIG. 5

WO 2006/081582 PCT/US2006/003587
7/15
v —602
DETERMINE THAT A VM EXIT OCCURRED DUE
TO A REQUEST OF THE VM TO ENABLE A
DIFFERENT GUEST PT HIERARCHY
604
CANACTIVE PDEs FORTN-USE PTIDENTIFIED TN THE
ACTIVE PDE LIST TO FIND WHICH OF THESE PDEs
HAVE BEEN ACCESSED
606
INITIALIZE THE ACCESS ATTRIBUTES
OF THE ACCESSED PDEs
608
FOREACH ACCESSED PDE, SCAN CORRESPONDING
ACTIVE PTEs IN THE ACTIVE PTE LIST
TO FIND WHICH OF THESE PTEs INCLUDE
MAPPINGS FOR AN UPDATED PAGE
, 610
FOR EACH UPDATED PAGE, COMPARE
PD/PT ENTRIES IN THE GUEST PT HIERARCHY
WITH CORRESPONDING ENTRIES IN THE
SHADOW PT HIERARCHY
’ ' 612
CHANGE THE CORRESPONDING ENTRIES OF TRE
SHADOW PT HIERARCHY TO CONFORM TO THE
MODIFIED ENTRIES OF THE GUEST PT HIERARCHY
,—614
INITIALIZE UPDATE ATTRIBUTES
OF THE UPDATED PTEs
, 616
YNCHRONIZE UPDATED GUEST PAGES UPDATING
THE METADATA AS NEEDED
618
T INCLUDES SHAD
PT HIERARCHY FOR NEW N
GUEST PT ALLOCATE A NI‘ELW SHADOW PT s
[ERARCHY HIERARCHY CORRESPONDING TO THE
REQUESTED GUEST PT HIERARCHY
624
ADD THE PDOF THE NEW GUEST
PT HIERARCHY TO THE PDV)
626
ADD EACH VALIDPDE TO THE PDOF
v THE NEW SHADOW PT HIERARCHY 628
CONFIGURE THE ACTIVE PDE AND PTETISTS |
TO MONITOR THE PTEs THAT MAP
THIS PD FOR |F>D COVERAGE
| 620

REQUEST THE PROCESSOR TO LOAD THE BASE
ADDRESS OF THE SHADOW PT HIERARCHY

FIG. 6

END

WO 2006/081582
$/15 PCT/US2006/003587

700
e

704

702

DID THE
STALE ENTRY MAP A PAG
DIRECTORY OR PAGE
TABLE PAGE?

SHADOW MAPPING FOR TH
TARGET LINEAR ADDRESS
706

IS THE
MAPPED PAGE
UPDATED?

Y 70
E UPDATE THE MODIFIED PAGE
DI

RECTORY/PAGE TABLE SHADOW(S)

|]

&

‘ 710
[REMOVE THE STALE ENTRY ﬁ

14
Y-»\ ADD NEW MAPPING AS A PTE/PDE \

712

DOES THE
GUEST CONTAIN A NE
MAPPING FOR
THIS PAGE?

WO 2006/081582 PCT/US2006/003587
9/15

800
s

START 202
~

REMOVE EACH VALID PDE FROM THE
PD IN THE SHADOW PT HIERARCHY

804
! C
CLEAR A CORRESPONDING ENTRY IN THE PDV

l /-806

DEALLOCATE THE PD PAGE AND REMOVE
THE TRANSLATION FROM PDTT

/-808
REMOVE MONITORING FROM THE PTEs THAT MAP
THEPD

h 4

END

FIG. 8

WO 2006/081582

PCT/US2006/003587
10/15

900
i

START 002
~

ADD AN ENTRY FOR PDE TO THE IPD

N.
N

904
Has the PTV been

/—906 set for this PT?
y
SET CORRESPONDING ENTRY
IN THE PTV
A /-908
ALLOCATE A SHADOW v
PAGE AND PLACE
TRANSLATION IN THE PTTT
. 910 (-916
POPULATE THE NEW SHADOW LOOKUP PT SHADOW
PT IN PTTT
912
UPDATE ACTIVE PTE/PDE
LISTS AS NECESSARY TO
REFLECT NEW PT 914
~ a
ADD SHADOW PDE
» ADDING TO ACTIVE PDE LIST
AS NEEDED
END

FIG. 9

WO 2006/081582

11/15

START

PCT/US2006/003587

1000
/

1002
~

REMOVE AN ENTRY FOR PDE FROM THE IPD

\ 4

/—1006

CLEAR THE ENTRY
FOR THE PT IN THE PTV

A

1008

REMOVE EACH VALID PTE

A

1010

UPDATE ACTIVE PTE/PDE
LISTS AS APPROPRIATE

Y

/-1012

REMOVE SHADOW PAGE
TRANSLATION AND FREE
SHADOW PAGE

LAST TO MAP
PT?

VR 4

END

FIG. 10

WO 2006/081582

12/15

{ START)

Y

PCT/US2006/003587

1100
i

1102
F

ADD AN ENTRY FOR PTE TO THE IPT

1106

, (

CREATE THE
SHADOW MAPPING

1108
ENTRY

INPDV ORPTV IS
SET?

v -

N
N

1110

UPDATE ACTIVE PTE/PDE
LISTS AS NECESSARY

»)
q

4

END

FIG. 11

WO 2006/081582 PCT/US2006/003587
13/15

/ 1200
START

(N}
N

IN THE PDV OR
PTV?

REMOVE PTE FROM ACTIVE PTE LIST
AND UPDATE ACTIVE PDE LIST AS NECESSARY

<

1206

REMOVE THE CORRESPONDING
ENTRY FROM THE IPT

END
FIG. 12

WO 2006/081582 PCT/US2006/003587
14/15

/ 1300
START
1302
PTE
IDENTIFIED IN y
ACTIVE PTE l 1304
LIST? UPDATE COVERAGE
INFORMATION AS
v 1306 NEEDED
ADD PTE TO ACTIVE PTE LIST
1308
7E WAS ADDED A
FIRST ACTIVE PTE LIST y | 10
ELEMENT FOR -
THIS PT? ADD, TO THE ACTIVE PDE
LIST, ENTRIES THAT MAP
THIS PT

END

FIG. 13

WO 2006/081582 PCT/US2006/003587
15/15

/ 1400

1402

PTE
MAPS A PAGE
WHICH IS BOTH
PD AND PT

N
N

‘ 1406

REMOVE PTE FROM
ACTIVE PTE LISTS y 1404

A 4

UPDATE ACTIVE PTE LIST AND METADATA

1408

AGE TABL
CONTAINS
ACTIVE PTE LIST
ENTRIES?

N 1410

h 4
REMOVE CORRESPONDING ENTRIES
FROM THE ACTIVE PDE LIST

:

A

END

FIG. 14

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

