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(57) Abstract: Certain embodiments of the present in-
vention are efficient run-time methods for creating and
updating a RAM list of dominant trapping-set profiles
for use in (LDPC) list decoding. A decoded correct
codeword is compared to a near codeword to generate a
new trapping-set profile, and the profile written to
RAM. Record is kept of how many times RAM has been
searched since a profile was last matched. Profiles that

have not been matched within a specified number of
searches are purge-eligible. Purge-eligible profiles are
further ranked on other factors, e.g., number of times a
profile has been matched since it was added, number of
unsatisfied check nodes, number of erroneous bit nodes.
If there is insufficient free space in RAM to store a new-
ly-discovered profile, then purge-eligible profiles are
deleted, beginning with the lowest-ranked profiles, until
either (i) sufficient free space is created or (ii) there are

- no more purge-eligible profiles.
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RAM LIST-DECODING OF NEAR CODEWORDS

[0001] Cross-Reference to Related Applications

[0002] This application claims the benefit of the filing date of U.S. provisional application no.
61/089,297, filed on 08/15/08 as attorney docket no. 08-0241-PR, the teachings of which are incorporated
herein by reference in its entirety.

[0003] The subject matter of this application is related to U.S. patent application no. XX/xxx,xxx
filed on the same date as this application as attorney docket no. 08-1293, the teachings of which are

incorporated herein by reference in their entirety.

BACKGROUND OF THE INVENTION
[0004] Field of the Invention

[0005] The invention relates to digital signal processing, and, in particular, to a data-encoding
method known as low-density parity check (LDPC) coding.
[00006] Description of the Related Art

[0007] Communication is the transmission of information by a transmitter to a receiver over a
communications channel. In the real world, the communications channel is a noisy channel, outputting to
the receiver a distorted version of the information received from the transmitter. A hard disk (HD) drive
is one such noisy channel, accepting information from a transmitter, storing that information, and then,
possibly, transmitting a more or less distorted copy of that information to a receiver.

[0008] The distortion introduced by a communications channel such as an HD drive might be great
enough to cause a channel error, i.e., where the receiver interprets the channel output signal as a 1 when
the channel input signal was a 0, and vice versa. Channel errors reduce throughput, and are thus
undesirable. Hence, there is an ongoing need for tools which detect and/or correct channel errors. Low-
density parity check (LDPC) coding is one method for the detection and correction of channel errors.
LDPC codes are among the known near-Shannon-limit codes that can achieve very low bit-error rates
(BER) for low signal-to-noise ratio (SNR) applications. LDPC decoding is distinguished by its potential
for parallelization, low implementation complexity, low decoding latency, as well as less-severe error-
floors at high SNRs. LDPC codes are considered for virtually all the next-generation communication
standards.

SUMMARY OF THE INVENTION

[0009] In certain embodiments, the present invention comprises methods for decoding encoded data
encoded with a graph-based code. The method comprises (i) performing decoding on the encoded data to
generate a candidate decoded codeword and (ii) performing, if the candidate decoded codeword is not a
decoded correct codeword, a trapping-set (T'S)-RAM list-decoding method to attempt to generate the

decoded correct codeword. The TS-RAM list-decoding method accesses one or more TS profiles stored
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in RAM memory, each TS profile corresponding to a different trapping set.

[0010] In other embodiments, the present invention is an apparatus for decoding encoded data
encoded with a graph-based code. The apparatus comprises (i) a decoder adapted to perform decoding on
the encoded data to generate a candidate decoded codeword, (i) RAM memory, and (iii) a trapping-set
(TS)-RAM list decoder adapted to perform, if the candidate decoded codeword is not a decoded correct
codeword, a TS-RAM list-decoding method to attempt to generate the decoded correct codeword. The
TS-RAM list decoder accesses one or more TS profiles stored in the RAM memory, each TS profile

corresponding to a different trapping set.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Other aspects, features, and advantages of the invention will become more fully apparent
from the following detailed description, the appended claims, and the accompanying drawings in which
like reference numerals identify similar or identical elements.

[0012] FIG. 1 is a block diagram of a portion of a typical hard disk (HD) drive 100 that utilizes
LDPC coding.

[0013] FIG. 2(A) depicts LDPC H matrix 200, and FIG. 2(B) is a Tanner graph of H matrix 200.
[0014] FIG. 3 is a flowchart of typical LDPC decoding method 300 used by decoder 112.

[0015] FIG. 4 is a block diagram of an off-line trapping-set (TS) simulation tool 400 for identifying
trapping sets and recording various information about those trapping sets.

[0016] FIG. 5 is a block diagram of an LDPC decoding system 500 according to one embodiment of
the present invention.

[0017] FIG. 6 is an exemplary layout of ROM P-Table 514 of FIG. 5.

[0018] FIG. 7 is an exemplary layout of B-Table 512 of FIG. 5.

[0019] FIG. 8 is an exemplary layout of E-Table 516 of FIG. 5.

[0020] FIG. 9 is an exemplary layout of EI-Table 518 of FIG. 5.

[0021] FIG. 10 is an exemplary layout of RAM P-Table 522 of FIG. 5.

[0022] FIG. 11 is an exemplary layout of RAM Index Table 524 of FIG. 5.

[0023] FIG. 12 is a flowchart of exemplary process 1200 used by LDPC decoding system 500 of
FIG. 5.

[0024] FIG. 13 is a flowchart of exemplary TS-ROM list-decoding process 1206 of FIG. 12
implemented by post-processor 504 of FIG. 5.

[0025] FIG. 14 is a flowchart of exemplary TS-ROM search process 1314 of FIG. 13.

[0026] FIG. 15 is a flowchart of exemplary TS-RAM list-decoding process 1208 of FIG. 12.
[0027] FIG. 16 is a flowchart of exemplary TS-RAM update process 1216 of FIG. 12.
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DETAILED DESCRIPTION
[0028] FIG. 1 is a block diagram of a portion of a typical hard disk (HD) drive 100 that utilizes
LDPC coding. HD drive 100 comprises platters 102 and read channel 104. Read channel 104 comprises
LDPC encoder 106, write processor 108, read processor 110, and LDPC decoder 112. Path 114 is the
noisy channel between LDPC encoder 106 and LDPC decoder 112.
[0029] Information words to be written to platters 102 are processed by LDPC encoder 106 to yield
LDPC codewords. LDPC codewords are sent to write processor 108, which comprises a number of
modules, e.g., a BPSK (binary phase-shift keying) encoder, a digital-to-analog converter, etc. Output 116
of write processor 108 is written to platters 102.
[0030] Signals 118 read from platters 102 are sent to read processor 110, which comprises a number

of modules, e.g., a pre-amplifier, a continuous-time filter, a fixed-impulse response filter, a detector, an

analog-to-digital converter, etc. Read processor 110 outputs log-likelihood ratio (LLR) values L, to

LDPC decoder 106, which in turn outputs decoded information words. Additionally, LDPC decoder 106

sends E,;,p values back to read processor 110. E; . are defined by Equation 6 below, and represent

intermediate calculated LLR values. Read processor 110 uses the E,;,,~ values to tune its performance,

a process known as turbo-decoding.

[0031] LDPC Encoding

[0032] LDPC encoder 106 appends to the bits of an information word a number of parity bits
specified by the LDPC code, to yield a codeword. The bits in an information word are known as variable
bits, and the number of those variable bits is denoted K. The total number of bits in an LDPC codeword
is denoted N. Thus, the number of parity bits is given by N — K . The rate of a particular LDPC code is
K/ N, ie., the ratio of the information word length to the codeword length. Thus, an LDPC code which
appends six parity bits to each three-bit information word to yield a nine-bit codeword has a rate of 1/3.
In the case of a typical HD drive, the information word length K is 4096 bits (the length of a typical HD
drive sector), and the number of parity bits is approximately 410 bits, for a codeword length of 4506 bits
and arate of 0.9.

[0033] Each parity bit in an LDPC codeword is associated with one or more other (variable or
parity) bits in that codeword in a particular way as specified by the particular LDPC code, and the value
assigned to a parity bit is set so as to satisfy the LDPC code. Typical LDPC codes specify that
associated bits satisfy a parity check constraint, e.g., the sum of the associated bits is an even number,
1.e., sum modulo 2 = 0.

[0034] The LDPC Code

[0035] A particular LDPC code is defined by a two-dimensional matrix of 1s and Os known as the
parity check matrix, or H matrix, or simply H. H is known, a priori, by both the LDPC encoder and



WO 2010/019168 PCT/US2008/086523

4

decoder. H comprises N columns and N — K rows, i.e., a column for every bit of the codeword, and a
row for every parity bit. Each 1 in H represents an association between the codeword bit of the column
and the parity bit of the row. For example, a 1 at the third row, seventh column of H means that the third
parity check bit is associated with the seventh bit of the codeword. The modulo 2 sum of the value of a

check bit and all variable bits associated with that check bit should be 0.

[0036] The number of 1s in a column of H is known as the weight w_ of that column. Similarly, the
number of 1s in a row of H is known as the weight w, of that row. The LDPC code defined by an H
wherein all columns have the same w, and all rows have the same w, is known as a regular LDPC code.

An LDPC code defined by an H where w, and/or w, are not the same across all columns and/or rows,
respectively, is known as an irregular LDPC code.

[0037] A defining characteristic of typical LDPC codes is that H is “sparse,” i.e., the elements of H
are mostly Os with few 1s. Research has shown that H matrices typically need w_=3 in order to
perform well, and that irregular LDPC codes outperform regular LDPC codes.

[0038] FIG. 2(A) depicts LDPC H matrix 200. H matrix 200 comprises N =9 columns and

N — K =6 rows. Thus, H matrix 200 defines an LDPC code which accepts a three-bit information
word, appends six parity bits, and outputs a nine-bit codeword. Thus, the rate of this particular LDPC
code is 3/9 or 1/3. The LDPC code defined by H matrix 200 is regular, with a w. of two, and a w, of
three.

[0039] Channel Output: Log-Likelihood Ratios

[0040] Returning to FIG. 1, the path 114 between LDPC encoder 106 and LDPC decoder 112 is a

noisy channel, and, as such, decoder 112 does not receive a perfect copy of the codewords outputted by
LDPC encoder 106. Instead, read processor 110 outputs one or more L, values, where each L, value
corresponds to a bit in the channel input codeword.

[0041] Each L, value is a log-likelihood ratio (LLR). An LLR is a data structure comprising a

number of bits, where a single sign bit indicates the hard decision (i.e., read processor 110’s best guess as

to whether the original bit was a 1 or a 0), and the remaining magnitude bits indicate read processor 110’s

degree of confidence in that hard decision. More precisely, the LLR represents log&, where p, is the
b

probability that the sample represents a 0, and p, is the probability that the sample represents a 1.
[0042] For example, read processor 110 might output each L, value as a five-bit data structure,

where the most-significant bit is a sign bit which indicates the hard-decision value, and the 16 values of

the four magnitude bits indicate the confidence of the hard decision. Thus, for example, in one typical
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scheme, an LLR value of binary 00000 would indicate a hard-decision value of 0 with least confidence, a
value of binary 01111 would indicate a hard-decision value of O with maximum confidence, binary 10000
would be unused, binary 10001 would indicate a hard-decision value of 1 with least confidence, and a
value of binary 11111 would indicate a hard-decision value of 1 with maximum confidence.

[0043] LDPC Decoding: Belief Propagation

[0044] FIG. 3 is a flowchart of typical LDPC decoding method 300 used by decoder 112. LDPC
decoder 112 receives N number of L, values and outputs decoded information word. The heart of
decoding method 300 is an iterative, two-phase message-passing algorithm called belief propagation.
Belief propagation is best explained with the use of a visualization called a Tanner graph.

[0045] FIG. 2(B) is a Tanner graph of H matrix 200. In general, a Tanner graph comprises 1) a
number of bit nodes n equal to the number of columns in H (and thus equal to the number of variable
bits), 2) a number of check nodes m equal to the number of rows in H (and thus equal to number of

parity bits), 3) lines, also known as edges, each of which connects a single bit node to a single check

node, 4) for each bit node n, the original L, value received from a receiver, and 5) for each bit node n, a
calculated hard-decision output value X,. Tanner graph 2(B) comprises nine bit nodes n, — g, six

check nodes m,, —m;, 18 edges 202 connecting bit nodes to check nodes, nine L, values, and nine )?n

values.
[0046] The edges in a Tanner graph represent the relationships between (i.e., variable) bit nodes n

and check nodes m, i.e., edges represent 1s in H. For example, in FIG. 2(B), an edge 202 connects first
bit node n, to fourth check node m;, meaning that there is a 1 in the first column, fourth row of H
matrix 200 in FIG. 2(A).

[0047] A Tanner graph is a bipartite graph, i.e., an edge can connect a bit node to only a check node,

and cannot connect a bit node to another bit node, or a check node to another check node. The set of all
bit nodes n connected by edges to a particular check node m is denoted N (m) The set of all check
nodes m connected by edges to a particular bit node n is denoted M (n)

[0048] The index of a particular (bit or check) node is its ordinal sequence in the graph. The degree

of a (bit or check) node is the number of edges connected to that node. Thus, the degree of bit node » in a

Tanner graph is equal to the weight w_ of column # in the corresponding H matrix, and the degree of

check node m in a Tanner graph is equal to the weight w, of row m in the corresponding H matrix.

[0049] Returning to FIG. 3, processing starts at step 302 and proceeds to step 304, decoder
initialization. Decoder initialization 304 comprises setting all edges (e.g., 202 of FIG. 2(B)) connected to

bit node 1 to the corresponding L, value associated with bit node 7, and setting the X, value of bit
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node 7 to the hard-decision value of bit node n’s L. Thus, for example, in FIG. 2(B), if the L, value
associated with bit node n, is +5, then, at step 304, the two edges 202 connecting bit node 7, to check
nodes m, and m; are set to +5, and bit node n’s X, value is set to 1. An alternative way of expressing
the first part of this step is that bit node n, sends a message of +5 to each check node m in set M (no) A

message sent from a bit node n to a check node m is denoted Q, ., where Q, . is in the form of an

LLR. The state of a decoder which has just been initialized is referred to as state 0.

[0050] Step 304 then sends to syndrome check step 306 a vector X comprising N X, values.

Vector X is a codeword candidate. Syndrome check step 306 calculates syndrome vector z using the
following Equation 1:

z=xH" (1)
where H' is the transpose of the H matrix. If z is a O vector, then vector X has satisfied all the parity
check constraints defined by H, i.e., X is a valid codeword. In that case, processing proceeds to cyclic-
redundancy check (CRC) check 318.
[0051] If, instead, z is not a 0 vector, then vector X fails one or more of the parity check constraints,
which are typically referred to as unsatisfied check nodes or USCs. The number of elements in syndrome
vector 7 that are not O scalar values is the number » of USCs in vector X . Further, the indices of the
non-zero scalar elements of syndrome vector z are the indices of the USCs in vector X .
[0052] If vector X fails syndrome check 306, then processing continues to the first of one or more
decoding iterations 308. Decoding iteration 308 comprises three steps: 1) a belief-propagation check-
node update step 310, 2) a belief-propagation bit-node update step 312, and 3) a syndrome check step
314, which is identical to step 306.

[0053] In belief-propagation check-node update step 310, each check node m uses the Q

messages received from all bit nodes » in set N (m) to calculate messages, denoted R, according to

mn >

the following Equations 2, 3, and 4:

R = &9 max(x® —p.0) @)
<o ={Rul=, im0 ®
8522 B (n'e I\I’}m)\n Sen (Q'(lly;il) )j (4)

where i is the decoding iteration, N (m)\ n isset N (m) excluding bit node n, and P is a positive

constant, the value of which depends on the code parameters. The calculated R, messages are then sent
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back along those same edges to all bit nodes n in set N(m). Like Q,, messages, R, messages are
LLRs.
[0054] Next, in belief-propagation bit-node update step 312, each bit node » calculates Q,

messages according to the following Equation 5:

o =LY+ YR, 5)

meM (n)\m
where L(no) is the L, value for bit node »n, and M (n)\ m is set M (n) excluding check node m. Bit
node n then sends the calculated ()~ messages to all check nodes m in set M (n).

[0055] Also during bit-node update step 312, each bit node n updates its X, value according to the

following Equations 6 and 7:

EV= SRV (©)
meM (n)
p=19+EY 7

If P,>0,then X, =0, and if P, <0, then X, =1. The values generated by Equation 6 are also referred

to as E-values or £, .~ values. Typically, E; - values are sent back to the read processor (e.g., read

processor 110 of FIG. 1) as part of a tuning process known as turbo-decoding. The values generated by
Equation 7 are referred to as P-values. The specific belief-propagation algorithm represented by

Equations 2 — 7 is known as the min-sum algorithm.

[0056] Note that X, is updated during each decoding iteration 308 and finally outputted by decoding
process 300. The original LLR values L, remain unchanged during decoding process 300. In other
words, during each decoding iteration 308, each bit node » casts its vote as to the proper value of all the
other bit nodes n to which it is associated via a check node m. For example, in FIG. 2(B), bit node #, is
associated with check nodes m, and m;. Therefore, n, will cast its vote as to the proper values of the
bit nodes associated with check nodes m,, and m,, i.e., ny, Ry, 1, and n,. The greater the magnitude
value of bit node n’s L, value (i.e., the greater the confidence), the more bit node n’s vote counts. The

net effect of this vote-casting is that the X, value of a bit node with a low L, magnitude value (ie.,
confidence) will change and conform to the beliefs of the high-confidence bit nodes with which that bit
node is associated. In other word, if a bitnode’s L, value contains an erroneous hard-decision value

and low magnitude, then the combined votes of the other bit nodes will tend, after one or more iterations,
to correct that erroneous hard-decision value.

[0057] Bit-node update step 312 sends to syndrome check step 314 a vector X constructed out of the
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current X, values of the decoder. The syndrome check of step 314 is identical to the syndrome check of

step 306 discussed above. If vector X passes syndrome check 314, then vector X is sent to CRC step
318

[0058] LDPC Decoding: Cyclic Redundancy Check and Mis-Satisfied Check Nodes

[0059] Passing syndrome check 306 or 314 means only that vector X is a valid codeword, but not
necessarily the decoded correct codeword (DCCW). It is possible for an LDPC decoder to generate a
valid codeword which is not the DCCW. In that case, there are no USCs in vector X, but there are mis-
satisfied check nodes (MSCs). Thus, to ensure that valid vector X is the DCCW, process 300 passes
vector X to cyclic redundancy check (CRC) 318. A CRC check is a checksum operation which can
detect alteration of data during transmission or storage.

[0060] If vector X passes the CRC check, then vector X is the DCCW, and process 300 sets global
variable DCCW to true, outputs vector X, and terminates at step 320. Otherwise, vector X is not the
DCCW, and process 300 sets global variable DCCW to false, outputs vector X, and terminates at step
320. Global variable DCCW informs other decoding processes (e.g., TS-ROM list-decoding process
1206 of FIG. 12, discussed below) whether or not the DCCW has been generated.

[0061] Returning to step 314, if vector X fails the syndrome check, then vector X still contains one
or more USCs. The typical method for resolving USCs is to perform another decoding iteration 308.
However, there might exist one or more USCs in a particular vector X which will never be satisfied in a
reasonable amount of time. Thus, LDPC decoders are typically limited in how many decoding iterations
they can perform on a particular vector x. Typical values for the maximum number of iterations range
from 50 to 200.

[0062] In FIG. 3, step 316 determines whether the maximum number of iterations has been reached.
If not, then another decoding iteration 308 is performed. If, instead, the maximum number of iterations
has been reached, then decoder process 300 has failed, i.e., the decoder is a “failed decoder.” In that
case, process 300 sets global variable DCCW to false, outputs vector X, and terminates at step 320.
[0063] If vector X of a failed decoder contains a small number (e.g., less than 16) of USCs, then
vector X is referred to as a near codeword (NCW). If vector X of a failed decoder contains a large
number (e.g., greater than 15) of USCs, then vector X is referred to as an invalid codeword (ICW).
[0064] Two typical methods for handling a failed decoding process are 1) to request a re-send of the
corresponding data or 2) to pass vector X to one or more post-processing (PP) methods. Typically, the
number b of USCs in vector X dictates which of these two methods will be used. A large b (e.g., greater
than 16) is typically handled by a re-send or other post-processing method, while small # values are

handled by error-floor mitigation post-processing methods.

[0065] BER, SNR, and Error Floors
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[0066] The bit-error rate (BER) of an LDPC decoder is a ratio which expresses how many
erroneously decoded bits will be generated for x number of bits processed. Thus, for example, a decoder
with a BER of 10” will, on average, generate one erroneous bit for every billion bits processed. The
smaller the BER, the better the decoder. The BER of an LDPC decoder increases (worsens) when the
decoder fails, i.e., terminates without converging on the decoded correct codeword DCCW.

[0067] The BER of an LDPC decoder is strongly influenced by the signal-to-noise ratio (SNR) of
the decoder’s input signal. A graph of BER as a function of SNR typically comprises two distinct
regions: an initial “waterfall” region where the BER improves (decreases) rapidly given a unit increase
in SNR, and a subsequent “error floor” region where unit increases in SNR yield only modest
improvements in BER. Thus, achieving significant BER improvements in the error floor region requires
methods other than SNR increase.

[0068] One method for improving the error-floor characteristics of an LDPC decoding is to increase
the codeword length. However, increasing codeword length also increases the memory and other
computing resources required for LDPC decoding. Thus, if such resources are strictly limited, as is
typically the case with the read-channel devices on HD drives, then other methods must be found to yield
the necessary error-floor improvement.

[0069] Another scarce resource is processing cycles. Typically, to achieve a specified throughput,
an HD drive budgets a fixed number of read-channel processing cycles for decoding a codeword.
Methods which exceed that budget (i.e., off-the-fly methods) decrease the throughput. More desirable
are on-the-fly methods which recover the DCCW within the clock-cycle allotment and thus do not
decrease the throughput.

[0070] Trapping Sets and Dominant Trapping Sets

[0071] An (a, b) trapping set is a set of & USCs which a decoder cannot satisfy within the maximum
number of iterations, and the a erroneous bit nodes (EBNs) associated with those USCs. The majority of
trapping sets comprise fewer than five USCs and fewer than ten EBNs. Trapping sets have a significant
impact on the error-floor characteristics of an LDPC decoder, i.e., when an LDPC decoder fails to
converge on the DCCW, it is often because of a trapping set.

[0072] One way to improve the error-floor characteristics of an LDPC decoder is to (i) examine the
USCs in the X vector of a failed decoder and identify trapping sets (if any), (ii) identify the EBNs
associated with those USCs, (iii) flip one or more EBNs associated with those trapping sets, and (iv) re-
start the decoder. In one possible implementation, if an LDPC decoder has just been initialized, i.e., the

decoder is in state 0, then flipping an EBN comprises (i) inverting the hard-decision value of that EBN’s

L, value, ie., 1 becomes 0, and vice versa, and (ii) setting the magnitude bits, i.e., the confidence, of

that same L, value to maximum, e.g., all ones. If the decoder is in some state other than state O, then

flipping an EBN comprises (i) determining the hard-decision value of the EBN’s P-value (defined by
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Equation 7 above), (ii) setting the hard-decision values of that EBN’s L, value, P-value, and all
associated Q= LLRs to the opposite of the hard-decision value of step (i), and (iii) setting the magnitude

bits of that EBN’s L, value, P-value, and all associated (), LLRs to maximum. Often, flipping one or

two EBNs will “break” the trapping set, and the re-started decoder will converge on the DCCW.

[0073] Different trapping sets, when broken, will yield different improvements in error-floor
characteristics. Dominant trapping sets (DTSs) refer to the minimal set of trapping sets, the breaking of
which yields a specified improvement in BER/error-floor characteristics. For example, DTS-1 refers to
the minimal set of trapping sets which will yield a single order of magnitude improvement in BER, e.g.,
from 10 to 10™°, while DTS-3 would yield three orders of magnitude improvement in BER, e.g., 10" to
107,

[0074] List Decoding of Near Codewords

[0075] List decoding is one post-processing method for detecting and breaking trapping sets. In list
decoding, an observed trapping set in vector X is matched against a list or lists of known trapping sets.
A trapping-set list typically contains the indices of all the USCs in each trapping set in the list and the
indices of one or more EBNs associated with those USCs. If a trapping set is found in the list which
matches the observed trapping set, then the EBN index value(s) are retrieved from the list. Then, those
bit nodes are flipped, and the decoding process 300 of FIG. 3 is restarted.

[0076] Trapping-Set Simulation

[0077] The trapping-set list required for list decoding is typically generated off line using software
and hardware simulation tools. FIG. 4 is a block diagram of an off-line trapping-set (TS) simulation tool
400 for identifying trapping sets and recording various information about those trapping sets. Tool 400
might be implemented, for example, in a field-programmable gate array (FPGA). LDPC correct

codeword (CCW) 402 is sent to channel and signal model 404, which emulates the behavior of noisy
channel 114 in FIG. 1. Channel and signal model 404 outputs L , values 406 to LDPC decoder 408. If

LDPC decoder 408 generates a near codeword (NCW) 410, then NCW 410 is sent to syndrome check
module 412 and mismatch location recorder 414. Syndrome check 412 outputs the indices 416 of all
USCs in NCW 410. Mismatch location recorder 414 compares NCW 410 to CCW 402 and outputs the
indices 418 of all EBNs in NCW 410. USC indices 416 plus EBN indices 418 constitute trapping-set
(TS) information 420.

[0078] For a given LDPC implementation, all possible trapping sets might number in the millions.
However, achieving a significant (i.e., an order of magnitude or more) improvement in the error floor of
that implementation typically requires only a subset of all possible trapping sets, i.e., the dominant
trapping sets (DTSs). Thus, oft-line TS simulation tool 400 includes DTS-N compiler 422, which takes

as its input TS information 420 and generates DTS-N information 424.
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[0079] DTS-N compiler 422 uses a three-step process: collection, ranking, and evaluation. The
trapping set collection method utilizes deterministic noise impulses based on the structure of the code
graph to detect trapping sets. The collected trapping sets are then ranked by distance-to-error boundary
(DEB) values, where trapping sets with low DEB values contribute more to the error floor. Importance
sampling is then used to evaluate the trapping sets and confirm the predicted rankings.

[0080] In practice, such FPGA-based offline simulations can take up to a year to perform. For
example, to identify the trapping sets that will yield a BER of 10™ for a 4Gb/s HD drive requires running
an offline-simulation tool (e.g., tool 400 of FIG. 4) for approximately 289 days. Typically, this time
constraint is not a problem, as there is often a one- to two-year delay between the final design of an HD
drive read channel and the mass-fabrication of chips.

[0081] Trapping Set Read-Only Memory (TS-ROM)

[0082] Thus, using an off-line TS simulation tool like tool 400 of FIG. 4, it is possible a priori to
identify one or more trapping sets or dominant trapping sets that will yield an improvement in the error-
floor characteristics for a particular LDPC implementation. One way to implement list decoding in a run-
time environment is to store oftline-generated trapping-set information 420 of FIG. 4 in a trapping-set
read-only memory (TS-ROM) and couple that TS-ROM with a list decoder program. The TS-ROM list
decoder program compares the USCs observed in X to trapping sets stored in TS-ROM. If a match is
found, then the TS-ROM list decoder program flips the appropriate bit-node values in the LDPC decoder
and re-starts the decoder.

[0083] Typically, TS-ROM information is stored randomly in a singly- or doubly-linked list, where
the list is searched using a brute-force sequential search. Typically, each (a, b) trapping set occupies
(24 a+b)records in the TS-ROM list. Thus, for a (4,4) trapping-set profile (i.e., four USCs and four
EBNs), there would be ten records: one record indicating that there are four USCs, followed by four
individual USC records, then a record indicating that there are four EBNs, followed by four individual
EBN records. The typical TS-ROM list implementation stores approximately 100 trapping sets, and does
not store any information about mis-satisfied check nodes.

[0084] For such a TS-ROM implementation to be economically practical, a single TS-ROM must be
able to achieve the required error-floor improvement in a large number of implementations. However,
trapping sets vary from implementation to implementation, even when the same LDPC code is
implemented. For example, even if the LDPC code used on two HD drives were the same, the trapping
sets associated with the HD drives may differ. Specifically, research has shown that trapping sets are
influenced by an HD drive’s jitter profile, inter-symbol interference characteristics, and pulse-shaping
scheme. These factors can vary not only between HD drives of different manufacturers, but also between
different HD drive models from the same manufacturer and even variations between different production

runs of the same model. Thus, trapping sets can vary even between two identical-model hard drives. Itis
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impractical to simulate the LDPC trapping sets of so many different HD drives. Yet, a TS-ROM loaded
with only those trapping sets common to a large class of HD drives might not yield the required level of
error-floor improvement when paired with a particular HD drive.

[0085] One method for improving the performance of TS-ROM is to supplement the information
generated by an FPGA-based offline-simulation tool (e.g., tool 400 of FIG. 4) with results obtained from
test models of the fabricated device. Typically, once a circuit design has been finalized, a limited number
of test models of that design will be fabricated and distributed for testing before mass-production
commences. While it might take a year to determine the trapping sets which will yield a BER of 10 for
a particular HD drive implementation, it only takes a day to determine the trapping sets which will yield a
BER of 107%. Thus, the test models are run in LDPC test mode for a limited period of time, and any
discovered trapping sets are stored. Any discovered trapping sets not already in TS-ROM are added to
TS-ROM. By using the actual device that will be distributed to consumers, this method captures trapping
sets that may have eluded an FPGA-based offline-simulation tool (e.g., tool 400 of FIG. 4).

[0086] Trapping Set Random-Access Memory (TS-RAM)

[0087] One run-time alternative to the static trapping-set list of TS-ROM is to store trapping-set
information in a trapping-set random-access memory (TS-RAM) and turn the oft-line trapping-set
simulation tool 400 of FIG. 4 into a run-time trapping-set collection and analysis tool running on the
actual, individual device (e.g., an HD drive). Instead of receiving initial values from a channel and signal
model (e.g., model 404 of FIG. 4), the run-time tool would process the actual signal of that particular
device. The run-time tool would include list-decoder functionality; i.e., it would attempt to match
observed USCs to stored trapping-set information in TS-RAM, and, if a match were found, use the stored
information to change decoder bit-node values and restart the decoder. If a match were not found, then
the run-time tool would analyze the observed trapping set, i.e., identify the EBNs associated with the
USCs, and determine if the observed trapping set met threshold requirements for storage in TS-RAM
(e.g., membership in a DTS-N).

[0088] Theoretically, the TS-RAM tool described above could adapt to the trapping-set profile of
any implementation. The reality is that the trapping set/dominant trapping set simulation performed by
oft-line simulation tool 400 of FIG. 4 is computationally complex. In particular, constructing dominant
trapping sets out of possibly millions of trapping sets is especially complex. This complexity makes the
TS-RAM tool described above unsuitable for most HD drives. Typically, HD drives output data at high
rates (e.g., 4 gigabits per second) and demand very low BER/error-floor rates (e.g., 10™ to 10™%), but
offer only modest computing resources in their firmware.

[0089] Furthermore, the TS-RAM tool, like the off-line simulation tool 400 of FIG. 4, requires the
correct codeword (CCW) to generate EBN indices. CCWs are readily available in the off-line simulation

environment, but not in the run-time environment.
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[0090] According to certain embodiments of the present invention, methods are performed for the
organization of stored trapping-set profiles in ROM. Trapping-set profiles are ranked by dominance, i.e.,
by their impact on the error-floor characteristics of an LDPC decoder. More-dominant trapping-set
profiles contain information about both unsatisfied check nodes (USCs) and mis-satisfied check nodes
(MSCs), while less-dominant trapping-set profiles contain only information about USCs. Trapping-set
profile information is then organized into a number of linked, hierarchical data tables which allow for the
rapid location and retrieval of most-dominant matching trapping-set profiles using a pointer-chase search.
[0091] According to certain embodiments of the present invention, efficient run-time methods are
performed for the collection and identification of dominant trapping-sets in RAM. Newly-discovered
trapping sets are stored in RAM, if possible, and then sorted or ranked on any one or more of the
following factors: number of times RAM has been searched since a trapping set was lasted matched;
total number of times a trapping set has been matched since it was added to RAM; number of unsatistied
check nodes; and number of erroneous bit nodes. Low-ranked trapping-set profiles are deleted from
RAM to make space for newly-discovered trapping-set profiles. Thus, in addition to or instead of using a
high-computational-complexity offline method for the a priori identification of dominant trapping sets,
such as that used in DTS-N compiler 422 of FIG. 4, these embodiments of the present invention perform
low-computational-complexity a posteriori methods wherein as many newly-discovered trapping sets are
stored as possible, and non-dominant trapping-set profiles winnowed out by periodic ranking and
deletion.

[0092] Embodiments of the present invention typically are on-the-fly methods, i.e., they are able to
recover the DCCW within the clock-cycles budgeted for LDPC decoding, and thus do not negatively
impact system throughput.

[0093] FIG. 5 is a block diagram of an LDPC decoding system 500 according to one embodiment of
the present invention. In an HD drive of the present invention analogous to prior-art HD drive 100 of

FIG. 1, LDPC decoding system 500 of FIG. 5 would be implemented as part of an LDPC decoder
analogous to LDPC decoder 112 of FIG. 1. To that extent, the input L, values of FIG. 5 are analogous

to the decoder input L, values of FIG. 1, and the output )Acpp vector of FIG. 5 is analogous to the

decoded information word of FIG. 1.

[0094] LDPC decoder 502 receives L, values, performs LDPC decoding process 300 of FIG. 3,

and outputs vector X to post-processor 504 and TS-RAM updater 506. Post-processor 504 is connected
to post-processing (PP) methods list 508, which is a memory that contains one or more executable
programs representing post-processing methods, e.g., TS-ROM list decoding, TS-RAM list decoding, etc.
If post-processor 504 needs to perform a particular PP method, post-processor 504 reads the executable

program from PP methods list 508 and runs that program. Post-processor 504 might perform any number
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of these PP methods in parallel or serially. Post-processor 504 outputs vector X, , which, in addition to

pp’
being output from LDPC decoding system 500, is also sent to TS-RAM updater 506.

[0095] The Data Tables

[0096] During execution, a particular PP method might need to access data structures separate from
the PP method executable program code. In particular, TS-ROM and TS-RAM list-decoding methods
access one or more lists of trapping-set information stored in TS-ROM 510 and TS-RAM 520,
respectively.

[0097] In the exemplary embodiment of FIG. 5, TS-ROM 510 comprises four tables: B-Table 512,
P-Table 514, E-Table 516, and EI-Table 518. TS-RAM 520 comprises two tables, RAM P-Table 522
and RAM Index 524. A table is a two-dimensional matrix of digital data organized into one or more
equally sized rows (records) and one or more equally sized columns (fields). The records of a table are
ordinally numbered from top to bottom beginning with zero. This number is the record number.

[0098] P-Tables 514 and 522 contain information regarding USCs and their related EBNs. B-Table
512 contains pointer information for ROM P-Table 514. EI-Table 518 contains information regarding
MSCs, and E-Table 516 contains pointer information for EI-Table 518. RAM Index Table 524 contains
pointer information for RAM B-Table 522.

[0099] FIG. 6 is an exemplary layout of ROM P-Table 514 of FIG. 5. ROM P-Table 514 contains
trapping-set profile information, i.e., USC and EBN indices. ROM P-Table 514 comprises a number of
records (rows), one for each USC of each stored trapping set. Record number 602 is the ordinal location
of a record in P-Table 514, beginning with 0.

[00100] Each record in ROM P-Table 514 comprises three fields: LAYER 604, USC_INDEX 606,
and EBN_INDEX 608. Some LDPC decoders are configured to execute a set of update operations in
parallel, otherwise known as a layer. LAYER 604 indicates the number of the decoding layer that
contained the USC. USC_INDEX 606 contains the index of the USC. EBN_INDEX 608 contains the
indices of one or two EBNs associated with the USC.

[00101] ROM P-Table 514 is sorted first on b (i.e., the number of USCs in %), e.g., all trapping sets
with b = 2 come first, followed by all » = 3 trapping sets, etc. Thus, there will be two records for each
trapping set (e.g., 610, 612) in the b = 2 range, eventually followed by three-record sets for trapping sets
with b =3 (e.g., 614, 616), four-record sets for trapping sets with » = 4 (618, 620), and so forth.

[00102]  Within each b range, trapping sets are sorted by dominance, i.e., the effect that the trapping
set has on error-floor characteristics. Those trapping sets which have a greater effect on error-floor
characteristics occur at the beginning of the 4 range, and those which have a lesser effect occur near the
end. The records for a particular trapping set are then sorted by USC_INDEX 606.

[00103] FIG. 7 is an exemplary layout of B-Table 512 of FIG. 5. B-Table 512 contains, for each
value in ROM P-Table 514, pointers to the first occurrences of that b value in ROM P-Table 514 and in
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E-Table 516, and the number of records in E-Table 516 for that b value. Thus, there is a single record in
B-Table 512 for each b value, where the b value is indicated by record number 702. However, records
numbers 702 start with 0, while » values typically start at two or higher. Thus, in this exemplary
embodiment of the present invention, an offset is added to record number 702 to yield the corresponding
b value. For example, if only trapping sets with b =2 are stored, then an offset of 2 would be added to
each record number to arrive at the corresponding # value.

[00104] Field PTABLE_START OFFSET 704 contains the location of the first occurrence of a
particular b value in ROM P-Table 514. Field ETABLE_START_OFFSET 706 contains the location of
the first occurrence of a particular » value in E-Table 516. Field NUM_ETABLE_ENTRIES 708
contains the number of records in E-Table 516 for this particular / value.

[00105]  FIG. 8 is an exemplary layout of E-Table 516 of FIG. 5. E-Table 516 contains pointers to
MSC records in EI-Table 518. Each record in E-Table 516 has a record number 802, an
EITABLE_START_ADDRESS field 804, and an EITABLE_END_ADDRESS field 806.
EITABLE_START_ADDRESS field 04 contains a pointer to the first occurrence of the corresponding
data in EI-Table 518, and EITABLE_END_ADDRESS field 806 contains a pointer to the last occurrence
of the corresponding data in EI-Table 518.

[00106] FIG. 9 is an exemplary layout of EI-Table 518 of FIG. 5. EI-Table 518 stores the indices of
EBNs associated with MSCs. Each record in EI-Table 518 has a record number 902 and contains two
fields: BLOCK_COLUMN field 904 and B_INDEX field 906. BLOCK_COLUMN field 904 indicates
the block column where the EBN is located, and B_INDEX field 906 is the index of the EBN.

[00107] FIG. 10 is an exemplary layout of RAM P-Table 522 of FIG. 5. RAM P-Table 522 stores
the profiles of newly-identified trapping sets that are not found in ROM P-Table 514. Each row (i.e.,
record) in RAM P-Table 522 has a record number 1002 and comprises two fields: two-bit TAG field
1004 and R_WORD field 1006. The four possible values of TAG field 1004 indicate the record type and
the structure of data within R_WORD field 1006. If TAG field 1004 has a value of 11, then the record is
a primary record that contains information pertaining to an entire trapping set. If TAG field 1004 has a
value of 10, then the record is a secondary record and contains information pertaining to a particular USC
within a trapping-set profile. If TAG field 1004 has a value of 00 or 01, then the R_WORD field 1006 is
empty, i.e., this record is available to store the profile information for newly-identified trapping sets. A
trapping-set profile typically comprises a single primary record followed by b secondary records.

[00108] If the record is a primary record, then R_WORD field 1006 contains four sub-fields: (i) b-
value subfield 1008, (ii) a-value subfield 1010, which records the number of trapping set EBNS, (iii)
LAST_HIT NUM subfield 1012, which indicates the number of the TS-RAM search which last matched
this trapping set, and (iv) HIT_COUNTER subfield 1014, which records how many times this particular

trapping-set profile has been matched to an observed trapping set since this trapping set was stored in TS-
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RAM.

[00109] If a record is a secondary record, then R_WORD field 1006 contains the layer (LAYER field
1016) and index (USC_INDEX field 1018) of a single USC within a trapping set, and the indices
(EBN_INDEX field 1020) of one or more EBNs associated with that USC.

[00110] FIG. 11 is an exemplary layout of RAM Index Table 524 of FIG. 5. There is a record in
RAM Index Table 524 for each trapping set profile in RAM P-Table 522. Each record in RAM Index
Table 524 comprises a single field, RAM_PTABLE_OFFSET 1102. RAM_PTABLE_OFFSET 1102 is
a pointer to the start of a particular trapping-set profile in RAM P-Table 524, i.e.,
RAM_PTABLE_OFFSET 1102 contains the record number 1002 of FIG. 10 of a trapping-set profile
primary record. The records in RAM Index Table 524 are sorted by dominance, so that the first record in
RAM Index Table 524 points to the most-dominant trapping set in RAM P-Table 522, and the last record
in RAM Index 524 points to the least-dominant record in RAM P-Table 522.

[00111] FIG. 12 is a flowchart of exemplary process 1200 used by LDPC decoding system 500 of

FIG. 5. Processing starts at step 1202 and proceeds to step 1204, LDPC decoding of L, values by

LDPC decoder 502 of FIG. 5. If the LDPC decoding at step 1204 yields the DCCW, then process 1200
terminates at step 1218. Otherwise, processing proceeds to step 1206, TS-ROM list decoding (performed
by post-processor 504 of FIG. 5).

[00112]  If step 1206 yields the DCCW, then process 1200 terminates at step 1218. Otherwise,
processing proceeds to step 1208, TS-RAM list decoding (performed by post-processor 504 of FIG. 5).
If step 1208 yields the DCCW, then process 1200 terminates at step 1218. Otherwise, processing
proceeds to one or more additional post-processing methods 1210, 1212, ..., 1214 (performed by post-
processor 504 of FIG. 5), which operate in an analogous manner.

[00113] If TS-RAM list decoding 1208 or any of the additional post-processing methods 1210, 1212,
..., 1214 yields the DCCW, then processing proceeds to step 1216, where TS-RAM 520 of FIG. 5 is
possibly updated by TS-RAM updater 508. Processing then terminates at step 1218.

[00114]  FIG. 1200 displays one possible sequencing of post-processing methods 1207 — 1214.
Almost any sequence of post-processing methods could be employed, although some sequences are more
practical than others. For example, it is desirable to sequence TS-ROM list decoding before TS-RAM list
decoding to ensure that trapping sets already stored in ROM are not duplicated in RAM.

[00115] TS-ROM List Decoding

[00116] FIG. 13 is a flowchart of exemplary TS-ROM list-decoding process 1206 of FIG. 12
implemented by post-processor 504 of FIG. 5. Processing starts at step 1302 and proceeds to step 1304,

where process 1206 determines if the number b, .., of USCs observed in the vector X received from

LDPC decoder 1204 of FIG. 12 is greater than 0 and less than the maximum number b, of USCs that
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can be efficiently handled by process 1206. If b,,,,,,,.; =0, then there are no USCs in vector % (ie., X

is a near-codeword mis-correction), and hence there is no trapping set to match. If step 1304 evaluates
false, then process 1206 terminates. Otherwise, processing continues to step 1306.

[00117] At step 1306, the current state of the decoder is stored and labeled State 1. Processing then
continues to step 1308, where the observed USCs are sorted, first by decoding layer, then by index. Next,
at step 1310, the following four values are fetched from B-Table 512 of FIG. 5 and stored:

(1) PTABLE_START_OFFSET field 704 of FIG. 7 for b =5

observed *

(2) PTABLE_START_OFFSET field 704 of FIG. 7 for b=5 +1;

observed

(3) ETABLE_START OFFSET field 706 of FIG. 7 for b=

observed *

and

(4) NUM_ETABLE_ENTRIES field 708 of FIG. 7 for b =5

observed *

The first value instructs process 1206 where to begin its search for matching trapping-set information
(i.e., USC and EBN indices) in P-Table 514 of FIG. 5, and the second value instructs process 1206 when
to end its search. Similarly, the third and fourth values instruct process 1206 where to begin and end its

search for extended information (i.e., MSC indices).

[00118] Thus, for example, if b

 pserved = D » then process 1206 fetches the values of
PTABLE_START OFFSET field 704 of FIG. 7 for b=5 and b =6, and the values of
ETABLE_START_OFFSET field 706 of FIG. 7 and NUM_ETABLE_ENTRIES field 708 of FIG. 7 for
b=5.

[00119]  Next, at step 1312, process 1206 selects P-Table 514 of FIG. 5 and goes to the address

indicated by the stored value of PTABLE_START_OFFSET for b=5

 bserved - 1NEXL, at step 1314, TS-
ROM is searched for a trapping set which matches the observed USCs.

[00120] FIG. 14 is a flowchart of exemplary TS-ROM search process 1314 of FIG. 13. Process
1314 starts at step 1402 and, at step 1404, searches for the next record in P-Table 514 of FIG. 5 which is
an isomorphic match for the observed USCs. An isomorphic match for a particular set of observed USCs
would be a trapping set where the number of USCs and distances between those USCs are the same as the
observed USCs. Thus, if the observed USCs are [1,3,10], then [1,3,10] is a match, and [2,4,11] is an
isomorphic match, as are [3,5,12], [4,6,13], and so forth. If no match is found, then process 1314
terminates with a status of no match 1406.

[00121] If, instead, a match is found at step 1404, then, at step 1408, the value of EBN_INDEX field
608 of FIG. 6 of the matching P-Table record is stored. The EBN_INDEX field contains the indices of
one and perhaps two erroneous bit nodes associated with this matched trapping set.

[00122] Next, process 1314 attempts to locate any extended information, i.e., the indices of EBNs

associated with mis-satisfied check nodes (MSCs) in this matching trapping set. Extended information is
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kept in EI-Table 518. However, extended information is not kept for all trapping sets stored in P-Table
514, but only for a subset of trapping sets in each b range. That subset corresponds to the more-dominant
trapping sets in a particular b range, i.e., those trapping sets which have a more-significant impact on
error-floor characteristics. As discussed above, in P-Table 514, the trapping sets within a particular b
range are sorted by dominance; thus, extended information is kept only for the first x records within that b
range. The beginning and end of each b range in EI-Table 518 is indicated by the fields
ETABLE_START_OFFSET 706 and NUM_ETABLE_ENTRIES 708 in B-Table 512.

[00123] Process 1314 maintains an internal count of trapping sets as it searches through the records
of ROM P-Table 514. Thus, for example, if process 1314 were searching through 5 = 2 trapping sets in
P-Table 514 of FIG. 6, process 1314 would identify records 0 and 1 as trapping set O (e.g., trapping set
610 of FIG. 6), records 2 and 3 as trapping set 1 (e.g., trapping set 612 of FIG. 6), and so forth. This
trapping-set number is referred to as TSNUM.

[00124] At step 1410, TSNUM is compared to the value of NUM_ETABLE_ENTRIES field that was
stored in step 1310 of FIG. 13. If TSNUM is greater than the value of NUM_ETABLE_ENTRIES, then
no extended information is available, and process 1314 terminates with a status of match, no extended
information 1412.

[00125] If, instead, at step 1410, TSNUM is found to be less than or equal to the stored value of
NUM_ETABLE_ENTRIES, then extended information exists for this matched trapping set. In step
1414, TSNUM is added to the stored value of ETABLE_START_OFFSET to yield variable
ETABLE_ENTRY_ADDRESS.

[00126] Next, at step 1416, process 1314 selects E-Table 516 of FIG. 5, goes to the record with an
address equal to the value of variable ETABLE_ENTRY_ADDRESS, and stores the values of
EITABLE_START_ADDRESS field 804 of FIG. 8 and EITABLE_END_ADDRESS field 806 of FIG.
8.

[00127] Next, at step 1418, process 1314 selects EI-Table 518 of FIG. 5, and stores the values of the
BLOCK_COLUMN fields 904 of FIG. 9 and B_INDEX fields 906 of FIG. 9 of every record between
the stored EITABLE_START_ ADDRESS and EITABLE_END_ADDRESS values. Finally, process
1314 exits with a status of match with extended information 1420.

[00128]  Returning to FIG. 13, if step 1314 terminates with a status of no match, then process 1206
terminates at step 1316.

[00129]  If step 1314 terminates with a status of match, no extended information, then process 1206
possesses the USC indices and some of the EBN indices associated with this trapping set, but no
extended information (i.e., indices of EBNs associated with MSCs). In this case, step 1318 flips the bit
nodes at those EBN indices, and iterative LDPC decoding is performed at step 1320. The process of step
1320 is the same as process 300 of FIG. 3 except that decoder initialization step 304 and initial syndrome
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check step 306 are skipped. If step 1320 converges on the DCCW, then process 1206 terminates at step
1316. Otherwise, at step 1322, the decoder is restored to State 1, and a next matching trapping set is
sought at step 1314.

[00130]  If step 1314 terminates with a status of match with extended information, then process 1206
possesses the indices of all the EBNs associated with the matched trapping set. In this case, it is not
necessary to perform belief propagation (e.g., steps 310 and 312 of FIG. 3). Instead, at step 1324, the
EBNs are flipped, and the resulting vector X is submitted to a syndrome check 1326. If vector X fails
the syndrome check at step 1326, then process 1206 proceeds to step 1322. If, instead, vector X passes
the syndrome check (i.e., vector X is a valid codeword), then, at step 1328, a CRC check is performed on

A

vector X to determine if it is in fact the correct codeword. If vector X passes CRC check 1328 (i.e.,

vector X is the DCCW), then process 1206 terminates at step 1316. If vector X fails CRC check 1328,
then process 1206 proceeds to step 1322.

[00131] TS-RAM List Decoding

[00132]  Another PP method utilized by post-processor 504 of FIG. 5 is TS-RAM list decoding 1208
of FIG. 12, i.e., list decoding of trapping sets using trapping-set information stored in volatile memory,
such as random-access memory. TS-RAM list decoding is similar to TS-ROM list decoding in that RAM
P-Table 522 of FIG. 5 stores USC and EBN information for selected trapping sets. However, unlike
ROM P-Table 514, RAM P-Table 522 is altered during run-time by TS-RAM updater 506 of FIG. 5.
Hence, only the most-important information is stored, e.g., USC and EBN indices. No extended
information (e.g., EI-Table 518 of FIG. 5) is maintained in TS-RAM.

[00133]  Nor are the profiles in RAM P-Table 522 sorted in any fashion. Instead, a separate RAM
Index Table 524 of FIG. 16 maintains a list of the addresses of the trapping-set profiles stored in RAM P-
Table 522, sorted by dominance.

[00134] FIG. 15 is a flowchart of exemplary TS-RAM list-decoding process 1208 of FIG. 12.
Processing begins at step 1502 and proceeds to step 1504, which is identical in purpose and operation to
step 1304 of FIG. 13. If step 1504 evaluates false, then process 1208 terminates at step 1506; otherwise,
processing continues to step 1508, where the current decoder state is recorded and labeled State 1.
Processing then continues to step 1510.

[00135] At step 1510, process 1208 goes to the most-dominant trapping-set profile in RAM P-Table
522 of FIG. 5. Specifically, since RAM Index Table 524 ranks the profiles in RAM P-Table 522 by
dominance, process 1208 goes to the first record in RAM Index Table 524 and retrieves the value of
RAM_PTABLE_OFFSET field 1102 of FIG. 11. Then, process 1208 moves the pointer in RAM P-
Table 522 to that stored offset value.

[00136] At step 1512, process 1208 increments global variable RAM_SEARCH_COUNT which

keeps track of the total number of TS-RAM searches performed, i.e., the total number of times process
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1208 has been executed. Also, at step 1512, process 1208 examines the profiles in RAM P-Table 522, in
the order indicated by RAM Index Table 524, i.e., in order of decreasing dominance, for an isomorphic
match for the observed USCs. If no match is found, then processing continues to step 1514.

[00137] If, instead, at step 1512, a match is found, then, at step 1516, the LAST HIT NUM field
1012 of FIG. 10 of the matched profile is set to the value of global variable RAM_SEARCH_COUNT,
and the HIT_COUNTER field 1014 of FIG. 10 is incremented by 1. Then, at step 1518, the values of
EBN_INDEX fields 1020 of FIG. 10 are stored. Step 1520 flips the bit nodes located at the
EBN_INDEX values, and, at step 1522, LDPC decoding is performed. Step 1522 is identical to step
1320 of FIG. 13. If decoding process 1522 converges on the DCCW, then processing continues to step
1514; otherwise, at step 1524, the decoder is reset to State 1, and processing then continues to step 1512
where another isomorphic match is sought in P-Table 522.

[00138] At step 1514, process 1208 updates RAM Index Table 524 of FIG. 11. Specifically, step
1514 sorts all TS-RAM profiles in RAM P-Table 522 on any combination of fields in RAM P-Table 522,
e.g., LAST_HIT _NUM 1012, HIT_COUNTER field 1014, number of USC nodes field 1008, and number
of EBNGs field 1010. Then the addresses of all the sorted profiles, i.e., record numbers 1002 of all
primary records, are stored as records in RAM Index Table 524 of FIG. 11. The profile addresses are
stored in RAM Index Table 524 in the same order in which they were sorted in step 1514 (e.g., from most
dominant to least dominant).

[00139]  Once step 1514 has completed, processing terminates at step 1506.

[00140] TS-RAM Updater

[00141]  Asexplained in the discussion of process 1200 of FIG. 12, if any post-processing method
other than TS-ROM list decoding 1206 arrives at the DCCW, that might mean that a new trapping set has
been discovered. If so, then step 1216 might attempt to add that new trapping set to RAM P-Table 522 of
FIG. 5.

[00142]  In one embodiment, step 1216 is a low-complexity process for retaining dominant trapping
sets in TS-RAM 520. Specifically, in this embodiment, step 1216 does not perform exhaustive
calculations to determine dominant trapping sets a priori, such as the calculations performed by DTS-N
compiler 422 of FIG. 4, but instead (i) ranks TS-RAM trapping sets on any combination of one or more
factors, e.g., how many time TS-RAM has been searched since the trapping set was last matched, the
total number of times a trapping set has been matched, the number of USCs, the number of EBNG, etc.,
and then (ii) purges the lowest-ranked trapping sets to make space for newly-discovered trapping sets.
Ranking trapping sets in TS-RAM 520 using these factors is typically considerably less complex than the
analysis performed by off-line simulation tools (e.g., compiler 422 of FIG. 4).

[00143]  FIG. 16 is a flowchart of exemplary TS-RAM update process 1216 of FIG. 12. Processing
starts at step 1602 and proceeds to step 1604 where it is determined whether a DCCW was generated by
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TS-RAM list-decoding process 1208 of FIG. 12. If so, then no trapping-set profile needs to be added to
TS-RAM, and process 1216 terminates at step 1608.

[00144]  If, instead, step 1604 evaluates no/false, then it means that some post-processing method
other than TS-ROM or TS-RAM list decoding arrived at the DCCW, and thus a new trapping set has
been discovered and should be appended to RAM. At step 1610 the trapping-set profile is generated. A
trapping-set profile comprises the indices of the trapping-set USBs, and the indices of the EBNs
associated with those USBs. The USB indices have already been generated by LDPC decoder 502 of

FIG. 5. To generate the EBN indices, step 1610 compares the DCCW X p generated by post-processor

504 to vector X generated by LDPC decoder 502.

[00145]  Atstep 1612, it is determined whether there is enough free space to append the new trapping-
set profile. If so, then, at step 1614, the new trapping-set profile is appended to RAM P-Table 522, and
process 1216 proceeds to step 1616.

[00146] If, however, at step 1612, there is not enough free space in RAM P-Table 522 to append the
new trapping-set profile, then, at step 1618, the lowest-ranked purge-eligible trapping-set profile is
purged. In this example, the purge-eligibility of a profile is determined by the number of times RAM has
been searched since that profile was last matched, i.e., the value of global variable
RAM_SEARCH_COUNT less the value of the profile’s LAST _HIT NUM field. If the number of
intervening searches is greater than a specified threshold, then the profile is purge-eligible. Assuming
that all profiles are ranked first by purge-eligibility, all purge-eligible records will be at the end of RAM
Index Table 524 of FIG. 11.

[00147] Thus, at step 1618, the last record in index RAM Index Table 524 is selected, and the value
of RAM_PTABLE_OFFSET field 1102 is retrieved. If the profile located in RAM P-Table 522 at the
stored offset value (indicated by the retrieved RAM_PTABLE_OFFSET value) is purge-eligible, then the
primary record and associated secondary records located at that stored offset value in RAM P-Table 522
are deleted. At step 1620, RAM Index Table MSB is updated, and control then loops back to step 1612,
where it is determined whether there is enough free space in RAM P-Table 522 to append the new
trapping-set profile. The processing of step 1620 is identical to the processing of step 1514 of FIG. 15.
[00148] If, instead, at step 1618, the lowest-ranked profile is not purge-eligible, then processing
continues to step 1616. At step 1616, RAM Index Table 523 is updated, and processing terminates at
step 1608. The processing of step 1616 is identical to the processing of step 1514 of FIG. 15.

[00149] Although the present invention has been described in the context of hard disk drives that
implement LDPC coding and decoding, the invention is not so limited. In general, the present invention
can be implemented in any suitable communication path that involves LDPC coding and decoding.
[00150] Further, although the exemplary belief-propagation algorithm used above is the offset min-

sum algorithm (OMS), the present invention is not so limited, and can be used with any belief-



WO 2010/019168 PCT/US2008/086523

2.

propagation variant, e.g., sum-product algorithm (SPA) or the Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm.

[00151]  Yet further, although the belief-propagation example used above employed a specific
decoding schedule (flooding schedule) where all check nodes were updated during a single check-node
update step, followed by all bit nodes being updated in a single bit-node update step, the present
invention is not so limited, and can be used with any decoding schedule, e.g., row-serial schedule,
column-serial schedule, and row-column serial schedule.

[00152] Yet further, although the exemplary LDPC decoder used above was a non-layered decoder,
the present invention is not so limited, and can be used with both layered and non-layered decoders.
[00153] Yet further, although the exemplary TS-RAM implementation given above assumed storing
trapping-set profiles in RAM within the read channel of an HD drive, the present invention is not so
limited. A RAM P-Table (e.g., 522 of FIG. 5) can also be stored on the platters of an HD drive, or stored
in a separate memory such as flash memory.

[00154] Yet further, although the exemplary TS-ROM implementation given above is described in
the context of read-only memory, the present invention is not so limited. In general, the term "ROM" as
used in both the specification and the claims should be interpreted to refer to any data-storage device
storing static TS-profile data, whether or not the data in that device is capable of being modified.

[00155] Yet further, although embodiments of the present invention have been described in the
context of LDPC codes, the present invention is not so limited. Embodiments of the present invention
could be implemented for any code which can be defined by a graph, e.g., tornado codes, structured IRA
codes, since it is graph-defined codes which suffer from trapping sets.

[00156] Although the present invention was described in terms of receiving log-likelihood ratios, the
present invention is not so limited. Embodiments of the present invention may be envisioned in which
other soft values such as likelihood ratios or hard-decision values are processed.

[00157]  The present invention can be embodied in the form of methods and apparatuses for practicing
those methods. The present invention can also be embodied in the form of program code embodied in
tangible media, such as magnetic recording media, optical recording media, solid state memory, floppy
diskettes, CD-ROMs, hard drives, or any other machine-readable storage medium, wherein, when the
program code is loaded into and executed by a machine, such as a computer, the machine becomes an
apparatus for practicing the invention. The present invention can also be embodied in the form of
program code, for example, whether stored in a storage medium, loaded into and/or executed by a
machine, or transmitted over some transmission medium or carrier, such as over electrical wiring or
cabling, through fiber optics, or via electromagnetic radiation, wherein, when the program code is loaded
into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the

invention. When implemented on a general-purpose processor, the program code segments combine with
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the processor to provide a unique device that operates analogously to specific logic circuits.

[00158]  Unless explicitly stated otherwise, each numerical value and range should be interpreted as
being approximate as if the word "about" or "approximately” preceded the value of the value or range.
[00159] It will be further understood that various changes in the details, materials, and arrangements
of the parts which have been described and illustrated in order to explain the nature of this invention may
be made by those skilled in the art without departing from the scope of the invention as expressed in the
following claims.

[00160] The use of figure numbers and/or figure reference labels in the claims is intended to identify
one or more possible embodiments of the claimed subject matter in order to facilitate the interpretation of
the claims. Such use is not to be construed as necessarily limiting the scope of those claims to the
embodiments shown in the corresponding figures.

[00161] It should be understood that the steps of the exemplary methods set forth herein are not
necessarily required to be performed in the order described, and the order of the steps of such methods
should be understood to be merely exemplary. Likewise, additional steps may be included in such
methods, and certain steps may be omitted or combined, in methods consistent with various embodiments
of the present invention.

[00162] Although the elements in the following method claims, if any, are recited in a particular
sequence with corresponding labeling, unless the claim recitations otherwise imply a particular sequence
for implementing some or all of those elements, those elements are not necessarily intended to be limited
to being implemented in that particular sequence.

[00163] Reference herein to "one embodiment” or "an embodiment” means that a particular feature,
structure, or characteristic described in connection with the embodiment can be included in at least one
embodiment of the invention. The appearances of the phrase "in one embodiment” in various places in
the specification are not necessarily all referring to the same embodiment, nor are separate or alternative
embodiments necessarily mutually exclusive of other embodiments. The same applies to the term

"tmplementation.”
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CLAIMS

We claim:

1. A method for decoding encoded data encoded with a graph-based code, the method
comprising:

(a) performing decoding on the encoded data to generate a candidate decoded codeword; and

(b) performing, if the candidate decoded codeword is not a decoded correct codeword, a
trapping-set (T'S)-RAM list-decoding method to attempt to generate the decoded correct codeword,
wherein the TS-RAM list-decoding method accesses one or more TS profiles stored in RAM memory,

each TS profile corresponding to a different trapping set.

2. The invention of claim 1, further comprising:

(c) updating the RAM memory to store a new TS profile.

3. The invention of claim 2, wherein:

if the TS-RAM list decoding fails to generate the decoded correct codeword, then step (b)
further comprises performing an other decoding method to attempt to generate the decoded correct
codeword; and

if the other decoding method generates the decoded correct codeword, then step (c)
comprises generating the new TS profile based on the candidate decoded codeword and the decoded

correct codeword.

4. The invention of claim 2, wherein step (c) comprises:

(c1) selecting, for purging, one or more TS profiles previously stored in the RAM memory;
(c2) purging the selected one or more TS profiles from the RAM memory; and

(c3) storing the new TS profile in the RAM memory.

5. The invention of claim 4, wherein step (c1) comprises selecting a TS profile for purging
based on one or more of:

(1) anumber of times the RAM memory has been searched during previous performances of
the TS-RAM list-decoding method since the selected TS profile has been matched during previous
performances of the TS-RAM list-decoding method;

(i1) a total number of times (e.g., HIT COUNTER) that the selected TS profile has been
matched during previous performances of the TS-RAM list-decoding method since the selected TS
profile was stored in the RAM memory;

(ii1) a number (e.g., b) of unsatisfied check nodes in the selected TS profile; and
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(iv) a number (e.g., a) of erroneous bit nodes in the selected TS profile.

6. The invention of claim 5, wherein step (c1) comprises selecting the TS profile for
purging based on the number of times the RAM memory has been searched during previous
performances of the TS-RAM list-decoding method since the selected TS profile has last been matched

during previous performances of the TS-RAM list-decoding method.

7. The invention of 4, wherein step (c1) comprises searching the stored TS profiles in a

sequence specified by a separate RAM Index Table.

8. The invention of claim 1, wherein each TS profile comprises:

anumber (e.g., b) of unsatisfied check nodes in the corresponding trapping set;

identification (e.g., USC_INDEX) of each unsatisfied check node in the corresponding
trapping set; and

identification (e.g., EBN_INDEX) of at least one erroneous bit node for each unsatisfied

check node in the corresponding trapping set.

9. The invention of claim 8, wherein each TS profile further comprises:

anumber (e.g., a) of erroneous bit nodes in the corresponding trapping set;

anumber of times (e.g., HIT_COUNTER) that the TS profile has been matched during
previous performances of the TS-RAM list-decoding method since the TS profile was stored in the RAM
memory; and

the number of the most recent performance of the TS-RAM list-decoding method that

matched this particular profile.

10. The invention of claim 1, wherein:
if the candidate decoded codeword is not the decoded correct codeword, then the candidate
decoded codeword identifies an observed trapping set comprising a set of one or more observed
unsatisfied check nodes; and
the TS-RAM list-decoding method comprises:
(bl)  searching through the RAM memory for a stored TS profile that matches the
observed trapping set;
(b2)  modifying one or more erroneous bit nodes for the LDPC-encoded data, wherein
the one or more modified erroneous bit nodes are identified by the matched TS profile; and

(b3)  performing LDPC decoding on the modified LDPC-encoded data.
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11. The invention of claim 10, wherein the stored TS profile matches the observed trapping
set when the one or more unsatisfied check nodes of the stored TS profile form an isomorphic match with

the one or more observed unsatisfied check nodes of the observed trapping set.

12. The invention of claim 10, wherein step (b1) comprises searching the stored TS profiles

in a sequence specified by a separate RAM Index Table.

13. The invention of claim 1, further comprising:
(c) sorting the TS profiles stored in the RAM memory based on dominance of the

corresponding trapping sets.

14. The invention of claim 13, wherein the dominance of a trapping set is based on one or
more of:

(1) anumber of times (e.g., LAST HIT NUM) the RAM memory has been searched during
previous performances of the TS-RAM list-decoding method since the corresponding TS profile has been
matched during previous performances of the TS-RAM list-decoding method;

(i) a total number of times (e.g., HIT_COUNTER) that the corresponding TS profile has
been matched during previous performances of the TS-RAM list-decoding method since the
corresponding TS profile was stored in the RAM memory;

(iil) a number (e.g., b) of unsatisfied check nodes in the trapping set; and

(iv) a number (e.g., a) of erroneous bit nodes in the trapping set.

15. The invention of claim 14, wherein a first trapping set having a first TS profile is more
dominant than a second trapping set having a second TS profile if (i) the number of times the RAM
memory has been searched during previous performances of the TS-RAM list-decoding method since the
first TS profile has been matched during previous performances of the TS-RAM list-decoding method is
less than (ii) the number of times the RAM memory has been searched during previous performances of
the TS-RAM list-decoding method since the second TS profile has been matched during previous
performances of the TS-RAM list-decoding method.

16. The invention of claim 13, further comprising:
(d) storing the addresses of the sorted TS profiles in a separate RAM Index Table such that

the order of the addresses in the separate RAM index table is based on the sorting results of step (c).
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17. The invention of claim 1, wherein the graph-based code is a Low-Density Parity

Check (LDPC) code.

18. An apparatus for decoding encoded data encoded with a graph-based code, the apparatus
comprising:

a decoder adapted to perform decoding on the encoded data to generate a candidate decoded
codeword;

RAM memory; and

a trapping-set (T'S)-RAM list decoder adapted to perform, if the candidate decoded codeword
is not a decoded correct codeword, a TS-RAM list-decoding method to attempt to generate the decoded
correct codeword, wherein the TS-RAM list decoder accesses one or more TS profiles stored in the RAM

memory, each TS profile corresponding to a different trapping set.

19. The invention of claim 18, further comprising:

a TS-RAM updater adapted to update the RAM memory to store a new TS profile.

20. The invention of claim 18, wherein the graph-based code is a Low-Density

Parity Check (LDPC) code.
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