实用新型名称

一种带三角锯齿形碎浆刀的多管气流冲击动能碎浆设备

摘要

本实用新型提供了一种带三角锯齿形碎浆刀的多管气流冲击动能碎浆设备，主要包括气流冲击动能生成装置、碎浆刀和液浆生成装置。其特点是利用气流冲击动能碎浆，利用带三角形锯齿的碎浆刀剪切碎浆，并与液态水混合生成浆液。本实用新型通过顺时针圆周均布的4根气流输送支管实现浆液筒多区域碎浆的冲击，通过气流输送总管、气流输送支管的内径依次减半实现气流的加压提速；通过气流输送主管的连接处、气流输送支管弯角处的圆角过渡减小气流动能损耗；通过每组上、中、下6个三角形锯齿的碎浆刀实现碎浆的剪切破碎，通过空隙式液浆筒盖防止落入较大异物及气体排出，通过8根周向均布的液浆筒盖支撑架增强液浆筒盖的结构强度。
1. 一种带三角锯齿形碎浆刀的多管气流冲击动能碎浆设备，主要包括气流冲击动能生成装置、碎浆刀和液浆生成装置，其特征在于：所述气流冲击动能生成装置由空气压缩机、气流输送总管、气流输送支管A、气流输送支管B、气流输送支管C和气流输送支管D组成，空气压缩机通过空气压缩机固定螺钉固定在液浆筒盖上，气流输送总管上端安装在空气压缩机下端，气流输送总管下端连接有气流输送支管A、气流输送支管B、气流输送支管C和气流输送支管D，各气流输送支管依次呈顺时针且圆周均匀分布，气流输送总管的内径为d，气流输送支管的内径为d且d=d/2，气流输送支管A、气流输送支管B、气流输送支管C和气流输送支管D的长度为L，气流输送支管B、气流输送支管C的长度为L且L=L/2，气流输送总管与气流输送支管连接处的过渡圆角为r，气流输送支管弯角处的圆角为r且r=r/2；所述碎浆刀以每组上、中、下6个的形式分别焊接在4根气流输送支管上，碎浆刀的下端面为三角形锯齿结构，碎浆刀厚度为h且其数值大小为h=d/2，碎浆刀长度为L且L=8h；所述液浆生成装置由液浆筒和液浆筒盖组成，液浆筒为圆筒形结构，液浆筒盖通过液浆筒盖固定螺钉安装在液浆筒上，液浆筒内装有液态水和碎料的混合液，液浆筒下底面安装有支撑，支撑为4根且周向均匀分布，液浆筒下端侧面安装有出料口，液浆筒盖由液浆筒盖外圆、液浆筒盖支撑梁、液浆筒盖内圈和空气压缩机座组成，液浆筒盖外圆、液浆筒盖内圈和空气压缩机座为圆环形结构，液浆筒盖支撑梁为方形结构，其数量为8根且周向均匀分布，其间的空隙为进水进料口，空气压缩机座中心处开有圆孔，用于安装气流输送总管。
一种带三角锯齿形碎浆刀的多管气流冲击动能碎浆设备

技术领域
[0001] 本实用新型涉及一种带三角锯齿形碎浆刀的多管气流冲击动能碎浆设备，尤其涉及一种通过顺时针且圆周均布的4根气流输送支管实现液浆筒多区域碎料的冲击，通过气流输送总管、气流输送支管的内径依次减小实现气流的加压提速，通过气流输送支管的连接处、气流输送支管弯角处的圆角过渡减小气流动能损耗；通过每组上、中、下6个三角形锯齿的碎浆刀实现碎料的剪切破碎，通过空隙式液浆筒盖防止落入较大异物及气体排出，通过8根周向均布的液浆筒盖支撑梁增强液浆筒盖的结构强度，属于造纸业制浆设备的技术研发领域。

背景技术
[0002] 在造纸行业中，纸浆的生成需要将浆板、废旧书本、废旧纸箱等放入水力碎浆机中，并通过转子的转动进行破碎，制成均匀悬浮液。但是由于目前碎浆机工作方式及结构的单一性，造成以下问题：一是效率低，碎浆区域不全面，现有碎浆机受转子安装位置的限制，使得各区域碎浆不均衡，造成碎料大小不一，液浆不均匀，如要产生碎料均匀的液浆需要增加碎浆时间，从而造成碎浆效率低；二是能耗大，现有碎浆机主要是通过机械转子的搅拌来实现碎料的分解，机械转子的转动需要消耗大量的电能，并且转子在运动过程中不仅要带动流体转动，而且还要克服流体的阻力，这在一定程度上增大电能的消耗。
[0003] 因此，针对现有制浆设备中普遍存在的机械碎浆效率低、能耗大等问题，应从碎浆机工作方式及结构上进行综合考虑，设计出无机械转子、效率高且能耗小的一种制浆设备。

发明内容
[0004] 本实用新型针对现有制浆设备存在的机械碎浆效率低、能耗大等问题，提供了一种可有效解决上述问题的一种带三角锯齿形碎浆刀的多管气流冲击动能碎浆设备。
[0005] 本实用新型的一种带三角锯齿形碎浆刀的多管气流冲击动能碎浆设备采用以下技术方案：
[0006] 一种带三角锯齿形碎浆刀的多管气流冲击动能碎浆设备，主要包括气流冲击动能生成装置、碎浆刀和液浆生成装置，所述气流冲击动能生成装置由空气压缩机、气流输送总管、气流输送支管A、气流输送支管B、气流输送支管C和气流输送支管D组成，空气压缩机通过空气压缩机固定螺钉固定在液浆筒盖上，气流输送总管上端安装在空气压缩机下端，气流输送总管下端连接气流输送支管A，气流输送支管B、气流输送支管C和气流输送支管D，各气流输送支管依次呈顺时针且圆周均布分布，气流输送总管的内径为d，气流输送支管的内径为d/2，气流输送支管A、气流输送支管B的长度为l1，气流输送支管C、气流输送支管D的长度为l2且l2=l1/2，气流输送支管A的长度为l3，气流输送支管B的长度为l3/2；所述碎浆刀以每组上、中、下6个的形式分别焊接在4根气流输送支管上，碎浆刀的下端面为三角形锯齿结构，碎浆刀厚度为t且其数值大小为t=d/2，碎浆刀长度为l4且l4=8b1；所述液浆生成装置由液浆筒和液浆筒盖组
成，液浆简为圆筒形结构，液浆筒盖通过液浆筒盖固定螺钉安装在液浆简上，液浆筒内装有液态水和碎料的混合液，液浆简下底面安装有支柱，支柱为4根且向周均匀分布，液浆筒下端侧面安装有出料口，液浆筒盖由液浆筒盖外圆，液浆筒盖支撑梁、液浆筒盖内圆和空气压缩机座组成，液浆筒盖外圆、液浆筒盖内圆和空气压缩机座为圆环形结构，液浆筒盖支撑梁为方形结构，其数量为8根且向周均匀分布，其间间空隙为进水进料口，空气压缩机座中心处开有圆孔，用于安装气流输送总管。

【0007】本实用新型将气流输送支管A、气流输送支管B、气流输送支管C和气流输送支管D依次呈顺时针且圆周均匀分布，并且气流输送支管B、气流输送支管D的长度为气流输送支管A、气流输送支管C长度的1/2，通过这种设计实现液浆简多区域碎料的冲击，即较长的流输送支管A、气流输送支管C实现液浆筒外区域的冲击搅拌，较短气流输送支管B、气流输送支管D实现液浆筒内区域的冲击搅拌，即当工作时，高速气流经气流输送支管喷入碎料和水的混合物中，迫使碎料和水由底端沿气流外侧产生上升运动，在运动过程中与上端的碎料产生碰撞，从而形成该区域的冲击、搅拌及碎料，而将气流输送总管内径设计为气流输送总管的1/2，通过这种设计实现气流的加压提速，提高气流的动能，保证冲击动能具有足够的破碎力，保证搅拌、碎浆效率，而将气流输送总管与气流输送支管连接处、气流输送支管弯角处采用圆角过渡，实现减小气流动能损耗。

【0008】本实用新型将碎浆刀下端面设计为三角形锯齿结构，通过这种设计实现碎料的剪切破碎，即经气流输送支管冲击搅拌的碎料在上升过程中接触碎浆刀，碎浆刀下端的三角形锯齿对碎料产生剪切、撕扯的作用，并与碎料上升力的共同作用下，使碎料破碎，而在气流输送支管上以每组上、中、下6个的形式焊接，这种结构设计既可增加碎料的剪切破碎区域，又可实现对某一块料的多次剪切破碎。

【0009】本实用新型将液浆筒盖支撑梁设计为周向均匀分布，通过这种设计增强整个液浆筒盖的结构强度，而将液浆筒盖外圆、液浆筒盖内圆和液浆筒盖支撑梁间的空隙作为进水进料口，既可满足加水、加热及防止落入较大异物功能，又可实现液浆筒中气体的排出。

【0010】本实用新型的有益效果是：通过顺时针且圆周均布的4根气流输送支管实现液浆筒多区域碎料的冲击，通过气流输送总管、气流输送支管的内径依次减半，实现气流的加压提速，保证冲击动能的破碎力，通过气流输送支管的连接处，气流输送支管弯角处的圆角过渡，减小气流动能损耗，通过每组上、中、下6个三角形锯齿的碎浆刀实现碎料的剪切破碎，通过空隙式液浆筒盖防止落入较大异物及气体排出，通过8根周向均布的液浆筒盖支撑梁增强液浆筒盖的结构强度。

附图说明

【0011】图1是本实用新型的整体结构及部分结构尺寸示意图；
【0012】图2是本实用新型的气流冲击动能减碎装置的布置及部分结构尺寸示意图；
【0013】图3是本实用新型的碎浆刀的结构示意图；
【0014】图4是本实用新型的碎浆刀的结构尺寸示意图；
【0015】图5是本实用新型的液浆筒盖结构示意图。
【0016】其中：1、出料口，2、支柱，3、碎浆刀，4、气流输送支管A，5、液浆简，6、气流输送总管，7、液浆筒盖固定螺钉，8、进水进料口，9、液浆筒盖，10、空气压缩机，11、空气压缩机固定
具体实施方式

[0017] 实施例：

[0018] 如图 1、图 2 所示，一种带三角锯齿形碎浆刀的多管气流冲击动能碎浆设备，主要包括气流冲击动能生成装置、碎浆刀 3 和液浆生成装置。气流冲击动能生成装置由空气压缩机 10、气流输送总管 6、气流输送支管 A 4、气流输送支管 B 13、气流输送支管 C 14 和气流输送支管 D 12 组成，空气压缩机 10 通过空气压缩机固定螺钉 11 固定在液浆简盖 9 上，气流输送总管 6 上端安装在空气压缩机 10 下端，气流输送总管 6 下端连接有气流输送支管 A 4、气流输送支管 B 13、气流输送支管 C 14 和气流输送支管 D 12，各气流输送支管依次呈顺时针且圆周均匀分布，气流输送支管 A 4、气流输送支管 C 14 的长度为 L，气流输送支管 B 13、气流输送支管 D 12 的长度为 L2 且 L=L/2。这种结构设计实现液浆筒 5 多区域碎料的冲击，即较短的气流输送支管 A 4、气流输送支管 C 14 实现液浆筒 5 外区域的冲击搅拌，较短气流输送支管 B 13、气流输送支管 D 12 实现液浆筒 5 内区域的冲击搅拌，即当工作时，高速气流经气流输送支管喷入碎料和水的混合物中，迫使碎料和水由底端沿气流外侧产生上升运动，在运动过程中与上端的碎料产生碰撞，从而形成该区域的冲击，搅拌及碎料；

[0019] 气流输送总管 6 的内径为 d6，气流输送支管的内径为 d7 且 d7=d6/2，在工作时，这种结构设计实现气流的加压提速，提高气流的动能，保证冲击动能具有足够的破碎力，从而保证搅拌、碎浆效率。

[0020] 气流输送总管 6 与气流输送支管连接处的过渡圆角为 r1，气流输送支管弯角处的圆角为 r2 且 r2=r1/2，这种结构设计实现减小气流动能的损耗。

[0021] 如图 1、图 3、图 4 所示，碎浆刀 3 以每组上、中、下 6 个的形式分别焊接在 4 根气流输送支管上，碎浆刀 3 的下端面为三角形锯齿结构，碎浆刀 3 厚度为 b3 且其数值大小为 b3=d7/2，碎浆刀 3 长度为 L2 且 L2=8b3。在工作时，这种结构设计实现碎料的剪切破碎，即经气流输送支管冲击搅拌的碎料在上升过程中碰撞碎浆刀 3，碎浆刀 3 下端的三角形锯齿对碎料产生剪切、撕扯的作用，并与碎料上升力的共同作用下，使碎料破碎；而在气流输送支管上以每组上、中、下 6 个的形式焊接，既可增加碎料的剪切破碎区域，又可实现对某一碎料的多次剪切破碎。

[0022] 如图 1、图 5 所示，液浆生成装置由液浆筒 5 和液浆简盖 9 组成，液浆筒 5 为圆筒形结构，液浆简盖 9 通过液浆筒盖固定螺钉 7 安装在液浆筒 5 上，液浆筒 5 内装有液态水和碎料的混合液，液浆筒 5 下底面安装有支柱 2，支柱 2 为 4 根且周向均匀分布，液浆筒 5 下端侧面安装有出料口 1、液浆简盖 9 由液浆筒盖外圈 15、液浆简盖支撑梁 16、液浆简内圈 17 和空气压缩机座 18 组成，液浆简盖外圈 15、液浆简内圈 17 和空气压缩机座 18 为圆环形结构，液浆简盖支撑梁 16 为方形结构，其数量为 8 根且周向均匀分布，这种设计增强整个液浆筒盖 9 的结构强度，其间空隙为进水进料口 8，这种空隙设计既可满足加水、加料及防止落入较大异物功能，又可实现液浆筒 5 中气体的排出。
图 1