The present invention relates to a super-absorbent resin and a method for preparing the same. In the super-absorbent resin of the present invention, the gel strength index of equation 1 below is 0.5 or more. [Equation 1] Gel strength index = 0.7 psi AUP of super-absorbent resin x CRC of base polymer, wherein, in equation 1, 0.7 psi AUP (g/g) is the value of absorbency under pressure analyzed according to the EDANA WSP242.2.R3, and CRC of the base polymer (g/g) is the value of centrifuge retention capacity obtained by analyzing CRC of the base polymer before surface cross-linking according to the EDANA WSP241.2.R3.
본 발명은 고흡수성 수지 및 이의 재조 방법에 관한 것이다. 본 발명의 고흡수성 수지는 하기 식 1의 절 강도 지표가 0.5 이상이다. [식 1] 절 강도 지표 = 고흡수성 수지의 0.7p _si AUP/ 베이스 폴리머의 CRC 상기 식 1에서 상기 0.7psi AUP(g/g)는 EDANA WSP242.2.R3 법에 따라 분석한 가압 흡수능 값이며, 상기 베이스 폴리머의 CRC(g/g)는 EDANA WSP241.2.R3 법에 따라 표면 가고 전 베이스 폴리머의 CRC를 분석한 보수능 값이다.
명세서

발명의 명칭: 고흡수성 수지 및 그의 제조 방법

기술분야

배경기술

[2] 고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 500 내지 1,000 배

정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발 업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른

이름으로 명명하고 있다. 상기 고흡수성 수지의 0.7psi 가압 흡수능(AUP)은 20g/g 내지 30g/g의 범위일

[3] 이는 외란이용 종이 기저귀 등 위생 용품 이외에 원예용 토양

보수재, 토목, 건축용 지수재, 육목용 시트, 식품 유통 분야에서의 신선도 유지제, 콜질 용품 등의 재료로 널리 사용되고 있다.

발명의 상세한 설명

기술적 과제

과정 해결 수단

[6] 상기 과제를 해결하기 위한 본 발명의 일 실시에 따른 고흡수성 수지는 하기

식 1의 갤 강도 지표가 0.5 이상일 수 있다.

[7] [식 1]
[8] 갤 강도 지표 = 고흡수성 수지의 0.7psi AUP/ 베이스 플리머의 CRC

[9] 상기식 1에서 상기 0.7psi AUP(g/g)는 EDANA WSP242.2.R3 법에 따라 분석한

가압 흡수능 값이며, 상기 베이스 플리머의 CRC(g/g)는 EDANA WSP241.2.R3

법에 따라 표면 가교 전 베이스 플리머의 CRC를 분석한 보수능 값이다.

[10] 상기고흡수성 수지의 0.7psi 가압 흡수능 (AUP)은 20g/g 내지 30g/g의 범위일
수 있다. —
[12] 상기 베이스 폴리머의 보수능 (CRC) 은 40g/g 이하의 범위일 수 있다.
[13] 상기 고흡수성 수지의 EDANA WSP241.2.R3 법에 따른 보수능 (CRC) 은 30g/g 이하의 범위일 수 있다.
[14] 상기 고흡수성 수지는 자유 팽은 갈 벨드 투과율 시험 (Free Swell Gel Bed Permeability Test)에 의해 측정된 갈층 통액성 (GBP) 이 30 x 10⁻⁸ cm² 이상의 범위일 수 있다.
[16] 상기 다가 양이온 급속은 황산 알루미늄, 람트산 알루미늄 또는 인산
알루미늄 농도를 포함할 수 있다.
[17] 상기 무기 파우더는 이산화규소, 규산 산화 알루미늄, 산화 마그네슘, 산화 아연, 제오라 이트, 벤토나이트 또는 카올린을 포함할 수 있다.
[18] 상기 과제의 해결하기 위한 본 발명의 일시시에 따른 고흡수성 수지 제조방법은 모노머 조성물을 베이스 폴리머로 중합하는 단계, 상기 베이스 폴리머를 분쇄하는 단계, 상기 보수된 베이스 폴리머에 다가 양이온 급속 또는 무기 파우더를 혼합하는 단계, 및 상기 베이스 폴리머를 표면 가교하는 단계를 포함할 수 있다.
[21] 상기 혼합하는 단계는 모노머 조성물, 개시제 및 가교제를 포함하며, 상기 가교제는 상기 모노머 조성물 대비 0.05 중량 부, 내지 1중량부의 범위로 포함할 수 있다.
[22] 기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
발명의 효과
[23] 본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.
[24] 본 발명의 고흡수성 수지는 우수한 갈 강도를 가지면서, 우수한 갈 투과성 (Gel Bed Permeability) 을 가질 수 있다.
[26] 본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도면의 간단한 설명
[27] 도 1 내지 3은 본 발명의 실시예에 따른 갈 투과성을 측정하는 장치의 간략적인 모식도를 도시한 도면이다.
발명의 실시를 위한 형태
[28] 본 발명의 이점을 확증, 그리고 그것들을 달성하는 방법은 첨부 되는 도면과
함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 착조 부호는 동일 구성 요소를 지칭한다. 도면에서 총 및 영역들의 크기 및 상대적인 크기는 설명의 명료성을 위해 과장된 것일 수 있다.

[29]
고형수성 수지의 제조 방법

[30] 본 발명의 일시 예에 따른 고형수성 수지의 제조 방법은 모노머 조성물을 베이스 폴리머로 중합하는 단계, 상기 중합된 베이스 폴리머를 분쇄하는 단계, 상기 분쇄된 베이스 폴리머에 다가 얇이온 금속 또는 무기 파우더를 혼합하는 단계, 및 상기 베이스 폴리머를 표면 가교하는 단계를 포함할 수 있다.

[31] 고형수성 수지를 중합하는 단계는 특별히 한정되는 것은 아니지만, 모노머 조성물을 중합 반응기에 주입하여 중합할 수 있다. 효율적인 공정을 위하여, 연속적인 중합 반응기를 사용하여 연속적으로 중합될 수 있다. 이 경우, 고형수성 수지를 형성하기 위하여, 벨트 상에 상기 모노머 조성물을 주입하여 중합할 수 있지만, 이것만으로 한정되는 것은 아니다.

[32] 모노머 조성물에 포함되는 모노머로 수용성 에틸렌계 불포화 단량체는 고형수성 수지의 제조에 일반적으로 사용되는 단량체이면 어느 것이나 한정 없이 사용이 가능하다. 모노머는 크게 음이온성 단량체와 그 염, 비이온계 친수성 함유 단량체, 및 아미노기 함유 불포화 단량체 및 그 의 4급화물로 이루어진 경에서 선택될 수 있다. 이는 이상을 사용할 수 있다.

[33] 에시적인 실시 예에서, 아크릴산, 메타아크릴산, 우수말레 인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일 에탄 살판산, 2-메타아크릴로일 에탄 살판산, 2-(메타)아크릴로일 프로판 살판산 및 2-(메타)아크릴 아미드, 2-메틸프로판 살판산으로 이루어진 경에서 선택되는 하나 이상의 음이온성 단량체 또는 그 염: (메타)아크릴 미드, N-치환 (메타)아크릴 레이트, 2-히드록시 에틸(메타)아크릴 레이트, 2-히드록시 프로필 (메타)아크릴 레이트, 메톡 시필 에틸렌글리콜 (메타)아크릴 레이트 및 폴리에틸렌 글리콜 (메타)아크릴 에이트로 이루어진 경에서 선택되는 하나 이상의 비이온계 친수성 함유 단량체: 또는 (N,N)-디메틸아미 노에틸(메타)아크릴 레이트 및 (N,N)-디메틸아미노프로필 (메타)아크릴 미드로 이루어진 경에서 선택되는 하나 이상의 아미노기 함유 불포화 단량체 또는 그 4급화물 등을 포함할 수 있다.

[34] 모노머 조성물 중 수용성 에틸렌계 불포화 단량체의 농도는 중합 시간 및 반응 조건 (모노머 조성물의 공급 속도, 열 및/또는 빛의 조사 시간, 조사 범위, 및 조사
강도, 벨트의 너비, 길이 및 이동 속도 등)을 고려하여 적절하게 선택하여 사용할 수 있으나, 예시적인 실시예에서, 40 내지 60 중량% 범위일 수 있다. 이 경우, 모노머의 용해도 및 경제적인 면에서 효율적일 수 있다.

[36] 모노머 조성물은 개시제, 가교제를 더 포함할 수 있으며, 상기 개시제는 광중합 개시제, 열중합 개시제 또는 레토크스 개시제일 수 있다. 상기 개시제는 공정 과정에서 열중합, 광중합, 산화환원 반응으로 인한 중합, 또는 열중합 및 광중합을 선택할지에 따라 그 종류를 적절히 선택하여 사용할 수 있다.

[37] 상기 열중합 개시제는 특별히 제한되는 것은 아니지만, 예를 들어, 디에톡시 아세토 폐논, 2-히드록시-2-메틸-1-페닐프로판-1-온, 4-(2-히드록시 에톡시) 폐논(2-히드록시)-2-프로필 케톤, 1-히드록시시클로헥실 폐닐케톤 등의 아세토 폐논 유도체; 벤조인 메틸에테르, 벤조인 에틸에테르, 벤조인 이소프로필에테르, 벤조인 이소부틸에테르 등의 벤조인 알킬에 테르류 화합물; 0-벤조일 안산향산 메틸, 4-페닐 벤조페논, 4-벤조일-4'-메틸디 폐닐 항화물, (2.4,6-페닐진) 트리메틸암모늄염화물 등의 벤조페논 유도체; 티옥산ثن(thioxanthone) 계 화합물; 비스(2,4,6-트리메틸벤조일)-페닐 포스핀 용아이드, 디페닐(2,4,6-트리메틸벤조일)-포스핀 용아이드 등의 아실 포스핀 용아이드 유도체; 또는 2-히드록시 메틸 프로피 온니트리, 2,2',(아조 비스(2-메틸-N-1,1'-비스(히드록시 메틸)-2-히드록시 에틸)프로피 온 아미드) 등의 아조계 화합물들을 1종 또는 2종 이상 혼합하여 사용할 수 있지만, 이들만으로 정하는 것은 아니다.

[38] 상기 열중합 개시제는 특별히 제한되는 것은 아니지만, 예를 들어, 아조계 (azo) 개시제, 과산화물개시제, 레토크스 (redox) 계 개시제 또는 유기 합화물 개시제 등을 1종 또는 2종 이상 혼합하여 사용할 수 있다. 그리고, 상기 열중합 개시제 중 소듐포스페이트(Sodium persulfate, Na$_2$S$_2$O$_8$) 또는 포타시움 퍼설페이트(Potassium persulfate, K$_2$S$_2$O$_8$)를 둘 수 있지만, 이들만으로 한정되는 것은 아니다.

[39] 모노머 조성물에서, 광중합 개시제 및 열중합 개시제는 중합 개시 효과를 나타낼 수 있으며 그 함량은 선택하여 사용할 수 있다. 예시적인 실시예에서, 광중합 개시제는 단량체 100 중량% 대비 0.005 내지 0.1 중량% 범위로 포함될 수 있고, 열중합 개시제는 단량체 100 중량% 대비 0.01 내지 0.5 중량% 범위로 포함될 수 있지만, 이들만으로 한정되는 것은 아니다.

[40] 가교제는 단량체의 치환기와 반응할 수 있는 관능기 및 에틸렌성 불포화기로 각각 1개 이상 포함하는 가교제, 또는 단량체의 치환기 및/또는 상기 단량체를 가수분해하여 형성된 치환기와 반응할 수 있는 관능기를 2 이상 포함하는 가교제를 사용할 수 있다.

[41] 예시적인 실시예에서, 가교제는 탄소수 8 내지 12의 비스아크릴아 미드, 탄소수 8 내지 12의 비스메타아크릴아 미드, 탄소수 2 내지 10의 폴리올의 폴리(메타)아크릴레이트 또는 탄소수 2 내지 10의 폴리올의
폴리(메타)알릴에 테르 등을 들 수 있고, 보다 구체적인 예로는,
N,N'-메틸렌비스(메타)아크릴 레이트, 에틸렌옥시(메타)아크릴 레이트,
폴리에틸렌옥시(메타)아크릴 레이트, 프로필렌옥시(메타)아크릴 레이트,
글리세린 디아크릴 레이트, 글리세린 트리아크릴 레이트, 트리메티로
트리아크릴레이트, 트리알릴아민, 트리알릴이아시네이트, 트리알릴글러콜,
포료필렌 글리콜로 또는 이들의 2중 이상의 혼합물을 들 수 있지만, 이들만으로
한정되는 것은 아니다.

모노머 조성물에서, 가교제는 가교 효과를 나타낼 수 있으면 그 함량은
선택하여 사용할 수 있다. 예시적인 실시예에서, 가교제는 모노머 조성물 100
중량부 대비 0.05 내지 1중량부 범위로 포함될 수 있다. 상기 범위를 만족함에
따라 우수한 검 강도를 가질 수 있음을 동시에 검 총 역성을 높일 수 있다.

한편, 중합이 완료된 상기 베이스 폴리머는 분쇄하는 단계를 거칠 수 있다. 상기
분쇄하는 단계는 중합이 완료된 베이스 폴리머를 절단 장치에서 투입하여, 커터에
의해 절단함으로써 수행될 수 있다. 이 경우, 상기 커터는 베이스 폴리머를
패터낭된 조각으로 절단할 수 있다.

절단이 완료된 베이스 폴리머는 분쇄, 건조 및 건조된 중합체를 추가 분쇄하는
단계를 추가로 두 포함할 수 있다. 경우에 따라서는 분쇄 공정 전에, 가건조
단계를 추가로 포함하여 분쇄 공정에서 쏠림 등을 방지할 수 있다.

분쇄 방법으로는 특별히 한정되는 것은 아니지만, 예를 들어, 고무상 탄성체를
절단, 압출하는 장치를 이용할 수 있다. 예시적인 실시예에서, 커터형 절단기,
초파형 절단기, 나디형 절단기, 진동식 분쇄기, 충격식 분쇄기, 마찰형 분쇄기
등을 들 수 있지만 이들만으로 한정되는 것은 아니다.

건조 방법으로는 통상 건조기와 가열로를 이용할 수 있다. 예시적인
실시예에서, 열풍 건조기, 유동층 건조기, 기류 건조기, 적외선 건조기, 유전기압
건조기 등을 들 수 있지만 이들만으로 한정되는 것은 아니다. 건조 온도는
특별히 제한되는 것은 아니지만, 열영역을 방지하고 효율적인 건조를 위하여
100 내지 200 범위일 수 있다.

다음으로, 분쇄된 베이스 폴리머에다가 양이온 금속 또는 무기 파우더를
혼합하는 단계를 수행할 수 있다. 상기 다가 양이온 금속이 나무기 파우더를
혼합함에 의해 제조된 고충성 수지의 용접을 방지할 수 있으며, 이에 의해
고충성 수지의 통 역성을 향상시킬 수 있다.

상기 다가 양이온 금속은 황산 알루미늄, 락타산 알루미늄 또는 인산
알루미늄을 포함할 수 있으며, 상기 무기 파우더는 이산화 규소, 규산 산화
알루미늄, 산화 마그네슘, 산화 아연, 체오라 이트, 벤도나 이트 또는 카율린을
포함할 수 있으나, 이에 한정하는 것은 아니다.

한편, 상기 다가 양이온 금속이나 무기 파우더를 혼합하는 단계와 상기 표면
가교하는 단계는 동시에 수행될 수 있으나, 이에 한정하는 것은 아니며, 상기

혼합하는 단계 이후에 표면 가교하는 단계를 수행하는 등, 당업자가 필요에 따라 적절히 그 순서를 변경할 수 있다.

다음으로, 상기 베이스 폴리머의 표면으로 가교하는 단계를 수행할 수 있다. 상기 표면 가교 단계는, 예를 들어, 에틸렌 글리콜 디글리시딜 에테르, 물 및 에탄올을 이용하여 이루어질 수 있으나, 이것만으로 한정되는 것은 아니다.

상기 표면 가교 단계는 상기 가교제, 상기 다가 양이온 금속 및 상기 무기 파우더 중 어느 하나 이상을 포함하는 표면가교 용액을 상기 베이스 폴리머와 혼합함으로써 수행될 수 있으며, 추가로 표면 가교된 베이스 폴리머를 건조함으로써, 고흡수성 수지를 제조할 수 있다. 상기 표면 가교된 베이스 폴리머를 건조하는 방법으로는 열풍, 오븐에 의해 수행될 수 있으나, 이에 한정하는 것은 아니다.

또한, 상기 제조된 베이스 폴리머를 막체를 이용하여 일정이 150 ~ 1500 mmHg 이상 내지 850 ~ 1000 mmHg 이하인 고흡수성 수지로 제조하는 단계를 추가로 포함할 수 있다.

고흡수성 수지 일자

본 발명의 일시에 따른 고흡수성 수지는 하기 식 1의 절강도 지표가 0.5 이상일 수 있으며, 예를 들어, 0.5 내지 0.8, 0.5 내지 0.75 또는 0.55 내지 0.5의 범위일 수 있다. 상기 절강도 지표의 범위에서 고흡수성 수지의 우수한 절강도를 유지하면서도 우수한 투과성 및 흡수율을 제공할 수 있다.

[식 1]

절강도 지표 = 고흡수성 수지의 0.7psi AUP/ 베이스 폴리머의 CRC

상기 식 1에서 상기 0.7psi AUP(g/g) 는 EDANA WSP242.2.R3 법에 따라 분석한 가압 흡수능 값이며, 상기 베이스 폴리머의 CRC(g/g)는 EDANA WSP241.2.R3 법에 따라 표면 가교 전 베이스 폴리머의 CRC를 분석한 보수능 값이다.

또한, 상기 고흡수성 수지의 0.7psi 가압 흡수능 (AUP) 은 20g/g 내지 30g/g의 범위일 수 있으며, 예를 들어, 20g/g 내지 25g/g 또는 21g/g 내지 24g/g의 범위일 수 있다. 가압 흡수능의 경우, 일정 압력하에서 물을 흡수할 수 있는 능력으로 표면 가교의 밀도가 높을수록 압력을 통해서 도 물을 흡수하는 능력이 높아진다는 것을 의미한다. 본 발명의 고흡수성 수지는 상기 가압 흡수능 범위를 만족함에 의해 우수한 흡수능을 가질 수 있다.

또한, 상기 베이스 폴리머의 보수능 (CRC) 은 40g/g 이하의 범위일 수 있으며, 예를 들어, 0g/g 초과 내지 40g/g 이하, 20g/g 내지 40g/g, 또는 30g/g 내지 40g/g의 범위일 수 있다. 보수능은 내부 가교도가 높아져 액체를 머금을 수 있는 능력이 낮아질 경우, 낮은 수치 범위를 보이며, 이와는 상대적으로 베이스 폴리머의 절강도는 높아진다는 것을 의미한다. 본 발명의 상기 베이스 폴리머의 보수능 범위를 만족하면서 상기 절강도 지표가 적의 범위를 만족할 경우, 우수한 절강도를 유지하면서도 우수한 투과성 및 흡수율을 가질 수 있다.
다시 말하면, 본 발명의 고흡수성 수지는 베이스 폴리머의 가교도를 높여 고흡수성 수지 내부의 강도를 증가시킬 수 있으며, 베이스 폴리머의 표면에는 다가 금속염이나 무기 물질을 포함함으로써, 역체가 흡수할 수 있는 채널을 형성하게 하여 투과성을 향상시킬 수 있다.

한편, 상기 고흡수성 수지의 EDANA WSP241.2.R3 법에 따른 보수능 (CRC) 은 30g/g 이하의 범위일 수 있다. 상기 범위를 만족함으로써, 고흡수성 수지의 내외부가 모두 일정 수준 이상의 절강도를 지니게 함으로써, 높은 젤 총 흡수능을 갖도록 할 수 있다.

상기 고흡수성 수지의 젤 총 흡수능(GBP)은 30 x 10^-8 cm² 이상의 범위일 수 있으며, 에를 들어, 30 x 10^-8 cm² 내지 80 x 10^-8 cm² 또는 35 x 10^-8 cm² 내지 75 x 10^-8 cm²의 범위일 수 있다. 즉, 상기와 같이, 베이스 폴리머의 CRC값과, 고흡수성 수지의 AUP값을 조절함에 따라, 젤 강도 지표를 일정 수치 범위로 만족하도록 하고 이에 의하여 상기와 같은 젤 총 흡수능 값을 만족하도록 할 수 있다.

한편, 상기 고흡수성 수지의 제조방법에서 설명한 바와 같이, 고흡수성 수지는 다가 얕이온 금속 및 무기 파우더 중 적어도 어느 하나 이상을 포함할 수 있다. 상기에서 설명한 바와 같이, 베이스 폴리머의 가교도를 높여 고흡수성 수지의 강도를 높이면서 다가 얕이온 금속 및 무기 파우더 중 어느 하나를 표면 가교에 사용함으로써, 투과성을 향상시킬 수 있다. 한편, 상기 다가 얕이온 금속 및 무기 파우더의 액체에 설명하였는바, 구체적인 설명은 생략하기로 한다.

제조예 1

50% 가성소다 수용액 (NaOH) 77.78g 및 물 88.84g을 혼합한 후 아크릴산 100g, 가교제로 폴리에틸렌글리콜디아크릴레이트0.08g, UV 개시제로 디페닐(2,4,6-트리메틸벤조일) - 포스핀 옥시드 0.033g 혼합하여 천수성 단량체의 농도가 45 중량%인 단량체 조성물을 제조하였다.

이후, 단량체 조성물을 종합히 투입한 후, UV 조사 장치를 통해 자외선을 조사하고 UV 중합을 진행하여 합수 젤 중합체를 제조하였다. 합수 젤 중합체를 절단기로 이송한 후, 절단하었다. 젤 중합체를 미트 초퍼(meat chopper)를 이용해 채소를 chopping 한 후, 합수 젤 중합체를 180℃ 온도의 열풍건조기에서 30분 동안 건조하고, 건조된 합수 젤 중합체를 분쇄기로 분쇄하였다.

제조예 2

폴리에틸렌글리콜 디아크릴레 이트의 함량을 0.12g으로 변경하는 것을 제외하고, 제조예 1과 동일하게 제조한다.

제조예 3

폴리에틸렌글리콜 디아크릴레 이트의 함량을 0.16g으로 변경하는 것을 제외하고, 제조예 1과 동일하게 제조한다.
제조예 1

폴리에틸렌글리콜 디아크릴레이트의 함량을 0.2g으로 변경하는 것을 제외하고, 제조예 1과 동일하게 제조한다.

비교예 1

상기 제조에 1에서 얻어진 베이스 폴리머 100g에 에틸렌 카보네이트 Ig, 물 4g으로 이루어진 표면가교 용액을 혼합한 후, 180 ℃에서 30분 동안 열풍 오븐에서 반응시켰다. 이후, 망체(sieve)를 이용하여 입경이 150 μm 이하인 표면 처리된 고흡수성 수지를 제조하였다.

비교예 2

상기 제조에 1에서 얻어진 베이스 폴리머 100g에 에틸렌 카보네이트 Ig, 물 4g과 흑산 알루미늄 Ig으로 이루어진 표면가교 용액을 혼합한 후, 180 ℃에서 30분 동안 열풍 오븐에서 반응시켰다. 이후, 망체(sieve)를 이용하여 입경이 150 μm 이상 내지 850 μm 이하인 표면 처리된 고흡수성 수지를 제조하였다.

비교예 3

상기 제조에 1에서 얻어진 베이스 폴리머 100g에 에틸렌 카보네이트 Ig, 물 4g, 흑산 알루미늄 Ig과 Silica 0.5g (Aerosil 200)으로 이루어진 표면가교 용액을 혼합한 후, 180 ℃에서 30분 동안 열풍 오븐에서 반응시켰다. 이후, 망체(sieve)를 이용하여 입경이 150 μm 이상 내지 850 μm 이하인 표면 처리된 고흡수성 수지를 제조하였다.

비교예 4

상기 제조에 2에서 얻어진 베이스 폴리머 100g에 에틸렌 카보네이트 Ig, 물 4g과 흑산 알루미늄 Ig으로 이루어진 표면가교 용액을 혼합한 후, 180 ℃에서 30분 동안 열풍 오븐에서 반응시켰다. 이후, 망체(sieve)를 이용하여 입경이 150 μm 이상 내지 850 μm 이하인 표면 처리된 고흡수성 수지를 제조하였다.

비교예 5

상기 제조에 2에서 얻어진 베이스 폴리머 100g에 에틸렌 카보네이트 Ig, 물 4g과 흑산 알루미늄 Ig과 Silica 0.5g (Aerosil 200)으로 이루어진 표면가교 용액을 혼합한 후, 180 ℃에서 30분 동안 열풍 오븐에서 반응시켰다. 이후, 망체(sieve)를 이용하여 입경이 150 μm 이상 내지 850 μm 이하인 표면 처리된 고흡수성 수지를 제조하였다.

비교예 6
상기 제조예 3에서 얻어진 베이스 폴리머 100g에 에틸렌 카보네 이트 lg, 물
4g으로 이루어진 표면가교 용액을 혼합한 후, 180 °C에서 30분 동안 열풍
오본에서 반응시켰다. 망체(sieve) 를 이용하여 입경이 150 μm 이상 내지 850 厚
이하인 표면 처리된 고흡수성 수지를 제조 하였다.

실시 예 1
상기 제조예 3에서 얻어진 베이스 폴리머 100g에 에틸렌 카보네 이트 lg, 물
4g과 황산 알루미늄 lg과 Silica 0.5g (Aerosil 200) 으로 이루어진 표면가교 용액을
혼합한 후, 180 °C에서 30분 동안 열풍 오본에서 반응시켰다. 이후, 망체(sieve) 를
이용하여 입경이 150 μm 이상 내지 850 厚 이하인 표면 처리된 고흡수성 수지를 제조 하였다.

실시 예 2
상기 제조예 3에서 얻어진 베이스 폴리머 100g에 에틸렌 카보네 이트 lg, 물
4g과 황산 알루미늄 lg과 Silica 0.5g (Aerosil 200) 으로 이루어진 표면가교 용액을
혼합한 후, 180 °C에서 30분 동안 열풍 오본에서 반응시켰다. 이후, 망체(sieve) 를
이용하여 입경이 150 μm 이상 내지 850 厚 이하인 표면 처리된 고흡수성 수지를 제조 하였다.

실시 예 3
상기 제조예 4에서 얻어진 베이스 폴리머 100g에 에틸렌 카보네 이트 lg, 물
4g과 황산 알루미늄 lg과 Silica 0.5g (Aerosil 200) 으로 이루어진 표면가교 용액을
혼합한 후, 180 °C에서 30분 동안 열풍 오본에서 반응시켰다. 이후, 망체(sieve) 를
이용하여 입경이 150 μm 이상 내지 850 厚 이하인 표면 처리된 고흡수성 수지를 제조 하였다.

실시 예 4
상기 제조예 4에서 얻어진 베이스 폴리머 100g에 에틸렌 카보네 이트 lg, 물
4g, 락트산 알루미늄 lg과 Silica 0.5g (Aerosil 200) 으로 이루어진 표면가교 용액을
혼합한 후, 180 °C에서 30분 동안 열풍 오본에서 반응시켰다. 이후, 망체(sieve) 를
이용하여 입경이 150 μm 이상 내지 850 厚 이하인 표면 처리된 고흡수성 수지를 제조 하였다.
실시 예 6
상기 제조 예 4에서 얻어진 베이스 폴리머 100g에 에틸렌 카보네 이트 1g, 물
4g과 황산 알루미늄 1g으로 이루어진 표면가교 용액을 혼합한 후, 180 ℃에서
30분 동안 열풍 오븐에서 반응시켰다. 반응이 끝난 베이스 폴리머를 Silica 0.5g
(Aerosil 200) 와 혼합한 후, 망체(sieve) 를 이용하여 입경이 150 µm 이상 내지 850
µm 이하인 표면 처리된 고흡수성 수지를 제조하였다.

실시 예 7
상기 제조 예 4에서 얻어진 베이스 폴리머 100g에 에틸렌 카보네 이트 1g, 물
4g과 Silica 0.5g (Aerosil 200) 로 이루어진 표면가교 용액을 혼합한 후, 180
℃에서 30분 동안 열풍 오븐에서 반응시켰다. 이후, 망체(sieve) 를 이용하여
입경이 150 µm 이상 내지 850 µm 이하인 표면 처리된 고흡수성 수지를
제조하였다.

실험에
상기 제조에 1 내지 4에서 제조된 베이스 폴리머와 비교 예 및 실시예의
고흡수성 수지의 CRC, AUP, GBP 를 측정하여 하기를 표 1에 나타내었으며, 비교예와 실시예의 고흡수성 수지의 상기 식 1에 따른 절 강도 지표를 하기 표
1에 나타내었다. 이때, 상기 CRC 및 AUP 는 각각 EDANA WSP 241.2, R3, EDANA
WSP 242.2, R3 규격으로 측정하였다.

상기 케일 콘트액성은 자유 팽창 케일 베드 투과율 시험(Free Swell Gel Bed
Permeability Test) 에 의해 측정될 수 있으며, 이하에서는 도 1 내지 3을 참조하여, 케일 콘트액성을 측정하는 방법에 대해 보다 구체적으로 설명하기로 한다.

도 1의 장치를 이용하여 측정할 수 있다. 보다 구체적으로 도 2은 도 1의
갈루우경 수증 측정 장치에서 피스톤(200) 을 확대한 단면도 이고, 도 3은 도 1 및 2에서
피스톤(200) 일부분에 타령된 부분의 평면도를 도시한 도면이다.

도 1에서와 같이, 온기(300) 안에는 피스톤(200) 이 위치하고, 피스톤은 도 2 및
3과 같이 피스톤 하부(100) 에 다수개의 타공(10) 이 형성되어 있다.

다시 도 1을 참조하여, 탱크(500) 와 온기(300) 는 서로 연결되고, 코크(600) 에
의해 온기(300) 로 유입되는 액체의 양은 조절할 수 있게 되어 있으며, 온기(300) 의 하부에는 메쉬망(400) 이 형성되고, 메쉬망(400) 의 하부에는
일정간격 이격되어 저울(800) 상부에 수집 컨테이너(700) 가 위치하여, 온기(300) 로부터 메쉬망(400) 을 통해 유입되는 액체의 무게를 저울(800) 을
이용하여 유량을 측정할 수 있다.

한편, 상기 제조예, 비교예 및 실시예에서 제조된 고흡수성 수지를
2.0g 추출하여 샘플을 준비하고, 상기 샘플을 원통형 샘(50) 의 바닥에 균일하게
펼쳐 놓는다. 상기 샘플이 펼쳐진 원통형 샘(50) 을 온기(300) 의 메쉬망(400) 상에
배치한 이후, 피스톤(200) 을 이용하여 팽창 전의 샘플의 결 높이를 (HI) 측정한다.
이어서, 피스톤(200) 을 빼고, 상기 샘플이 평가진 원통형 셀(50) 을 용기(300) 의
매쉬망(400) 상에 배치하고, 0.9% 생리식염수를 부여주면서, 60분 동안 평균
시킨다. 60분 후, 용기(300) 안에 피스톤(200) 을 위치시켜, 평온 후의 피스톤
높이(H2) 를 측정하여, 평온 전의 피스톤(200) 의 높이(H1) 와 평온 후의
피스톤(200) 의 높이(H2) 의 차를 측정하여 평온된 결중 높이(H=H2-H1) 를
측정한다.

다음으로, 도 1와 같이, 원통형 셀(50) 상부에 피스톤(200) 위치시키고, 0.9%
생리식염수가 담긴 탱크(500) 의 코크(600) 를 열어 물의 높이를 7.95cm 로
일정하게 유지하여 투입한다. 0.3psi 무게에 해당하는 피스톤(200) 으로 압력을
가해주면서, 컴퓨터와 저울(800) 을 통해 결중을 통과하는 액체의 양을 시간의
함수로 1분 동안 1초 간격으로 측정한다. 평온된 샘플을 통과하는 액체의 속도
Q는 무게(g) 대 시간 (초) 의 선형 최소-제곱법으로 g/s 의 단위로 구할 수 있다.

통액성(cm²)은 다음의 방정식으로 수득한다:

\[K = [Q \times H \times \mu] \left(A \times \rho \times \rho \right) \]

여기서, \(K = \) 통액성 (cm²), \(Q = \) 유속 (g/sec), \(H = \) 평온된 샘플의 높이 (cm), \(\mu = \) 액체
절도 (P), (당해 시험에 사용되는 시험 용액의 경우 대략 1cP), \(A = \) 액체 유동에 대해
단면적 (당해 시험에 사용되는 샘플 용기에 대해 28.27cm²), \(p = \) 액체
밀도 (g/cm³) (당해 시험에 사용되는 시험 용액에 대해 대략 1g/ cm³), \(P = \)
정수압 (dynes /cm²) (통상적으로 대략 7,797dynes /cm²) 이다. 정수압은 \(P = \) \(p \times g \times \n\)로부터 계산되며, 여기서, \(p = \) 액체 밀도 (g/cm³), \(g = \) 중력 가속도, 통상적으로
981cm/sec², \(h = \) 유체 높이, 7.95cm 이다.

[126]
[127]
[128]
[129]
[130]
[131]
상기 표 1에서와 같이, 본 발명의 베이스 폴리머의 CRC 값을 만족하는 제조 예 3 및 4의 베이스 폴리머를 사용하여 제조된 실시 예 1 내지 6의 고흡수성 수지는 우수한 젤 총 통액성 (GBP) 값을 가진다는 것을 확인할 수 있다. 반면, 비교 예 1 내지 5의 경우, 베이스 폴리머 CRC 값이 본 발명의 범위를 만족하지 못하여, 젤 총 통액성 (GBP) 값이 매우 낮은 수치를 보이는 것을 확인할 수 있다.

또한, 비교 예 6에서와 같이, 베이스 폴리머의 CRC 값을 만족하지라도, 다가 양이온 급속이나, 무기 파우더를 함유하지 않은 경우, 루프성이 낮아져, 젤 총 통액성 (GBP) 값이 낮아진다는 것을 확인할 수 있다.

즉, 상기 표 1에서 확인할 수 있듯이, 본 발명의 고흡수성 수지는 베이스 폴리머의 특정 CRC 범위를 만족하여 내부 강도가 높고, 고흡수성 수지의 압력하에서 물을 흡수할 수 있는 우수한 능력을 갖추면서, 고흡수성 수지의 표면에는 다가 급속염이나 실리카와 같은 무기 물질을 포함하여 액체가 효율 수
있는 채널을 형성하여 통액성을 좋게 함으로써, 겔층 통액성을 우수하게 할 수 있다.

이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
청구 범위

[청구항 1] 하기 식 1의 젤 강도 지표가 0.5 이상인 고흡수성 수지.
[식 1]

\[\text{ geli 강도 지표} = \text{ 고흡수성 수지의 \(0.7\text{psi AUP/g(g)}\)} \]

상기 식 1에서 상기 0.7psi AUP(g/g) 는 EDANA WSP242.2.R3 법에 따라 분석한 가압 흡수능 값이며, 상기 베이스 폴리머의 CRC(g/g) 는 EDANA WSP241.2.R3 법에 따라 표면 가교 전 베이스 폴리머의 CRC를 분석한 보수능 값이다.

[청구항 2] 제 1항에 있어서,

상기 고흡수성 수지의 0.7psi 가압 흡수능 (AUP) 은 20g/g 내지 30g/g 의 범위인 고흡수성 수지.

[청구항 3] 제 1항에 있어서,

상기 베이스 폴리머의 보수능 (CRC) 은 40g/g 이하의 범위인 고흡수성 수지.

[청구항 4] 제 1항에 있어서,

상기 고흡수성 수지의 EDANA WSP241.2.R3 법에 따른 보수능 (CRC) 은 30g/g 이하의 범위인 고흡수성 수지.

[청구항 5] 제 1항에 있어서,

상기 고흡수성 수지는 자유 평균 젤 베드 투과율 시험(Free Swell Gel Bed Permeability Test) 에 의해 측정된 젤 충 통역성 (GBP) 이 30 x 1(1)8 cm2 이상의 범위인 고흡수성 수지.

[청구항 6] 제 1항에 있어서,

상기 고흡수성 수지는 다가 양이온 급속 및 무기 파우더 중 적어도 어느 하나 이상을 포함하는 고흡수성 수지.

[청구항 7] 제 6항에 있어서,

상기 다가 양이온 급속은 항산 알루미늄, 락토산 알루미늄 또는 인산 알루미늄을 포함하는 고흡수성 수지.

[청구항 8] 제 6항에 있어서,

상기 무기 파우더는 이산화규소, 규산 산화 알루미늄, 산화 마그네슘, 산화 아연, 재오라 이트, 밴토나이트 또는 카올린을 포함하는 고흡수성 수지.

[청구항 9] 모노머 조성물은 베이스 폴리머로 중합하는 단계.

상기 베이스 폴리머는 분쇄하는 단계;

양기 분쇄된 베이스 폴리머에 다가 양이온 급속 또는 무기 파우더를 혼합하는 단계; 및

양기 베이스 폴리머를 표면 가교하는 단계를 포함하는 고흡수성 수지 제조방법.
[청구항 10] 제 9항에 있어서,
상 기 혼합하는 단계 및 상 기 표면 가교하는 단계는 동시에 수행되는 고흡수성 수지 제조방법.

[청구항 11] 제 9항에 있어서,
상 기 혼합하는 단계 이후 상 기 표면 가교하는 단계를 수행되는 고흡수성 수지 제조방법.

[청구항 12] 제 9항에 있어서,
상 기 중합하는 단계는 모노머 조성물, 개시제 및 가교제를 포함하며, 상 기 가교제는 상 기 모노머 조성물 대비 0.05 중량부 내지 1중량부의 범위로 포함하는 고흡수성 수지 제조방법.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC:

C08J 3/075(2006.01)i, C08K 3/22(2006.01)i, C08K 3/24(2006.01)i, C08F 2/10(2006.01)i, C08J 3/24(2006.01)i

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

C08J 3/075; C08F 2/10; A 61L 15/22; C08F 20/10; C08F 20/00; C08F 20/00; A 61L 15/60; C08K 7/16; C08K 3/10; C08K 3/22;
C08K 3/24; C08J 3/24

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched:

Japanese Utility models and applications for Utility models: IPC as above.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication where appropriate, of the relevant passages</th>
<th>Relevance to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>K R 10—2014—030034 A (LG CHEM. LTD.) 07 November 2014</td>
<td>1-5</td>
</tr>
<tr>
<td>Y</td>
<td>A (LG CHEM. LTD.) [0032], [0034] claims 1, 3, 4, 10.</td>
<td>6-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>K R 10-2010-0014556 A (EVONIK STOCKHAUSEN INC.) 10 February 2010</td>
<td>9-12</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>K R 10-2003-0068198 A (BASF AKTIENGESELLSCHAFT) 19 August 2003</td>
<td>1-32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>K R 10-2015-0059454 A (LG CHEM. LTD.) 01 June 2015</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>K R 10-2015-0037655 A (LG CHEM. LTD.) 08 April 2015</td>
<td>1-32</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search: 02 August 2016 (02.08.2016)

Date of mailing of the international search report: 02 August 2016 (02.08.2016)

Name and mailing address of the ISA/KR:

Korean Intellectual Property Office
Government Complex-Daedeok, 139 Soumuno, Daedeok 302-701, Republic of Korea

Authorized officer:

Telephone No.:

Facsimile No. 82-42-472-7140

Form PCT/ISA210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10—2014—01 30034 A</td>
<td>07/11/2014</td>
<td>CN 104684969 A</td>
<td>03/06/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104684969 B</td>
<td>23/03/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 288 149 A1</td>
<td>10/06/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 288 1419 A4</td>
<td>14/10/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016—516877 A</td>
<td>09/06/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10—1471982 B1</td>
<td>10/12/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015-0315321 A1</td>
<td>05/11/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 2014-178588 A1</td>
<td>06/11/2014</td>
</tr>
<tr>
<td>KR 10-20 10-00 14556 A</td>
<td>10/02/2010</td>
<td>CN 101679648 A</td>
<td>24/03/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101679648 B</td>
<td>07/08/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2137240 A1</td>
<td>30/12/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010—522255 A</td>
<td>01/07/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5844852 B2</td>
<td>20/01/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-15023 10 B1</td>
<td>18/03/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012-0277096 A1</td>
<td>01/11/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2 14-0 3149 A1</td>
<td>30/01/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8236884 B2</td>
<td>07/08/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8519041 B2</td>
<td>27/08/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8822582 B2</td>
<td>02/09/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 2008-118237 A1</td>
<td>02/10/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1482924 A1</td>
<td>17/03/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 02-053 199 A1</td>
<td>11/07/2002</td>
</tr>
<tr>
<td>KR 10-20 15-0059454 A</td>
<td>01/06/2015</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>KR 10-20 2015-0037655 A</td>
<td>08/04/2015</td>
<td>CN 105492465 A</td>
<td>13/04/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 3018149 A1</td>
<td>11/05/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10—1513146 B1</td>
<td>17/04/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 2015-047029 A1</td>
<td>02/04/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 2015-047029 A8</td>
<td>30/04/2015</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (January 2015)
국제조사보고서

A. 발명이 속하는 기술분야(국제특허분야(IPC))
C08J 3/075(2006.01)i, 3/22(2006.01)i, 3/24(2006.01)i, C08F 2/10(2006.01)i, C08J 3/24(2006.01)i

b. 조사된 분야
조사된 최소문헌(국제특허분야를 기재)

C08K 3/22: C08K 3/24: C08J 3/24

조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국등록특허심판공보 및 한국공개설명서공보: 조사된 최소문헌단에 기재된 IPC
일본등록특허공보 및 일본공개설명서공보: 조사된 최소문헌단에 기재된 IPC

국 조사에 이용 전산 데이터베이스(예: 특허검색시스템) & 카이드: 초록수성 수지, 고용수성 수지, 가압효과등(AUP, 원심분리 보수등(CRC), 케 총 통항성(GBP), 인산 양모니모, 표면 처리, 가고, 제이메이트, 무기염

관련

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>KR 1 2014-0120034 A (주식회사 전자화학) 2014.11.07</td>
<td>1-5 747</td>
</tr>
<tr>
<td></td>
<td>정구완 1: 실시예 1-4 참조.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>KR 10-2010-0014556 A (이보코 스트레스수출, 인코 리버드) 2010.02.10</td>
<td>9-12 834</td>
</tr>
<tr>
<td></td>
<td>단 1: 0032 0064: 정구완 3, 39, 44 참조.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>KR 1 2003-0068198 A (바스타 악마제제상차프) 2003.08.19</td>
<td>1-12 786</td>
</tr>
<tr>
<td>A</td>
<td>전문 참조.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>KR 1 2015-0059454 A (주식회사 엘리지화학) 2015.06.01</td>
<td>1-12 886</td>
</tr>
<tr>
<td></td>
<td>전문 참조.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>KR 1 2015-0037655 A (주식회사 엘리지화학) 2015.04.08</td>
<td>1-12 886</td>
</tr>
<tr>
<td></td>
<td>전문 참조.</td>
<td></td>
</tr>
</tbody>
</table>

![주가 문헌이 있는 경우는 기재되어 있습니다.](image)

다음은 특허에 관한 별지를 참조하십시오.

* 인용된 문헌의 특별 카테고리:
“A” 특별한 관련이 없는 것으로 보이는 일반적인 기술수준을 정의한 문헌
“E” 국제출원일보다 빠른 출원일 또는 우선일을 가진 국제출원일 이후에 공개된 신청권 또는 특허 문헌
우선권 주청에 의하여 현재는 다른 인용문헌의 공 본일 또는 다른 특별한 이유(이후 발명 잘못)를 갸리는 기이인 인용된 문헌
구류 1A 사 건에 따른 구류나 또는 가사 수단을 인급하고 있는 문헌

“P” 우선일 이후에 공개되었으나 국제출원일 이후에 공개된 문헌

국제조사에 관한 원료일
2016년 08월 02일 (02.08.2016)

국제조사보고서 발송일
2016년 08월 02일 (02.08.2016)

K的 및 우원주소
대한민국 특허청
(35208) 대전광역 시구 사로 189,
4동 (문산동, 정부대전청사)
패스번호 +82-42-481-8578

상사관
이기철
전화번호 +82-42-481-3353

서식 PCT/ISA/210 (두 번째 용지) (2015년 1월)
<table>
<thead>
<tr>
<th>인용된 특허문헌</th>
<th>공개일</th>
<th>대웅 특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2014-0130034 A</td>
<td>2014/11/07</td>
<td>CN 104684969 A</td>
<td>2015/06/03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104684969 B</td>
<td>2016/03/23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2881419 A1</td>
<td>2015/06/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2881419 A4</td>
<td>2015/10/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016-516877 A</td>
<td>2016/06/09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1471982 B1</td>
<td>2014/12/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015-0315321 A1</td>
<td>2015/11/05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2014-178588 Al</td>
<td>2014/11/06</td>
</tr>
<tr>
<td>KR 10-2010-0014556 A</td>
<td>2010/02/10</td>
<td>CN 101679648 A</td>
<td>2010/03/24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101679648 B</td>
<td>2013/08/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2137240 A1</td>
<td>2009/12/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010-522255 A</td>
<td>2010/07/01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014-199853 A</td>
<td>2014/10/23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5844852 B2</td>
<td>2016/01/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1502310 B1</td>
<td>2015/03/18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>us 2012-0277096 A1</td>
<td>2012/11/01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>us 2014-0031498 A1</td>
<td>2014/01/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>us 8236884 B2</td>
<td>2012/08/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>us 8519041 B2</td>
<td>2013/08/27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>us 8822582 B2</td>
<td>2014/09/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2008-118237 Al</td>
<td>2008/10/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1482924 A</td>
<td>2004/03/17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1363682 A1</td>
<td>2003/11/26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004-517173 A</td>
<td>2004/06/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 02-053199 Al</td>
<td>2002/07/11</td>
</tr>
<tr>
<td>KR 10-2015-0059454 A</td>
<td>2015/06/01</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 3018149 Al</td>
<td>2016/05/11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1513146 B1</td>
<td>2015/04/17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2015-047029 Al</td>
<td>2015/04/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2015-047029 A8</td>
<td>2015/04/30</td>
</tr>
</tbody>
</table>