The present invention relates to 7-azaindirubins (1), 7'-azaindirubins (2), and 7,7'-diaza-indirubins (3), wherein E, R1 and R2 have the meanings detailed in the description, their production and use as a medicament for treating cancer, neurodegenerative diseases, bipolar disorders, inflammatory and infectious diseases, including viral diseases. Depending on structure, these indirubins act as inhibitors of various kinases involved in tumor cell growth and, most notably, as inhibitors of human tumor cell proliferation. As compared to indirubins bearing identical substituents but no hetero atoms in position 7 and 7', the activity of the compounds according to the present invention is increased and the propensity to get metabolized by CYP450s is reduced, resulting in improved metabolic stability.
7-Azaindirubins, 7'-azaindirubins, 7,7'-diazaindirubins and the corresponding 3'-oxime ether derivates thereof, their production and use as a medicament

The present invention relates to 7-aza-indirubins (1), 7'-aza-indirubins (2), and 7,7'-daza-indirubins (3), wherein E, R¹ and R² have the meanings detailed in the description, their production and use as a medicament for treating cancer, neurodegenerative diseases, bipolar disorders, inflammatory and infectious diseases, including viral diseases.

Depending on structure, these indirubins act as inhibitors of various kinases involved in tumor cell growth, and, most notably, as inhibitors of human tumor cell proliferation. As compared to indirubins bearing identical substituents but no hetero atoms in position 7 and 7', the activity of the compounds according to the present invention is increased and the propensity to get metabolized by CYP450s is reduced, resulting in improved metabolic stability.

In traditional Chinese medicine (TCM), indigo naturahs, therein known as "qing dai", is mentioned as integral part of remedies with hemostatic, antipyretic, anti-inflammatory, antileukaemic, sedative, antibacterial, and antiviral properties. The reported antileukaemic activity was found to be associated with the minor ingredient indirubin, a 3,2'-biphenyl isomer of indigo. Long-term studies in animals showed indirubin to be well tolerable and devoid of bone marrow toxicity or hematotoxicity. Indirubin was found clinically to be active against chronic myeloic leukemia (CIVIL) in China. Early studies, aimed at elucidating the mechanism of action, reported inhibition of DNA and protein synthesis.
In 1999, indirubins were discovered to potently inhibit cyclin dependent kinases (CDKs), competing with ATP at the ATP binding site, and to effectively inhibit the growth of various human tumor cell lines in the low micromolar range (Hössel et al. 1999, Nature Cell Biol \, 60-67). Moreover, later on certain indirubin derivatives were found to interfere with an array of cancer associated cellular targets in addition to CDKs, including glycogen synthase kinase 3β (GSK-3β) (Leclerc et al. 2001, J. Biol. Chem. 276, 251-260) but also receptor- and non-receptor tyrosine kinases, most prominently VEGFRs and c-Src (Jautelat et al. 2005, ChemBioChem 6, 531-540; Nam et al. 2005, Proc. Natl. Acad. Sci. U S A. 102, 5998-6003). Furthermore, glycogen phosphorylase b regulating glucose/glycogen homeostasis also was found to be affected. It also was reported that certain indirubins can interact with the aryl hydrocarbon receptor (AhR), also known as the dioxin receptor. Upon binding to the xenobiotic-responsive element (XRE), activated AhR induces the transcription of numerous genes, including cytochrome P450 CYP1A1, p27kip1, etc. (Elfehnk, 2003, in: Progr Cell Cycle Res, vol. 5, (eds. Meijer L. et al.), 261-267). Finally, 7-bromoindirubin-3'-oxime has been shown to trigger the activation of non-apoptotic cell death (Ribas et al., 2006, Oncogene, 1-15).

The pharmacological action of several basic indirubin derivatives is described in WO 99/62503, and tumor cell growth inhibition data of a panel of substituted indirubins have been disclosed in WO 00/61555.

Synthesis and antitumor proliferative activity of 7-azaindirubins, substituted with an alkyl chain or a sugar moiety in 1-position have been disclosed in the Chinese patent application CN 101074229A. Therein, 1-substituted-7-azaisatins required for condensation with indoxyl acetates were produced by oxidation of 1-substituted-7-azaindole using chromium(VI) oxide. However, 1-unsubstituted 7-azaindirubins are unknown as yet. These compounds cannot be prepared by the synthetic approach utilized for N-substituted 7-azaindoles. Neither their synthesis nor their activity has been reported as yet. Thus, even though in the Chinese patent application CN 101074229A, in the table, first row, on page 13 thereof
7-azaindirubin is indicated, the Chinese inventors could not have had this compound. An oxidation of 7-azaindole by chromium(VI) oxide does not lead to 7-azaisatin, but black tar. Not any experimental data are given for said compound in the table, first row, on page 13 of the Chinese patent application CN 101074229A. However, a disclosure is relevant only if the teaching it contains is reproducible. This required reproducibility, however, is not applicable for said compound given in the table, first row, on page 13 of CN 101074229A.

Incubations of 5-methylindirubin with liver microsomes have been shown to produce mainly two metabolites, 6-hydroxy-5-methyl-indirubin and 6,7'-dihydroxy-5-methylindirubin (see WO 03/070703). Whereas the first metabolite proved to be as effective as the parent compound for inhibition of murine C6 glioblastoma cells, the latter was completely inactive in inhibiting proliferation of LXFL529L tumor cells (human large cell lung tumor xenograft). Therefore, CYP mediated metabolism, especially by generating 7'-hydroxylated metabolites, is considered responsible for this decrease in antitumor efficacy.

It is therefore desirable to obtain compounds with enhanced metabolic stability towards CYP enzymes which are predominantly, yet not exclusively expressed in the liver.

The solution to the above technical problem is achieved by the embodiments characterized in the claims.

In particular, the present invention relates to 7-azaindirubins (1), 7'-azaindirubins (2), and 7,7'-diaza-indirubins (3), wherein E, R¹ and R² have the meanings detailed in the description, their production and use as a medicament for treating cancer, neurodegenerative diseases, bipolar disorders, and infectious diseases. Blocking positions of indirubin derivatives prone to such metabolic hydroxylation should contribute to safeguard antitumor activity. Introduction of electron attracting heteroatoms into aromatic carbocycles is known to result in a decreased electron density in the heterocycle. This has been expected to impede metabolic oxidative transformation by CYP450S.
Indirubins generally are poorly soluble in nearly all solvents, presumably as a consequence of intermolecular forces that stabilize supramolecular aggregates. For increased water solubility and bioavailability, indirubins bearing hydrophilic substituents in the 3'-oxime ether and the 5-carboxamide position were synthesized (Merz & Eisenbrand (2006) in *Indirubin, the red shade of indigo*, ed L Meijer et al., Life in Progress editions, Merz at al 2007, Targets Oncol 2, S46). In particular, substituents with primary, secondary or tertiary amino groups, (easily to be transformed into physiologically compatible salts) connected via an alkyl spacer to the 3'-oxime ether position, were shown to increase water solubility by orders of magnitude (data comprehensively published at the EORTC-PAMM Meeting in Berlin, 2007). For enhanced water solubility and bioavailability of 7-aza-indirubins (1), 7'-aza-indirubins (2), and 7,7'-d'aza-indirubins (3), such substituents are useful as well.

It has now been found that 7-aza-indirubins (1), 7'-aza-indirubins (2), and 7,7'-d'aza-indirubins (3) exhibit excellent properties for treatment of cancer, neurodegenerative diseases, bipolar disorders, inflammatory and infectious diseases, including viral diseases.

![Chemical structures](image)

In formula (1), (2), or (3), R1 and R2 can be the same or different and stand for hydrogen, C\textsubscript{1}-C\textsubscript{4} alkyl, halogen, hydroxy, C\textsubscript{4}alkoxy, mercapto, carboxy, or an amino group NR4R5, or a carboxamido group CONR4R5, wherein R4 and R5 can be the same or different and represent a hydrogen atom, a straight-chain or branched-chain C\textsubscript{1}-C\textsubscript{4} alkyl group.
which can additionally carry one or more halogen, hydroxy and/or amino
groups, a substituted or unsubstituted aryl group which can comprise one
or more heteroatoms, or the acyl groups -COM, -COOM, -CH₂COOM
wherein M is hydrogen, a straight-chain or branched-chain alkyl group
having 1 to 4 carbon atoms which can additionally carry one or more
hydroxy and/or amino groups, or an aryl group which can comprise one
or more heteroatoms and can be substituted with one or more halogen
atoms, one or more alkyl groups or one or more alkoxy groups;
or C₃-C₇ cycloalkyl, C₃-C₇ cycloalkenyl,
that is optionally interrupted by one or more oxygen atoms and/or can
additionally carry one or more C₁-C₄ alkyl, halogen, hydroxy and/or amino
groups, a substituted or unsubstituted aryl group which can comprise one
or more heteroatoms, or the acyl groups -COM, -COOM, -CH₂COOM with
the definition for M above,
or R⁴ and R⁵ together with the nitrogen atom of the amino group form a ring,
which can contain one or more heteroatoms and have 2 to 8, optionally
substituted, CH₂ groups which can additionally carry one or more C₁-C₄
alkyl, C₃-C₇ cycloalkyl, halogen, hydroxy and/or amino groups, a
substituted or unsubstituted aryl group which can comprise one or more
heteroatoms, or the acyl groups -COM, -COOM, -CH₂COOM with the
definition for M above;
E in formulae (1), (2), and (3) means an oxygen atom, an oxime group [NOH], or
an oxime ether group [NOR³], with R³ representing an alkyl chain with formula
(CH₂)ₙR', in which n stands for 2-6 and R' stands for an amino group NR₄R₅,
wherein R⁴ and R⁵ can be the same or different and represent a hydrogen atom, a
straight-chain or branched-chain C₁-C₄ alkyl group,
which can additionally carry one or more halogen, hydroxy and/or amino
groups, a substituted or unsubstituted aryl group which can comprise one
or more heteroatoms, or the acyl groups -COM, -COOM, -CH₂COOM
wherein M is hydrogen, a straight-chain or branched-chain alkyl group
having 1 to 4 carbon atoms which can additionally carry one or more
hydroxy and/or amino groups, or an aryl group which can comprise one
or more heteroatoms and can be substituted with one or more halogen atoms, one or more alkyl groups or one or more alkoxy groups;
or C₃₋C₇ cycloalkyl, C₃₋C₇ cycloalkenyl,
that is optionally interrupted by one or more oxygen atoms and/or can additionally carry one or more C₁₋C₄ alkyl, halogen, hydroxy and/or amino groups, a substituted or unsubstituted aryl group which can comprise one or more heteroatoms, or the acyl groups -COM, -COOM, -CH₂COOM with the definition for M above,
or R⁴ and R⁵ together with the nitrogen atom of the amino group form a ring,
which can contain one or more heteroatoms and have 2 to 8, optionally substituted, CH₂ groups which can additionally carry one or more C₁₋C₄ alkyl, C₃₋C₇ cycloalkyl, halogen, hydroxy and/or amino groups, a substituted or unsubstituted aryl group which can comprise one or more heteroatoms, or the acyl groups -COM, -COOM, -CH₂COOM with the definition for M above.

Should the lack of reproducibility of said compound given in the table, first row, on page 13 of the Chinese patent application CN 101074229A - surprisingly and contrary to the technical facts - not be accepted, in a specific embodiment, the above formula (I) does not comprise 7-azaindirubin, i.e. 7-azaindirubin is excluded.

If a basic group is included, the physiologically compatible salts of organic and inorganic acids, such as hydrochloric acid, sulfuric acid, phosphoric acid, citric acid, tartaric acid, succinic acid, and others, are suitable, representing highly water soluble compounds. Transformation of the amino compounds into these salts is easily to be performed by chemists skilled in the art.

Most effective are compounds of formula (1), (2), or (3), in which E stands for C=O or for C=NO(CH₂)ₙNR⁴R⁵, wherein n is 2, and NR⁴R⁵ represents an N-methylpiperazino substituent, as well as the acid salts thereof.

Prevention of the above mentioned deactivating metabolic transformation by CYP450 mediated introduction of a hydroxy group into the 7'-position is achieved.
by replacing the 7'-carbon ring atom with a 7'-nitrogen ring atom. Thus, incubation of 5-methyl-7'-aza-indirubin with liver microsomes produced 5-hydroxymethyl- and 5-methyl-6-hydroxy-7'-aza-indirubin as main metabolites, since the preferential 7'-hydroxylation, as observed with the 7'-carbon ring atom analogue was blocked.

Likewise, introduction of a nitrogen atom in position 7 will hamper metabolic transformation in the unprimed part of the molecule.

The antiproliferative activity of 7-azaindirubin and 7'-azaindirubin against human cancer cell lines was found markedly augmented, as compared to the parent molecule, indirubin.

In the course of the present invention it has now surprisingly been found that the introduction of an additional nitrogen atom into 7-position of 7'-azaindirubin, or into 7'-position of 7-azaindirubin, leading to 7,7'-diazaindirubin, is further and rather substantially enhancing antiproliferative activity towards tumor cells such as human non small cell lung cancer cells LXFL529L. This increase in antiproliferative effectiveness corresponds to a factor of about 100, as compared to 7'-azaindirubin.

The extraordinarily high activity of this compound is evident from inhibition of proliferation of HT29 colon tumor cells and MCF-7 breast cancer cells with IC50 values ranging down to 2 nM. Table 1 summarizes data of antiproliferative activity.

The antiproliferative activity was determined using the Sulforhodamin B assay (SRB assay) as reported previously (Vatter et al. 2005, Int. J. Clin. Pharmacol.Ther. 43, 607).
Table 1: Inhibition of tumor cell proliferation, SRB assay.

<table>
<thead>
<tr>
<th>Cpd</th>
<th>X</th>
<th>R₁</th>
<th>R₂</th>
<th>Inhibition of cell proliferation IC₅₀ [µM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E843</td>
<td>C</td>
<td>O</td>
<td>H</td>
<td>4.4</td>
</tr>
<tr>
<td>E844</td>
<td>C</td>
<td>O</td>
<td>CH₃</td>
<td>4.0</td>
</tr>
<tr>
<td>E846</td>
<td>C</td>
<td>O</td>
<td>H</td>
<td>3.5</td>
</tr>
<tr>
<td>E847</td>
<td>C</td>
<td>O</td>
<td>OCH₃</td>
<td>3.6</td>
</tr>
<tr>
<td>E864</td>
<td>N</td>
<td>O</td>
<td>H</td>
<td>0.07, 0.005, 0.007</td>
</tr>
<tr>
<td>E865</td>
<td>C</td>
<td>N</td>
<td>H</td>
<td>0.8</td>
</tr>
</tbody>
</table>

To use the compounds according to the invention as pharmaceutical agents, they may be brought into the form of a pharmaceutical preparation in the usual manner, which in addition to the active ingredient contains pharmaceutical, organic or inorganic support media according to the state of the art.

The synthesis of the compounds according to the invention is performed via condensation of an isatin or 7-azaisatin with 3-indoxyl-3-acetate or 7-aza-3-indoxyl-3-acetate by basic or acid reaction conditions, affording 7-azaindirubin (1), 7'aza-indirubin (2) or 7,7'-diazaindirubin (3), respectively. 1-Acetylindoxyl or 1,3-diacetylindoxyl, or the corresponding 7-aza-indoxyl derivatives may serve as partner for the condensation reactions as well.
The synthesis of the compounds according to the present invention is exemplified for the highly effective compounds as depicted in scheme 1:

Condensation of isatin (5a) or 7-azaisatin (5b) with 3-indoxyl-3-acetate (4a) or 7-aza-3-indoxyl-3-acetate (4b) is achieved by basic or acid reaction conditions, affording 7-azaindirubin (1), 7’aza-indirubin (2) or 7,7’-diazaindirubin (3), respectively. In position 5, 6, and/or 7-substituted isatins or in position 4, 5, 6, and/or 7 substituted 3-indoxyl-3-acetates may serve as partner for the condensation reactions as well. These methods are based on syntheses of indirubins previously reported by Russell & Kaupp, (1969), JACS 91, 3851-59, and Jautelat et al. (2005), ChemBioChem, 6, 531-540.

Reaction of the aza- or diazaindirubins 1, 2, or 3 with hydroxylamine hydrochloride in refluxing pyridine produces 7-azaindirubin-3’-oxime (6), 7’-azaindirubin-3’-oxime (7), or 7,7’-diazaindirubin (8), respectively. This method is based on the synthesis of indirubin-3’-oximes reported previously (Farbwerke 1913, DE 283726). The corresponding 3’-oxime 2-bromoethyl ethers (9), (10), or (11) are prepared by alkylation of the oximes using 1,2-dibromoethane in ethanol and tetramethyl guanidine (TMG). This method is based on the synthesis of indirubin-3’-oxime alkyl ethers previously reported by Merz & Eisenbrand (2006) in: Indirubin, the red shade of indigo, ed. L. Meijer et al., Life in Progress editions.

The 3’-oxime 2-bromoethyl ethers (9), (10), or (11) can easily be converted into more water soluble derivatives, such as the corresponding 2-(4-methylpiperazino)-ethyl ethers (12), (13), and (14), for example, by reaction in DMF with an excess of N-methyl piperazine at room temperature. This method is
based on the synthesis of indirubin-3'-oxime alkyl ethers previously reported by Ferandin et al. 2006, J. Med. Chem. 49, 4638-4649.

The steps of the synthesis are outlined in scheme 1. For simplification, the substituents R' and R'' are neglected.

Scheme 1: Synthesis of 7-azaindirubin (1, X = C, Y = N), 7'-azaindirubin (2, X = N, Y = C), and 7,7'-diaza-indirubin (3, X = Y = N) and corresponding 3'-derivatives. a): MeOH, Na2CO3, reflux (basic conditions); or: HOAc, HCl, reflux (acid conditions). b): H2NOH-HCl, pyridine, reflux, c): Br-Et-Br, TMG, EtOH, reflux, d): N-methyl piperazine, DMF.

A further object of the present invention is the production of 7'-azaindirubin (2) or 7,7'-diaza-indirubin (3) by acid or basic condensation of 1-acetyl-7-aza-3-indolinone (17), which can be used instead of 7-aza-3-indoxyl-3-acetate (4b), for acid or basic condensations with isatin (5a) or 7-azaisatin (5b).

1-Acetyl-7-aza-3-indolinone (17) is synthesized in about 10 % overall yield by the following route (scheme 2):
Scheme 2: Synthesis of 1-acetyl-7-aza-3-indolinon

For condensation reactions with 1-acetyl-7-aza-3-indolinone, 5-, 6- or 7-substituted isatins, e.g. 5-methylisatin (5c), are applicable as well (see scheme 3). The acid or basic conditions for condensation depend on the substituents attached to the isatin core.
Scheme 3: Synthesis of 5-methyl-7'-azaindirubin. a)
MeOH, Na₂CO₃ reflux (basic conditions); or: HOAc, HCl, reflux (acid conditions)

Another important object of the present invention is the synthesis of 7-aza-3-indoxyl acetate (4b), which is produced by the reaction of 7-azaindole using thallium(III) acetate (1.1 eq.) in acetic acid / water (5%) under reflux. The oxidation provided the product in a yield up to 32% (see scheme 4). This method is based on the oxidation of indole for the synthesis of 3-acetoxyindole previously reported by Banerji et al. 1998, J. Indian Chem. Soc. 75, 698-704.

Scheme 4: Synthesis of 7-azaindoxyl acetate

A further object of the present invention is the synthesis of 7-azaindirubin, to be accomplished by acid or basic condensation of 4-, 5-, 6- and/or 7-substituted or unsubstituted 3-indoxyl-3-acetate, 1-acetyl-3-indoxyl or 1,3-diacetylindoxyl with 7-azaisatin. The novel synthesis of 7-azaisatin (5b) by oxidation of 7-aza-oxindole with N-bromosuccinimide and DMSO (see scheme 5) is the key object of this invention.
Commercially available 2-amino-3-picoline is protected with a pivaloyl group, lithiated and reacted with carbon dioxide to yield 7-azaoxindole either by hydrolysis with 3 N HCl and concomitant cyclization (Scherlock & Tom, 1991, US5023265) or by hydrolysis with 6 N HCl and subsequent cyclization in amyl alcohol by means of 4-toluene sulfonic acid (Ting et al., 1990, J. Med. Chem. 33, 2697-2706).

Previously reported syntheses of 7-azaisatins, e.g. by oxidation of 7-azaindoles using indium-(III)-chloride and 2-iodoxybenzoic acid (Yadav et al., 2007, Synthesis, 693-696), or by oxidation of 1-alkyl-7-azaindole using N-bromosuccinimide and DMSO (Tatsugi et al. 2001, ARKIVOC, 67-73) comprise only methods for the synthesis of 1-substituted 7-aza-isatins.

A further object of this invention is the synthesis of 7,7'-diaza-indirubin (3) generated as the main reaction product, when 7-azaindole (1 eq.) is transformed with thallium(III)-acetate (0.55 eq.) in glacial acetic acid at 90 °C in absence of water. Separation of (3) from 7-azaindoxyl acetate (4b), which is produced as
minor byproduct during this oxidation process, is achieved by recrystallization using ethyl acetate.

The following examples will point out the syntheses that are objects of this invention.

Example 1: 7-Azaindoxyl-3-acetate
Under argon atmosphere at room temperature, a solution of thallium(III) acetate (3.82 g, 10.0 mmol) in acetic acid (51 mL) and water (2.5 mL) was added dropwise to a solution of 7-azaindole (1.075 g, 9.1 mmol) in glacial acetic acid (7.5 mL). The mixture was refluxed for 1 h, poured onto crushed ice (200 g) and neutralized with sodium carbonate at 0°C to yield 7-azaindoxyl-3-acetate (454 mg, 2.6 mmol, 28.7%) as a reddish solid.

1H-NMR (400 MHz, DMSO-d$_6$, δ = 2.49 ppm): 11.58 (s, 1H, NH), 8.24 (dd, 1H, 3J$_{HH}$ = 4.4 Hz, 4J$_{HH}$ = 1.3 Hz, 6-CH), 7.83 (dd, 1H, 3J$_{HH}$ = 8.3 Hz, 4J$_{HH}$ = 1.8 Hz, 4-CH), 7.42 (s, 1H, 2-CH), 7.07 (dd, 1H, 3J$_{HH}$ = 4.4 Hz, 3J$_{HH}$ = 7.9 Hz, 5-CH), 2.31 (s, 3H, CH$_3$)

13C-(1H)NMR (150 MHz, DMSO-d$_6$, δ = 39.5 ppm): 168.7 (C=O), 144.9 (C3a), 143.3 (C6), 127.2 (C7a), 125.7 (C4), 115.4 (C2 or C5), 115.0 (C2 or C5), 112.3 (C3), 20.4 (OCH$_3$).

Example 2: 7'-Azaindirubin (Method 1)
Under argon atmosphere at room temperature, a suspension of 7-azaindoxyl-3-acetate (200 mg, 1.1 mmol), isatin (183 mg, 1.2 mmol) and sodium carbonate (264 mg, 2.5 mmol) in degassed methanol (25 mL) was stirred for 5 h. The reddish precipitate was filtered off, washed with methanol and water and dried to afford 7'-azaindirubin (251 mg, 1 mmol, 87%).

1H-NMR (600 MHz, DMSO-d$_6$, δ = 2.49 ppm): 11.02 (s, 1H, N=H), 10.78 (s, 1H, NH), 8.68 (d, 1H, 3J$_{HH}$ = 7.7 Hz, 4-CH), 8.48 (d, 1H, 3J$_{HH}$ = 3.5 Hz, 6'-CH), 8.10 (d, 1H, 3J$_{HH}$ = 6.2 Hz, 4'-CH), 7.29 (t, 1H, 3J$_{HH}$ = 7.6 Hz, 6-CH), 7.11 (dd, 1H, 3J$_{HH}$ = 5.0 Hz, 3J$_{HH}$ = 7.3 Hz, 5'-CH), 7.04 (t, 1H, 3J$_{HH}$ = 7.6 Hz, 5-CH), 6.92 (d, 1H, 3J$_{HH}$ = 7.6 Hz, 7-CH).
Example 3: 7, 7’-Diazaindirubin (Method 1)
Under argon atmosphere at 90°C, a solution of thallium(III) acetate (1.91 g, 5 mmol) in glacial acetic acid (25 mL) was added dropwise within 2 h to a solution of 7-azaindole (1.075 g, 9.1 mmol) in glacial acetic acid (7.5 mL). The mixture was stirred overnight at 90 °C, cooled with ice and the solvent was removed by evaporation. The residue was extracted with ethyl acetate, filtrated and the product was purified by recrystallization from ethyl acetate (red violet crystals; yield: 130 mg, 10.9%).

Example 4: 3-Formyl-7-azaindole
Hexamethylenetetramine (1.79 g, 12.8 mmol) was added at once to 7-azaindole (1.0 g, 8.5 mmol) in acetic acid (33%, 15 mL). The mixture was refluxed for 4 h, poured into water (25 mL) and cooled to 4°C. The fine crystalline precipitate was filtered off, washed with water and dried in vacuo. Yield: 674.3 mg (4.6 mmol, 54%).

Example 5: 1-Acetyl-3-formyl-7-azaindole
Triethylamine (350 µL) and DMAP (25 mg) were added to a suspension of 3-formyl-7-azaindole (310 mg, 2.1 mmol) in acetic anhydride (10 mL) and stirred for 3 h at room temperature. The white precipitate was filtered off, washed with water till neutral, and dried over KOH. Yield: 76.4 mg (0.3 mmol, 65%).

\[\text{Example 6: } 1\text{-Acetyl-7-aza-3-indolinone} \]

865 mg (7.6 mmol) of solid 3-chloroperoxybenzoic acid (70%) were added at 0°C to 1-acetyl-3-formyl-7-azaindole (500 mg, 2.7 mmol) in dichloromethane (21 mL) and stirred for 2 h at 0°C and for 24 h at room temperature. The mixture was poured into 35 mL of diluted sodium sulphite (10%). The layers were separated and the aqueous layer was extracted two times with 30 mL of dichloromethane each. The combined organic layers were dried over magnesium sulphate, concentrated and stored at -20°C to yield the colourless crystalline product. It was separated by suction filtration, washed with ethyl acetate and dried in vacuo. Yield: 82.7 mg (0.5 mmol, 17%).

\[\text{Example 7: } 5\text{-Methyl-7'-azaindirubin} \]

Under argon atmosphere, 1-acetyl-7-aza-3-indolinone (75 mg, 0.4 mmol) was added to a suspension of 5-methylisatin (80 mg, 0.5 mmol) and sodium carbonate (106 mg, 1.0 mmol) in degassed methanol (10 mL). The mixture was stirred for 24 h, the product formed was separated by filtration, washed with little methanol and water and dried over KOH. Yield: 76.4 mg (0.3 mmol, 65%).
1H-NMR (400.13 MHz, DMSO-d$_6$, δ = 2.49 ppm): 10.91 (s, 1H, N1H), 10.78 (s, 1H, N1H), 8.53 (s, 1H, H4), 8.48 (d, 1H, 3J$_{H,H}$ = 3.9 Hz, H6), 8.09 (d, 1H, 3J$_{H,H}$ = 6.7 Hz, H4), 7.05-7.15 (m, 2H, H5' und H6), 6.81 (d, 1H, 3J$_{H,H}$ = 7.4 Hz, H7), 2.31 (s, 3H, CH$_3$).

13C-(1H)-NMR (150.9 MHz, DMSO-d$_6$, δ = 39.7 ppm): 186.3 (C3'), 171.3 (C2), 163.1 (C7a'), 155.9 (C6'), 139.4 (C7a), 137.7 (C2'), 133.8 (C4'), 131.0 (C4), 130.5 (C5), 125.5 (C6'), 121.2 (C3a), 118.0 (C5'), 113.1 (C3a'), 109.9 (C7), 108.8 (C3), 21.3 (CH$_3$).

Example 8: 2-(Trimethylacetylamino)-3-methylpyridine

Trimethylacetyl chloride (13.26 g, 0.11 mol) in methylene chloride (20 mL) was slowly added to a solution of 2-amino-3-methylpyridine (10.81 g, 0.1 mol) and triethylamine (12.63 g, 0.12 mol) in 150 mL of methylene chloride at 0°C. The mixture was stirred in an ice bath for 1 h and further at room temperature for 2 h.

Subsequently, the mixture was washed three times with an equal volume of aqueous sodium hydrogen carbonate (5%). The organic layer was dried with magnesium sulphate and concentrated to yield a colorless solid (14.52 g, 0.076 mol, 76%).

1H-NMR (400 MHz, DMSO-d$_6$, δ = 2.49 ppm): 9.55 (s, 1H, NH), 8.25 (d, 1H, 3J$_{H,H}$ = 4.7 Hz, 6-CH), 7.64 (d, 1H, 3J$_{H,H}$ = 7.4 Hz, 4-CH), 7.19 (dd, 1H, 3J$_{H,H}$ = 7.4 Hz, 4J$_{H,H}$ = 4.7 Hz, 5-CH), 2.10 (s, 3H, 3-CH$_3$), 1.22 (s, 9H, Pv-CH$_3$).

13C-(1H)-NMR (150 MHz, DMSO-d$_6$, δ = 39.5 ppm): 176.5 (CO), 150.6 (C2), 145.7 (C6), 139.0 (C4), 129.9 (C3), 121.9 (C5), 38.7 (Pv-C), 27.3 (Pv-CH$_3$), 17.4 (3-CH$_3$).

Example 9: 2-Amino-3-pyridineacetic acid

50 mL of n-butyllithium in hexane (1.6 M, 80 mmol) were slowly added to a solution of 2-(trimethylacetylamino)-3-methylpyridine (6.15 g, 32 mmol) in dry THF (90 mL) at -78 °C in a period of 1 h. The mixture was stirred at -78 °C for 1 h and at -20 °C for 3 h. Powdered dry ice was added to this suspension at -78 °C. The mixture was allowed to warm up to room temperature, diluted with water and acidified with 4 N HCl to pH = 5. The mixture was extracted three times with an
equal volume of ethyl acetate and the organic layer was dried over magnesium sulphate. After removal of the solvent the residue was dissolved in 6 N HCl and refluxed overnight. Neutralization with 6 N NaOH (pH = 5) produced a precipitate, that was collected by filtration to afford a colourless solid (2 g, 12.0 mmol, 38 %).

\[^1H-NMR \ (400 \text{ MHz}, \text{ DMSO-d}_6, \delta = 2.49 \text{ ppm}): 7.83 \ (dd, 1H, 3J_H,H = 4.8 \text{ Hz}, 4J_H,H = 1.4 \text{ Hz}, 6-\text{CH}), 7.26 \ (dd, 1H, 3J_H,H = 7.2 \text{ Hz}, 4J_H,H = 1.4 \text{ Hz}, 4-\text{CH}), 6.50 \ (dd, 1H, 3J_H,H = 7.2 \text{ Hz}, 4J_H,H = 5.1 \text{ Hz}, 5-\text{CH}), 5.70, (s, 3H, NH_3\text{+}), 3.42 \ (s, 2H, CH_2). \]

Example 10: 7-Azoaoxindole

The mother liquor of the foregoing example was extracted three times with an equal volume of ethyl acetate and the combined organic phases were dried over sodium sulphate. Removal of the solvent afforded the product as colourless solid.

A suspension of 2-amino-3-pyridineacetic acid (2.0 g, 12.0 mmol) and a catalytic amount of p-toluenesulfonic acid in amyl alcohol was refluxed for 48 h. After removal of the solvent from the clear solution, the residue was purified by column chromatography on silica gel using ethyl acetate : hexane (3:1) as eluent to provide a solid (0.5 g, 3.7 mmol, 31%).

\[^1H-NMR \ (400 \text{ MHz}, \text{ DMSO-d}_6, \delta = 2.49 \text{ ppm}): 10.96 \ (s, 1H, NH), 8.02 \ (d, 1H, 3J_H,H = 5.3 \text{ Hz}, 6-\text{CH}), 7.52 \ (d, 1H, 3J_H,H = 7.0 \text{ Hz}, 4-\text{CH}), 6.91 \ (dd, 1H, 3J_H,H = 7.0 \text{ Hz}, 4J_H,H = 5.3 \text{ Hz}, 5-\text{CH}), 3.53 \ (s, 2H, CH_2). \]

Example 11: 7-Azaisati n

A suspension of 7-azoaoxindole (500 mg, 3.7 mmol) and N-bromosuccinimide (690.6 mg, 3.9 mmol) in dry DMSO (13 mL) was stirred at 60 °C for 2 h and at 95 °C for 8 h under reduced pressure (100 hPa). The mixture was adjusted to pH 5-6 with aqueous NaHCO_3 (5%) and extracted with ethyl acetate. The solvent was removed and the residue was purified by column chromatography using ethyl acetate : hexane (3:1) as eluent to afford a yellow solid (170 mg, 1.15 mmol, 31 %).
Example 12: 7-Azaindirubin

Basic condensation:
Under argon atmosphere a suspension of indoxyl-3-acetate (200 mg, 1.1 mmol), 7-azaisatin (183 mg, 1.2 mmol) and sodium carbonate (264 mg, 2.5 mmol) in degassed methanol (25 ml) was stirred at room temperature for 5 h, diluted with water and filtered. The solution was extracted with ethyl acetate. After removal of the solvent, the residue was purified by column chromatography on silica gel using ethyl acetate : hexane (1:1) as eluent to get a reddish solid (18.5 mg, 0.07 mmol, 6.4%).

Example 13: 7,7'-Diazaindirubin (Method 2)

7-Azaisatin (67.1 mg, 0.45 mmol) and 7-azaindoxyl-3-acetate (70 mg, 0.4 mmol) were suspended under argon atmosphere in acetic acid (4 mL) and cone. HCl (340 µL). The mixture was refluxed for 3 h and diluted with water (30 ml). The precipitate was filtrated and purified by column chromatography on silica gel using acetyl acetate : hexan (3:1) as eluent to yield a reddish solid (40 mg, 0.15 mmol, 33.8%).

Acid condensation:
7-Azaisatin (67.1 mg, 0.45 mmol) and indoxyl-3-acetate (70 mg, 0.4 mmol) were suspended under argon atmosphere in a mixture of acetic acid (4 ml) and cone. HCl (340 µL). The mixture was refluxed for 3 h and diluted with water (30 ml). The precipitate was filtrated and purified by column chromatography on silica gel using ethyl acetate : hexane (3:1) as eluent to get a reddish solid (18.5 mg, 0.07 mmol, 6.4%).
min. The hot mixture was filtrated and cooled. After 24 h at -32 °C, the precipitate was collected and dried to get a reddish solid (35 mg, 0.13 mmol, 29.6%).

Example 14: 7'-Azaindirubin-3'-oxime

A solution of 7-azaindirubin (275 mg, 1.1 mmol) and hydroxylamine hydrochloride (196.4 mg, 24.4 mmol) in pyridine (7 mL) was refluxed for 4 h. The mixture was diluted with 2 N HCl (50 mL) to yield a reddish solid (230 mg, 0.77 mmol, 70%).

\[
\begin{align*}
\text{1H-NMR (600 MHz, DMSO}_6\text{, }\delta = 2.49 \text{ ppm:} & \ 13.82 (s, 1H, NOH), 11.79 (s, 1H, N\text{H}), 10.90 (s, 1H, NH), 8.59 (d, 1H, }^3\text{J}_{\text{H},\text{H}} = 7.6 \text{ Hz, } 4\text{-CH}), 8.47 (d, 1H, }^3\text{J}_{\text{H},\text{H}} = 6.4 \text{ Hz, } 6\text{-CH}), 8.29 (d, 1H, }^3\text{J}_{\text{H},\text{H}} = 5.0, 4\text{-CH}), 7.18 (dt, 1H, }^3\text{J}_{\text{H},\text{H}} = 7.2 \text{ Hz, } ^4\text{J}_{\text{H},\text{H}} = 0.8 \text{ Hz, } 6\text{-CH}), 7.09 (dd, 1H, }^3\text{J}_{\text{H},\text{H}} = 5.0 \text{ Hz, } ^3\text{J}_{\text{H},\text{H}} = 7.3 \text{ Hz, } 5\text{-CH}), 6.98 (t, 1H, }^3\text{J}_{\text{H},\text{H}} = 7.6 \text{ Hz, } 5\text{-CH}), 6.93 (d, 1H, }^3\text{J}_{\text{H},\text{H}} = 7.6 \text{ Hz, } 7\text{-CH}).
\end{align*}
\]

\[
\begin{align*}
\text{13C-}^{1\text{H}}\text{-NMR (150 MHz, DMSOD}_6\text{, }\delta = 39.5 \text{ ppm):} & \ 171.2 \text{ (C}2\text{), 156.8 (C}3\text{\')}, 150.9 \text{ (C}6\text{\'), 149.3 (C}7\text{a\'), 143.2 (C}7\text{a), 139.0 (C}2\text{), 136.0 (C}4\text{), 127.1 (C}4\text{\'), 123.4 (C}6\text{), 122.2 (C}3\text{a), 120.9 (C}5\text{), 117.8 (C}5\text{\'), 110.4 (C}3\text{a\'), 109.4 (C}7\text{), 101.0 (C}3\text{).}
\end{align*}
\]

Example 15: 7'-Azaindirubin-3'-(2-bromomethyl)-oxime ether

A mixture of 7-azaindirubin-3'-oxime (230 mg, 0.83 mmol), 1,2-dibromoethane (1.6 g, 8.3 mmol) and 1,1,3,3-tetramethylguanidine (400 µL) in ethanol (10 mL) was refluxed for 3 h. The mixture was diluted with water (50 mL), filtrated and dried to afford a reddish solid (120 mg, 0.312 mmol, 37.5%).

\[
\begin{align*}
\text{1H-NMR (600 MHz, DMSO}_6\text{, }\delta = 2.49 \text{ ppm:} & \ 11.40 (br, 1H, N\text{H}), 10.50 (br, 1H, N\text{H}), 8.49 (d, 1H, }^3\text{J}_{\text{H},\text{H}} = 8.2 \text{ Hz, } 4\text{-CH}), 8.44 (d, 1H, }^3\text{J}_{\text{H},\text{H}} = 7.3 \text{ Hz, } 6\text{-CH}), 8.32 (d, 1H, }^3\text{J}_{\text{H},\text{H}} = 3.8, 4\text{-CH}), 7.19 (t, 1H, }^3\text{J}_{\text{H},\text{H}} = 6.7 \text{ Hz, } 6\text{-CH}), 7.09 (t, 1H, }^3\text{J}_{\text{H},\text{H}} = 6.5 \text{ Hz, } 5\text{-CH}), 7.01 (t, 1H, }^3\text{J}_{\text{H},\text{H}} = 7.3 \text{ Hz, } 5\text{-CH}), 6.93 (d, 1H, }^3\text{J}_{\text{H},\text{H}} = 7.6 \text{ Hz, } 7\text{-CH}), 4.91 (t, 2H, }^3\text{J}_{\text{H},\text{H}} = 5.0 \text{ Hz, } 1\text{-CH}), 3.97 (t, 2H, }^3\text{J}_{\text{H},\text{H}} = 5.6 \text{ Hz, } 2\text{-CH}2\text{).}
\end{align*}
\]

Example 16: 7'-Azaindirubin-3'-[2-(4-methylpiperazino)-ethyl]-oxime ether

A suspension of 7-azaindirubin-3'-(2-bromomethyl)-oxime ether (60 mg, 0.15 mmol) and 1-methylpiperazine (500 mg, 5 mmol) in dry DMF (10 mL) was stirred at room temperature for 24 h. The mixture was diluted with water (50 mL) and extracted
with ethyl acetate. The solvent was removed in vacuo and the residue was purified by column chromatography using ethanol as eluent to yield a reddish solid (20 mg, 0.049 mmol, 33.0 %).

1H-NMR (600 MHz, DMSO-d$_6$, $\delta = 2.49$ ppm): 11.07 (s, 1H, N1H), 11.03 (s, 1H, N1H), 7.56 (d, 1H, 3J$_{H,H} = 7.6$ Hz, 4-CH), 8.41 (d, 1H, 3J$_{H,H} = 6.6$ Hz, 6'-CH), 8.31 (d, 1H, 3J$_{H,H} = 3.6$, 4'-CH), 7.19 (t, 1H, 3J$_{H,H} = 6.8$ Hz, 6-CH), 7.08 (t, 1H, 3J$_{H,H} = 5.3$ Hz, 5'-CH), 6.79 (t, 1H, 3J$_{H,H} = 7.9$ Hz, 5-CH), 6.74 (d, 1H, 3J$_{H,H} = 7.6$ Hz, 7-CH), 4.69 (t, 2H, 3J$_{H,H} = 5.9$ Hz, EtI-CH$_2$), 2.96 (t, 2H, 3J$_{H,H} = 5.9$ Hz, Et2-CH$_2$), 2.49 (br, 4H, Pip2 and Pip6-CH$_2$), 2.30 (br, 4H, Pip3 and Pip5-CH$_2$), 2.12 (s, 3H, CH$_3$).
Claims

1. An azaindirubin compound, selected from 7-aza indrubin, 7'-aza indrubin, and 7,7'-daza-indrubin derivatives, having the following general formulae

wherein

R¹ and R² can be the same or different and stand for hydrogen, C₁-C₄ alkyl, halogen, hydroxy, C₆C₄ alkoxy, mercapto, carboxy, or an amino group NR⁴R⁵, or a carboxamido group CONR⁴R⁵, wherein R⁴ and R⁵ can be the same or different and represent a hydrogen atom, a straight-chain or branched-chain C₁-C₄ alkyl group,

which can additionally carry one or more halogen, hydroxy and/or amino groups, a substituted or unsubstituted aryl group which can comprise one or more heteroatoms, or the acyl groups -COM, -COOM, -CH₂COOM

wherein M is hydrogen, a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms which can additionally carry one or more hydroxy and/or amino groups, or an aryl group which can comprise one or more heteroatoms and can be substituted with one or more halogen atoms, one or more alkyl groups or one or more alkoxy groups,

or C₃-C₇ cycloalkyl, C₃-C₇ cycloalkenyl,

that is optionally interrupted by one or more oxygen atoms and/or can additionally carry one or more Cl-C₄ alkyl, halogen, hydroxy and/or amino...
groups, a substituted or unsubstituted aryl group which can comprise one or more heteroatoms, or the acyl groups -COM, -COOM, -CH$_2$COOM with the definition for M above,
or R4 and R5 together with the nitrogen atom of the amino group form a ring,
which can contain one or more heteroatoms and have 2 to 8, optionally substituted, CH$_2$ groups which can additionally carry one or more C$_1$-C$_4$ alkyl, C$_3$-C$_7$ cycloalkyl, halogen, hydroxy and/or amino groups, a substituted or unsubstituted aryl group which can comprise one or more heteroatoms, or the acyl groups -COM, -COOM, -CH$_2$COOM with the definition for M above;
E in formulae (1), (2), and (3) means an oxygen atom, an oxime group [NOH], or an oxime ether group [NOR$_3$], with R$_3$ representing an alkyl chain with formula (CH$_2$)$_n$R$_1$ in which n stands for 2-6 and R' stands for an amino group NR$_4$R$_5$, wherein R4 and R5 can be the same or different and represent a hydrogen atom, a straight-chain or branched-chain C$_1$-C$_4$ alkyl group,
which can additionally carry one or more halogen, hydroxy and/or amino groups, a substituted or unsubstituted aryl group which can comprise one or more heteroatoms, or the acyl groups -COM, -COOM, -CH$_2$COOM wherein M is hydrogen, a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms which can additionally carry one or more hydroxy and/or amino groups, or an aryl group which can comprise one or more heteroatoms and can be substituted with one or more halogen atoms, one or more alkyl groups or one or more alkoxy groups;
or C$_3$-C$_7$ cycloalkyl, C$_3$-C$_7$ cycloalkenyl,
that is optionally interrupted by one or more oxygen atoms and/or can additionally carry one or more Cl-C$_4$ alkyl, halogen, hydroxy and/or amino groups, a substituted or unsubstituted aryl group which can comprise one or more heteroatoms, or the acyl groups -COM, -COOM, -CH$_2$COOM with the definition for M above,
or R4 and R5 together with the nitrogen atom of the amino group form a ring.
which can contain one or more heteroatoms and have 2 to 8, optionally substituted, CH$_2$ groups which can additionally carry one or more CrC$_4$ alkyl, C$_3$-C$_7$ cycloalkyl, halogen, hydroxy and/or amino groups, a
substituted or unsubstituted aryl group which can comprise one or more heteroatoms, or the acyl groups -COM, -COOM, -CH₂COOM with the definition for M above.

2. The azaindirubin compound according to claim 1, which is in the form of a physiologically compatible salt formed with organic or inorganic acids, selected from hydrochloric acid, sulfuric acid, phosphoric acid, citric acid, tartaric acid, lactic acid, succinic acid, acetic acid, malic acid, or fumaric acid.

3. The azaindirubin compound according to claim 1 or 2 wherein E stands for C=O or for C=NO(CH₂)ₙNR₄⁺, wherein n is 2, and NR₄⁺ represents an N-methylpiperazino substituent.

4. A method of producing an azaindirubin compound according to claim 1, 2 or 3 by condensation of a corresponding isatin or 7-azaisatin with 3-indoxyl-3-acetates, 7-aza-3-indoxyl-3-acetate, 1-acetylindoxyls, 1,3-diacetylindoxyls or 1-acetyl-7-azaindoxyl, using basic or acid reaction conditions.

5. The method according to claim 4, wherein 7-aza-3-indoxyl-3-acetate is produced by reaction of 7-azaindole with thallium(III)-acetate.

6. The method according to claim 4, wherein 1-acetyl-7-azaindoxyl is obtained by starting with 7-azaindole via formylation, acetylation and Baeyer-Villiger-oxidation.

7. The method according to claim 4, wherein 7-azaisatin is obtained by oxidation of 7-azaoxindole using NBS/DMSO.

8. The method according to claim 4, wherein 7,7'-diazaindirubin is obtained by reaction of 7-azaindole with thallium(III)-acetate.
9. A pharmaceutical formulation comprising at least one of the compounds according to claim 1, 2 or 3.

10. Use of a compound according to claim 1, 2 or 3 or the pharmaceutical formulation according to claim 9 for treating cancer, neurodegenerative diseases, bipolar disorders, inflammatory and infectious diseases, including viral diseases.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D471/04 C07D519/00 A61K31/437 A61P35/00 A61P25/28
A61P31/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal , CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

* Special categories of cited documents

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search
5 February 2010

Date of mailing of the international search report
12/02/2010

Name and mailing address of the ISA/
European Patent Office, P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040,
Fax (+31-70) 340-3016

Authorized officer
Fanni, Stefano

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2005/041954 A (UNIV ROCKEFELLER [US]; CENTRE NAT RECH SCIENT [FR]; MEIJER LAURENT [FR]) 12 May 2005 (2005-05-12) page 1, paragraph 1 claims 1-8</td>
<td>1-10</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>CN 101074229 A</td>
<td>21-11-2007</td>
<td>AU 2008261491 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008151558 A</td>
</tr>
<tr>
<td>WO 2005041954 A</td>
<td>12-05-2005</td>
<td>AU 2004285522 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2543942 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1686988 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007276025 A</td>
</tr>
</tbody>
</table>