This invention relates to a duplicating, printing and punching machine for recording sales information on an invoice form.

The invention constitutes an improvement over the machine which is disclosed in co-pending patent application Serial No. 435,028 filed on June 7, 1954, now Patent 2,803,187, issued August 20, 1957 and it involves the use of a credit card or master card of the type disclosed in co-pending patent application Serial No. 435,027 filed on June 7, 1954 by Robert E. Hopp and now abandoned.

The machine which is herein described and claimed has particular application to transactions at gasoline service stations involving the use of credit cards issued by gasoline refining companies to ultimate consumers. These credit cards identify the person to whom the card was issued, giving his name, address and account number. When a purchase is made by the holder of such credit card at a service station honoring the card, it becomes necessary for the service station attendant to transfer the information from said credit card to an invoice form and in addition to supply information regarding the sale itself. The invoice form is usually provided in triplicate or quadruplicate and one copy is handed to the customer, a second copy is retained by the attendant, and the remaining copy or copies are delivered to the gasoline refining company.

It is conventional practice to fill out these invoice forms by hand. This is a time consuming procedure and frequently errors are made in transcribing the information from the credit card to the invoice form rendering it difficult, if not impossible, to identify the purchaser. There are other obvious drawbacks and disadvantages in this procedure which are well known to service station owners and attendants, their customers and the gasoline companies themselves.

The principal object of this invention is the provision of a machine capable of automatically and accurately transferring information from a credit card to an invoice form, with no effort on the part of the operator of the machine save to insert the credit card and invoice form, to move a handle on said machine, and thereafter to remove said credit card and invoice form.

As is disclosed in the above mentioned abandoned application Serial No. 435,027, the credit card to which reference is here made possesses the following characteristics and features: It is made of relatively strong sheet material such as sheet plastics. It is generally rectangular in shape with one of its corners cut off as a guide to proper insertion of the card into the machine so that it will be properly oriented therein. Embossed on the card is the information necessary to identify the holder of the card, namely, his name, address and account number. This embossed material is impressed upon the invoice form in such manner that a carbon copy of said information is printed upon the invoice form. The credit card is also provided with perforations keyed to the account of the holder of said credit card in accordance with a predetermined code, as employed in connection with International Business Machines (IBM) equipment and like machines.

The present invention also requires the use of invoice forms possessing certain features and characteristics. In the first place, it should be provided with as many leaves or sheets as copies are required, and carbon inter-leaves between them. A simple type of invoice form consists of two sheets or forms detachably secured to each other with a double faced carbon sheet removably secured between them. At least one of the sheets is made of relatively stiff paper so as to facilitate insertion into the machine. The invoice form is generally rectangular in shape with one of its corners cut away as a guide to proper insertion of the invoice form into the machine so that it may properly oriented both with respect to the machine and with respect to the credit card which is used in conjunction therewith.

Briefly stated, the machine herein claimed provides suitable receptacles for a credit card and an invoice form as above described. The machine also provides a movable roller which presses the credit card and invoice form together so as to enable the embossments on the credit card to form carbon impressions on the invoice form in accordance with said embossments. And, finally, the machine provides a plurality of punches which are engageable with the credit card. Those punches which register with the code holes in said credit card are caused to pass through the card and into punching engagement with the invoice form, thereby punching into said invoice form a plurality of code holes corresponding in number and location to the code holes in the credit card.

Another important feature of this invention is the punching mechanism including the spring means which yieldably support the individual punches in operative position. In conventional punching machines, the work is supported in a stationary position and the punches are moved into engagement therewith. Where selective punching is provided, selected punches are moved into engagement with the work while the rest are retained in inoperative position. In the present machine, on the other hand, the procedure is quite the reverse. The punches are normally maintained in operative or punching positions by spring means. The work (the credit card and invoice form) is advanced toward the punches. Those punches which encounter the imperforate portions of the credit card are pushed into inoperative positions against the action of the spring means. Those punches which register with the code holes in the credit card remain in their operative positions by the holding action of said spring means and they are then locked into such positions by positive locking means. The work continues to advance and is thereby brought into engagement with the last mentioned punches for the punching operation.

The construction of the spring means is unique and important. In one form of the invention, there are 90 separate punches, each requiring an individual operable spring member capable of holding it in operative position. It would normally be expected, therefore, that the machine would require 90 separate springs. The spring problem has been solved in the present machine by providing a series of spring combs, for example, 10 such combs, each provided with 9 teeth or prongs. Each such prong engages a separate punch and holds the punch by spring action in operative position.

In a modified form of the invention, rubber sheets are engaged with the punches in the place and stead of the spring combs. These rubber sheets each engage a plurality of punches but they are slit and punched at predetermined regular intervals so that each punch is engaged with an individually resilient portion of the rubber sheet. Each section of the rubber sheet may flex
without affecting either the condition or the position of the other sections of the sheet.

In another modification of the invention, each punch is in engagement with a spring-urged pin, each such pin having a coiled compression spring mounted thereon. Each spring-urged pin functions independently of the other pins.

The invention is illustrated in the accompanying drawing in which:

Fig. 1 is a perspective view of a machine made in accordance with this invention, showing it enclosed in a suitable casing to protect its mechanical parts.

Fig. 2 is a fragmentary section on the line 2—2 of Fig. 1.

Fig. 3 is a plan view of an invoice form or sales slip used in connection with the present machine, the corners of two of its leaves being folded over to show that this particular invoice form consists of three superimposed leaves or sheets.

Fig. 4 is a plan view of a credit card used in connection with the present machine.

Fig. 5 is a transverse section on the line 5—5 of Fig. 4.

Fig. 6 is a plan view of the machine with its casing removed to expose its mechanical parts, some of the parts thereof being shown in horizontal section.

Fig. 7 is a side view of said machine with its casing removed.

Fig. 8 is a front view of said machine with its casing removed.

Fig. 9 is a vertical section on the line 9—9 of Fig. 6.

Fig. 10 is a similar view but showing the moving parts in operative positions at the conclusion of a printing and perforating operation.

Fig. 11 is another vertical section on the line 11—11 of Fig. 6.

Fig. 12 is an enlarged, fragmentary plan view, partly in horizontal section, showing the punching mechanism, including the punches and the springs which engage them.

Fig. 13 is a view similar to that of Fig. 12 but showing a modified form of spring mechanism engaging the punches.

Fig. 14 is a front view of a series of rubber sheets which, in a second modification, engage the punches and retain them in operative positions.

Fig. 15 is a vertical enlarged section on the line 15—15 of Fig. 14 showing how said rubber sheets are supported.

Fig. 16 is a plan view of one of said rubber sheets showing it in engagement with one of said punches.

Figs. 3, 4 and 5 show the invoice form or sales slip 20 and credit card 22 which may be used in connection with the present invention but it will be understood that this showing is purely illustrative and other forms of invoice form and credit card may be used in this machine.

The invoice form 20 consists of three sheets: A back sheet 24, a front sheet 26, and an intermediate sheet 28, all three sheets being detachably secured to each other at their lower ends and being normally superimposed upon each other as Fig. 3 clearly shows. The back sheet 24 should be made of relatively stiff paper, such as tag or card paper, and on it should be printed whatever information may be desired. This sheet is the original invoice. The front sheet 26 should be made, preferably, of relatively thin paper which is light transparent so that any printing on its back surface will be visible through to the front. This sheet constitutes the customer's copy of the invoice and printed on it is a certain form information 30 which corresponds to the printed matter on the original invoice 24.

The intermediate sheet 28 is made of relatively thin paper coated with spot carbon at selected locations on both sides thereof. This intermediate sheet is used in printing information on both invoice forms by the means hereinafter described. In at least one location it is coated with spot carbon ink on only one side for printing upon the original invoice form 24 and not upon the customer's copy. It is in this area on the customer's copy that the specific data regarding the sales transaction is recorded by the service station attendant either in ink or by pencil. It is important to provide a carbon copy of this information solely upon the original invoice form 24. Spot carbon is also applied to only one side of the intermediate sheet in the area allotted for the customer's signature which, of course, is applied by the customer either in ink or by pencil to the front sheet 26.

It will be understood that the three sheets are secured to each other at their lower ends by means of a suitable adhesive, but in addition, a series of spaced slits 32 may be provided in all three sheets adjacent their secured ends. This is for the purpose of rendering it possible to detach the sheets from each other at the conclusion of a sales transaction so that the customer's copy 26 may be handed to the customer, the original invoice 24 may be retained by the service station attendant for transmission to the oil company, and the intermediate sheet 28 may be discarded. It will now be noted that slits 32 are arranged on a line which is parallel to the lower edge 34 of the invoice form. A notch 36 is cut into the lower right-hand corner of said invoice form and its upper edge 38 is aligned with the line of slits 32. This notch accommodates a fixed member in the machine when the invoice form is properly inserted therein but said fixed member prevents complete insertion of said invoice form when it is improperly inserted therein. Consequently, said notch is utilized for proper orientation of the invoice form in said machine.

The credit card 22 may be deemed to constitute both a printing plate and a template. It is made of relatively stiff material, such as sheet plastics, and information identifying the holder of said card, that is, his name, address and account number, is embossed into the card to form the embossments 40 which are best shown in Fig. 5. These embossments constitute the printing elements which function in conjunction with the intermediate carbon sheet 28 of the invoice form 20 in order to provide impressions in carbon on the two invoice sheets 24 and 26, as will hereinafter be described. The embossments are provided in the upper portion of the credit card. In the lower portion thereof are code holes 42 which in this form of the invention are rectangular in shape. These holes are punched into the sheets by places by a master code punching machine and the number and location of said code holes identify the holder of the card. It is this punched part of the credit card which serves as a template to screen out all punches in the machine herein described and claimed save those punches which register with the code holes. This will shortly be described.

It will be observed that the credit card 22 is generally rectangular in shape, with rounded corners to avoid injury to the holder or user of the card. At one corner, however, the card is cut off to form a diagonal edge 44. It is at this cut corner that the credit card is adapted to accommodate a fixed member in the machine when said card is properly inserted therein. Should the card be inserted improperly, the opposite corner will engage the fixed member in the machine and prevent full insertion of the card therein.

The machine 50 which is herein described and claimed includes a base 52, a pair of relatively large uprights 54 on opposite sides thereof, and a pair of relatively small uprights 56 situated in front of the large uprights and spaced somewhat closer together. A shoulder 58 is formed around the entire base to receive a casing 60 which encloses the entire mechanism of the machine, save for the operating handle 62. Screws 64 may be inserted through holes formed in the casing 60 into engagement with tapped holes 66 in the base in order to secure said casing to said base. The base itself is provided with pads 68 by which it may be supported on a suitable horizontal support and tapped holes 70 may be provided...
The casing is provided with a side opening 72 to accommodate the shaft 74 to which the actuating handle 62 is secured and also one of the collars 76 on said shaft. A second collar 78 is provided on the shaft and is the means by which said handle 62 is secured to said shaft. A slide 80 is slidably secured to the casing 60 to cover that portion of side opening 72 which would otherwise remain open. A top opening 82 is also provided in the casing and said opening is of a shape and size to permit of insertion of the invoice form and credit card and also of the operator's fingers to facilitate removal of said invoice form and credit card at the conclusion of an operation. A hinged cover 84 is provided on the casing to cover said opening 82 when the machine is not in use in order to protect its mechanism.

To operate the machine, the credit card 22 is inserted into the machine between plates 86 on the one hand and plates 88 on the other hand. The invoice form 90 is inserted into the machine between said plates 88 on the one hand and plates 90 on the other. Once this is done, all that the operator of the machine need do is to actuate the handle 62 by pulling it forwardly about the axis of shaft 74 and the invoice form is printed and protégé into the machine with the embossments and code holes on the credit card and when the handle is then released, both the invoice form and the credit card may be removed from the machine since the job is now done.

It will now be observed that shaft 74 is supported by bearings or bushings 92 in the two uprights 54. A stop pin 94 is secured to one of said uprights 54. Collar 76 is provided with a cut-out 96 to accommodate said pin 94 and there is a shoulder 98 at one end of said cut-out and a second shoulder 100 at the opposite end of said cut-out for engagement with said pin in order to limit the angular movement of the shaft 74 and the handle 62. It will be observed in Figs. 9 and 10, that a lug 102 is provided on shaft 74 and that a bracket 104 is provided on the base 52 and a tension spring 106 is secured at one end to said lug and at the opposite end to said bracket in order to oppose forward movement of the handle 62 and to return said handle to its original position after it is actuated to operate the machine. As viewed in Figs. 9 and 10 said spring acts to urge shaft 74 and handle 62 in clockwise direction. A hook 108 is hooked or looped over said shaft 74 and secured to said hook is one end of a second tension spring 110. The opposite end of said second tension spring 110 is secured to a lug 112 which is fixedly secured to a sleeve 114.

Sleeve 114 is rotatably mounted by means of bushings 116 on a shaft 118 which is supported at its ends by uprights 86 in parallel relation to shaft 74 above mentioned. Fixed to shaft 74 is a gear segment 120 and fixed to sleeve 114 is a second gear segment 122 which is normally out of engagement with said first gear segment. When the handle 62 is actuated, it may be moved a short angular distance before gear segment 120 engages gear segment 122 but at a predetermined point the two gear segments will be in mesh with each other so that further angular movement of the handle will cause the gear segment 120 to turn in clockwise direction as viewed in Fig. 7 while the gear segment 122 is caused to turn in counterclockwise direction as viewed in said Fig. 7. Since gear segment 122 is secured to sleeve 114, said sleeve will then move with said gear segment 122 to their original positions.

It has been stated that plates 86, 88 and 90 receive the invoice form and credit card between them. It will now be seen that plates 86 and 90 are integrally cast portions of a pair of castings 130. It will also be seen that plates 88 are simply a pair of plate portions projecting inwardly from the upper ends of the arms 132 of a generally U-shaped plate 134. The two castings 130 are secured to said plate portions 88 and it is by this means that plates 86 and 90 are supported. It will also be noted that plates 86 and 90 slope inwardly in the direction of their lower ends so as to form rams or chutes for the credit card and invoice form. Further attention to this portion of the machine will bring to light the fact that abutting plate 134 and its arms 132, on opposite sides thereof, is a pair of spacer plates 136 and 138 respectively and abutting said spacer plates are end plates 140 and 142. All of these plates are bolted or otherwise secured to each other and they are all mounted on upper and lower bushings 150 and 152 which are elastically movable on upper and lower shafts 154 and 156 secured to uprights 54. Also secured to said plates and supported by said bushings on said shafts is a pair of brackets 160. For the purposes of this description, plates 134, 136, 138, 140, and 142, together with brackets 160 and bushings 150 and 152, will hereinafter be deemed to constitute a movable carriage adapted to support and carry the invoice form and credit card and in this connection it will be understood that the spacer plates 136 and 138 constitute U-shaped members which are adapted to receive the credit card and invoice form on their respective yokes and between their respective arms.

The spacers are provided with corner portions which are adapted to enter the cut-outs in the corners of said credit card and invoice form as above described.

Shafts 154 and 156 also support an end plate 162 which is held thereon by screws 164. This end plate supports a pair of compression springs 166 which engage plate 149 of the carriage or possibly holes may be formed in said plate to receive said springs and in such case they would engage the next plate in line which would be spacer plate 136. In either case, these springs 166 act between end plate 162 and the carriage 170 and are adapted to actuate the machine and carry the credit card and invoice form and which will now be known by the reference character 170. The action of these compression springs is to urge carriage 170 forwardly, that is, rightwardly as viewed in Fig. 11.

When the handle 62 is brought forward to operate the machine, carriage 170 is caused to move rearwardly against the action of said compression springs 166. This is done by the use of a pair of cams 172 and a pair of rollers or cam followers 174. The cams are fixedly secured to the main shaft 74 and the rollers or cam followers are supported by brackets 160. The cam 172 are so fashioned, as shown in Fig. 11, that they immediately act upon the rollers as soon as movement of the handle is begun in order to thrust the carriage rearwardly. But after a given amount or extent of travel of said carriage, a high portion 176 of the cams is reached and said high portion is equidistant at all points from the central axis of shaft 74. Consequently, when said high portion 176 engages the rollers 174, there will be no further rearward movement of the carriage 170.

It will be seen in Figs. 9 and 10, that arms 180 are secured at one end to sleeve 114 and at their opposite end they are pivotally secured to a frame 182. Supported on said frame is a pair of rollers 184 which ride upon track plates 186 secured to brackets 160. It will be observed that these track plates are provided with a downwardly sloping upper edge 188 and a vertically extending edge 190. When handle 62 is actuated and gear segment 120 engages gear segment 122, sleeve 114 is caused to turn in clockwise direction as viewed in Fig. 10, thereby swinging arms 180 in the same direction. Since these arms are pivotally connected to the frame 182, said frame will be caused to move downwardly with said arms and its upper edge 188 will be controlled to take the path laid out by sloping edge 188 and vertical edge 190 of the track plates 186. A spring 192 (see Fig. 8) is secured at one end to one of said arms 180 and at its opposite end to frame 182 to urge said frame to pivot on pivot pins or rivets 194 relative to said arms 180 and to
hold the rollers 184 in engagement with the edges 188 and 190 of the track plates 186.

Supported at the top of frame 182 is a roller 200 which is rotatably mounted for rotation on an axis parallel to the longitudinal axes of the track plates 186. When the frame 182 is brought rearwardly and downwardly by the handle 62, said roller is brought into engagement with the invoice form as shown in Fig. 10 and presses said invoice form firmly against the embossments of the credit card, thereby forming carbon impressions on the invoice form and of said invoice form in accordance with said embossments.

A feature of the present invention is the provision of means for automatically printing the name and address of the service station in which the transaction takes place upon the same invoice form that the customer's identification is recorded. This is done by a printing plate 202 which is supported by means of arms 204 on brackets 206 secured to plate 142 of carriage 170. These arms are pivotally mounted on said brackets and are normally urged forwardly by a leaf spring 208. Fig. 9 shows the printing plate 202 supported in its forwardmost position. There is another leaf spring 210 on frame 182 and said leaf spring is adapted to engage the printing plate 202 and to cam it rearwardly into position for engagement with roller 200. As shown in Fig. 10, when roller 200 engages printing plate 202, it presses it against the invoice form and thereby causes carbon impressions to be made thereon in accordance with the printing material on said printing plate which, as in the credit card, consists of embossed lettering.

There remains the hole-punching operation whereby holes 212 are punched into the invoice form in registration with the code holes 42 in the credit card. It will now be seen that a plurality of punches 220 are slidably supported in registering holes formed in plates 140 and 162. Plate 162 is also provided with registering holes but the punches are not normally disposed therein. Specifically, holes 222 are formed in plate 162, holes 224 are formed in plate 140 and holes 226 are formed in plate 142. As clearly appears in Fig. 12, each punch 220 is provided with a cut-out 228 along one side edge thereof. At the back end of each said cut-out is a shoulder 230 and adjacent the front end of said cut-out is a projection 232. The back edge of the projection is normal to the longitudinal of the punch and the front edge is disposed at an angle to form a cam face.

It will now be seen that a pair of plates 240 are supported on stud shafts 242 which are secured to the carriage 170. These stud shafts project through openings in the back plate 162 and they are free to move through said openings when the carriage itself is caused to move on its supporting shafts 154 and 156. These plates 240 are provided with openings 244 which only partly register with the punches 220. There is one opening 244 for each said punch but said openings are too small for the punches to pass through. Projecting through openings 244 are leaf springs 246 whose forward ends are bent twice transversely of the longitudinal axis of said leaf springs in order to form V-shaped portions 248 which engage the back ends of the punches 220 and tend to support said punches in their forwardmost positions.

It will now be observed that these leaf springs 246 project forwardly from a series of combs 250 which are secured by rivets 252 to a bracket 254 that is supported on plate 162. In the illustrated form of the invention, there are ten such combs, each with nine forwardly projecting spring members 246 arranged in a vertical plane. Consequently, there are ninety such spring members, each in engagement with a punch 220. When the handle 62 is actuated and carriage 170 caused to move rearwardly, the credit card will be brought into engagement with the forward ends of the punches, as shown in Fig. 12, and it will cause the punches to move rearwardly against the action of said leaf springs 246, save for those punches which register with code holes 42 in said credit card. The position of the latter punches will not be disturbed. It will here be understood the rearwardly moving punches are caused to cam the V-shaped portions 248 of the leaf springs 246 laterally in order to clear them. Another pair of plates 260 and 262 are slidably supported in a bracket 264 on plate 162. These plates 260 and 262 are fixed against any forward or rearward movement and also against vertical movement but they are free for at least limited lateral movement in both directions. A spring 265 is secured at one end to said plate 260 and at the opposite end to a stud 268 on plate 162 and the action of said spring is to urge the two plates 260 and 262 rightwardly as viewed in Fig. 12. A cam plate 270 is secured to plate 140 for engagement with the two plates 260 and 262. When the carriage 170 is caused to move rearwardly, said cam plate 270 will cam the two plates 260 and 262 leftwardly as viewed in Fig. 12 to their original positions.

It will be observed that openings 272 are formed in plate 260 and smaller openings 274 are formed in plate 262. Both sets of openings permit the punches 220 to pass through but when the two plates 260 and 262 are moved rightwardly under the influence of spring 266, plate 262 becomes a stop member relative to projections 232 on all selected punches that is, those which register with code holes in the credit card and are therefore permitted to remain in their forward positions. The imparforate parts of the credit card have pushed the other or unwanted punches rearwardly a sufficient distance so that their projections 232 clear the two plates 260 and 262. Now, further continued rearward movement of the carriage toward the punching position brings the forwardly projecting punches into engagement with the invoice form through the code holes in the index card and corresponding holes are punched into the invoice form. Plate 142 with its openings 226 functions as a die plate in this connection.

At the conclusion of the punching operation, the carriage 170 is caused to move forwardly as above described. Plates 240 now move forwardly with said carriage and engage the back ends of those punches which the credit card has pushed rearwardly and past the leaf spring portions 248. The punches are thereby pushed forwardly to their original positions and shoulders 230 cam the spring portions 248 laterally to by-pass them in order to reach the positions shown in Fig. 12. At the same time, cam 270 moves the plates 250 and 262 leftwardly against the action of spring 266 and once again the openings in said plates register with the projections 232 on the punches to enable them to pass through on the next operation of the machine. Shoulders 230 on the punches which punched holes into the invoice form engage plate 162 and are prevented by said plate from moving forwardly as the carriage moves to its starting position carrying the invoice form and credit card along with it. The machine is now ready for the next operation.

Turning now to Fig. 13, it will be observed that a modified spring action is provided in connection with the punches but in all other respects the machine remains the same. It will be observed that a pair of springs 290 and 302 are provided on machine 304 shown in Fig. 13 and slidably supported in said plates is a plurality of wires or pins 306, one for each punch 308 and in abutment therewith. Each pin 306 has a collar 310 secured thereto and a compression spring 312 mounted with one end in abutment with said collar and the opposite end in abutment with plate 300. The action of these springs
is to urge the pins 306 forwardly and to maintain the punches in their forward positions.

In Figs. 14, 15 and 16, another modified form of resilient means is provided for resiliently supporting the punches in their forward positions. This means includes a plurality of rubber sheets 320 supported on horizontal shelves 322, one above the other. These shelves are supported by engagement 324 in spaced relation to each other with sufficient clearance to enable each said rubber sheet to flex in the manner shown in Fig. 16. It will now be observed that each sheet 320 is provided with a plurality of openings or holes 326 situated immediately behind punches 328. Intermediate said holes 326 and behind them is another series of holes 330. Slits 332 are formed in the front edge of the rubber sheet 320 intermediate holes 326. When a punch 325 is brought into engagement with the leading edge 334 of said rubber sheet, the rubber sheet will compress in only that limited area which the punch affects and the rest of the rubber sheet will remain in relatively unflexed condition. It is apparent that the rubber sheet serves as a function of the mass of a series of independent springs, each portion of said rubber sheet between two adjacent slits 332 functioning as an individual spring.

The foregoing is illustrative of preferred forms of this invention, and it is understood that these preferred forms may be modified and other forms may be provided within the broad spirit of the invention and the broad scope of the claims.

What is claimed is:

1. A machine for punch and an invoice form or the like through a template such as a credit card having code holes therein comprising a frame, a movable carriage on said frame, drive means for moving the carriage from a non-punching position through a punch-selecting position to a punching position and then back to non-punching position, in said carriage for holding an invoice form and a credit card in face-to-face relationship to each other, the credit card having code holes formed therein, a plurality of punches slidably mounted on said frame for movement between an operative and an inoperative position, resilient means engaging said punches and resiliently supporting them in operative position, said punches being situated, in operative position, for engagement with said credit card when the carriage which supports the credit card and invoice form is moved from non-punching toward punching position, those punches which are engaged by the imperfect parts of the credit card being thereby pushed by said credit card into inoperative position, those punches which register with the code holes in said credit card being engaged in their operative position, locating means engaging the last mentioned punches to lock them in their said operative position, whereby continued movement of the carriage to its punching position brings said last mentioned punches into punching engagement with the invoice form through said code holes in the credit card to punch card corresponding holes into said invoice form, means for releasing said locating means at the conclusion of said punching operation and when the carriage is moved from punching back to non-punching position, and a plate which is connected to said carriage for engagement with those punches which the imperfect parts of the credit card had moved into inoperative position to return said punches to operative position when the carriage is moved to non-punching position.

2. A machine in accordance with claim 1, wherein each punch is provided with a punching end situated for engaging either a credit card or through a code hole in said credit card with the invoice form, and with a butt end which is engageable by the plate on the carriage to return the punch from inoperative to operative position, said resilient means being engageable with the butt end of the punch, and comprising a leaf spring which is situated in generally parallel position to the punch and provided with a laterally bent portion which engages the butt end of the punch when the punch is in operative position to resiliently support the punch in such position, said leaf spring being adapted to flex laterally out of engagement with the butt end of the punch when the punch is moved from operative to inoperative position by an imperforate portion of the credit card, by reason of a camming action by said butt end of the punch upon said laterally bent portion of the leaf spring.

3. A machine in accordance with claim 1, wherein the resilient means comprises a series of spring metal combs, each comb having a plurality of spring fingers projecting therefrom, one such spring finger for each punch, said spring fingers being provided with cam-shaped portions which engage the punches and resiliently support them in operative position, said punches being adapted to cam said cam-shaped portions out of the way when said punches are moved from operative to inoperative position.

4. A machine in accordance with claim 1, wherein the resilient means comprises a plurality of spring-urged pins, one such pin for each punch, said spring-urged pins being aligned with their respective punches and in engagement with the inoperative ends of said punches.

5. A machine in accordance with claim 1, wherein the resilient means comprises a series of rubber sheets whose edges engage the inoperative ends of the punches, one such sheet for a plurality of said punches, said sheets being perforated to render them relatively free to flex and being slit to separate each punch-engage portion from the other punch-engaging portions.

6. A machine in accordance with claim 1, wherein the holder in the carriage for the invoice form includes a die plate having a plurality of openings which register with the punches, said die plate being adapted to support the invoice form against the action of those punches which register with and pass through the code holes in the credit card to enable said punches to punch the invoice form.

7. A machine in accordance with claim 1, wherein the locking means comprises a slidable mounted plate having a plurality of openings formed therein to receive the punches, said locking plate being substantially laterally disposed from an inoperative position to an operative position and back to inoperative position, said punches being provided with detents which are engageable with said locking plate when the locking plate is in operative position, thereby locking the punches against movement, a spring connected to said locking plate and urging it into operative position for engagement with said detents, a stop member mounted on the carriage for engagement with said locking plate when the carriage is in non-punching position to hold the locking plate in operative position against the action of said spring, said stop member being disengageable from said locking plate when the carriage is moved to punching position, thereby releasing the locking plate for movement into operative position in response to the action of said spring in order to engage the detents and lock the punches, said stop member having a cam edge which is engageable with said locking plate to cam the locking plate into operative position against the action of said spring when the carriage is moved back to non-punching position, thereby releasing said locking plate from said detents and unlocking the punches.

References Cited in the file of this patent

UNITED STATES PATENTS

2,004,208 Lasker 06/11/1935
2,021,302 Gates 11/19/1935
2,134,814 Elliott 11/1/1938
2,134,815 Elliott 11/1/1938