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(57) Abstract: A structure, and corresponding operating techniques, are presented for the internal controller to memory circuit in-
terface for memory systems such a flash memory card or other similarly structured devices. The interface between the controller
circuit and memory circuit (or circuits) includes a feedback process where the amount of error that arises due to controller-memo-
ry transfers is monitored and the transfer characteristics (such as clock rate, drive strength, etc.) can be modified accordingly.
Techniques are also presented for dynamically optimizing the performance of the controller-memory (or "back-end") interface of a
non-volatile memory system. Memory systems are usually designed to have a certain amount of error tolerance for error that can
then be corrected by ECC. In may circumstances, such as when a device is new, the ECC capabilities of the system exceed what is
needed to correct data storage errors. In these circumstances the memory system internally allots a non-zero portion of this error
correction capacity to the back-end interface. This allows for the intertace to operate at, for example, higher speed or lower power,
even though this will likely lead to transmission path error. The system can also calibrate the back-end interface to determine that
amount of error that result from various operating conditions, allowing the operating parameters of the back-end interface to be set
according to amount of error that is allotted to the transfer process.
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DYNAMIC OPTIMIZATION OF BACK-END MEMORY SYSTEM
INTERFACE

BACKGROUND

[0001] This application relates to the operation of re-programmable non-volatile
memory systems, such as semiconductor flash memory, and, more specifically, to the

internal interface between the memory system’s controller and memory circuits.

[0002] Solid-state memory capable of nonvolatile storage of charge, particularly in
the form of EEPROM and flash EEPROM packaged as a small form factor card, has
recently become the storage of choice in a variety of mobile and handheld devices,
notably information appliances and consumer electronics products. Unlike RAM
(random access memory) that is also solid-state memory, flash memory is non-
volatile, and retaining its stored data even after power is turned off. Also, unlike
ROM (read only memory), flash memory is rewritable similar to a disk storage
device. In spite of the higher cost, flash memory is increasingly being used in mass
storage applications. Conventional mass storage, based on rotating magnetic medium
such as hard drives and floppy disks, is unsuitable for the mobile and handheld
environment. This is because disk drives tend to be bulky, are prone to mechanical
failure and have high latency and high power requirements. These undesirable
attributes make disk-based storage impractical in most mobile and portable
applications. On the other hand, flash memory, both embedded and in the form of a
removable card is ideally suited in the mobile and handheld environment because of

its small size, low power consumption, high speed and high reliability features.

[0003] Flash EEPROM is similar to EEPROM (electrically erasable and
programmable read-only memory) in that it is a non-volatile memory that can be
erased and have new data written or “programmed” into their memory cells. Both
utilize a floating (unconnected) conductive gate, in a field effect transistor structure,
positioned over a channel region in a semiconductor substrate, between source and
drain regions. A control gate is then provided over the floating gate. The threshold
voltage characteristic of the transistor is controlled by the amount of charge that is

retained on the floating gate. That is, for a given level of charge on the floating gate,
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there is a corresponding voltage (threshold) that must be applied to the control gate
before the transistor is turned “on” to permit conduction between its source and drain
regions. In particular, flash memory such as Flash EEPROM allows entire blocks of

memory cells to be erased at the same time.

[0004] The floating gate can hold a range of charges and therefore can be
programmed to any threshold voltage level within a threshold voltage window. The
size of the threshold voltage window is delimited by the minimum and maximum
threshold levels of the device, which in turn correspond to the range of the charges
that can be programmed onto the floating gate. The threshold window generally
depends on the memory device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within the window may, in

principle, be used to designate a definite memory state of the cell.

[0005] The transistor serving as a memory cell is typically programmed to a
"programmed" state by one of two mechanisms. In "hot electron injection," a high
voltage applied to the drain accelerates electrons across the substrate channel region.
At the same time a high voltage applied to the control gate pulls the hot electrons
through a thin gate dielectric onto the floating gate. In "tunneling injection," a high
voltage is applied to the control gate relative to the substrate. In this way, electrons
are pulled from the substrate to the intervening floating gate. While the term
“program” has been used historically to describe writing to a memory by injecting
electrons to an initially erased charge storage unit of the memory cell so as to alter the
memory state, it has now been used interchangeable with more common terms such as

“write” or “record.”

[0006] The memory device may be erased by a number of mechanisms. For
EEPROM, a memory cell is electrically erasable, by applying a high voltage to the
substrate relative to the control gate so as to induce electrons in the floating gate to
tunnel through a thin oxide to the substrate channel region (i.c., Fowler-Nordheim
tunneling.) Typically, the EEPROM is erasable byte by byte. For flash EEPROM,
the memory is electrically erasable either all at once or one or more minimum
crasable blocks at a time, where a minimum erasable block may consist of one or

more sectors and each sector may store 512 bytes or more of data.
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[0007] The memory device typically comprises one or more memory chips that may
be mounted on a card. Each memory chip comprises an array of memory cells
supported by peripheral circuits such as decoders and erase, write and read circuits.
The more sophisticated memory devices also come with a controller that performs

intelligent and higher level memory operations and interfacing.

[0008] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may be flash EEPROM or may
employ other types of nonvolatile memory cells. Examples of flash memory and
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, and 5,661,053, 5,313,421 and 6,222,762.
In particular, flash memory devices with NAND string structures are described in
United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also nonvolatile memory
devices are also manufactured from memory cells with a dielectric layer for storing
charge. Instead of the conductive floating gate elements described earlier, a dielectric
layer is used. Such memory devices utilizing dielectric storage element have been
described by Eitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile
Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11, November 2000, pp.
543-545. An ONO dielectric layer extends across the channel between source and
drain diffusions. The charge for one data bit is localized in the dielectric layer
adjacent to the drain, and the charge for the other data bit is localized in the dielectric
layer adjacent to the source. For example, United States patents nos. 5,768,192 and
6,011,725 disclose a nonvolatile memory cell having a trapping dielectric sandwiched
between two silicon dioxide layers. Multi-state data storage is implemented by
separately reading the binary states of the spatially separated charge storage regions

within the dielectric.

[0009] In order to improve read and program performance, multiple charge storage
elements or memory transistors in an array are read or programmed in parallel. Thus,
a “page” of memory elements are read or programmed together. In existing memory
architectures, a row typically contains several interleaved pages or it may constitute

one page. All memory elements of a page will be read or programmed together.

[0010] In flash memory systems, erase operation may take as much as an order of
magnitude longer than read and program operations. Thus, it is desirable to have the
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erase block of substantial size. In this way, the erase time is amortized over a large

aggregate of memory cells.

[0011] The nature of flash memory predicates that data must be written to an erased
memory location. If data of a certain logical address from a host is to be updated, one
way is rewrite the update data in the same physical memory location. That is, the
logical to physical address mapping is unchanged. However, this will mean the entire
erase block contain that physical location will have to be first erased and then
rewritten with the updated data. This method of update is inefficient, as it requires an
entire erase block to be erased and rewritten, especially if the data to be updated only
occupies a small portion of the erase block. It will also result in a higher frequency of
erase recycling of the memory block, which is undesirable in view of the limited

endurance of this type of memory device.

[0012] Data communicated through external interfaces of host systems, memory
systems and other electronic systems are addressed and mapped into the physical
locations of a flash memory system. Typically, addresses of data files generated or
received by the system are mapped into distinct ranges of a continuous logical address
space established for the system in terms of logical blocks of data (hereinafter the
“LBA interface”). The extent of the address space is typically sufficient to cover the
full range of addresses that the system is capable of handling. In one example,
magnetic disk storage drives communicate with computers or other host systems
through such a logical address space. This address space has an extent sufficient to

address the entire data storage capacity of the disk drive.

[0013] There is an ongoing effort to improve the performance of memory devices, by
reducing power consumption as well as increasing device speed. As noted above,
non-volatile memory devices are commonly formed of a controller circuit and one or
more memory chips connected to each other over a bus structure. The settings of the
controller/memory device interface, such as the voltage values and frequencies used,
are typically set according to the expected worst case scenario in order to have
sufficient safety margin in order to avoid device failure. Consequently, in most
circumstances the interface is being operated in less than optimal conditions. As this
interface can be a limiting factor in device performance, these is consequently room
for improvement in the design of this interface.
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[0014] SUMMARY OF THE INVENTION

[0015] According to a general aspect of the invention, a method of operating a non-
volatile memory system is presented. The non-volatile memory system includes: a
controller circuit having a memory interface; a memory circuit having an array of
non-volatile memory cells and a controller interface; and a bus structure connected to
the memory interface of the controller circuit and to the controller interface of the
memory circuit for the transfer of data and commands between them. The memory
system can tolerate a first, non-zero amount of accumulated error from when data is
transferred from the controller to be written to the memory array until the data is
received at the controller after subsequently being read back from the memory array.
The method includes the controller allotting a first, non-zero portion of the first
amount of error to the transfer of the data between the controller circuit and the
memory circuit via the bus structure, where the remainder of the first amount of error
being allotted to write, storage, and read of the data on the memory circuit. The
controller circuit sets the transfer characteristics between the controller circuit and the

memory circuit to operate to allow up to the first portion of error.

[0016] In other aspects, methods of operating a non-volatile memory system
including a memory circuit and a controller circuit are presented. The controller
circuit performs a transmission error calibration by performing, for each of a plurality
of values for each of one or more operating parameters for a bus structure connecting
the controller with the memory circuit. This process includes transferring a data set
of a known data pattern from the controller through transmission circuitry on the
controller to the bus structure and receiving the data set from the bus structure through
receiving circuitry on the memory circuit. The data set as received is stored in buffer
memory on the memory circuit and then the data set, as stored in buffer memory on
the memory circuit and without being written into the array, is transferred through
transmission circuitry on the memory circuit to the bus structure. Based The data set
is received from the bus structure through receiving circuitry on the controller and a
comparison is performed of the data set as received with the know pattern. Based on
the comparison, determining the amount of error associated with the transmission
process is determined for the used one or more operating parameter. The memory

system is subsequently operated to allow a first, non-zero amount of error in the
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transmission of data between the controller circuit and the memory circuit, where the
controller circuit selects values of the operating parameters according to the
transmission error calibration process based on the determined associated amounts of

CIIor.

[0017] According to another general aspect of the invention, a non-volatile memory
system has a controller circuit, including a memory interface and logic circuitry, and a
memory circuit, including an array of non-volatile memory cells, a controller
interface, and logic circuitry. The memory system also includes a bus structure
connected to the memory interface of the controller circuit and to the controller
interface of the memory circuit for the transfer of data and commands between the
controller and memory circuit. A feedback processing circuit is connected to the logic
circuitry of the receiving one the controller and the memory circuit during a transfer
of data between them to receive information on the amount of error occurring as a
result of the transfer, and connected to one or both of the memory interface and the
controller interface to adjust the characteristics of the transfer between them in

response to the amount of error.

[0018] In still other aspects, methods of operating a non-volatile memory system
including a non-volatile memory circuit and a controller circuit are presented. A first
hash value is generated from a data set in logic circuitry on a first of the controller
circuit and the memory circuit. The data set and the first hash value are transmitted to
a bus structure through an interface on the first of the controller circuit and the
memory circuit and received from the bus structure through an interface on the second
of the controller circuit and the memory circuit. A second hash value is then
generated from the data set as received in logic circuitry on the second of the
controller circuit and the memory circuit and the first hash value, as received, is then
compared to the second hash value on the second of the controller circuit and the
memory circuit. Based on the comparison of the first hash value as received and the
second hash value by the logic circuitry on the second of the controller circuit and the
memory circuit, the system determines whether to alter characteristics of the transfer

of data between the controller circuit and the memory circuit.

[0019] Various aspects, advantages, features and embodiments of the present
invention are included in the following description of exemplary examples thereof,
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which description should be taken in conjunction with the accompanying drawings.
All patents, patent applications, articles, other publications, documents and things
referenced herein are hereby incorporated herein by this reference in their entirety for
all purposes. To the extent of any inconsistency or conflict in the definition or use of
terms between any of the incorporated publications, documents or things and the

present application, those of the present application shall prevail.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 illustrates schematically the main hardware components of a memory

system suitable for implementing the present invention.
[0021] FIG. 2 illustrates schematically a non-volatile memory cell.

[0022] FIG. 3 illustrates the relation between the source-drain current Ip and the
control gate voltage Vg for four different charges Q1-Q4 that the floating gate may

be selectively storing at any one time.

[0023] FIG. 4A illustrates schematically a string of memory cells organized into an
NAND string.

[0024] FIG. 4B illustrates an example of an NAND array 210 of memory cells,
constituted from NAND strings 50 such as that shown in FIG. 4A.

[0025] FIG. S illustrates a page of memory cells, organized for example in the

NAND configuration, being sensed or programmed in parallel.

[0026] FIG. 6(0) - 6(2) illustrate an example of programming a population of 4-state

memory cells.

[0027] FIGs. 7A-7E illustrate the programming and reading of the 4-state memory

encoded with a given 2-bit code.

[0028] FIG. 8 illustrates the memory being managed by a memory manager with is a

software component that resides in the controller.
[0029] FIG. 9 illustrates the software modules of the back-end system.

[0030] FIGs. 10A(i) — 10A(iii) illustrate schematically the mapping between a logical
-7-
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group and a metablock. FIG. 10B illustrates schematically the mapping between

logical groups and metablocks.

[0031] FIG. 11 is a block diagram showing a feedback mechanism for determining

interface integrity based on an existing infrastructure.

[0032] FIG. 12 is a block diagram illustrating embodiments where the feedback

mechanism uses a hash engine to determine interface integrity.

[0033] FIG. 13 is a diagram showing an example for transmitting the data and the

generated hash value over the bus interface.

[0034] FIG. 14 schematically illustrates the contributions to the bit errors in a

memory system.

[0035] FIG. 15 can be used to illustrate the operation of a pseudo loop-back method

in the back-end interface.
[0036] FIGs. 16 and 17 respectively correspond to blocks 705 and 709 of FIG. 15.

[0037] FIG. 18 is an example of a shmoo plot showing transmission BER vs. data bus

voltage and data transfer rate.

[0038] FIG. 19 is a block diagram that illustrates this crosstalk in a memory system

whose bus structure uses multiple memory data buses.

DETAILED DESCRIPTION

MEMORY SYSTEM

[0039] FIG. 1 to FIG. 7 provide example memory systems in which the various

aspects of the present invention may be implemented or illustrated.

[0040] FIG. 8 to FIG. 10 illustrate preferred memory and block architectures for

implementing the various aspects of the present invention.

[0041] FIGs. 11-13 illustrate the use of an adaptive internal interface between the

controller and the memory circuit or circuits.
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[0042] FIG. 1 illustrates schematically the main hardware components of a memory
system suitable for implementing the present invention. The memory system 90
typically operates with a host 80 through a host interface. The memory system is
typically in the form of a memory card or an embedded memory system. The
memory system 90 includes a memory 200 whose operations are controlled by a
controller 100. The memory 200 comprises of one or more array of non-volatile
memory cells distributed over one or more integrated circuit chip. The controller 100
includes an interface 110, a processor 120, an optional coprocessor 121, ROM 122
(read-only-memory), RAM 130 (random access memory) and optionally
programmable nonvolatile memory 124. The interface 110 has one component
interfacing the controller to a host and another component interfacing to the memory
200. Firmware stored in nonvolatile ROM 122 and/or the optional nonvolatile
memory 124 provides codes for the processor 120 to implement the functions of the
controller 100. Error correction codes may be processed by the processor 120 or the
optional coprocessor 121. 1In an alternative embodiment, the controller 100 is
implemented by a state machine (not shown.) In yet another embodiment, the

controller 100 is implemented within the host.

Physical Memory Structure

[0043] FIG. 2 illustrates schematically a non-volatile memory cell. The memory cell
10 can be implemented by a field-effect transistor having a charge storage unit 20,
such as a floating gate or a dielectric layer. The memory cell 10 also includes a

source 14, a drain 16, and a control gate 30.

[0044] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may employ different types of

memory cells, each type having one or more charge storage element.

[0045] Typical non-volatile memory cells include EEPROM and flash EEPROM.
Examples of EEPROM cells and methods of manufacturing them are given in United
States patent no. 5,595,924. Examples of flash EEPROM cells, their uses in memory
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, 5,661,053, 5,313,421 and 6,222,762. In

particular, examples of memory devices with NAND cell structures are described in
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United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also, examples of
memory devices utilizing dielectric storage element have been described by Eitan et
al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE
Electron Device Letters, vol. 21, no. 11, November 2000, pp. 543-545, and in United
States patents nos. 5,768,192 and 6,011,725.

[0046] In practice, the memory state of a cell is usually read by sensing the
conduction current across the source and drain electrodes of the cell when a reference
voltage is applied to the control gate. Thus, for each given charge on the floating gate
of a cell, a corresponding conduction current with respect to a fixed reference control
gate voltage may be detected. Similarly, the range of charge programmable onto the
floating gate defines a corresponding threshold voltage window or a corresponding

conduction current window.

[0047] Alternatively, instead of detecting the conduction current among a partitioned
current window, it is possible to set the threshold voltage for a given memory state
under test at the control gate and detect if the conduction current is lower or higher
than a threshold current. In one implementation the detection of the conduction
current relative to a threshold current is accomplished by examining the rate the

conduction current is discharging through the capacitance of the bit line.

[0048] FIG. 3 illustrates the relation between the source-drain current Ip and the
control gate voltage Vg for four different charges Q1-Q4 that the floating gate may
be selectively storing at any one time. The four solid I versus Vg curves represent
four possible charge levels that can be programmed on a floating gate of a memory
cell, respectively corresponding to four possible memory states. As an example, the
threshold voltage window of a population of cells may range from 0.5V to 3.5V.
Seven possible memory states “07, “17, “27, “37, “4” “57, “6”, respectively
representing one erased and six programmed states may be demarcated by partitioning
the threshold window into five regions in interval of 0.5V each. For example, if a
reference current, IREF of 2 pA is used as shown, then the cell programmed with Q1
may be considered to be in a memory state “1” since its curve intersects with Iggy in
the region of the threshold window demarcated by VCG = 0.5V and 1.0V. Similarly,

Q4 is in a memory state “5”.
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[0049] As can be seen from the description above, the more states a memory cell is
made to store, the more finely divided is its threshold window. For example, a
memory device may have memory cells having a threshold window that ranges from
—1.5V to 5V. This provides a maximum width of 6.5V. If the memory cell is to store
16 states, each state may occupy from 200mV to 300mV in the threshold window.
This will require higher precision in programming and reading operations in order to

be able to achieve the required resolution.

[0050] FIG. 4A illustrates schematically a string of memory cells organized into an
NAND string. An NAND string 50 comprises of a series of memory transistors M1,
M2, ... Mn (e.g., n=4, 8, 16 or higher) daisy-chained by their sources and drains. A
pair of select transistors S1, S2 controls the memory transistors chain’s connection to
the external via the NAND string’s source terminal 54 and drain terminal 56
respectively. In a memory array, when the source select transistor S1 is turned on, the
source terminal is coupled to a source line (see FIG. 4B). Similarly, when the drain
select transistor S2 is turned on, the drain terminal of the NAND string is coupled to a
bit line of the memory array. Each memory transistor 10 in the chain acts as a
memory cell. It has a charge storage element 20 to store a given amount of charge so
as to represent an intended memory state. A control gate 30 of each memory
transistor allows control over read and write operations. As will be seen in FIG. 4B,
the control gates 30 of corresponding memory transistors of a row of NAND string
are all connected to the same word line. Similarly, a control gate 32 of each of the
select transistors S1, S2 provides control access to the NAND string via its source
terminal 54 and drain terminal 56 respectively. Likewise, the control gates 32 of
corresponding select transistors of a row of NAND string are all connected to the

same select line.

[0051] When an addressed memory transistor 10 within an NAND string is read or is
verified during programming, its control gate 30 is supplied with an appropriate
voltage. At the same time, the rest of the non-addressed memory transistors in the
NAND string 50 are fully turned on by application of sufficient voltage on their
control gates. In this way, a conductive path is effective created from the source of
the individual memory transistor to the source terminal 54 of the NAND string and

likewise for the drain of the individual memory transistor to the drain terminal 56 of
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the cell. Memory devices with such NAND string structures are described in United

States patent nos. 5,570,315, 5,903,495, 6,046,935.

[0052] FIG. 4B illustrates an example of an NAND array 210 of memory cells,
constituted from NAND strings 50 such as that shown in FIG. 4A. Along each
column of NAND strings, a bit line such as bit line 36 is coupled to the drain terminal
56 of each NAND string. Along each bank of NAND strings, a source line such as
source line 34 is couple to the source terminals 54 of each NAND string. Also the
control gates along a row of memory cells in a bank of NAND strings are connected
to a word line such as word line 42. The control gates along a row of select
transistors in a bank of NAND strings are connected to a select line such as select line
44. An entire row of memory cells in a bank of NAND strings can be addressed by
appropriate voltages on the word lines and select lines of the bank of NAND strings.
When a memory transistor within a NAND string is being read, the remaining
memory transistors in the string are turned on hard via their associated word lines so
that the current flowing through the string is essentially dependent upon the level of

charge stored in the cell being read.

[0053] FIG. S illustrates a page of memory cells, organized for example in the
NAND configuration, being sensed or programmed in parallel. FIG. § essentially
shows a bank of NAND strings 50 in the memory array 210 of FIG. 4B, where the
detail of each NAND string is shown explicitly as in FIG. 4A. A “page” such as the
page 60, is a group of memory cells enabled to be sensed or programmed in parallel.
This 1s accomplished by a corresponding page of sense amplifiers 212. The sensed
results are latches in a corresponding set of latches 214. Each sense amplifier can be
coupled to a NAND string via a bit line. The page is enabled by the control gates of
the cells of the page connected in common to a word line 42 and each cell accessible
by a sense amplifier accessible via a bit line 36. As an example, when respectively
sensing or programming the page of cells 60, a sensing voltage or a programming
voltage is respectively applied to the common word line WL3 together with

appropriate voltages on the bit lines.

Physical Organization of the Memory

[0054] One important difference between flash memory and of type of memory is that
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a cell must be programmed from the erased state. That is the floating gate must first
be emptied of charge. Programming then adds a desired amount of charge back to the
floating gate. It does not support removing a portion of the charge from the floating
to go from a more programmed state to a lesser one. This means that update data

cannot overwrite existing one and must be written to a previous unwritten location.

[0055] Furthermore erasing is to empty all the charges from the floating gate and
generally takes appreciably time. For that reason, it will be cumbersome and very
slow to erase cell by cell or even page by page. In practice, the array of memory cells
is divided into a large number of blocks of memory cells. As is common for flash
EEPROM systems, the block is the unit of erase. That is, each block contains the
minimum number of memory cells that are erased together. While aggregating a large
number of cells in a block to be erased in parallel will improve erase performance, a
large size block also entails dealing with a larger number of update and obsolete data.
Just before the block is erased, a garbage collection is required to salvage the non-

obsolete data in the block.

[0056] Each block is typically divided into a number of pages. A page is a unit of
programming or reading. In one embodiment, the individual pages may be divided
into segments and the segments may contain the fewest number of cells that are
written at one time as a basic programming operation. One or more pages of data are
typically stored in one row of memory cells. A page can store one or more sectors. A
sector includes user data and overhead data. Multiple blocks and pages distributed
across multiple arrays can also be operated together as metablocks and metapages. If
they are distributed over multiple chips, they can be operated together as megablocks

and megapage.

Examples of Multi-level Cell (“MLC””) Memory Partitioning

[0057] A nonvolatile memory in which the memory cells each stores multiple bits of
data has already been described in connection with FIG. 3. A particular example is a
memory formed from an array of field-effect transistors, each having a charge storage
layer between its channel region and its control gate. The charge storage layer or unit
can store a range of charges, giving rise to a range of threshold voltages for each

field-effect transistor. The range of possible threshold voltages spans a threshold
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window.  When the threshold window is partitioned into multiple sub-ranges or
zones of threshold voltages, cach resolvable zone is used to represent a different
memory states for a memory cell. The multiple memory states can be coded by one
or more binary bits. For example, a memory cell partitioned into four zones can
support four states which can be coded as 2-bit data. Similarly, a memory cell
partitioned into eight zones can support eight memory states which can be coded as 3-

bit data, etc.

All-bit, Full-Sequence MLC Programming

[0058] FIG. 6(0) - 6(2) illustrate an example of programming a population of 4-state
memory cells. FIG. 6(0) illustrates the population of memory cells programmable
into four distinct distributions of threshold voltages respectively representing memory
states “0”, “17, “2” and “3”. FIG. 6(1) illustrates the initial distribution of “erased”
threshold voltages for an erased memory. FIG. 6(2) illustrates an example of the
memory after many of the memory cells have been programmed. Essentially, a cell
initially has an “erased” threshold voltage and programming will move it to a higher
value into one of the three zones demarcated by verify levels vV, vV, and vV;. In
this way, each memory cell can be programmed to one of the three programmed state
“17, “2” and “3” or remain un-programmed in the “erased” state. As the memory gets
more programming, the initial distribution of the “erased” state as shown in FIG. 6(1)

will become narrower and the erased state is represented by the “0” state.

[0059] A 2-bit code having a lower bit and an upper bit can be used to represent each
of the four memory states. For example, the “0”, “1”, “2” and “3” states are
respectively represented by “117, “01”, “00” and ‘10”. The 2-bit data may be read
from the memory by sensing in “full-sequence” mode where the two bits are sensed
together by sensing relative to the read demarcation threshold values rVy, rV; and rV;

in three sub-passes respectively.

Bit-by-Bit MLC Programming and Reading

[0060] FIGs. 7A-7E illustrate the programming and reading of the 4-state memory
encoded with a given 2-bit code. FIG. 7A illustrates threshold voltage distributions
of the 4-state memory array when each memory cell stores two bits of data using the

2-bit code. Such a 2-bit code has been disclosed in US Patent No. 7,057,939.
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[0061] FIG. 7B illustrates the lower page programming (lower bit) in a 2-pass
programming scheme using the 2-bit code. The fault-tolerant LM New code
essentially avoids any upper page programming to transit through any intermediate
states. Thus, the first pass lower page programming has the logical state (upper bit,
lower bit) = (1, 1) transits to some intermediate state (x, 0) as represented by
programming the “unprogrammed” memory state “0” to the “intermediate” state
designated by (x, 0) with a programmed threshold voltage greater than D4 but less
than Dc.

[0062] FIG. 7C illustrates the upper page programming (upper bit) in the 2-pass
programming scheme using the 2-bit code. In the second pass of programming the
upper page bit to “0”, if the lower page bit is at “1”, the logical state (1, 1) transits to
(0, 1) as represented by programming the “unprogrammed” memory state “0” to “1”.
If the lower page bit is at “0”, the logical state (0, 0) is obtained by programming from
the “intermediate” state to “3”. Similarly, if the upper page is to remain at “1”, while
the lower page has been programmed to “0”, it will require a transition from the
“intermediate” state to (1, 0) as represented by programming the “intermediate” state

to “2”‘

[0063] FIG. 7D illustrates the read operation that is required to discern the lower bit
of the 4-state memory encoded with the 2-bit code. A readB operation is first
performed to determine if the LM flag can be read. If so, the upper page has been
programmed and the readB operation will yield the lower page data correctly. On the
other hand, if the upper page has not yet been programmed, the lower page data will

be read by a readA operation.

[0064] FIG. 7E illustrates the read operation that is required to discern the upper bit
of the 4-state memory encoded with the 2-bit code. As is clear from the figure, the
upper page read will require a 3-pass read of readA, readB and readC, respectively

relative to the demarcation threshold voltages Da, Dy and Dc.

[0065] In the bit-by-bit scheme for a 2-bit memory, a physical page of memory cells
will store two logical data pages, a lower data page corresponding to the lower bit and

an upper data page corresponding to the upper bit.

Binary and MLC Memory Partitioning
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[0066] FIG. 6 and FIG. 7 illustrate examples of a 2-bit (also referred to as “D2”)
memory. As can be seen, a D2 memory has its threshold range or window partitioned
into 4 regions, designating 4 states. Similarly, in D3, each cell stores 3 bits (low,
middle and upper bits) and there are 8 regions. In D4, there are 4 bits and 16 regions,
etc. As the memory’s finite threshold window is partitioned into more regions, the
resolution and for programming and reading will necessarily become finer. Two

issues arise as the memory cell is configured to store more bits.

[0067] First, programming or reading will be slower when the threshold of a cell must
be more accurately programmed or read. In fact in practice the sensing time (needed
in programming and reading) tends to increase as the square of the number of

partitioning levels.

[0068] Secondly, flash memory has an endurance problem as it ages with use. When
a cell is repeatedly programmed and erased, charges is shuttled in and out of the
floating gate 20 (see FIG. 2) by tunneling across a diclectric. Each time some
charges may become trapped in the dielectric and will modify the threshold of the
cell. In fact over use, the threshold window will progressively narrow. Thus, MLC
memory generally is designed with tradeoffs between capacity, performance and

reliability.

[0069] Conversely, it will be seen for a binary memory, the memory’s threshold
window is only partitioned into two regions. This will allow a maximum margin of
errors. Thus, binary partitioning while diminished in storage capacity will provide

maximum performance and reliability.

[0070] The multi-pass, bit-by-bit programming and reading technique described in
connection with FIG. 7 provides a smooth transition between MLC and binary
partitioning. In this case, if the memory is programmed with only the lower bit, it is
effectively a binary partitioned memory. While this approach does not fully optimize
the range of the threshold window as in the case of a single-level cell (“SLC”)
memory, it has the advantage of using the same demarcation or sensing level as in the
operations of the lower bit of the MLC memory. As will be described later, this
approach allows a MLC memory to be “expropriated” for use as a binary memory, or

vice versa. How it should be understood that MLC memory tends to have more
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stringent specification for usage.

Binary Memory and Partial Page Programming

[0071] The charge programmed into the charge storage element of one memory cell
produces an electric field that perturbs the electric field of a neighboring memory cell.
This will affect the characteristics of the neighboring memory cell which essentially is
a field-effect transistor with a charge storage element. In particular, when sensed the
memory cell will appear to have a higher threshold level (or more programmed) than

when it is less perturbed.

[0072] In general, if a memory cell is program-verified under a first field environment
and later is read again under a different field environment due to neighboring cells
subsequently being programmed with different charges, the read accuracy may be
affected due to coupling between neighboring floating gates in what is referred to as
the “Yupin Effect”. With ever higher integration in semiconductor memories, the
perturbation of the electric field due to the stored charges between memory cells

(Yupin effect) becomes increasing appreciable as the inter-cellular spacing shrinks.

[0073] The Bit-by-Bit MLC Programming technique described in connection with
FIG. 7 above is designed to minimize program disturb from cells along the same
word line. As can be seen from FIG. 7B, in a first of the two programming passes,
the thresholds of the cells are moved at most half way up the threshold window. The
effect of the first pass is overtaken by the final pass. In the final pass, the thresholds
are only moved a quarter of the way. In other words, for D2, the charge difference
among neighboring cells is limited to a quarter of its maximum. For D3, with three

passes, the final pass will limit the charge difference to one-cighth of its maximum.

[0074] However, the bit-by-bit multi-pass programming technique will be
compromised by partial-page programming. A page is a group of memory cells,
typically along a row or word line, that is programmed together as a unit. It is
possible to program non overlapping portions of a page individually over multiple
programming passes. However, owning to not all the cells of the page are
programmed in a final pass together, it could create large difference in charges
programmed among the cells after the page is done. Thus partial-page programming

would result in more program disturb and would require a larger margin for sensing
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accuracy.

[0075] In the case the memory is configured as binary memory, the margin of
operation is wider than that of MLC. In the preferred embodiment, the binary
memory is configured to support partial-page programming in which non-overlapping
portions of a page may be programmed individually in one of the multiple
programming passes on the page. The programming and reading performance can be
improved by operating with a page of large size. However, when the page size is
much larger than the host’s unit of write (typically a 512-byte sector), its usage will be
inefficient. Operating with finer granularity than a page allows more efficient usage

of such a page.

[0076] The example given has been between binary versus MLC. It should be
understood that in general the same principles apply between a first memory with a
first number of levels and a second memory with a second number of levels more than

the first memory.

Logical and Physical Block Structures

[0077] FIG. 8 illustrates the memory being managed by a memory manager with is a
software component that resides in the controller. The memory 200 is organized into
blocks, each block of cells being a minimum unit of erase. Depending on
implementation, the memory system may operate with even large units of erase
formed by an aggregate of blocks into “metablocks” and also “megablocks”. For
convenience the description will refer to a unit of erase as a metablock although it will
be understood that some systems operate with even larger unit of erase such as a

“megablock” formed by an aggregate of metablocks.

[0078] The host 80 accesses the memory 200 when running an application under a
file system or operating system. Typically, the host system addresses data in units of
logical sectors where, for example, each sector may contain 512 bytes of data. Also,
it is usual for the host to read or write to the memory system in unit of logical clusters,
cach consisting of one or more logical sectors. In some host systems, an optional
host-side memory manager may exist to perform lower level memory management at
the host. In most cases during read or write operations, the host 80 essentially issues a

command to the memory system 90 to read or write a segment containing a string of
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logical sectors of data with contiguous addresses.

[0079] A memory-side memory manager 300 is implemented in the controller 100 of
the memory system 90 to manage the storage and retrieval of the data of host logical
sectors among metablocks of the flash memory 200. The memory manager comprises
a front-end system 310 and a back-end system 320. The front-end system 310
includes a host interface 312. The back-end system 320 includes a number of
software modules for managing erase, read and write operations of the metablocks.
The memory manager also maintains system control data and directory data

associated with its operations among the flash memory 200 and the controller RAM

130.

[0080] FIG. 9 illustrates the software modules of the back-end system. The Back-
End System mainly comprises two functional modules: a Media Management Layer

330 and a Dataflow and Sequencing Layer 340.

[0081] The media management layer 330 is responsible for the organization of logical
data storage within a flash memory meta-block structure. More details will be

provided later in the section on “Media management Layer”.

[0082] The dataflow and sequencing layer 340 is responsible for the sequencing and
transfer of sectors of data between a front-end system and a flash memory. This layer
includes a command sequencer 342, a low-level sequencer 344 and a flash Control
layer 346. More details will be provided later in the section on “Low Level System

Spec”.

[0083] The memory manager 300 is preferably implemented in the controller 100. It
translates logical addresses received from the host into physical addresses within the
memory array, where the data are actually stored, and then keeps track of these

address translations.

[0084] FIGs. 10A(1)) — 10A(ii) illustrate schematically the mapping between a
logical group and a metablock. The metablock of the physical memory has N
physical sectors for storing N logical sectors of data of a logical group. FIG. 10A(i)
shows the data from a logical group LG;, where the logical sectors are in contiguous

logical order 0, /, ..., N-1. FIG. 10A(ii) shows the same data being stored in the
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metablock in the same logical order. The metablock when stored in this manner is
said to be “sequential.” In general, the metablock may have data stored in a different

order, in which case the metablock is said to be “non-sequential” or “chaotic.”

[0085] There may be an offset between the lowest address of a logical group and the
lowest address of the metablock to which it is mapped. In this case, logical sector
address wraps round as a loop from bottom back to top of the logical group within the
metablock. For example, in FIG. 10A(iii), the metablock stores in its first location
beginning with the data of logical sector &. When the last logical sector N-/ is
reached, it wraps around to sector () and finally storing data associated with logical
sector k-1 in its last physical sector. In the preferred embodiment, a page tag is used
to identify any offset, such as identifying the starting logical sector address of the data
stored in the first physical sector of the metablock. Two blocks will be considered to

have their logical sectors stored in similar order when they only differ by a page tag.

[0086] FIG. 10B illustrates schematically the mapping between logical groups and
metablocks. Each logical group 380 is mapped to a unique metablock 370, except for
a small number of logical groups in which data is currently being updated. After a
logical group has been updated, it may be mapped to a different metablock. The
mapping information is maintained in a set of logical to physical directories, which

will be described in more detail later.

ADAPTIVE CONTROLLER-MEMORY INTERFACE

[0087] This section presents the use of a feedback mechanism and processing unit
that monitors transfer integrity of the internal controller-memory interface of the
memory system and can adjust the interface settings accordingly. This allows for
system to optimize interface performance. For example, the system’s power may be
able be reduced or the bus clock for the interface sped up, which, as this can often be
an internal performance bottleneck, allows for an increase in performance as seen
from outside of the memory system (i.e., from the host). In case of transmission
errors, assisted by the interface integrity feedback and, depending on the embodiment,
other sensors or parameters, the feedback processing unit can decide whether to adjust
the interface settings, perform a transmission retry or to ignore the error. The
discussion below will also be given in the context of a memory card using a NAND-

type architecture for memory arrays as shown in FIGs 4A, 4B and 5, but readily
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extends to similar internal interfaces for other architectures, other forms of memory

and non-card uses, such as embedded systems, SSD, and so on.

[0088] Although the following discussion may be based on various exemplary
embodiments to provide concrete examples, the techniques and structures here can be
applied fairly generally to memory systems having a controller and multiple banks
that can independently operated, where the banks include some amount of non-
volatile memory, whether flash or other variety, that can be used to store system data
that the controller can use to manage the memory system. In addition to the other
referenced cited above, theses can include the various memory systems presented in
the following US patent, patent publication and application numbers: 7,480.766; US-
2005-0154819-A1;  US-2007-0061581-A1;  US-2007-0061597-A1;  US-2007-
0113030-A1; US-2008-0155178-A1; US-2008-0155228-A1; US-2008-0155176-A1;
US-2008-0155177-A1; US-2008-0155227-A1; US-2008-0155175-A1; 12/348,819;
12/348,825; 12/348,891; 12/348,895; 12/348,899; 12/642,584; 12/642,611; US
12/642,649; 12/642,728; 12/642,740; and 61/142,620.

[0089] Before discussion of the exemplary embodiment, this section will begin by
further considering the problem being addressed. The controller-memory device
interface is used to transfer data between a controller (100, FIG. 1) and one or more
NAND (in the exemplary embodiment) devices (200, FIG. 1). (Note that this
discussion relates to the internal interface on the memory system 90 between the
controller 100 and the Flash memory 200, whereas the interface 110 is the host
interface that the controller uses for communication with outside of the memory
system.) Different NAND interface modes have been developed to increase the
interface performance trading off speed, power consumption, and so on. As this
interface is often a performance bottleneck, these interfaces are pushed to the limits to
maximize system performances. To avoid data error, interface settings (such as
voltage, frequency, drive strength and slew rate control) are being set for worst case
scenario (extreme temperatures, extreme load capacitances, extreme voltages, and so
on). Consequently, devices are typically designed to have worst-case safety margins,
which translates to big margins in typical conditions. In such typical conditions the
interface settings can be optimized to much higher interface performances without

compromising the product reliability. Without a mechanism such as is presented in

221 -



WO 2012/009318 PCT/US2011/043648

the following, memory devices will continue to operate in the worst-case

performances settings.

[0090] For example, a simple comparison between the burst data transfer times for a
16-bit Normal Mode at the nominal bus frequency of 33MHz to the accelerated
40MHz, to the hyper-accelerated S0MHz and the super hyper-accelerated 60MHz
yields significant latency reductions of about 17%, 33% and 45%, respectively This
1s shown in Table 1, where the columns are the frequency, corresponding cycle (teyc),

time transfer 2142 Bytes of data, and speed ratio relative to that at 33MHz.

Freq teye 2142B xfr time Ratio
33MHz | 30.3ns 32454 5ns 1.00
40MHz | 25.0ns 26775.0ns 0.83
50MHz | 20.0ns 21420.0ns 0.66
60MHz | 16.7ns 17850.0ns 0.55

TABLE 1

[0091] In the prior art, Flash interface performance is typically set to a fixed
performance for a given product. The design then takes into account the worst-case
design. In some products, the Flash interface is designed for a “close to worst-case”,
allowing some interface performance optimization, but at the risk for some lower

device yield or increased data error.

[0092] This section presents a feedback mechanism and processing unit that monitors
the interface transfer integrity and adjusts the interface settings accordingly in order to
optimize interface performance. In case of transmission errors, the feedback
processing unit (assisted by the interface integrity feedback and possibly by other
sensors or parameters) can decide whether to adjust the interface settings, perform a
transmission retry or to ignore the error. In case of no transmission errors, the
feedback processing unit may decide to leave interface settings as they are or modify
interface settings in order increase the interface performance. Additionally, the
interface integrity feedback mechanism can be designed in such a way that the
feedback processing unit can get different grades of information, such as a binary
pass/fail indication, a pass/fail plus number of errors, or a pass/fail plus number of

errors plus error locations.

[0093] According to the embodiment, the feedback mechanism can utilize existing
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device infrastructure or be further optimized by dedicated mechanism such as hash
engine. Such dedicated mechanism may be implemented in hardware, software, or a
combination of these. The hash engine may also be complemented by an error
correction engine capable of correcting transmission errors. Such method would
allow the interface to cope with a level of bit error rate, while still reaching optimal
performance. Transmission correction ability is valuable because the design of ECC
in the prior art for NAND bit failures only considers errors on the memory itself, and
does not take into account the interface errors that may occur as the data is transferred
between the controller and the memory device. As interface performance goes up the
likelihood of transmission errors goes up. Having the legacy ECC to deal with
interface errors degrade the legacy ECC capabilities in terms of performance and
probability for unrecoverable error. Designing a dedicated interface error correction
engine can allow for a “divide and rule”, letting the legacy ECC to focus only on the
NAND generated errors. (Additional background detail on ECC can be found in the
following US patents, patent publications, and patent application numbers:
2009/0094482; 7,502,254; 2007/0268745; 2007/0283081; 7,310,347, 7,493,457,
7,426,623;  2007/0220197;  2007/0065119;  2007/0061502;  2007/0091677;
2007/0180346; 2008/0181000; 2007/0260808; 2005/0213393; 6,510,488; 7,058,818;
2008/0244338; 2008/0244367; 2008/0250300; and 2008/0104312.)

[0094] FIG. 11 is a block diagram showing such a feedback mechanism, but based on
a typical prior art existing NAND/controller infrastructure. This will help to further
illustrate some of the concepts involved as well as providing an alternate embodiment
of an adaptive interface. In FIG. 11 only the elements relevant to the present
discussion are explicitly shown, the other being suppressed to simply the present
discussion. On the controller 100 are the ASIC core 411, ECC circuitry 413, an
output buffer 415, an input buffer 425, transmitting circuitry 417, and receiving
circuitry 427. Although shown as separate here, this may not be so in an actual
implementation: the input and output buffers may be overlap or be the same; the
transmitting and receiving be share elements of even be the same; the ECC circuitry
may be implemented as software in the ASIC core; and so on. On the memory side
200, the shown elements are read circuitry 431 and transfer circuitry 441 (which again
may partially or completely overlap), an input data buffer 433 and an output data
buffer 443 (which may similarly be a single buffer) and NAND core 435. The

-23 -



WO 2012/009318 PCT/US2011/043648
controller 100 and the memory circuit are then connected by the bus structure 401.

[0095] A typical flow for a set of host data once it is received at the controller 100 is
from the ASIC core 411 to the output data buffer 415, through the transmission
circuitry 417 and onto the bus structure 401. On the memory 200 the data is
transferred from the bus by the receiving circuitry 431 into the input data buffer 433
and then written into the NAND core 435. Subsequently, when the host wants to
access the data it is read out of the NAND core 435 to the output data buffer 443,
transferred onto the bus structure 401 by the transmission circuitry 441, and then read
off the bus into the controller’s input data buffer 425 by the receiving circuitry 427.
Memory systems typically use error correction code (ECC) to detect and correct for
error that may enter the data, where the controller generates the corresponding ECC
that is transmitted and written into the NAND core along with the data and then read
back with the data. The ECC engine 413 then has access to the data and its
corresponding ECC, allowing the data to be checked and corrected as needed before it

is passed on to the host.

[0096] Although the ECC can be used to correct data error, it can only correct a
limited amount of error, where the amount is a design choice. Within these
capabilities, the ECC engine 413 can correct for any error accumulated during the
round trip, including transmission errors as well as error associated with the NAND
core 435 itself, such as write error, read error and disturbs and other degradation of
the data while stored; however the choice of ECC is usually based just on
considerations of error related to the NAND core 435. In some arrangements, such as
with “strong ECC” as disclosed in some of the references cited above for ECC, the
code is based on the properties of the memory and how the data states are mapping
into the memory. The transmission between the controller and memory is largely
overlooked and taken to add no error. Accordingly, the interface needs to be set
accordingly, leading the parameters to be set according to the worst, or near worst,

case, as described above.

[0097] A first set of embodiments is based on the elements of FIG. 11 to supply the
feedback used to optimize the interface characteristics. A set of data, along with
corresponding ECC, is sent on a round trip from the control to the memory and back

to the controller, much as with the standard write followed by a read described above,
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except that the data (and corresponding ECC) are not actually written into the
memory core. After a write transfer is being issued from the controller 100 to the
memory circuit 200, the controller can use the buffer latches 433 and 443 to read back
the data. This is represent by the path 437, although if the input and output buffers
are the same, there would not be an actual transfer. As this round trip removes any
error associated with the array of 435 itself, this isolates the effects of the
transmission and allows the ECC engine 413 to determine the memory interface’s
integrity. The interface parameters may then be modified and the process can be re-

issued. This way both the write and read interface parameters may be optimized.

[0098] FIG. 12 is a block diagram illustrating another set of embodiments, but where
the feedback mechanism uses a hash engine and optional data correction engine
specific to the interface. Rather than refer to the controller and the memory chip,
FIG. 12 is presented in terms of the circuitry on the transmitter side 520 and the
receiver side 530 since, as described further below, either one of these may be the
controller and the other the memory depending on whether it is a read process or write

process and the two sides need not be symmetric.

[0099] The transmitter side 520 will again include a write data buffer 521 and
transmission interface circuitry 529. It will now also include a hash values generator
525 and a multiplexer 527. In a transfer process, the data to be written (523) is
transferred out of the write buffer 520 to both the hash value generator 525 and the
MUX 527. The hash value generator 525 correspondingly generates a hash value
from the data, which is then also passed on to MUX 527. The multiplexer then
supplies the data followed by its hash value to the transmission interface circuitry 529

and then onto the bus structure 550.

[00100] The receiver side again includes receiver interface circuitry and a read
data buffer 535, plus some additional elements. After the read interface circuitry 532
takes the data and corresponding hash value off the bus 550, the de-multiplexing
circuitry 533 separates the hash value from the data, the read data is sent to the buffer
535 and also to a receiver side hash value generator 539 that again generates a hash
value from the data set. The receiver side generated hash value is then compared to
the received hash value in the comparison circuitry 541. Depending on the
embodiment, the result of the comparison can just determine whether these values
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match or further determine the amount of error due to the transfer process. A data
correction engine 537 can also be included in some embodiments to correct interface
errors without having to perform a data retransmission. In the exemplary
embodiment, the hash generators (and the optional data correction engine on the
receiver side) separate from ECC for used NAND core error, although there may be
some overlap in circuitry; and, in fact, both may be implemented on the same logic
circuitry of the controller but by different firmware code. (Although considered
separate for this discussion, the two error detection/correction parts can also be
interactive in a more general embodiment as described below.) Typically the hash
value will be generated based on the entirety of the information being sent (user data,
corresponding ECC, header information, etc.), but in alternate embodiments, it could
be generated from just a portion by, say, stripping off the various overhead and just

using the user data itself for generating the hash value.

[0100] FIG. 12 also includes feedback processing unit 560 connected to receive the
output of the hash comparison circuitry 541. This feed back is then analyzed at 561,
which, depending on the embodiment may consider one or more of temperature,
supply voltage level, and the processing related quality of the NAND core. At 563
the results of this feedback can then be used to adjust the transmission process and is
correspondingly connected to one or both of the transmission interface circuitry 529
and read interface circuitry 531. For a write operation (where the controller is the
transmitter side), after a write transfer is issued from the controller to the memory
device, the feedback processing unit may just read back the comparison of the
generated hash values and by that determine the write-direction memory interface
integrity. Based on this, interface write parameters may be modified and the process
can be re-issued if desired. Symmetrically, the same operation may be employed to

the read-direction where the memory is the transmitter side.

[0101] FIG. 13 is a diagram showing an example for transmitting the data and the
generated hash value over the bus interface. As shown at top, the corresponding hash
value is automatically appended to the data, so that these will be transmitted together
when a device operates in this mode. In the second option, shown at bottom, the data
payload is transmitted, the receiving side requests the corresponding hash value,

which is then generated and transmitted. The data payload can be of predefined
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length or of random length. If data payload length is predefined then the hash value
can be appended to the data, as in the first option, or sent on request. If data payload

length is random, then the hash value can be send after issuing a specific command.

[0102] A number of variations are possible for the techniques and corresponding
circuitry described with respect to FIG. 12. With respect the hash value engines and
hash values, the hash engine may be parity code (cyclic redundancy check, or CRC),
ECC, and so on. For example, a “binary” embodiment can be used that would return
Pass/Fail, can be built based on Error Bit Count (CRC) and has the benefit of a low
gate count to implement. Alternately, a “soft” embodiment can an return Error Bit
Count (EBC), and optionally the locations of the failed bits, and can be built based on
ECC codes such BCH or Reed—Solomon codes, providing more information to assist
the system with accurate decisions. The hash engine may optionally also have a
complementary feature of correcting the interface failures, for example similarly to
the correcting flipped bits from the memory core, as represented by data correction
engine 537 of FIG. 12. Based on the feedback from the transfer, the system may
repeat the transfer. Transfer retry may be decided based on a binary transfer status or
on a soft transfer status. Further, transfer retry may be decided based on a
combination of transfer status and number of NAND bit flips; for example, if the
interface introduced N errors and the NAND introduced M errors and the controller
error correcting capability is P, and P>N+M, then the system may decide to not re-

transmit.

[0103] The system can also be configured in various different ways. The
configuration can be symmetric, where the hash engines at controller and memory
sides are the same, or asymmetric. In an asymmetric configuration, different
configurations are used for different transmission directions; for example, a faster
mechanism can be designed for read transmissions while a more reliable mechanism
is designed for the write transmissions. Also, it should be noted that even if the
interface is configured symmetrically, as the settings may be changed during the
interval between the initial write and subsequent read of the data, it may function

asymmetrically with respect to a given set of data.

[0104] The feedback processing unit 530 may be variously located on the controller
100, on the memory 200, on both, or distributed between the two. In can also be
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formed on a separate circuit. In many applications, it will be most practical to
implement the feedback processing unit on the controller, since the controller circuit
often includes more advanced processing capabilities and also as memory system
frequently of formed of multiple memory chips, but the techniques presented here are
not so limited. In any of these variations, the checking for data transfer status phase is

the responsibility of the feedback processing unit.

[0105] Considering further an example where the feedback processing unit is located
on the controller side: in the read direction, after the controller reads the data and
hash value, these will pass through the feedback mechanism and the controller will
determine the pass/fail status and can adjust (or not) the interface setting accordingly.
As the controller has already read the data and hash value, there is no further need of
information from the flash side to determine the status, as this can be done in the
controller’s logic. In the write direction, the data payload and corresponding hash
value are sent to the memory side and the controller can then operate in several
different ways: Read the Pass/Fail status from the memory side; read back the hash
value and determine Pass/Fail; read back the Error Bit Count (EBC) from the
memory; read back the EBC and error locations from the NAND; or read Pass/Fail

status and number of corrected bits from the memory side.

[0106] The feedback processing unit may decide to modify interface settings. For
example the following interface settings may be modified: drive strength; bus
frequency or other timing parameters; interface voltage; interface mode (e.g. switch
from a Normal/Conventional-mode to a Toggle-mode); and so on. These interface
settings may then be modified in an adaptive feedback fashion. As factors such as
process variations, supply voltage levels, and temperature affect the likelihood of
interface error, these factors can also included as inputs to the feedback analysis 561

on FIG. 12.

[0107] The bus frequency and other parameter settings can be based on earlier
remissions, with nominal parameter settings also being settable in various ways. For
example, a Look Up Table (LUT) having different values for different bus
capacitance/NAND configurations can be used. Such a Look Up Table (LUT) can
also have different values for different operating process parameters, voltage supply
levels, temperature, and so on. Process parameters, voltage supply levels, and
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temperature can also be a variable in a function (formula), instead of predefined in a

LUT.

[0108] The interface settings optimization task may be operated in the background.
Special events, such as voltage supply or temperature change, can also be used to
trigger an interface settings training task. The interface training task may use also a
known pattern transmitted across and not written to the NAND core, such as was
described above with respect to FIG. 11 and path 437. Interface settings can also be
different, and based on, read direction and write direction, or on different data

retention requirements.

[0109] The preceding discussion has mainly considered the memory system as having
a controller and a single memory device circuit. More generally, the system may
include several memory chips that can be connected to the controller (and the
feedback processing unit if a separate circuit) using various bus topologies. For
example, all the memory chips may share a single system bus; or each memory circuit
may have its own controller-memory bus; or various hybrid arrangements could be
used. Different interface settings can then be applied to this plurality of NAND
devices (e.g., if interfacing several devices, this could be done in parallel). Different
interface setting can also be used based on the particular NAND device being
accessed, as interface quality may be a function of the particular NAND device’s load
and/or cell/block quality). Further, within a given memory device, different interface
setting can also be applied to the blocks within the NAND core, as interface quality
may be a function of the particular block’s quality.

[0110] More detail on the techniques of the forgoing section can be found in US
patent application number 12/835,292 filed on July 13, 2010.

DYNAMIC OPTIMIZATION OF BACK-END MEMORY SYSTEM INTERFACE

[0111] This section will consider the controller-memory (or “back-end”) interface of
the memory system further and present some methods for dynamically optimizing the
back-end read and write performance suitable for high-speed memory systems,
including those with multiple memory data buses. As discussed above, a memory
system is usually designed to have a certain amount of error tolerance; and although

this error can arise both in the controller-memory transmission process and in actual
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on-memory storage process, traditionally only the last of these is considered for the
ECC process and the back-end interface is typically optimized to eliminate, or at least
minimize as far as possible, transmission channel error. In many cases, though, the
data error resulting from the storage process (including read and write error) may be
well below the ECC capabilities of the system. For example, although a heavily
cycled device may need the full available data correction, a fresh device may have
relatively little error, leaving the system with excess error correction capability. This
section presents methods whereby the memory system internally allots a non-zero
portion of this error correction capacity to the transmission channel. This allows for
the interface to operate at , for example, higher speed or lower power, even though
this will likely lead to transmission path error. When the memory portion requires a
higher amount of error correction, the allotment can dynamically be adjusted. In
complementary aspects, the system can calibrate transmission path to determine the
amount of resultant transmission error for different operating parameters and then

select the parameters based upon how much is to be allowed.

[0112] Considering the back-end interface between the controller and the memory
section further, a typical memory system consists of a memory controller and a
memory device, such as a NAND flash memory module. The back-end interface is the
data bus between the memory and its controller. The interface is typically established
in one of two ways. In the first, if the controller and memory devices are discrete
components, the back-end interface is established by conducting traces on printed
circuit boards (PCB), onto which these components are mounted. In the second, the
controller and memory can be encapsulated in a single package, such as system-in-
package (SIP) or multi-chip package (MCP). In this second case, the back-end
interface is established by the package substrate.

[0113] As discussed in the previous section, the overall bit error rate (BER) in
memory systems can be attributed to two main factors: the reliability of data retention
in memory devices, such as NAND flash memory; and imperfection of back-end
interface, which can causes transmission error. Error correction coding (ECC) can
then be employed in memory systems to address this overall BER. FIG. 14

schematically illustrates the contributions to the bit errors in a memory system.
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[0114] As shown in FIG. 14., onc of the main sources of the overall bit error rate
BER 605. The effect of this error, due to data degradation for the stored data (from
charge leakage, disturbs and so on), as well as any error introduced in the read and
write process, is shown as NAND Retention 601. Traditionally, the data correction is
used to account just for this factor, which is observed when the data is read. Error due
to channel imperfection is shown at 603 and affects both data read and write, but the
impact will again be observed at read. The sources of the channel impaction error can
include inter-symbol interference (ISI), same data bus (intra-bus) crosstalk, inter-bus
cross talk (on multi-data buses designs), printed circuit board (PCB) noise, silicon die
noise, package noise, and so on. On the other side, ECC 607 can correct error up to a

certain level of error.

[0115] As the data transfer rate between the controller and the memory increases, the
back-end interface becomes more susceptible to signal integrity related issues
contributing to 603, such as crosstalk among signals within the same data bus (intra-
memory data bus crosstalk) and inter-symbol interference (ISI). In addition, the
introduction of memory topologies where controllers can access multiple memory
devices simultancously (multi-memory data buses design) subjects the back-end
interface to simultaneously switching noise and crosstalk among data buses (inter-
memory data bus crosstalk). In addition to bus speed, factors such as the voltage
amplitude of the data bus and temperature (ambient temperature for PCB traces and
junction temperature for system-in-package (SIP) or multi-chip package (MCP)) can
also affect signal integrity of the back-end interface. Therefore, the intrinsic
imperfections of the back-end interface becomes a bottleneck in determining overall
system performance for high-speed memory systems. The pin capacitance of memory
devices increases with the number of memory dies. High capacity memory devices
constructed with multiple memory dies exhibit high capacitance on their data
input/outputs (I/0s), which further degrades the edge rate and signal integrity of the

data bus structure.

[0116] Signal integrity related issues on signal traces can be minimized by increasing
the spacing the signal traces apart from one another to minimize crosstalk; but this
approach is limited by the available area on the PCB or substrate. It can also be

reduced by selecting PCB materials with low dielectric constant and low dissipation
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factor (loss tangent); but these PCB materials are more costly than the typical
materials. So although there are ways to reduce this error with output lowering bus
speed or otherwise degrading operating bus parameters, these ways suffer from

drawbacks.

[0117] This section presents a dynamic optimization technique to address these signal
integrity issues in the back-end interface and also account for process variations
among controller and memory devices. In addition to process variations, the voltage
settings and temperature under which the memory system operates may vary. A static
solution does not account for variations in process, voltage, and temperature, and thus

may not be the optimal approach.

[0118] This section uses a pseudo loop-back manner to dynamically optimize the
back-end performance of memory systems, including those with multiple memory
data buses. This can be done with the sort mechanisms similar to those described in
the preceding sections or by using predetermined data pattern. The exemplary
embodiment will use a pseudo-random bit pattern (PRBS). Dynamically optimizing
the data bus settings can help to maximize the reliability of data transmission between
the controller and the memory devices. This can allow the memory system to
differentiate transmission error from error caused on the memory devices. These
aspects can be particularly advantageous for products equipped with high-speed back-

end memory interfaces and multiple memory data buses.

[0119] Conducting traces on PCB or package substrate have limited bandwidth,
which causes inter-symbol interference (ISI). The effect of ISI depends on the edge
rate (rise time and fall time), data rate, and data pattern. In digital communications,
the pseudo-random bit pattern (PRBS) pattern is sometimes used to exploit the worst-
case ISI impact of a data link because such pattern is rich in frequency components.
A PRBS pattern is a repeating pattern that has properties similar to a random sequence
and 1s used to measure jitter and eye mask of transmitted data in electrical data links.
The PRBS is typically denoted as a 2* - 1 PRBS or PRBS-X, where the power (X)
indicates the shift register length used to create the pattern. Each 2* - 1 PRBS
contains every possible combination of X number of bits (except one). It is desirable
to use the longest PRBS pattern practical as it exerts the greatest stress on the signal
link and provides a better representation of random data.
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[0120] Although the exemplary embodiment uses a pseudo-random bit pattern, other
patterns can be used, as long as the system knows the pattern of the data set that was
used so that this can be compared to the data that comes back at the end of the lop-
back process. The exemplary embodiment uses the PRBS pattern because its random-
like character can maximize the ISI impact of the signal link. In addition to the PRBS
pattern, other types of data pattern can be utilized in this invention, and each

individual pattern may generate a different result.

[0121] A PRBS pattern can be applied to each of the signal link in the parallel back-
end interface. Ideally, although the pattern would be repeated infinitely, which is not
practically feasible in the memory system, this should not be a major drawback
provided that the pattern can be repeated a sufficient number of time by using a short
pattern. For example, if the page size of a NAND flash memory is 16kB, a PRBS-7
pattern with pattern length of 127b can be repeated completely 129 times on each
signal link of an 8-bit data bus. The remaining bit (16384b — 127b x 129 = 1b)
constitutes an incomplete copy of the PRBS-7. This incomplete PRBS pattern at the
end should not cause a significant as most of the transmission link effects are

accounted for by the 129 cycles of complete PRBS pattern.

[0122] FIG. 15 can be used to illustrate the operation of a pseudo loop-back method
in the back-end interface. In FIG. 15, the left hand side is a flow, with the right hand
side schematically illustrating the corresponding controller-memory interactions. At
701, the controller turns off its data scrambling and error correction coding (ECC)
capabilities, where on the right hand side, this is represented by these elements being
X-ed out. Consequently, all data transferred out of and into the controller are in their
raw format without any scrambling or correction. At 703, the controller sends a
command to the memory device, telling it to store and hold the data to be received in
its data latch register without transferring them to the memory cells. That is, there is
no programming of this data set into the memory cells. At 705, the controller sends a
known data pattern (here an independent PRBS-7 pattern) on each of the signal links
in the data bus structure to the memory device. The memory device holds the data in

the data latch register until it becomes full.

[0123] At 707, the controller sends a command to the memory device, telling it to
send back the data stored in its data latch register continuously until the controller
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instructs it to stop. That is, after the data latch register has dumped all 16kb of data on
cach link, it will start sending back the same data again. Thus, the PRBS-7 pattern
repeats on ecach signal link of the data bus. The reason for the exemplary embodiment
using the continuous operation of the PRBS pattern transfer is that bit error introduced
by a signal link is a probabilistic event. The greater the amount of data transferred
across a link, the more accurate and representative of the transmission bit error rate
(BER) as a statistical measurement of the intrinsic link performance. At 709, the
controller receives the repeating PRBS-7 pattern (or other used data pattern) on each

signal link of the data bus.

[0124] At 711, the controller compares the received data to the sent data pattern (here
the standard PRBS-7 pattern) and reports any error as transmission BER. The
controller then sends a command to the memory device to stop sending the PRBS-7

pattern (713) and exit the pseudo loop-back mode (715).

[0125] FIG. 16 corresponds to block 705 of FIG. 15 where the controller sends the
data pattern memory device, with FIG. 17 corresponding to block 709. On these two
figures, one particular example of a bus structure 811 is shown, where several lines
are shown at top for command and control signals and a number of data lines shown
below. Here, CLE = command latch enable, ALE = address latch enable, RE = read
enable, WE = write enable, DQS = data strobe and there are eight input/output lines
(I00-107). These box diagrams are simplified for purposes of this discussion, with
only an ECC block 805 and a PRBS generator 803 shown on the memory controller
801 and only the data register REG 833 is represented on the memory device 831,
with other elements (including the non-volatile memory array on 831) not being
explicitly shown. When the controller 801 is sending the data pattern across to the
memory device 831 in FIG. 16, the write enable signal and the data strobe will be
asserted and each signal line will carry the data pattern. Here, each 10 line carries an
independent pattern. Here, these are all individual copies of PRBS , but can have
differing timing, as indicated by their relative skew in the figure. On the memory 831
the data pattern is then stored as received in the register 833. In FIG. 17 the data is
sent back from the register 833 across the bus structure 811 to the controller 801, so
the read enable signal and the data strobe are now asserted. Once on the data pattern

has completed the round trip (without being written into the non-volatile memory) and
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is back on the controller 801, it can be checked against its original form and see how
much corruption has occurred. Although the bus structure 811 is a parallel bus
interface with multiple signal lines, this is just a particular example other bus

structures can be used for the transmission channel, such as serial data arrangements.

[0126] The performance of a memory system is characterized by the data transfer rate
(bus operating frequency) with respect to power consumption, which is directly
related to the data bus voltage. By varying the voltage amplitude of the data bus
(determined by the I/O of the device driving the data bus) and the data transfer rate, a
3-dimensional representation as a shmoo plot can be created with the transfer rate
plotted along the x-axis, data bus voltage along the y-axis, and transmission BER
along the z-axis. Here, the data transfer rate can refer to either the one applied during
write operations, as in 705 of FIG. 15, when data is transferred from the controller
circuit to the memory circuit, or to the read operation, as in 709, when data is
transferred from the memory to the controller. The data represented in such a shmoo
plot can be measured at various output drive impedance (drive strength) and
temperatures to cover the worst-case, typical, and best-case scenarios. As a result, for
a given amount of allowable transmission error, the optimal point of operation can be
determined at a given combination of parameters such data bus voltage, output drive
impedance, slew rate, line capacitance, transfer rate, temperature, and power

consumption. An example of the shmoo plot is shown in FIG. 18.

[0127] FIG. 18 is an example of a shmoo plot showing transmission BER vs. data bus
voltage and data transfer rate at a fixed output drive impedance, slew rate, line
capacitance, and temperature for a particular example of a memory system. The data
bus voltage is Vpp on the vertical axis and the transfer rate on the horizontal. The
amount of transmission BER is represented by color on the graph, with the key on the
right of the figure. In this black and white representation the representation of very
low and very high error amount appear the same, but the lower error region in the
main figure is to the left of the light-colored dividing regions, with the higher error
regions to the right. Based on this sort of data, for amount of allowed transmission
data, a combination of operating parameters can be selected, where, as usual, this will
often involve a trade-off. For example, if the desired amount of allowable BER is 10

>, if maximum speed is the primary concern, Vpp would be taken about 3.1-3.2 V,

-35-



WO 2012/009318 PCT/US2011/043648

allowing a transfer rate of about 170-180 Mb/s. If power consumption is a more
important concern, a lower Vpp value could be used, say 2.8 V, would then allow a
transfer rate of about 150 Mb/s for about the same transfer BER. If the BER allocated
to the transmission channel is re-allotted to a different value, based, for example, on
the how much the memory has cycled or the ECC indicating that the combined
contributions to the BER are approaching the maximum capabilities of the system, the
operating parameters for the bus system can then be adjusted by the controller based

on this data.

[0128] Consequently, after calibrating the system by capturing the data represented in
the shmoo plots at various output drive impedance, slew rate, line capacitance,
temperature and so on, the memory system can operate according to various cases.
For example, given a desired transmission BER, the memory system looks up and
selects the optimal data bus voltage, data transfer rate, output drive impedance, and
slew rate. (This data from the calibration process can be kept in either the non-
volatile memory or in the memory space (RAM) in the controller circuit.) For
example, it may select the lowest data bus voltage, highest data transfer rate, and
lowest output drive impedance that result in the desired transmission BER. In another
example, given a particular combination of data bus voltage, data transfer rate, output
drive impedance, slew rate, line capacitance, and temperature, the memory system
knows what transmission BER it can expect. Alternately, the memory system may
select an operating condition that balances all factors — data bus voltage, data transfer

rate, output drive strength, and transmission BER.

[0129] Since the design of the I/O buffers in the controller and the memory device
may be different, the optimal read and write performance of the memory system can
be determined separately. In addition to the differences resulting from differing
memory system design, there will also be differences for individual examples of the
same device, due to process variations as well as by differences in operating
conditions. To account for device aging, changes in operating conditions, and so on,
the calibration process can also be repeated. For example, an initial calibration could
be performed before the device is shipped at test time, and then the controller could
recalibrate system periodically or in response to an event, such as device cycling,

error results, notable changes in operating conditions and so on. Thus, in addition to
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change the proportion of total error allotted to the transmission channel, the

corresponding operating parameter for a given allocation may change dynamically.

[0130] As noted above, performance can be optimized during both the read and write
processes. Going back to FIG. 15, for performance optimization during memory
read, at 705 the system slows down the transfer rate of the data pattern being written
into the memory device’s data latch register to maximize the integrity of the transfer
for the data pattern. For example, at 10 MHz transfer rate, it will take 1.6 ms to fill up
a 16kb data latch register. At 709 and 711, the system measures the transmission
BER incurred during the read operation where the memory device’s 1/O is the driver
and the controller is the receiver. The shmoo plot data then show the relationship

between the memory device’s I/0 voltage and the read frequency.

[0131] For performance optimization during memory write, at 705, the system varies
the voltage and transfer rate of the data pattern being written into the memory
device’s data latch register. At 709, the system will then slow down the transfer rate
of the data from memory device to controller to prevent injecting additional bit errors
by the signal link. The transmission BER measured is then the one incurred during
the write operation in 705. The shmoo plot data will consequently represent the

relationship between the controller’s I/0 voltage and the write frequency.

[0132] So far, the various aspects presented here have been presented in a context
where this is only a single bus between a controller circuit and a single memory
circuit. However, a memory system may include multiple devices with various bus
topologies; and when there are multiple busses, interactions between these busses can
lead to additional sources of error. The techniques here can provide the ability to
skew each of the signal links within a data bus in the back-end interface to a specified
resolution, for example, 100 ps. Such skewing capability can be introduced by either
the controller or the memory device in either the driver or the receiver. Introducing
skew into the data bus allows the system to compensate for length mismatch of the
signal traces in the PCB or package substrate. Introducing skew can reduce the
impact of near-end and far-end crosstalk in the back-end interface and, consequently,
lower the transmission BER. Two types of crosstalk are involved: intra-memory data
bus crosstalk; and inter-memory data bus crosstalk. Such crosstalk causes jitter in the
data bus. A typical memory system uses the clock sent by the driver to sample each
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individual signal in the parallel data bus at the same moment. Thus, an increase in
jitter on each signal in the data bus will cause an increase in transmission BER. By
skewing the data across multiple memory data buses so that they do not align relative

to one another, inter-memory data bus cross talk can be reduced.

[0133] FIG. 19 is a block diagram that illustrates this crosstalk in a memory system
whose bus structure uses multiple memory data buses. The memory system includes
controller 901 and the multiple, here four, memory devices 931-1, 931-2, 932-3, 934-
4 that are connected to the controller through respective busses 911-1, 911-2, 911-3,
911-4. For each of the busses 911, they will have one or more 10 lines as shown in
the derail as 101 to IOX. As before, these individual buses can various numbers of 10
lines operated in a parallel, serial, or a combination of these for the transfer of data.
This sort of multi-bus arrangement is often implemented in SSD type devices (see, for
example US patent 7,376,034, US patent 7,765,339, or the paper “A High
Performance Controller for NAND Flash-based Solid State Disk (NSSD)” Park et al,
Samsung, Non-volatile Semiconductor Workshop, 2006, IEEE, NVSMW 2006, 21,
vol. no., pp. 17-20, 12-16 Feb, 2006) in order to improvement performance, but is
also found in the design of some memory cards and other memory systems. In
addition to the sort of intra-memory data bus cross talk between the 10 lines of a
given bus, there will also now be inter-memory data bus crosstalk signal on the
different busses. When combined with the use of the PRBS pattern and pseudo loop-
back mode described above, the optimal skew that generates the least crosstalk, and
consequently the lowest transmission BER, can be determined given a certain
combination of data bus voltage, transfer rate, temperature, output drive impedance,

slew rate, line capacitance, and power consumption.

[0134] The various aspects presented here provide a low-cost solution that optimizes
the back-end interface performance under the presence of various signal integrity
issues. By dynamically allotting “unused” ECC capability to the transfer process, the
performance can be improved as described. As noted above, some memory systems
use a type of “strong” ECC that exploits the properties of multi-state memory devices,
in which case the error correction capabilities transferred for use of the transmission
channel may not transfer in a 1 to 1 fashion. It should also be noted that although the

memory system incorporates ECC to compensate for data error, there is typically not
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the same provision for commands and the memory device will often not accept
corrupted commands, so that although error may intentionally allowed in the
transmission of data, this will not be the case for commands. Consequently, although
a higher transfer rate may be allowed for the data by these mechanisms, a slower,
safer setting for the transfer rate (or other parameters) can be incorporated so that no

error 1s incurred for the control signals.
Conclusion

[0135] The foregoing detailed description of the invention has been presented for
purposes of illustration and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifications and variations are
possible in light of the above teaching. The described embodiments were chosen in
order to best explain the principles of the invention and its practical application, to
thereby enable others skilled in the art to best utilize the invention in various
embodiments and with various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the claims

appended hereto.
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IT IS CLAIMED:

1. A method of operating a non-volatile memory system, the non-volatile
memory system including a controller circuit having a memory interface, a memory
circuit having an array of non-volatile memory cells and a controller interface, and a
bus structure connected to the memory interface of the controller circuit and to the
controller interface of the memory circuit for the transfer of data and commands
therebetween, wherein the memory system can tolerate a first, non-zero amount of
accumulated error from when data is transferred from the controller to be written to
the memory array until the data is received at the controller after subsequently being
read back from the memory array, the method comprising:

allotting by the controller circuit of a first, non-zero portion of the first amount
of error to the transfer of the data between the controller circuit and the memory
circuit via the bus structure, the remainder of the first amount of error being allotted to
write, storage, and read of the data on the memory circuit; and

setting by the controller circuit of the transfer characteristics between the
controller circuit and the memory circuit to operate to allow up to the first portion of

CIIor.

2. The method of claim 1, wherein said transfer characteristics include the

voltage amplitude of the bus structure.

3. The method of claim 1, wherein said transfer characteristics include the

data transfer rate on the bus structure.

4. The method of claim 1, wherein said transfer characteristics include signal

drive strength.

5. The method of claim 1, wherein said transfer characteristics include signal

slew rate.

6. The method of claim 1, wherein the memory system includes error code
and correction (ECC) circuitry and the first amount of error is based on the capability

of the ECC circuitry.
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7. The method of claim 6, where the ECC circuitry is on the controller circuit.

8. The method of claim 6, the method further including:

receiving at the controller circuit said data from a host;

generating corresponding ECC code for the date;

transferring the data and corresponding ECC code from the controller circuit
to memory circuitry on the bus structure according to said transfer characteristics; and

subsequently writing the data and corresponding ECC code as received at the

memory circuit into the array of memory cells.

9. The method of claim 1, further comprising;:

subsequently re-allotting by the controller circuit of a second portion of the
first amount of error to the transfer of the data between the controller circuit and the
memory circuit via the bus structure; and

setting by the controller circuit of the transfer characteristics between the
controller circuit and the memory circuit to operate to allow up to the second portion

of error.

10. The method of claim 9, wherein the controller circuit re-allots the portion
of error from the first amount to the second amount in response to the number of

program-crase cycles experienced by the memory circuit.

11. The method of claim 9, wherein the controller circuit re-allots the portion
of error from the first amount to the second amount in response to the amount of error

detected in data read back from the memory array

12.  The method of claim 1, wherein the memory system maintains a
correspondence between values of one or more operational parameters for the bus
structure and the amount of resultant error to the transfer of the data between the
controller circuit and the memory circuit via the bus structure, wherein setting the
transfer characteristics includes:

selecting values for the one or more operational parameters by the controller

circuit based upon the correspondence.
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13. The method of claim 12, wherein the correspondences is for a plurality of
operational parameters and selecting values for the plurality of operational parameters
includes choosing between a plurality of combinations of the plurality of parameters
that allow up to the first portion of error according to one or more predetermined

performance criteria.

14. The method of claim 13, wherein the operational parameters include the

voltage amplitude of the bus structure. and the data transfer rate on the bus structure.

15. The method of claim 13, wherein the operational parameters include

signal drive strength.

16. The method of claim 13, wherein the operational parameters include

signal slew rate.

17. The method of claim 12, further comprising;:
prior to selecting said values for the one or more operational parameters,

establishing by the controller circuit of the correspondence.

18. The method of claim 17, wherein establishing the correspondence
includes:

for each of said values of the operational parameters, transferring a known
pattern of data over the bus structure from the controller circuit to the memory circuit
and back without writing the data into the array of non-volatile memory cells, and
comparing the data as received back at the controller circuit with the data pattern as

sent.

19. The method of claim 17, wherein the memory system include multiple
memory circuits and the bus structure includes a corresponding multiplicity of buses
whereby each of the memory circuits is individually connected to the controller
circuit, and wherein establishing by the controller circuit of the correspondence

includes determining inter-bus cross-talk error.
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20. A method of operating a non-volatile memory system having a controller
circuit and a memory circuit including an array of non-volatile memory cells, the
method comprising:

performing by the controller circuit of a transmission error calibration by
performing, for each of a plurality of values for each of one or more operating
parameters for a bus structure connecting the controller with the memory circuit, a
process including:

transferring a data set of a known data pattern from the controller
through transmission circuitry on the controller to the bus structure;

receiving the data set from the bus structure through receiving circuitry
on the memory circuit;

storing the data set as received in buffer memory on the memory
circuit;

transferring the data set as stored in buffer memory on the memory
circuit, and without being written into the array, through transmission circuitry
on the memory circuit to the bus structure;

receiving the data set from the bus structure through receiving circuitry
on the controller;

performing a comparison of the data set as received with the know
pattern; and

based on the comparison, determining the amount of error associated
with the transmission process for the used one or more operating parameter;
and

subsequently operating the memory system to allow a first, non-zero amount
of error in the transmission of data between the controller circuit and the memory
circuit, wherein the controller circuit selects values of the operating parameters
according to the transmission error calibration process based on the determined

associated amounts of error.

21. The method of claim 20, wherein the operating parameters include the

voltage amplitude of the bus structure.

22. The method of claim 20, wherein the operating parameters include the

data transfer rate on the bus structure.
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23. The method of claim 20, wherein the operating parameters include signal

drive strength.

24. The method of claim 20, wherein the operating parameters include signal
slew rate.

25. The method of claim 20, further comprising:

subsequently operating the memory the memory system to allow a second
amount of error in the transmission of data between the controller circuit and the
memory circuit, wherein the controller circuit selects values of the operating
parameters according to the transmission error calibration process based on the

determined associated amounts of error.

26. The method of claim 20, further comprising;:

subsequently re-performing the transmission error calibration process.

27. The method of claim 20, wherein subsequent to performing the
transmission error calibration process, the memory system stores the result thereof in

non-volatile memory.

28. The method of claim 20, wherein the transmission error calibration is
performed for a plurality of operating parameters and the controller circuit chooses
between a plurality of combinations of the plurality of operating parameters that allow
up to the first amount error according to one or more predetermined performance

criteria.

29. The method of claim 20, wherein the memory system include multiple
memory circuits and the bus structure includes a corresponding multiplicity of buses
whereby each of the memory circuits is individually connected to the controller
circuit, and wherein transferring the data set of a known data pattern includes data for

determining inter-bus cross-talk error.

30. A non-volatile memory system, comprising:
a controller circuit, including a memory interface and logic circuitry;
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a memory circuit, including an array of non-volatile memory cells, a controller
interface, and logic circuitry;

a bus structure connected to the memory interface of the controller circuit and
to the controller interface of the memory circuit for the transfer of data and commands
therebetween; and

a feedback processing circuit connected to the logic circuitry of the receiving
one the controller and the memory circuit during a transfer of data therebetween to
receive information on the amount of error occurring as a result of the transfer, and
connected to one or both of the memory interface and the controller interface to adjust

the characteristics of the transfer therebetween in response to the amount of error.

31. The non-volatile memory system of claim 30, wherein said transfer of

data is from the controller circuit to the memory circuit.

32. The non-volatile memory system of claim 30, wherein said transfer of

data is from the memory circuit to the controller circuit.

33. The non-volatile memory system of claim 30, wherein the logic circuitry
of each of the controller and the memory circuit include a hash value generator,

wherein in the transfer process from the first one of the memory circuit and the
controller to the second one thereof, the first transmits over the bus structure a data set
and a first hash value generated from the data set by first one’s logic circuit, and the
second one receives from the bus structure the data set and the first hash value and
generates from the received data set a second hash value from the data set by second
one’s logic circuit, and

wherein the logic circuitry of the second one of the memory circuit and the
controller further includes comparison circuit connected to receive and perform a
comparison of the first hash value as received and the second hash value, said amount

of error being based on the result of the comparison.

34. The non-volatile memory system of claim 33, wherein the circuitry used
for generating the respective hash values on the memory circuit and the controller are

equivalent.
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35. The non-volatile memory system of claim 33, wherein the circuitry used
for generating the respective hash values on the memory circuit and the controller are

not equivalent.

36. The non-volatile memory system of claim 30, wherein the comparison
determines whether or not the first and second hash values are equal, and, in response
to determining that the first and second values are not equal, the logic of circuitry of
the second one of the memory circuit and the controller further quantifies the amount

of error.

37. The non-volatile memory system of claim 30, wherein the feedback

processing circuit is formed on the same integrated circuit as the controller.

38. The non-volatile memory system of claim 30, wherein the feedback

processing circuit is formed on the same integrated circuit as the memory circuit.

39. The non-volatile memory system of claim 30, wherein the feedback
processing circuit is formed on a separate integrated circuit from both of the controller

and the memory circuit.

40. The non-volatile memory system of claim 30, wherein the memory circuit
is formed of a plurality of integrated circuits, each including an array of non-volatile

memory cells, a controller interface, and logic circuitry.

41 The non-volatile memory system of claim 40, wherein each integrated

circuit of the memory circuit is connected to the controller by a distinct bus.

42 The non-volatile memory system of claim 40, wherein one or more of
integrated circuit of the memory circuit are connected to the controller by a shared

bus.

43 The non-volatile memory system of claim 40, wherein characteristics of
the transfer between the controller and a plurality of the integrated circuits of the

memory circuit can be independently adjusted.
- 46 -



WO 2012/009318 PCT/US2011/043648

44. A method of operating a non-volatile memory system including a
controller circuit and a non-volatile memory circuit, the method comprising:

generating a first hash value from a data set in logic circuitry on a first of the
controller circuit and the memory circuit;

transmitting to a bus structure the data set and the first hash value through an
interface on the first of the controller circuit and the memory circuit;

receiving the data set and the first hash value from the bus structure through an
interface on the second of the controller circuit and the memory circuit

generating a second hash value from the data set as received in logic circuitry
on the second of the controller circuit and the memory circuit;

comparing the first hash value as received and the second hash value on the
second of the controller circuit and the memory circuit; and

based on the comparison of the first hash value as received and the second
hash value by the logic circuitry on the second of the controller circuit and the
memory circuit, determining whether to alter characteristics of the transfer of data

between the controller circuit and the memory circuit.

45. The method of claim 44, wherein the first of the controller circuit and the

memory circuit is the controller circuit.

46. The method of claim 44, wherein the first of the controller circuit and the

memory circuit is the memory circuit.

47. The method of claim 44, wherein the logic circuitry used for generating

the respective hash values on the memory circuit and the controller are equivalent.

48. The method of claim 44, wherein the logic circuitry used for generating

the respective hash values on the memory circuit and the controller are not equivalent.

49. The method of claim 44, wherein the characteristics of the transfer of data
between the controller circuit and the memory circuit include a frequency at which

data is transferred.
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50. The method of claim 44, wherein the characteristics of the transfer of data
between the controller circuit and the memory circuit include a clock frequency for

the bus structure..

51. The method of claim 44, wherein the characteristics of the transfer of data
between the controller circuit and the memory circuit include a slew rate used in the

transfer.

52. The method of claim 44, wherein the characteristics of the transfer of data
between the controller circuit and the memory circuit include an interface voltage at

which data is transferred.

53. The method of claim 44, wherein the characteristics of the transfer of data
between the controller circuit and the memory circuit include a drive strength at

which data is transferred.

54. The method of claim 44, wherein the hash values are built based on a

cyclic redundancy check..

55. The method of claim 44, wherein the hash values are built based on an

error correction code.

56. The method of claim 44, wherein prior transmitting the data set and the
first hash value through the interface on the first of the controller circuit and the
memory circuit, the characteristics of the transfer of data are set to an initial set of
values determined from a look up table based upon the characteristics of the bus

structure and the memory circuit of the memory system.

57. The method of claim 44, wherein prior transmitting the data set and the
first hash value through the interface on the first of the controller circuit and the
memory circuit, the characteristics of the transfer of data are set to an initial set of

values determined from a look up table based upon the one or more parameters.
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58. The method of claim 44, wherein prior transmitting the data set and the
first hash value through the interface on the first of the controller circuit and the
memory circuit, the characteristics of the transfer of data are set to an initial set of
values determined from the quality of a previous transmission of data between the

controller circuit and the memory circuit.

59. The method of claim 58, wherein the one or more parameters include a

supply voltage level.

60. The method of claim 58, wherein the one or more parameters include a

temperature.

61. The method of claim 58, wherein the one or more parameters include

processing values for one or both of the controller circuit and the memory circuit.

62. The method of claim 44, the generating and transmitting of the first hash
value is in response to a request from one of the controller circuit and the memory

circuit.

63. The method of claim 44, further comprising:

in response to said determining, altering the characteristics of the transfer of
data between the controller circuit and the memory circuit. wherein the altering is
done symmetrically with respect to transfers from the controller circuit to the memory

circuit and transfers from the memory circuit to the controller circuit.

64. The method of claim 44, further comprising:

in response to said determining, altering the characteristics of the transfer of
data between the controller circuit and the memory circuit. wherein the altering is
done asymmetrically with respect to transfers from the controller circuit to the

memory circuit and transfers from the memory circuit to the controller circuit.

65. A method of operating a non-volatile memory system having a controller
circuit and a memory circuit including an array of non-volatile memory cells, the

method comprising:
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transferring a set of data from buffer memory on the controller through
transmission circuitry on the controller to a bus structure connecting the controller to
the memory circuit;

receiving the set of data from the bus structure through receiving circuitry on
the memory circuit;

storing the set of data as received in buffer memory on the memory circuit;

transferring the set of data as stored in buffer memory on the memory circuit,
and without being written into the array, through transmission circuitry on the
memory circuit to the bus structure;

receiving the set of data from the bus structure through receiving circuitry on
the controller;

subsequently storing the set of data as received in buffer memory on the
controller;

subsequently adjusting characteristics of the transfer of data between the
controller circuit and the memory circuit based upon amount of error the set of data as

received and stored in the buffer memory on the controller.

66. The method of claim 65, wherein the amount of error is determined by

ECC circuitry on the controller.
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