METHOD AND APPARATUS FOR CONNECTING MULTIPLE MULTIMODE PROCESSORS

Abstract: A computer array 100 including a field of processors 101-124 each processor having a separate memory. The processors 101-124 are connected to their immediate neighbors with links 200. Several configurations of the links are described including differing types of data lines 210 and control lines 215. Along lines 215 Process Command Words (PCW) to initiate processing tasks and Routing Connection Words (RCW) to initiate routing tasks pass between the processors 101 - 124 to provide a method for altering the mode of hybrid processors 107-118 in the array.
METHOD AND APPARATUS FOR CONNECTING
MULTIPLE MULTIMODE PROCESSORS

Inventor: Lonnie C. Goff

BACKGROUND OF THE INVENTION

Field of Invention

The present invention relates to the field of computers and computer processors, and more particularly to a method and apparatus for connecting computers together. The predominant current usage of the present invention's direct execution method and apparatus is in the combination of multiple computers on a single microchip, where operating efficiency is important not only because of the desire for increased operating speed but also because of the power savings and heat reduction that are a consequence of the greater efficiency.

Description of the Background Art

It is useful in many information processing applications of computers to use multiple processors or multiple computers to speed up operations. Dividing a task and performing multiple processing and computing operations in parallel at the same time is known in the art, as are many systems and structures to accomplish this. An example is systolic array processing wherein a large information stream is divided up among rows of processors that perform sequential computations by column, and pass results to the next column. Other examples are found in the field of supercomputing, wherein multiple processors may be interconnected and tasks assigned to them in a number of different ways, and communication of intermediate results between processors and new data and instructions to them may be provided through crossbar switches, bus interconnection networks with or without routers, or direct interconnections between processors with message passing protocols such as MPICH, used on large machines.
Owing to continual progress in semiconductor technology, more and faster circuits can be placed on a microchip area. Single chip multiprocessor arrays and multicore processors that provide new capabilities and optimizations as embedded systems in consumer and industrial electronic products, by doing computations enormously faster, are examples of improvements which have yielded great economic benefit. Thus further improvement of multiple processors and their interconnections, especially on a single microchip, is highly desirable.

SUMMARY OF INVENTION

It is anticipated that the multiprocessor array and method of the invention will be principally, but not necessarily exclusively, used in a large class of applications wherein the multiprocessor array is adapted to operate as a plurality of von Neumann machines with local memories which hold substantially the major part of its program instructions, in particular the operating system.

The invention includes a number of computer arrays, each including a field of processors and each processor including separate memory. The processors are connected to their immediate neighbors with links. Several configurations of the links are described including differing types of data lines and control lines. Along these lines Process Command Words (PCW) and Routing Connection Words (RCW) pass between the processors to provide a method for altering the mode of at least several of the processors in the array.

The utilization of this method assures a more efficient allocation of computing resources while minimizing power consumption. The method further allows efficient allocation of computing resources and connection to resources outside of the array such as external memory and peripheral devices.
BRIEF DESCRIPTION OF THE FIGURES

In the accompanying drawings:
FIG. 1 is a symbolic diagram of a 24-processor array 100 according to an
embodiment of the invention;
FIG. 2 shows in greater detail a first embodiment of the interconnecting link 200
between processors;
FIG. 3 is a symbolic diagram showing predetermined routing paths of the
multiprocessor array 100;
FIG. 4 illustrates a Routing Connection Word (RCW) and examples for external RAM
operations,
FIG. 5 shows an expanded partial view of an external memory device 320 connected
to multiprocessor array 100, showing in diagrammatic form sections of memory used
by a processor of the array;
FIG. 6 shows the format of the Process Command Word (PCW),
FIG. 7 is a chart of the method of the invention

DETAILED DESCRIPTION

FIG. 1 depicts a multiprocessor array 100 comprising twenty-four processors
101-124 disposed in a 4 by 6 array that can be on one microchip. It will be apparent
to those skilled in the art that other numbers and disposition of processors are
alternatively possible within the scope of the invention. In an illustrative example,
each processor could have a word size of 18 bits, and a local memory including 512
words of RAM and 512 words of ROM. These parameters are not limitations on the
invention and operation is possible with any amount of memory sufficient to allow
operation of the devices. This particular processor, listed for illustrative purposes,
only utilizes a 32-instruction RISC version of the Forth computer language as
machine language. It is realized that the invention could be practiced with any
suitable machine language including C compiled into binary form with a suitable
processor. Each of processors 101, 102, 103-124 is connected to their nearest
neighbor by interconnecting links 200 as shown in FIG. 1. Processors 108-111 and 114-117 in the middle of the array have four such interconnecting links 200.

Corner processors 101, 106, 119 and 124 have only two connecting links 200. In this illustrative example corner processors 101 and 106 have their west ports connected to input/output ports 131 and 132 respectively. External input-output (i/o) connections 131 and 132 to the array are for the general purpose of communicating with external devices 133 and 134. External input and output is for data and some instructions. These instructions and data are shared by the processors of the array, and operate generally by individual control of the processors, as will be further described hereinbelow. Processors other than 101 and 106 of the array communicate by routing of information through intermediate processors and their interconnecting links 200. Serving of information between external devices 133 and 134 and other processors of the array is a primary task of processors 101 and 106. Processors 101 and 106 are thus considered to be server processors. Ports 131 and 132 may be connected to external devices 133 and 134 which may be selected from sensors, external memory devices, display devices input devices or any device typically connected to a processor. In such an embodiment of the invention said i/o connections can be implemented by control, data, and address lines to port 220 from processor 101 to an external memory device 133, and can be in accordance with a known standard; and by enable, clock, data-in, and data-out lines through port 132 connecting processor 106 to an external serial peripheral interface (SPI) device 134, as known in the art. It will be apparent to those skilled in the art that in alternate embodiments, there can be just one, or alternatively more than two, external i/o devices and connections provided through a corresponding number of server processors. According to the invention, said external devices can be disposed on the same microchip as the multiprocessor array, and they can alternatively comprise any combination of memory and data communication interface devices; and in further embodiments, more than one multiprocessor array, and any additional circuits as may be required by the application, can be disposed on one microchip.

Processors 102-105, 107, 112, 113, 118 and 120-123 on the edge each have three connecting links 200. Multiprocessor array 100 is adapted to perform computations mainly with these processors at the periphery of the array when the information processing requirements of the current application are slow, in particular,
with processors 102-105 and 119-124. Processors 102-105 and 119-124 can also
be termed client processors. In other applications processors 102-105 and 119-124
may also act as input/output processors by functioning as active ports including
analog to digital converters, fast Fourier transforms and digital to analog conversion
with suitable ports (not shown).

Processors 107-118, the two inner columns of the array are adapted to be
hybrid processors, which at a given point in time are either routing information to
another processor of the array, herein referred to as R-mode; or performing
computations and information processing tasks, herein referred to as P-mode; or
waiting in an idle, standby condition herein referred to as I-mode. I-mode is a default
condition of low operating power, to which a hybrid processor automatically returns
after completing an operation or sequence of operations in the other two modes, and
it is a power-saving feature especially useful in battery-powered system applications.
At slow conditions hybrid processors 107-118 are generally in I-mode, and switch to
R-mode from time to time, when input and output operations are required by client
processors 102-105 and 119-124. Hybrid processors 107-118 are adapted to switch
to R-mode in response to assertion of a Routing Connection Word (RCW) on the
plurality of data lines 200 of any one of the interconnecting links. Routing connection
paths to and from each client processor and server processor are predetermined in
firmware stored in memory, at compile time, during manufacture, or later
reconfiguration of the array, using known techniques.

FIG. 2 shows in greater detail link 200 between processors 103 and 104 each
link 200 is a plurality of interconnecting lines, sometimes called a one drop bus net in
the art. In this example each link 200 includes a plurality of 18 data lines 210 and 2
control lines 215 adapted to operate bi-directionally and asynchronously. Hybrid
processors 107-118 are adapted to switch to R-mode in response to assertion of a
Routing Connection Word (RCW) on the plurality of data lines 210 of any one of its
interconnecting links with other processors, subject to appropriate signals on the
respective control lines 215. According to a second embodiment, plurality 200 can
comprise 36 data and 4 control lines adapted to operate synchronously and
unidirectionally, half of the lines in one, and half in the opposite direction. In yet
other embodiments of the invention, different common processor characteristics
including word size, memory size, computer language, and number of
interconnecting lines can be employed. A line is herein understood to be an electrically conductive trace on the surface of a microchip comprising one or more strips of conductive material alternating with vias and electrically in series, which can be disposed in the same and different layers of a multilayer microchip. It is further anticipated according to the invention that said processors and links can alternatively be implemented in technologies other than semiconductor integrated circuits, for example in integrated optics or in molecular and chemical information processors, with appropriate modifications made according to the art.

FIG. 3 shows a set of predetermined paths for array 100, by hollow arrows 250 and black arrows 252 indicating the direction of write instructions from client processors 102-105 and 119-124 to server processors 101 and 106. For read instructions, the routing paths will be first in the given direction to pass the command, and then in the reverse direction to pass the information back. As a particular example, the routing path for a write operation by processor 105 to memory device 320 over i/o connection 220 and server 101 can be predetermined to proceed through hybrid processors 111, 117, 116, 115, 114, 113 and 107 which will be operating in R-mode during the information transfer, and this path is indicated by black arrows 252.

FIG. 4 shows a format of the RCW employed wherein each row displays a representation of the RCW, as labeled or designated in the leftmost column. The bit positions of a processor word are given in the top row of FIG. 4 and the information fields of the RCW represented by the bits are noted in the second row. Each bit position corresponds to a particular, bi-directionally and asynchronously operating data line of the plurality 210, in the first embodiment described herein above with reference to FIG. 2, as known in the art, and to a particular pair of unidirectionally and synchronously operating data lines of the plurality 210, in the second embodiment. In particular, the lowest eight bits (bit positions 0 to 7) contain the word count (CW) of information to be routed; the top bit (bit 17) is a read or write designator RW specifying the direction of the information transfer, for example 1 for read and 0 for a write operation to an external device; bits 15 and 16 hold the server address (SA), which in this embodiment can be 00 or 01 identifying server processors 101 or 106; and bits 8 through 14 can contain application-specific information X, which will be described in more detail with reference to the third and
subsequent rows of FIG. 4, hereinbelow. One of hybrid processors 111, 117, 116, 115, 114, 113 and 107 which receives an RCW, by having this RCW asserted on one of its interconnecting links, retains a copy of the RCW and passes it on, unmodified, to the next processor along the predetermined path to the server processors 101 and 106 identified by SA. In case of a write, the CW words of information to be routed can immediately follow the RCW; and in case of a read, CW words of information can be returned in the opposite direction along the same predetermined path, after the RCW reaches server processors 101 and 106 and associated external devices 131 and 133. Hybrid processors 111, 117, 116, 115, 114, 113 and 107 are adapted to revert to I-mode automatically after the number of words specified by CW has been routed.

The field X can be partitioned into subfields as shown in the third row of FIG. 4, designating bits 8-12 for a client processor address CA, and bits 13 and 14 for switch instructions A and B, to specify either the private block (bit value 1) or the shared region of memory (bit value 0).

FIG. 5 is a diagram of external RAM device 133 of the multiprocessor array 100. Several sections of the memory can be identified. The application-specific information field X of the RCW can be used to communicate with an external RAM device 133 that is shared by the client processors of the array. The external RAM can have two private information blocks for each client processor, called Block A and Block B and a general, shared region 420 of memory indicated by rows of dashed lines in the figure. Block A can be used for read control, to specify addresses in the general region of RAM from which information will be read, and Block B, for write control, to specify addresses in said general region to which information will be written. In particular, the private blocks can hold the start address for the next access to the general region of RAM for each client processor, and said blocks can be automatically incremented by the server processor, at each access.

Examples of RCWs, labeled RCW-1 through RCW-6, for several different external RAM operations that can be performed by a client processor are shown in other rows of FIG. 4 with reference to the memory blocks of FIG. 5 for each specific RCW. As described hereinabove, RW bit 17 can be 1 for a read and 0 for a write operation. For present purposes the address SA of server processor 101 which connects to external RAM device 133 can be 00, and the client processor can be
processor 105 with CA address 00101. Although the inventive method is described herein with reference to particular embodiments and processors, it will be apparent to those skilled in the art that the described inventive use of RCWs will be equally effective also for other processors and embodiments, with appropriate modification of addresses and routing paths.

Routing Connection Word RCW-1 has 1 in the RW field designating a read operation, 0 in both switch fields A and B, and 00000111 in the CW field (CW = 7), calling for 7 words of information to be read from an address in the shared region of RAM that is specified in the top memory location 510 of the private read control Block A for client processor 105. That address, for example, specifies memory location 520 as indicated by a dashed arrow in the figure, and thus RCW-1 calls for the contents of a 7-word block 525 of information in the shared region of external RAM to be read by (transferred to) client processor 105. The top of Block A increments to location 511 after this operation, and the next read operation by client processor 105 from the shared region of RAM will occur from the address specified in 511.

RCW-2 in FIG. 4 has 1 in the RW field, 1 in block switch field A, and CW = 1, calling for one word of information to be read from the top of Block A, that is, from location 511, assuming RCW-2 follows RCW-1, and this can tell client processor 105 the address of its next read from the shared region of external RAM.

RCW-3 in the next row has again 1 in the RW field, 1 in block switch field B, and CW = 6, calling for a 6-word block 655 of information to be read from the top of Block B, beginning with location 610, and this can tell the client processor the addresses of its next 6 write operations to the shared region.

RCW-4 in the following row has 0 in the RW field, 0 in both switch fields A and B, and CW = 4, directing a 4-word block of information to be written (transferred from processor 105) to the shared memory region starting with the address specified in location 610 which is currently at the top of write control Block B. That address specifies memory location 620 as indicated by the dashed arrow in FIG. 5, and accordingly, the block 625 of 4 memory locations starting with 620 will be filled with new information from client processor 105.

RCW-5 has again 0 in the RW field, 1 in switch field A, and CW = 255, calling for a 255-word block of information to be written to the read control Block A for
processor 105 beginning with the current top location. This has the effect of updating the addresses of the next 255 read operations by 105 from the shared region.

RCW-6 has still 0 in the RW field, 1 in switch field B, and CW = 2, calling for the top 2 locations of the write control Block B to be updated, for example to reverse the order for the next two write operations to the shared region, based on the information read by means of RCW-3.

RCW-7 in FIG.4 shows how application-specific field X can also be used for external output or input by client processors to an external serial peripheral interface (SPI), which is shown and described hereinabove with reference to FIG. 1. RCW-7 in FIG.4, provides an example of SPI communication, having 1 in the RW field; 01 in the SA field, for the address of the server processor connecting to the SPI; address 00101 of client processor 105 in the CA field; and CW = 128, calling for input of the next 128 words of information such as data from the SPI to 105. Fields A and B are not used.

FIG. 6 shows the format of the Process Command Word (PCW), comprising all zeros. At higher processing speeds required from the multiprocessor array, the hybrid processors are adapted to receive some of the computational load from their adjacent client processors, under control of the client processor. Each of the hybrid processors 111, 117, 116, 115, 114, 113 and 107 are adapted to switch to P-mode in response to assertion of a Process Command Word (PCW). The PCW is received upon the data lines 210 of the interconnecting link with its adjacent, nearest-neighbor client processor. The PCW is received while a given hybrid processor is in I-mode, subject to appropriate signals on the respective control lines 215. Once a PCW is received, such hybrid processor remains in P-mode until it completes its assigned processing task, and then reverts back to I-mode. The processing task is application dependent and is known by both the client processor selected from 101 and 106 and the adjacent hybrid processor, by having the instructions of the task in their respective memories; and any amount of information with any content can be exchanged between the processors while the hybrid processor is in P-mode.

The terms adjacent and nearest-neighbor should herein be understood not only with reference to physical location and space but also functionally, in alternate embodiments of the invention wherein processors may be functionally but not
necessarily physically adjacent. It is apparent with reference to FIG. 3 that in the predetermined routing connection paths between client processors and server processors, the interconnecting links of hybrid processors with client processors are not shared and involve communication only between particular client and hybrid pairs. An interconnecting link can be private to a hybrid and client pair, and only the client processor adjacent to a hybrid processor can issue a PCW to that hybrid processor.

According to an embodiment of the invention, the P-mode can be adapted to be interrupted for routing operations through non-private, other interconnecting links of a hybrid processor, other than the interconnecting link with its adjacent client processor, with priority given to R-mode over P-mode whenever an RCW is asserted on a non-private interconnecting link of a hybrid processor. For example, with reference to FIG. 3, if hybrid processor 115 is in P-mode under control of adjacent client processor 121, and an RCW from client processor 105 appears on its interconnecting link with processor 116, it can switch to R-mode, and then back to P-mode after completion of the routing operation specified in the RCW.

FIG. 7 is a chart of the method of the invention. Hybrid processors 111, 117, 116, 115, 114, 113 and 107 operate in three distinct states. They are Idle Mode, Routing Mode and Processing Mode. In one embodiment only Client Processors 101 and 106 directly attached to the hybrid processors 107 and 102 respectively can cause a transition from Idle to Processing mode by issuing a Process Command Word. A Route Command Word appearing on any port, however, causes the transition from Idle to Routing mode. The transition from either Processing or Routing mode back to Idle mode is under the strict control of the hybrid processor.

According to the embodiments of the invention described hereinabove, a method using single words, RCW and PCW, enables communication between client processors and external memory devices or serial interfaces, and between client processor and hybrid processor pairs. It will be appreciated by those skilled in the art that in alternate embodiments a modified method using two consecutive combined routing and processing command words can enable communication between all processors of a multiprocessor array, with each other and with external devices and interfaces, and switching between R-mode and P-mode, with appropriate modification of the format to include the addresses of a sending and a
receiving processor, a routing word count, and a processing word count. In still alternative embodiments, a combined routing and processing command can use a single word larger than 18 bits, or the combined command can comprise more than two words.

Various modifications may be made to the invention without altering its value or scope. For example, while this invention has been described herein using the example of the particular processors 101-124, many or all of the inventive aspects are readily adaptable to other computer designs, other sorts of computer arrays, and the like.

Similarly, while the present invention has been described primarily herein in relation to communications between Processors 101-124 in an array 100 on a single die, the same principles and methods can be used, or modified for use, to accomplish other inter-device communications, such as communications between processors 101-124 and external memory 131 or between processors 101-124 in an array 100 and an external device 133.

While specific examples of the inventive arrays 100, processors 101-124, and associated apparatus, and method have been discussed herein, it is expected that there will be a great many applications for these which have not yet been envisioned. Indeed, it is one of the advantages of the present invention that the inventive method and apparatus may be adapted to a great variety of uses.

All of the above are only some of the examples of available embodiments of the present invention. Those skilled in the art will readily observe that numerous other modifications and alterations may be made without departing from the spirit and scope of the invention. Accordingly, the disclosure herein is not intended as limiting and the appended claims are to be interpreted as encompassing the entire scope of the invention.
INDUSTRIAL APPLICABILITY

The inventive computer arrays 100, processors 101-124, links 200, data lines 210, control lines 215, Process Command Words (PCW), Routing Connection Words (RCW), and method are intended to be widely used in a great variety of computer applications. It is expected that they will be particularly useful in applications where significant computing power is required, and yet power consumption and heat production are important considerations.

As discussed previously herein, the applicability of the present invention is such that the sharing of information and resources between the computers in an array is greatly enhanced, both in speed and versatility. Also, communications between a computer array and other devices are enhanced according to the described method and means. Since the computer arrays 100, processors 101-124, links 200, data lines 210, control lines 215, Process Command Words (PCW), Routing Connection Words (RCW), and method of the present invention may be readily produced and integrated with existing tasks, input/output devices, and the like, and since the advantages as described herein are provided, it is expected that they will be readily accepted in the industry. For these and other reasons, it is expected that the utility and industrial applicability of the invention will be both significant in scope and long-lasting in duration.
CLAMS

1. A computer array comprised of a plurality of processors wherein each processor is connected to at least two adjoining processors by a link each link being connected to only two processors, and, wherein a plurality of said processors are switchable between a rest mode, and, an active mode upon receipt of an instruction on said link.

2. A computer array as in claim 1, wherein said link is further comprising a plurality of data lines.

3. A computer array as in claim 2, wherein said link is further comprising a plurality of control lines.

4. A computer array as in claim 3, wherein said control lines are unidirectional.

5. A computer array as in claim 1, wherein a plurality of processors at the edge of said array have three links connecting to three adjacent processors, and, four of said processors at each of the corners of said array have two associated links connecting to two of said processors at the edge of said array, and, a plurality of hybrid processors connected by four links to four processors, wherein the link of said edge processor not connected to a processor at the edge or corner of said array is connected to a single hybrid processor.

6. A computer array as in claim 5, wherein a plurality of processors at the corner of said array are adapted for connection to an external device selected from the group of memory, input devices, display devices and processing devices.
7. A computer array as in claim 5, wherein a plurality of processors at the edge of said array are adapted for connection to an external device selected from the group of memory, input devices, display devices and processing devices.

8. A computer array as in claim 5, wherein said hybrid processors switch between a routing mode, and, a processing mode, and, an idle mode upon receipt of an instruction from a link connected to said hybrid processor.

9. A computer array as in claim 8, wherein said each of links further comprise a data line, and, a control line, and, said instruction is a digital word passed over said data line.

10. A computer array as in claim 9, wherein said digital word is a routing word that causes said processor to switch into a routing mode.

11. A computer array as in claim 9, wherein said digital word is a processing word that causes said processor to switch into a processing mode.

12. A processor for use in a computer array comprising, a central processing unit adapted for connection to at least two links for connecting said processor to two immediately adjacent processors, and, a memory unit connected to said central processing unit, wherein an instruction on either of said links will cause said central processing unit to shift from an idle mode to an active mode.

13. A processor for use in a computer array as in claim 12, wherein said central procession unit is further adapted for connection to at least two additional links for connecting said processor to two additional immediately adjacent processors for a total of four links for connecting to four immediately adjacent processors.
14. A processor for use in a computer array as in claim 13, wherein said
memory unit is further comprising a ROM memory and a RAM memory.

15. A processor for use in a computer array as in claim 13, wherein each of said
links is further comprising a data line, and, a control line, and, said
instruction is a digital word passed over said data line.

16. A processor for use in a computer array as in claim 15, wherein said control
lines are unidirectional.

17. A processor for use in a computer array as in claim 12, wherein said central
processing unit has three modes the first mode being an idle mode for
conserving power, and, a second mode being a routing mode for performing
routing tasks, and, a third mode being a processing mode for performing
processing tasks, and, wherein switching the mode of said processing unit
occurs upon receipt of an instruction over one of said links.

18. A processor for use in a computer array as in claim 12, wherein said central
processing unit shifts from an idle mode to a routing mode upon receipt of a
routing connection word and stays in the routing mode until the routing task
is completed, and, then returns to the idle mode.

19. A processor for use in a computer array as in claim 12, wherein said central
processing unit shifts from an idle mode to a processing mode upon receipt
of a processing command word, and, stays in the routing mode until the
processing task is completed, and, then returns to the idle mode.

20. A processor for use in a computer array as in claim 19, wherein said central
processing unit shifts from an idle mode to a routing mode upon receipt of a
routing connection word, and, stays in the routing mode until the routing task
is completed, and, then returns to the idle mode.
21. A method for operating a multi processor array, comprising the steps of
designating some of the processors in said array as multimode processors
having at least an idle mode, and, an other mode for performing a task,
switching said designated processors into said other mode upon receipt of a
command word, and, performing a task upon receipt of said command word,
and, switching back to idle mode upon completion of said task.

22. A method for operating a multi processor array as in claim 21, further
comprising the steps of switching said designated processors into a routing
mode upon receipt of a routing word, and, performing a routing task upon
said receipt, and, returning to an idle mode upon completion of said routing
task.
FIG. 1
FIG. 2 v2

| bit pos. | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|
| PCW | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

FIG. 6
FIG. 3
<table>
<thead>
<tr>
<th>bit pos.</th>
<th>17</th>
<th>16 15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>fields</td>
<td>RW</td>
<td>SA</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>fields-X</td>
<td></td>
<td>B</td>
<td>A</td>
<td>CA</td>
<td></td>
</tr>
<tr>
<td>RCW-1</td>
<td>1</td>
<td>0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RCW-2</td>
<td>1</td>
<td>0 0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RCW-3</td>
<td>1</td>
<td>0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RCW-4</td>
<td>0</td>
<td>0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RCW-5</td>
<td>0</td>
<td>0 0 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RCW-6</td>
<td>0</td>
<td>0 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RCW-7</td>
<td>0</td>
<td>0 1</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 4
FIG. 7