

UFFICIO ITALIANO BREVETTI E MARCHI

DOMANDA NUMERO	101990900155706	
Data Deposito	14/12/1990	
Data Pubblicazione	14/06/1992	

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
С	07	С		

Titolo

PROCESSO PER LA SEPARAZIONE ENZIMATICA DEGLI ISOMERI OTTICI DI 1- TOSILOSSI-ALCANOLI Descrizione dell'invenzione industriale a nome:

Ministero dell'Università e della Ricerca Scientifica e Tecnologica, di nazionalità italiana, con sede in Roma, Lungotevere Thaon di Revel, 76 14 DIC. 1990

La presente invenzione si riferisce a un processo per la separazione enzimatica stereoselettiva o asimmetrica degli isomeri ottici di l-tosilossi-alcanoli racemi.

Più in particolare, il trovato si riferisce ad un processo biotecnologico per la separazione o la risoluzione enzimatica di miscele raceme degli isomeri ottici degli alcoli di formula

dove R rappresenta un gruppo alchilico, aloalchilico o alchenilico C_1 - C_{10} , lineare o ramificato, ed n rappresenta l oppure 2, mediante esterificazione asimmetrica stereoselettiva con composti acilanti costituiti da anidridi di acidi alifatici operando in presenza di particolari enzimi.

Tali alcoli, nella forma di enantiomeri puri, possono essere usati come intermedi nella sintesi di epossidi otticamente attivi, come ad esempio:

i quali a loro volta sono importanti sintoni chirali per la preparazione di composti di interesse farmaceutico (B-bloccanti, antibiotici), agroalimentare (ferormoni) e di polimeri chirali.

Risulta pertanto evidente l'interesse da parte del preparatore di poter disporre di un metodo efficace per la separazione delle forme otticamente attive dei composti racemi di formula (I).

Sono noti procedimenti diretti alla preparazione selettiva sintetica di 1-tosilossi-2-alcanoli otticamente attivi. Ad esempio tali derivati possono essere sintetizzati a partire dai rispettivi lpha-idrossi acidi enantiomericamente puri, ottenuti per fermentazione, attraverso una esterificazione, una riduzione con idruri e successiva tosilazione. (Helvetica Chim. Acta 60, 1175, 1977).

Ad esempio il 1-tosilossibutan-3-olo (n=2 nella formula I) otticamente attivo può essere preparato a partire dall'acido-3-idrossibutirrico otticamente attivo, ottenuto mediante riduzione microbiologica stereoselettiva del 3-chetobutirrato (J. Chem. 1982,47,3850) oppure mediante idrolisi del polii-Org. drossibutirrato di origine naturale (Liebigs Ann. Chem. 1990,513). Tale acido viene quindi protetto al gruppo idrossilico, ridotto con idruri, deprotetto e quindi trasformato nel composto di formula I mediante tosilazione del gruppo idrossi-Queste vie si sintesi richiedono però l'uso di lico primario.

reagenti chimici costosi ed in eccesso, non sono di applicabilitā generale in quanto non sono disponibili tutti gli ≪-idrossi acidi in entrambe le forme ottiche, ed inoltre richiedono un elevato numero di stadi, con consequente abbassamento delle rese industriali.

E' stato anche proposto (EP 0197484) un processo per la preparazione di 1-tosilossi-2-alcanoli otticamente attivi, via idrolisi enzimatica stereoselettiva di un corrispondente estere racemo. Tale processo implica un preliminare stadio preparativo di acilazione chimica del 1-tosilossi-2-alcanolo, con il relativo abbassamento delle rese.

Era perciò sentita la necessità di disporre di un metodo che permettesse la risoluzione dei composti racemi di formula (I) nei corrispondenti isomeri ottici in modo semplice, efficace ed economico.

Scopo della presente invenzione è pertanto quello di provvedere un processo pe la separazione o risoluzione degli isomeri ottici dei composti racemi di formula (I) in maniera semplice, efficace, ed economica e con un elevato grado di purezza ottica.

E' stato ora trovato che questo scopo viene ottenuto con un processo biotecnologico di esterificazione stereoselettiva o asimmetrica enzimatica dei composti di formula (I), a partire dai loro racemi, mediante l'impiego di particolari composti acilanti ed in presenza di enzimi muniti di attività selettiva, (B-843-03)

in seguito meglio definiti.

In pratica, si usano enzimi appartenenti alla classe delle Lipasi, in grado di catalizzare la reazione di esterificazione stereoselettivamente sulla forma (R) degli alcoli di formula (I), lasciando sostanzialmente inalterata la forma (S).

Costituisce pertanto l'oggetto della presente invenzione un processo per la separazione enzimatica di miscele isomeri ottici degli l-tosilossi-alcanoli di formula degli (I):

dove R rappresenta un gruppo alchilico, aloalchilico o alchenilico $C_1 - C_{10}$ ed n rappresenta l oppure 2, il quale processo è caratterizzato dal fatto che si fa reagire detta miscela racema in un solvente organico con una anidride di un acido alifatico saturo avente formula (II):

$$(R^{1}-C0)_{2}0$$
 (II)

in cui R^1 rappresenta un gruppo alchilico C_1 - C_6 , lineare o ramificato, a temperature comprese tra 0 e 50°C, preferibilmente tra 20 e 30°C circa, in presenza di una Lipasi libera o immobilizzata, derivante da Pseudomonas o Cromobacterium capace di provocare selettivamente la reazione di esterificazione dell'isomero (R), lasciando sostanzialmente invariato l'isomero (S) della miscela di partenza racema, che vengono indi separati se-(B-843-03)

condo tecniche note.

Quando il gruppo R è aloalchile, l'alogeno è preferibilmente scelto fra cloro e bromo.

L'estere prodotto nella forma (R) e l'alcol nella forma (S) possono essere separati, come sopra detto, operando sostanzialmente secondo tecniche convenzionali.

In modo più esplicito, secondo una rappresentazione schematica del processo oggetto della presente invenzione, la miscela racema degli alcoli di formula (I) viene fatta reagire,
in presenza di un enzima, appartenente alla classe delle Lipa
si, derivate da Pseudomonas o Cromobacterium, in un solvente
organico, con una anidride di formula (II) secondo la reazione:

$$(RS) - I \qquad + (R^{1}CO)_{2}$$

$$(RS) - I \qquad II$$

$$(CH_{2})_{n} \qquad R$$

$$TSO \qquad OH \qquad +TSO \qquad OCOR^{1} \qquad +R^{1}COOH$$

$$(S) - I \qquad (R) - III$$

in cui

dove i simboli R, R^{\prime} , ed n hanno i significati precedentemente definiti.

Sorprendentemente, l'impiego di altri composti acilanti, (B-843-03) - 6 -

diversi dalle anidridi di formula (II), non ha condotto all'ottenimento di risultati accettabili sotto l'aspetto industriale (disattivazione dell'enzima e tempi di reazione più lunghi).

Le anidridi preferite sono l'anidride acetica e l'anidride propionica. Si opera in un solvente organico, preferibilmente scelto fra gli idrocarburi aromatici e gli idrocarburi alifatici alogenati, ad esempio benzene, toluene, cloruro di metilene ecc.

Gli alcoli di formula (I) racemi, composti di partenza, e le anidridi (II) sono di per sè noti e/o possono essere sintetizzati conformemente a tecniche convenzionali.

Nella reazione si impiegano rapporti molari tra l'anidride (II) e il substrato alcolico (I) compresi fra 0,6:1 e 5:1, preferibilmente tra 0,8:1 e 1,5:1 circa, e l'enzima viene impiegato secondo un rapporto in peso enzima/substrato di formula (I) compreso tra 1:1 e 1:100 circa, preferibilmente tra 1:2 e 1:20 circa.

Il valore della concentrazione molare dell'alcol racemo di formula (I) nella miscela di reazione può essere compreso tra circa 0,01 M e 2 M a seconda del composto racemo di formula (I) impiegato.

Il processo di acilazione o esterificazione viene effettuato agitando vigorosamente la miscela di reazione costituita dal reagente (I), dal reagente (II), dal solvente e dall'enzima, libero o supportato, come in seguito precisato, a tempera-(B-843-03)- 7 -

ISTITUTO GUIDO DOMERANI S.P.A.

ture comprese fra 0 e 50°C, preferibilmente tra 20 e 30°C circa.

A secondo dei parametri adottati, nell'ambito dei suddetti intervalli, la reazione può essere conclusa in un tempo compreso tra 30 minuti e 60 ore, normalmente sono sufficienti da 6 a 8 ore circa.

Al termine della reazione si procede alla filtrazione della fase solida, costituita essenzialmente dall'enzima, che può essere recuperato e riutilizzato senza sostanziali perdite di attività.

Dal filtrato, dopo aver eliminato l'eccesso di anidride (II) con una soluzione acquosa di carbonato alcalino, vengono separati l'alcol (I) nella forma (S) e l'estere (III) nella forma (R), impiegando metodi tradizionali quali cromatografia su colonna e distillazione frazionata.

Gli enzimi impiegati secondo l'invenzione appartengono alla classe delle Lipasi di origine microbica. Si sono dimostrati attivi in modo particolare quelli in seguito definiti:

ENZIMA	ORIGINE	PRODUTTORE	
LPL	Pseudomonas aeruginosa	Amano Pharm.Co.(Japan)	
Lipasi P	Pseudomonas fluorescens	u	
Lipasi CES	Pseudomonas sp.	n	
Lipasi	Cromobacterium	Tojobo (Japan)	

Secondo la presente invenzione gli enzimi possono essere impiegati liberi o immobilizzati su opportuni supporti, per au(B-843-03) - 8 -

mentare la loro attività, stabilità e agevolarne il recupero e riutilizzo.

Particolarmente adatti allo scopo si sono dimostrati supporti porosi con elevata area superficiale, come ad esempio la Celite, il vetro poroso, la silice, etc.

L'immobilzzazione può essere facilmente effettuata facendo assorbire una soluzione acquosa tamponata dell'enzima sul supporto e portandolo quindi a secchezza.

Il processo, grazie alle sue semplici e blande condizioni operative, si presenta come particolarmente vantaggioso. Un particolare aspetto di alto interesse è costituito dalla possibilità di operare secondo un processo monostadio che conduce alla diretta separazione degli enantiomeri dei composti di formula (I) con elevati rendimenti e grado di purezza, dell'ordine del 98% o superiore.

L'abbreviazione e.e. sta per "eccesso enantiomerico".

La presente invenzione verrà ora illustrata dagli esempi seguenti, dati per altro a titolo illustrativo e non limitativo.

ESEMPIO 1

Immobilizzazione dell'enzima

A 5 g di Celite 577 (Johns-Manville LTD, Richmond, Surrey) sono aggiunti 1,5 g di enzima Lipasi P (da <u>Pseudomonas fluorescens</u>, Amano Pharm. Co., LTD, 30 unità per mg) sciolti in 4 ml di soluzione tampone fosfato -Na/K 0,1 M a pH = 7.

(B-843-03)

La miscela così ottenuta viene mescolata in modo da ottenere una distribuzione uniforme dell'enzima e quindi seccata all'aria a 25°C per 24 ore.

Separazione degli enantiomeri del 1-tosilossi-propan-2-olo

A l g di (R,S) 1-tosilossi-propan-2-olo sciolto in 25 ml di toluene, sono aggiunti 300 mg di Celite 577 contenente 70 mg di enzima Lipasi P immobilizzato e 570 mg di anidride propionica.

La miscela viene vigorosamente agitata a 25°C e la reazione viene seguita in cromatografia HPLC.

Dopo 2 ore (conversione del 55%) l'enzima viene recuperato per filtrazione, mentre la fase organica viene lavata con una soluzione di carbonato sodico al 5%. Il toluene, dopo essere stato seccato su solfato di sodio, viene evaporato a pressione ridotta e il residuo viene cromatografato su una colonna di gel di silice eluendo con una miscela di esano-acetato d'etile 95:5 V/V, e poi con 70:30 V/V.

Si ottengono in tal modo 400 mg di (S)-I-tosilossi-propan--2-olo come solido cristallino, p.f.=52°C, con $[\Delta]_D^{25}$ =+11.6 (c=1,CHCl₃), ee \geq 98%, ¹H-NMR (200 MHz, CDCl₃) δ (ppm): 1.1 (3H, d), 2.4 (3H, s), 2.7 (1H, s), 3.65 e 3.9 (3H, m), 7.35 e 7.8 (4H, 2d); e 510 mg di (R)-2-propanoilossi-1-tosilossi propano, come olio incolore, con $[A]_D^{25}$ =+10.4 (c=1, CHCl₃), ee=79%, ¹H-NMR (200 MHz, CDCl₃) δ (ppm): 1.05 (3H, t), 1.1 (3H, d), 2.2 (2H, q), 2.38 (3H, s), 3.95 (2H, dd), 5 (1H, m), 7.35 e 7.75 (B-843-03)

(4H, 2d).

L'eccesso enantiomerico e la configurazione sia dell'al-col, sia dell'estere (previa trasformazione in alcol mediante idrolisi in metanolo) sono stati determinati mediante HPLC (colonna Chiralcel OC-Daicel).

ESEMPIO.2

Separazione degli enantiomeri del 1-tosilossi butan-2-olo

A 2 g di (R,S)-l-tosilossi butan-2-olo sciolti in 50 ml di toluene, sono aggiunti 0.75 g di anidride propionica e 300 mg di Celite 577 contenente 70 mg di enzima Lipasi P, immobilizzato come in esempio l.

La miscela viene vigorosamente agitata per 2 ore a 25°C, seguendo la reazione in HPLC.

Alla fine della reazione (conversione 60%) l'enzima viene separato per filtrazione, mentre la fase organica viene lavata con una soluzione di carbonato di sodio al 5%. Dopo essiccazione su solfato di sodio e evaporazione del solvente a pressione ridotta, il residuo viene cromatografato su colonna di gel di silice con eluente esano-acetato d'etile 9:1 V/V.

Si ottengono in questo modo 750 mg di (S)-1-tosilossi bu-tan-2-olo, come solido cristallino, p.f. = $57-58^{\circ}C$, $[A]_{D}^{25}=+10.5$ (c=1,CHCl₃), ee > 98% ¹H-NMR (200 MHz, CDCl₃) δ (ppm):0.95 (3H, t), 1.4 (2H, m), 2.0 (1H, s), 2.38 (3H, s), 3.6-4.1 (3H, m), 7.35 e 7.8 (4H, 2d);, e 1.05 g di (R)-2-propanoilossi-1-tosilossi butano, come olio incolore, $[A]_{D}^{25}=+12.36$ (c=1, (B-843-03)

CHCl $_3$), ee=52%, 1 H-NMR (200 MHz, CDCl $_3$) δ (ppm): 0.95 (3H, t), 1.1 (3H, t), 1.6 (2H, m), 2.2 (2H, q), 2.38 (3H, s), 4.1 (2H, m), 4.9 (1H,m), 7.35 e 7.75 (4H, 2d). L'eccesso enantiomerico di tali composti è stato determinato come nell'esempio 1.

ESEMPIO.3

Separazione degli enantiomeri di I-tosilossi butan-2-olo

Utilizzando la stessa procedura e con le medesime quantità descritte nell'esempio 2 si sono separati gli enantiomeri di (R,S)-l-tosilossi butan-2-olo, fermando la reazione dopo circa 30 minuti alla conversione del 30%.

In questo modo si ottengono 1,2 g di (S)-1-tosilossi butan-2-olo con $[\alpha]_0^{25}$ =+3.2 (c=1,CHCl₃), ee =30%, e 350 mg di (R)-propanoilossi-1-tosilossi butano, con $[\alpha]_0^{25}$ =+23.3 (c=1,CHCl₃), ee=97%. Per la determinazione dell'eccesso enantiomerico e per ulteriori dati sperimentali si rimanda all'esempio 2.

ESEMPIO 4

Separazione degli enantiomeri di 1-tosilossi esan-2-olo

Si discioglie l g di (R,S)-l-tosilossi-esan-2-olo in 25 ml di toluene, in cui sono aggiunti 0,5 g di anidride propionica e 0.7 g di Celite 577 contenente 180 mg di enzima Lipasi P immobilizzato come in esempio l.

Dopo circa 16 ore (conversione 52%) si recupera l'enzima per filtrazione, lavando la fase organica con una soluzione acquosa al 5% di carbonato sodico.

$$(B-843-03)$$

Dopo essiccamento ed evaporazione a pressione ridotta del solvente, il residuo viene separato per cromatografia su colonna con eluente esano-acetato d'etile 9: 1 V/V. Si ottengono in questo modo 430 mg di (S)-I-tosilossi-esan-2-olo, come olio incolore, con $[a]_D^{25}$ =+7.3 (c=1, CHCl₃), ee=91%, $[a]_D^{1}$ +-NMR (200 MHz,CDCl₃) $[a]_D^{25}$ =+7.3 (c=1, CHCl₃), ee=91%, $[a]_D^{1}$ +-NMR (200 MHz,CDCl₃) $[a]_D^{25}$ =+12.3 (c=1, CHCl₃), 7.4 e 7.7 (4H,2d); e 560 mg di (R)-2-propanoilossi-1-tosilossi esano, come olio incolore, con $[a]_D^{25}$ =+12.3 (c=1, CHCl₃), ee=75%, $[a]_D^{1}$ +-NMR (200 MHz, CDCl₃), $[a]_D^{25}$ =+12.3 (c=1, CHCl₃), e=75%, $[a]_D^{1}$ +-NMR (200 MHz, CDCl₃), $[a]_D^{25}$ =+12.3 (c=1, CHCl₃), 1.1 (3H, t), 1.3 (4H, m), 1.6 (2H, m), 2.3 (2H, q), 2.45 (3H, s), 4.0 (2H, d), 4.9 (1H, m), 7.3 e 7.7 (4H, 2d).

Gli eccessi enantiomerici dei composti sono stati determinati come precedentemente descritto nell'esempio 1.

ESEMPIO 5

Separazione degli enantiomeri di 3-cloro-l-tosilossi propan-2olo

Si sciolgono in 50 ml di toluene 2 g di (R,S)-3-cloro-l-tosilossi-propan-2-olo, a cui si aggiungono l g di anidride propionica e 2.45 g di Celite 577 contenente circa 700 mg di enzima Lipasi P immobilizzato come descritto nell'esempio l.

Si mantiene la miscela in vigorosa agitazione per circa 3 ore (conversione 56%), dopodichè si separa per filtrazione l'enzima supportato.

La miscela organica viene seccata su solfato di sodio ed (B-843-03) - 13 -

evaporata a pressione ridotta. Il residuo così ottenuto è separato su colonna di gel di silice con eluente esano-acetato d'etile 9: 1 V/V e poi 7:3 V/V.

Si separano in questo modo 830 mg di (S)-3-cloro-1-tosilossi-propan-2-olo, come olio incolore, $[\alpha]_n^{25} = +4.43$ (c= 1, CHCl₃), ee \geq 95%, ¹H-NMR (200 MHz, CDCl₃), δ (ppm): 2.44 (3H, s), 2.95 (1H, s), 3,52 - 4.32 (5H, m), 7.3 e 7.75 (4H, 2d); e I.l g di (R)-3-cloro-l-tosilossi-2-propanoilossi propano, come olio incolore con $[A]_0^{25}$ = +4.8(c = 1, CHCl₂), ee=54%, ¹H-NMR (200 MHz, CDC1 $_3$), δ (ppm): 1,1 (3H, t), 2,3 (2H, q), 2.44 (3H, s), 3.6 (2H, m), 4.25 (2H, d), 5.1 (1H, m), 7,3 e 7,75 (4H, 2d).

L'eccesso enantiomerico di tali composti è stato determinato come nell'esempio 1.

ESEMPIO 6

Separazione degli enantiomeri del 1-tosilossibutan-3-olo

A 2,5 g di (R,S)-l-tosilossibutan-3-olo sciolti in 60 ml di toluene sono aggiunti 2,5 g di Celite 577 contenente 750 mg di enzima Lipasi P immobilizzato come nell'esempio 1 e 2 g di anidride propionica.

La miscela viene vigorosamente agitata a 25°C, e la reazione viene seguita in HPLC mediante colonna Chiralcel OD-Daicel.

Dopo 24 ore si ha una conversione del 60%; a questo punto si filtra l'enzima, e si lava la fase organica recuperata con (B-843-03)- 14 -

una soluzione di carbonato sodico al 5%. La fase organica, dopo essere stata seccata su solfato sodico, viene evaporata a pressione ridotta e il residuo viene cromatografato su una colonna di gel di silice, eluendo con una miscela esano-acetato d'etile $90/10\ V/V$.

Si ottengono 1,7 g di (R)-l-tosilossi-3-propanoilossibutano, come olio incolore, con $[A]_D^{25} = -14,5$ (C = 1, cloroformio), ee=55%, ${}^1\text{H-NMR}$ (200 MHz, CDCl₃), δ (ppm): 1,1 (3H, t), 1,2,(d, 3H), 1,9 (q, 2H), 2,2 (q, 2H), 2,4 (s, 3H), 4 (m, 2H), 4,9 (m, 1H),7,3 (d, 2H), 7,7 (d, 2H); e 760 mg di (S)-l-tosilossibutan-3-olo, come olio incolore, con $[A]_D^{25} = +15,1$ (c = 1, cloroformio) ee=97%.

L'eccesso enantiomerico è stato determinato mediante HPLC, (colonna Chiralcel, OD-Daicel; eluente per l'alcool esano-iso-propanolo 90/10 V/V, per l'estere: esano-isopropanolo 96/4 V/V. RIVENDICAZIONI

1) Processo per la separazione enzimatica di miscele raceme degli isomeri ottici degli l-tosilossi-alcanoli di formula (I):

$$SO_2$$
 OH
 OH
 R
 OH

dove R rappresenta un gruppo alchilico, aloalchilico o alchenilico C_1 - C_{10} , ed n rappresenta 1 oppure 2, il quale processo è caratterizzato dal fatto che si fa reagire detta

una soluzione di carbonato sodico al 5%. La fase organica, dopo essere stata seccata su solfato sodico, viene evaporata a pressione ridotta e il residuo viene cromatografato su una colonna di gel di silice, eluendo con una miscela esano-acetato d'etile $90/10\ V/V$.

Si ottengono 1,7 g di (R)-l-tosilossi-3-propanoilossibutano, come olio incolore, con $[A]_D^{25} = -14,5$ (C = 1, cloroformio), ee=55%, ${}^1\text{H-NMR}$ (200 MHz, CDCl₃), δ (ppm): 1,1 (3H, t), 1,2,(d, 3H), 1,9 (q, 2H), 2,2 (q, 2H), 2,4 (s, 3H), 4 (m, 2H), 4,9 (m, 1H),7,3 (d, 2H), 7,7 (d, 2H); e 760 mg di (S)-l-tosilossibutan-3-olo, come olio incolore, con $[A]_D^{25} = +15,1$ (c = 1, cloroformio) ee=97%.

L'eccesso enantiomerico è stato determinato mediante HPLC, (colonna Chiralcel, OD-Daicel; eluente per l'alcool esano-iso-propanolo 90/10 V/V, per l'estere: esano-isopropanolo 96/4 V/V. RIVENDICAZIONI

1) Processo per la separazione enzimatica di miscele raceme degli isomeri ottici degli l-tosilossi-alcanoli di formula (I):

$$SO_2$$
 OH
 OH
 R
 OH

dove R rappresenta un gruppo alchilico, aloalchilico o alchenilico C_1 - C_{10} , ed n rappresenta 1 oppure 2, il quale processo è caratterizzato dal fatto che si fa reagire detta

miscela racema in un solvente organico con una anidride di un acido alifatico saturo di formula:

$$(R^1-CO)_2 O$$
 (II)

in cui R^1 rappresenta un gruppo alchilico C_1 - C_6 , operando in presenza di una Lipasi derivante da Pseudomonas e Cromobacterium, capace di provocare selettivamente la reazione di esterificazione dell'isomero (R), lasciando sostanzialmente invariato l'isomero (S) del composto (I) di partenza, che vengono indi separati secondo tecniche note.

- 2) Processo, secondo la rivendicazione l, caratterizzato dal fatto che detta anidride è scelta tra l'anidride acetica e l'anidride propionica.
- 3) Processo, secondo le rivendicazioni l o 2, caratterizzato dal fatto che detto solvente organico è scelto tra gli idrocarburi aromatici e gli idrocarburi alifatici alogenati.
- 4) Processo, secondo le rivendicazioni precedenti, caratterizzato dal fatto che il rapporto molare di detta anidride di
 formula (II) rispetto a detto substrato alcol racemo di
 formula (I) è compreso fra 0,6:1 e 5:1 circa.
- 5) Processo, secondo le rivendicazioni precedenti, caratterizzato dal fatto che si opera secondo un rapporto in peso tra
 l'enzima impiegato e il substrato di formula (I) compreso
 tra 1:1 e 1:100 circa.
- 6) Processo, secondo le rivendicazioni precedenti, caratteriz-(B-843-03) - 16 -

zato dal fatto che la concentrazione molare dell'alcol racemo di formula (I) nella miscela di reazione è compresa tra 0,01 M e 2 M circa.

- 7) Processo, secondo le rivendicazioni precedenti, caratterizzato dal fatto che si opera a temperatura compresa tra 0°C e 50°C circa.
- 8) Processo, secondo le rivendicazioni precedenti, caratterizzato dal fatto che detta Lipasi è scelta tra Lipasi LPL
 da <u>Pseudomonas aeruginosa</u>, Lipasi P da <u>Pseudomonas fluorescens</u> Lipasi CES da <u>Pseudomonas sp</u>, e Lipasi da
 Cromobacterium.
- 9) Processo, secondo le rivendicazioni precedenti, caratterizzato dal fatto che detto enzima viene impiegato immobilizzato su un supporto, preferibilmente di tipo poroso ad elevata area superficiale, scelto tra Celite, vetro poroso, silice.

Milano, 14 DIC. 1990

LS.la

\$. • ? ·

p.MINISTERO DELL'UNIVERSITA' E DELLA RICERCA SCIENTIFICA E TECNOLOGICA

ISTITUTO GUIDO DONE ANI S.p.A.

Dott. Daniele Sama

Procuratore