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1. A public-key authentication system wherein a message sender appends signature

information to a message and registers corresponding authentication information

together with his name in a signature archive that is open to public inspection and

wherein a message verifier obtains the message and its signature information, anid the

authentication information from the public signature archive and uses these to confirm

whether or not the message has been sent by the sender identified by said signature

information, characterised in that:

the message sender

selects a random digital signature consisting of a plurality of

binary numbers S, to n;

exponentiates a verification key V by, for each of said numbers S1 to

oby calculating the state of a pseudo-random binary number generator from a given

initial state after a number of clock pulses or state transitions equal to the corresponding

number given by the random digital signature St to and providing each of the

calculated binary states Vt as a component of the verification key V;

checks said signature archive to ensure that the verification key V

computed in has not yet been registered and if V has previously been registered

repeats steps and 
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computes a generalised cyclic redundancy check (CRC) value C by,

for each one of a set of pseudo-random binary number generators, computing the

remainder resulting from dividing the sequence of bits comprising the message being

sent by a modulus corresponding to said pseudo-random binary number generator and

providing each such remainder C to,, as a component of the generalised CRC value C;

computes the sum C S (modulo 2) and registers this sum and the

verification key V under his name in the public signature archive;

appends S to the message being sent, and

the message verifier

extracts the digital signature consisting of a plurality of binary

numbers S, ton from the message;

computes a generalised cyclic redundancy check (CRC) value C by,

for each of the said numbers S computing the remainder resulting from dividing the

sequence of bits comprising the received message by a modulus corresponding to a

pseudo-random binary number generator and providing each such remainder C,to n, as

a component of the generalised CRC value C;

computes a verification key V by, for each of said numbers 

exponentiating a given initial state of the corresponding pseudo-random binary number

generator using each said number So t by means of the process defined in step 

computes the sum C S (modulo 2);

searches the public signature archive under the name of the sender

identified by said signature information of the message for authentication information

matching the values C S (modulo 2) and V computed in and 

validates the message as authentic if the search in is successful, or

rejects it as spurious if the search in is unsuccessful.
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A NON-DETERMINISTIC PUBLIC KEY ENCRYPTION SYSTEM

TECHNICAL FIELD

This invention relates to cryptographic systems and more particularly but not solely

to a method and means for realising a computationally secure public-key encryption

system and digital signature (authentication) system.

BACKGROUND ART

Data security is an increasingly important aspect in the design of modern

communication systems. Encryption systems have been devised in an attempt to scramble

or code a message so that to an observer (or "attacker"), the message being

communicated appears nonsensical. Many encryption systems have utilised the idea of

"keys" with which the message to be communicated is first encoded by the sender and

then decoded by the receiver of the message. In this type of conventional encryption

recipient of the message, the sender of the message must first communicate, to the

i 15 intended recipient, the decryption key. In addition, any change in the encryption key

requires a corresponding change in the decryption key which must then be transmitted

to the intended recipient. In the transmission or transportation of keys to the recipient 

there is always a danger than an observer or attacker will discover the key.

Public-key encryption systems have been developed in order to overcome this

20 problem of the necessity to exchange keys. This type of system was introduced by Diffie

and Hellman in 1976 in which each participaft in the communication system has two

keys, a public key which is made publicly available to all participants in the

communication system and a private key which each participant keeps to himself. Each

participant's private key is determined (either by choice or random selection) and from

the private key the public key is generated. The public key can be thought of as the

encryption key while the private key may be thought of as the decryption key 

In public key encryption systems, the mathematical relationship which exists j

between the keys is often a "one-way function." That is, it is arranged that the public key

may be relatively easily generated from the private key, however, determining the private j

key from the public key is computationally infeasible (that is, given an enormous quantity

of computational resources, determination of the private key could probably not be i

effected within a lifetime). 

In order for participant A to communicate a message M to a participant B in a
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public-key encryption system, user A first obtains user B's public key from a publicly

available register or file and uses it to encrypt the message M. The ciphertext C is the

result of encrypting the message M and is transmitted to user B who then transforms the

ciphertext C using his own private key to obtain. the message M.

To an observer or attacker wanting to discover the message M and who is aware

of the public key and perhaps also has fulfl knowledge of the cryptographic system, the

private key (decryption key) must be determined from the known public key. As has

been mentioned, the system relies upon the fact that this operation is extremely difficult

to carry out. Alternatively, the attacker may have nothing but the intercepted encrypted

message and a limited knowledge of the statisticai properties of the message language.

An example of a public-key encryption system is disclosed in U.S. Patent No.

4,405,829 to Rivest et al. The one-way function disclosed makes use of the fact that very

large numbers are very hard to factorise. This system, however, has the disadvantage of

*::requiring extensive multiplication of large (for example, 512-bit) integers, which is a very

15 slow process. Another disadvantage of this system is that the encryption method used is
.V completely deterministic, that is, if the same message is later sent to the same recipient,

the identical ciphertext is produced, which can enable an attacker or eavesdropper to

a obtain significant information about message traffic being sent. A further disadvantage

is that the system does not permit engineering trade-offs or compromises between speed

20 and security, whereas it would be an advantage to be able to design a variety of types of

cryptographic systems such as odre with extremdly high speed and moderate security, or

one with moderately high speed and extremely high security. Yet another disadvantage

is that the system is cumbersome to implement using very fast special purpose electronic
devices as opposed to general-purpose digital computers.

Another desirable property of a secure communication system is the ability to

conclusively prove that the participant indicated as being the originator of a message is

the actual originator of the message. This is the so-called signature and authentication

problem.

A prior example of a proposed public-key distribution system is disclosed in U.S.

Patent No. 4,200,770 to Hellman et al. However, the proposed system is a "key exchange"

systemn rather than a true public-key encryption system. Hellman and Diffle also

proposed a digital signature scheme in the paper "Privacy and Authentication: An

Introduction to Cryptography," published in the Proceedings of the EEEE on page 401 of



Volume 67, Number 3 of March 1979. In the signature system disclosed therein a

participant A who wishes to send a message M to participant B first encrypts the message

text M with his own private key, then encriypts this result with user B's public key to

produce the ciphertext C which is transmitted to user B. User B then utilises his private

key to transform the ciphertext to a form whereby a further transformation by user A's

public key will produce the message text M. It can be seen that if the message is

reproduced after this series of steps then the message must have come from user A.

One disadvantage of this system is that the encryption process must be performedl

twice by both the sender and receiver, adversely affecting the speed of the process.

Another disadvantage is that it is necessary, in order to decrypt a message, to know the

seuider's public key, implying a heavy demand for access to the public key file. A further

disadvantage is that the problem of managing the public key file is complicated by the

possible need to retain and identify old public keys even after they may have been
V. superseded. Yet another disadvantage is that the public key file is required to play a part

in both privacy and authentication, whereas it would be an advantage to be able to
separately manage information neededi to accomplish these quite different functions.

DISCLOSURE OF INVENTION

It is, therefore, an object of the present invention to provide a complete public-key

encryption system which will go some way towards overcoming the above disadvantages

or which will at least provide industry with a useful choice.

Accordingly, in one aspect the invention tonsists in a public-key encryption system

wherein a message sender encrypts a plaintext message using a publicly known key unique

to a message receiver and the message receiver derzrypts the encrypted message using a

secret private key from which the public key has been derived, characterised in that:

a private key is selected which comprises a plurality of binary numbers

ID
a public key is exponeritiated using the private key by, for each of the

said numbers t, calculating the state of a pseudo-random binary number generator

from a given initial state after a number of clock pulses or state transitions equal to the

corresponding number given by the private key D, and providing each of the

calculated binary states El t, as a component of the public key E;

the zm -sage sender

selects a random ir-itialisation key comprising a set of binary



numbers R1 0 to and ex-ponentiates the initial state using each nr ,ber by, for each of the

numbers R1 0 to calculating the state of a pseudo-random binary number generator from

a given initial state after a number of clock pulses or state transitions equal to the

corresponding number given by the Random Initialisation Key R, to and providing each

of the calcullated binary states Q, to as a component of an open key Q,

exponentiates the components of the public key E by the components

of the random initialisation key R to produce generator initialisation states K1 01n by, for

each of the said numbers El to and R1 to calculating the state of a pseudo-random

binary number generator that would result from applying the process defined in step (2)

a number of times equal to the corresponding binary number R, t,

loads a set of pseudo-random binary number generators, the outputs

of which are combined to form a mixture generator, with initial values to,,

clocks the mixture generator to obtain a keystream serial output and
combines this output with the binary plaintext message to produce an encrypted bit

stream,

transmLhs the encrypted bit stream together with the open key Q to the

message receiver;

the message receiver

extracts the open key Q from the encrypted bit stream,
exponentiates the open key Q by the private key D to derive generator

initialisation states K1  by, for 4each of the safd numbers Q, to,,and D1 calculating
the state of a pseudo-random binary number generator that would result from applying

the process defined in step a number of times equal to the corresponding binary

number DI to ns

loads a second set of pseuuo-random binary number generators, the

outputs of which are combined to form a mixture generator, with the generator

initialisation states 

clocks the mixture generator to obtain a keystream serial output and

combines this output with the received encrypted bit stream to produce the sender's

plaintext message.

In a second aspect the invention consists in encryption apparatus for a public key

encryption system mn which a private key is selected which comprises a plurality of

binary numbers D, to and a public key is exponentiated using the private key by, for



each of the said numbers Di 0 n, calculating the state of a pseudo-random binary number

generator from a given initial state after a number of clock pulses or state transitions

equal to the corresponding number given by the private key D1 o n, and providing each

of the calculated binary states E1 as a component of the public key E, said apparatus

comprising:

means for generating a random initialisation key comprising a set of binary

numbers R1 to 

means for exponentiating the initial state using each number by, for each of the

said numbers R1 to calculating the state of a pseudo-random binary number generator

from a given initial state after a number of clock pulses or state transitions equal to the

corresponding number given by the random initialisation key Ri to n and providing each

of the calculated binary states QI o n as a component of an open key Q;

means for exponentiating the components of the public key E by the components

to of the random initialisation key R to produce generator initialisation states K to n by, for

15 each of the said numbers E to n and R to n, calculating the state of a pseudo-random
0 

I

binary number generator that would result from applying the process used to

exponentiate public key a number of times equal to the corresponding binary number

too0 *Ro a O

a mixture generator comprising a set of pseudo-random binary number

20 generators, the outputs of which are combined to form the output of the mixture

generator;

means which load said set of pseudo-random binary number generators with

initial values equal to Kl o n;

means which clock the mixture generator to obtain a keystream serial output;

means which receive a plaintext message and combine the output of the mixture

generator with the binary plaintext message to produce an encrypted bit stream;

and means for transmitting the encrypted bit stream together with the open key

Q to the message receiver.

In a third aspect the invention consists in decryption apparatus for a public-key

encryption system in which a private key is selected which comprises a plurality of

binary numbers D to n and a public key is exponentiated using the private key by, for

each of the said numbers calculating the state of a pseudo-random binary number

generator from a given initial state after a number of clock pulses or state transitions



equal to the corresponding numnber given by the private key and providing each

of the calculated binary states E1j 00 as a component of the public key E, and wherein a

plaintext message is encrypted according to a process whereby the message sender

selects a random initialisation key comprising a set of binary numbers

R1 to a and exponentiates the initial state using each number by for each of the said

numbers R1 calculating the state of a pseudo-random binary number generator from

a given initial state after a number of clock pulses or state transitions equal to the

corresponding number given by the random initialisation key and providing each

of the calculated binary states Q1l 0 as a component of an open key Q;

exponentiates the components of the public key E by the components of the

j random initialisation key R to produce generator initialisation states K, by, for each

of the said numbers El and calculating the state of a pseudo-random binary
too 0 1:number generator that would result from applying the process previously defined, wherein

a private key is used to exponentiate a public key, a number of times equal to the

8:8 15 corresponding binary number 

0 U 8 loads a set of pseudo-random binary number generators, the outputs of
which are combined to form a mixture generator, with initial values Kt. n;

clocks the mixture generator to obtain a keystream serial output and combines
88 thi output with the binary plaintext message to produce an encrypted bit stream;

transmits the encr 'pted bit stream together with the open key Q to the
.8088message receiver,

said decryption apparatus comprising:

8888* ~means for extracting the open key Q from the encrypted bit stream;
means for exponentiating open key Q by the private key D to derive generator

initialisation states by, for each of the said numbers Ql,.0 and calculating

the state of a pseudo-random binary number generator that would result from applying

the process defined above for deriving the open key a number of times equal to the

corresponding binary number D, 

a set of pseudo-random binary number generators, the outputs of which are

combined to form a mixture generator;

means which load said set of pseudo-random binary number generators with

initial values equal to K1 ,O fl

means for clocking the mixture generator to obtain a keystreain serial output;
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and means for combining this output with the received encrypted bit stream to

produce the plaintext message.

In a fourth aspect the invention consists in a public-key authentication system

wherein a message sender appends signature information to a message and registers

corresponding authentication information together with his name in a signature archive

that is open to public inspection and wherein a message verifier obtains the message and

its signature information, and the authentication information from the public signature

archive and uses these to confirm whether or not the message has been sent by the

sender identified by said signature information, characterised in that:

the message sender

selects a random digital signature consisting of a plurality of binary

numbers S1 on

by alclatng(b) exponentiates a verification key V by, for each of said numbers Slon
by stalatrna the state of a pseudo-random binary number generator from a given initial

0 0 9 1 stae afer anumber of clock pulses or state transitions equal to the corresponding

630:number given by the random digital signature Sim0 and providing each of the calculated

binary states Vi as a component of the verification key V;

00 checks said signature archive to ensure that the verification key V
00 computed in has not yet been registered and if V has previously been registered

0: 20 repeats steps and 
@0UU computes a gen~eralised cyciic tedundancy check (CRC) value C by, for

each one of a set of pseudo-random binary number generators, computing the

remainder resulting from dividing the sequence of bits comprising the message being sent

by a modulus corresponding to said pseudo-random binary number generator and

providing each such remainder qC1 as a component of the generalised CRC value C;

computes the sum C S (modulo 2) and registers this sum and the

verification key V under his name in the public signature archive;

appends S to the message being sent, and

the message yerifler

extracts the digital signature consisting of a plurality of binary

numbers Sl, from the message;

computes a generalised cyclic redundancy check (CRC) value C by, for

each of the said numbers SI t. n, computing the remainder resulting from dividing the
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sequence of bits comprising the received message by a modulus corresponding to a

pseudo-random binary number generator and providing each such remainder C,,o as a

component of the generalised CRC value C;

computes a verification key V by, for each of said numbers S1 o 

exponentiating a given initial state of the corresponding pseudo-random binary number

generator using each said number S, by means of the process defined in step 

computes the sum C S (modulo 2);

searches the public signature archive under the name of the sender

identified by said signature information of the message for authentication information

matching the values C S (modulo 2) and V computed in and 

validates the message as authentic if tb.h search in is successful, or

rejects it as spurious if the search in is unsuccessful.

In a fifth aspect the invention consists in a public-key authentication system
00

wherein a message authenticator selects a private key D which comprises a plurality of
binary numbers D1 and exponentiates a public key E using the private key by, for each

S

of the said numbers D, calculating the state of a pseudo-random binary number

generator from a given initial state after a number of clock pulses or state transitions
1 equal to the corresponding number given by the private key D, to. and providing each

of the calculated binary states E1 as a component of the public key E, and makes E

available for public inspection, and wherein a message sender registers unique

authentication information with' said message' authenticator and appends signature

information to a message, and wherein a message verifier obtains the message, calculates

ia generalised CRC value for the message, submits the message signature information, the

generalised CRC value and the sender's name or other identifying information to the

message authenticator, and wherein said message authenticator uses said generalised

CRC value, said message signature information and said registered authentication

information to confirm whether or not the message has been sent by the sender identified

by said authentication information, characterised in that:

the message sender

selects an authentication password consisting of a plurality of binary

numbers; k

requests said signature authenticator to register the authentication

password P to correspond to his name or other identifying information and to confirm i



that P has not yet been registered by anyone and if informed that P has previously been

*registered repeats step 

computes a generalised cyclic redundancy check (CRC) value Cm by,

for each one of a set of pseudo-random binary number generators, computing the

remainder resulting from dividing the sequence of bits comprising the message being sent

by a modulus correi-onding to said pseudo-random binary number generator and

providing each such remainder Clto., as a component of the generalised CRC value CM;

computes intermediate signature information by appending the

generalised CRC value Cm to the authentication password P;

computes message signature informatoun Spm by encrypting the

intermediate signature information computed in step using the signature

authenticator's public key E by

selecting a random initialisation key comprising a set cf
binary numbers and exponentiating the initial state using each number by, for each
of the said numbers R, calculating the state of pseudo-random binary number

generator from a given initial state after a number of clock pulses or state transitions

:given by the random initialisation key Rl,.0 and providing each of the calculated binary

states to produce an open key Q,

(ii) exponentiating the components of the signature authenticator's

20 public key E by the components of the random initialisation key R to produce generator

initialisation. states K, by, for 'each of the sa?d numbers El and n, calculating

the state of a pseudo-random binary number generator that would result from applying

o 0 the process previously defined, wherein a private key is used to exponentiate a public key,

a number of times equal to the corresponding binary number Rl,, 

(iii) loading a set of pseudo-random binary number generators,

the outputs of which are combined to form a mixture generator, with initial values K, 0

(iv) cl'ncking the mixture generator to obtain a keystream. serial

output and combining this output with said intermediate signature information to produce

encrypted intermediate signature information,

appending said encrypted intermediate signature information to

said open key Q to produce message signature information SpM.

appending the said message signature information Spm to the message

and also appending his name or other identifying information to the message,



the message verifier

extracts the message signature information (Spm) and the sender's name

or other identifying information from the message;

computes a generalised CRC value for the message la, means of the

process defined in step 

submits the said message signature informatiorn and the sender's name

or other identifying information and the said generalised CRC vt',jue C I to the signature

authenticator and requests said signature authenticator to compare the authentication

password P and generalised CRC valvie encrypted within the message signature

10 information Spm with c.'and the sender's name or other identifying information, and

the message authenticator

decrypts the message signature information Spm using its private key D
by

extracting the open key Q from the message signature

information,

(ii) exponentiating the open key Q by the private key D to derive

generator initialisation states K1 by, for each of the said numbers Q, and D1 0
calculating the state of a pseudo-random binary number generator that would result from

applying the process defined in step a number of times equal to the

corresponding binary number Dl,,.

(iii) loading a second set of pseudo-random binary number

generators, the outputs of which are combined to form a mixture generator, with the

generator initialisation states K 

(iv) clocking the mixture generator to obtain a keystreana serial

output and combining this output with the message signature information to thereby

recover the intermediate signature information P and C computed in step 

compares the value of P contained in said intermediate signature

information with the authentication password registered as corresponding to the name

or other identifying information submitted in step 

compares the value of Cm contained in said intermediate signature

information with the value of c'submitted in step 



onfirms to the message verifier that the message is authentic if both

of the comparisons in steps and are successful, or rejects it as spurious if either

comparison fails.

In a sixth aspect the invention consists in a method for generaing random

numbers comprising the steps of:

a user manipulating an input device whose state at any time t can be

described as a point X, represented by a plurality of coordinates (Xe, X12, Xtn);

measuring the points X, describing the states of said input device at a

plurality of time instants t 1, 2, n;

selecting a subset of the points thus measured corresponding to a subset of

said time instants;

computing numerical function of the coordinates of all the points thus

selected;

obtaining the desired random numbers as the plurality of binary digits
which represent the value of the numerical function thus computed.

In a seventh aspect the invention consists in a method of combining a serial

a akeystreamn output with binary information P, comprising a succession of parts P1 P

00 in which each part Pi represents a number of bytes to produce an encrypted bit stream

C comprising a succession of parts Ci, said method comprising the steps of, for each
successive part P.:

generating a pseudorandom perfiutation T of the bytes 1, using a

plurality of bytes of the serial keystream output;

0 permuting the relative positions of the bytes i within the part Pi according

to the permutation T to form an intermediate part 

forming the i-th part C1 of the encrypted bit stream by for each byte E of

the intermediate part I-;i

generating one or more bytes of the serial keystreamn output; and

replacing the byte B with a quantity that depends upon the byte B

and the said generated byte or bytes of the serial keystreamn output

In an eighth aspect the invention consists in a method of combining a serial

keystream. output with an encrypted bit stream C comprising a succession of parts C1

CN, in which each part Ci consists of a number of bytes n1 to recover binary fiformation

P containing by a succession of parts said method comprising the steps of for each
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successive part C,:

generating a pseudorandomn permutation T of the numbers 1, n, using a

plurality of bytes of the serial keystream output;

forming an intermediate part I. by for each byte B of the part C,

generating one or more bytes of the serial keystream output; and

replacing the byte B with a quantity that depends upon the byte B

and the said generated byte or bytes of the serial keystream output; and

permuting the relative positions of the bytes within the intermediate part

I. according to the permutation T to form the i-th part Pi of said binary information.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 is a diagrammatic representation of a mixture generator with MiLSRG

component generators which could be utilised to implement the present invention,

Figure 2 is a diagrammatic representation of a preferred implementation of the
V, 

mixture generator of Figure 1, namely a Geffe-type generator, and

Figure 3 is a diagrammatic representation of an example configuration of shift
registers shown in Figure 2.

Fiue4i lckdarmo adwr elsto f.necytr n

Figure 4 is a block diagram of a hardware realisation of an ecrypter, n

BEST MODES FOR CARRYING OUT THE INVENTION

This description discloses a preferred emboditnent of the present invention and also

mentions several variations. The discussion in this document is from the viewpoint of

0 implementation of the invention in software on a digital computer, but it should be noted

that it is possible to implement all, or part, cf the entire system using special pul-pose

electronic hardware components. Such components include, but are not restricted to,

logic elements such as LSI memories, shift registers, field-programmable gate arrays

(FPGAs) and discrete logic.

1. Classification of the Present Invention

One way of classifying public-key cryptosystems, sometimes referred to as

asymmetric-key systems, is according to the type of one-way function that relates private-

key/public-key pairs, and more specifically according to the mathematical problem whose

solution is required in order to invert the one-way function (iLe., to infer a private key

from its public key). Three such problems account for virtually all public-key systems
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proposed to date: prime factorisation, discrete logarithms, and knapsacks. For example,

the best-known public-key algorithm, RSA, is based on the difficulty of prime

factorisation of large integers. Diffie-Hellman, which is a public key distribution system

rather than a true public-key cryptosystem, is based on the discrete logarithm problem,

as is the ElGamal public-key cryptosystem.

In mathematical terms, the present system is based upon the discrete logarithm

problem. This means that in this system a public key is calculated from a private key

using operations mathematically equivalent to exponentiation in finite fields.

Consequently, breaking the system in the sense of computing a private key from its public

key requires an attacker to compute logarithms over finite fields. For reasons of

computational efficiency, simplicity and speed, as well as security, the finite fields

underlying the present system are the Galois fields GF[2P], where in addition p is selected

so that 2P 1 is a large prime (a "Mersenne" prime). As will be seen, the system involves

exponentiation over more than one such field.

15 Another way of classifying cryptographic systems pertains to whether they are

deterministic or non-deterministic. The first mention of non-deterministic cryptosystems

is believed to be due to Carl Nicolai. Although the notion can be stated more or less

precisely in a number of ways, one of the properties of a non-deterministic cryptosystem

is that even if the same key is used to encrypt a given plaintext on more than one

20 occasion, the resulting ciphertexts will differ in a non-systematic way, ideally in a truly

random fashion. The present system is a non-deterministic cryptosystem.

In transforming plaintext into ciphertext, a cryptosystem may may increase or

S•decrease the length of the original plaintext, or may leave it unchanged. The present

system produces a ciphertext that is exactly the same length as the plaintext, except that

it prefixes the ciphertext with a short header block. The length of this header block

depends upon the parameters chosen for a particular implementation, but will typically

be between 64 and 256 bytes. Its format is not critical.

2. Mixture Generators

The central component of the invention is a pseudorandom binary keystream

generator of a new type referred to here as a mixture generator, by analogy with the

concept, taken from probability theory, of a mixture of independent and identically

distributed random variables. A mixture generator consists of a single pseudorandom

binary generator, such as a maximal-period linear shift register generator (MLSRG) or
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a maximal-period multiplicative congruential generator (MOG), whose outputs or states

are used to successively select, in a memoryless fashion, one member of a set of other

component pseudorandom binary generators. Figure 1 shows a mixture generator where

the mixer generator G. is a maximal-period linear shift register whose last three stages

at time T are used to select one of 8 other MLSRGs (Go, whose output

is to be used at time T. The clock rate of the mixer generator G. can be taken as three

times the clock rate of the component generators Gi. A simpler example, shown in

Figure 2, is a special case of this and is known as a Geffe generator. In Figure 2, the last

stage of the mixer generator G. selects the output of the top generator Gt if the mixer

output at time T is a 1, or the output of the bottom generator Gb if the mixer output at

time T is a 0. More specifically, a concrete instance of this configuration is the case in

which the mixer generator has 89 stages with (primitive) generator trinomial i+x+x",
0 th to1eeao1a 2 tgswt piiiv)gnrtrtioil1x+' 7  n h

btetom generator has 21 stages with (primitive) generator trinomial 1 and. Ah

0. 15 smaller (and less secure) instance is one in which the three generators correspond to the

respective trinomials 1 +x'3 +x87, 1 +x38+x"9, and 1+X30 When using MLSRGs as
,00:0,component generators, it is essential to use generators with the mathematical property

that their generator polynomials are primitive polynomials. In addition, such generators

00.00:may have the property that they have a prime number of stages, so that the lengths of

o 20 their periods are Mersenne primes.

Throughout the balance df this documefit, the symbol p(x) is used to denote the
too,

generator polynomial corresponding to a MLSRG.

A mixture generator, as defined here, need not necessarily be restricted to
component generators consisting of ILSRG or MCG components. Instead, the

components, including the mixer, might well be mixture generators themselves, or

nonlinear generators of other types with desirable statistical or cryptographic properties.

Mixture generators can be implemented in very fast special-purpose hardware,

either using discrete logic or custom integrated circuits, or simulated in software on a

general-purpose computer.

Since it is a finite-state device, starting from any particular state of its mixer and

other component generators a mixture generator can be used to generate a periodic

binary sequence a sequence of zeroes and ones that will eventually repeat). The

state of the generator is described by a collection of binary values specifying the state of



each stage of each of its components.

The advantages of mixer generator configurations are that their periods are very

long, their complexity is very high, their distribution of zeroes and ones is well-balanced,

and successive outputs are substantially uncorrelated. Their outputs also have excellent

statistical properties in terms of their n-tuple distribution and runs statistics. Some of

these properties can be demonstrated mathematically, while others have been verified

statistically (for example, using chi-square and runs tests).

Any periodic binary sequence is capable of being generated by some ML'SRG, and

one of the critical factors in assessing the suitability of a sequence for cryptographic

purposes is the length of the shortest linear feedback shift register required to generate

the sequence. A strong advantage of mixture generator configurations is that it is often

easy to precisely characterise this length as a function of the mixer and component

generator lengths, and that the length, which is a good measure of the complexity of the

and consequently its usefulness for some cryptographic purposes, is very high.
The way in which mixture generators are used in the encryption system of the

present invention will be described in terms of the Geffe-type mixture generator shown

in Figure 2. We denote the numbers of stages in the MfLSRGs forming the mixer, top

and bottom generators by nt and nb, and the initial states (at time T= 0) of the

respective generators by ama, aO and abO, respectively. We assume now for convenience

that each of these initial states is fixed and publicly knowrL A variation of the invention

consists of using the initial stateg as part of a key known only to a particular group of
users in order to permit secure and authenticated transmission of messages among

members of this group.

File encryption on personal computers using this type of mixture generator with

n. 87, n, 89 and nb 127 produces an extrmely rapid system with a moderate

security level. A much more secure system, still possible on a PC, results from the choice

89, n, 127 and nb, 521. The latter three all give rise to Mersenne primes.

It is possible to show mathematically that the period the number of clock

cycles after which the generator output repeats itself) of a Geffe-type generator is the

product of the periods of the component generators: (2fu-1)(2nr-l)(2Ab-1) Its

complexidty, as measured by the number of stages in the shortest equivalent linear shift

register generator which is able to produce the same output sequence, may be calculated

by nmn, (1 nm)ni,. More complex mixture generators can also be analysed, with
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analogous results.

3. Using a Mixture Generator to Implement a One-Way Function

The very long binary sequence generated by a mixture generator has a number of

useful properties. It is possible to actually run. or "clock" the generator to obtain its

output stream and its sequence of internal states. Since the generator's period is so long,

it is not possible to generate more than a tiny segment of the entire output stream in any

reasonable period of time no matter how fast the generator can be clocked; even for the

smaller of the example generators mentioned above, the period leiigth is on the order of

23M.

It is possible to use the mixture generator to rapidly and efficiently "calculate"

what its final internal state would be if its individual components were clocked any given

numbers of times, no matter how huge, starting from a known starting state.

It is, however, not comnputationally feasible to answer the inverse question. That

is, given known final states for each component, it is extremely difficult to determine the

numbers of times each of them would need to be clocked in order to reach such final

states from known starting states. Answering this question is tantamount to solving a so-

called "discrete logarithm" problem- The best known algorithm for solving such problems

r. .'is the one due to D. Coppersmith, which is highly efficient. The time required to execute

20it on any conceivable computer can be estimated quite accurately. While it is practical

carry out the necessary calculations in a modest length of time on very fast computers

in the case when the longest comhponent gener~.tor is of length 127, this is not the case

when the longest component generator length is above 500 or so. Solving such problems
will remain computationally infeasible even under the most optimistic predictions

concerning available computing power. Moreover, the difficulty of obtaining solutions

can be accurately engineered by selecting generator lengths appropriately. Mixture

generators incorporating components with lengths considerably higher than 500 are still

efficient and practical to implement.

4. Private and Public Keys

In the present system, a private key is equivalent to a set of (binary) numbers

which specify arbitrary numbers of times the components of the mixer generator are to

be imagined to be clocked. These can be interpreted as "distances" (measured in units

of clock ticks) within the periodic output stream of each component.

The public key corresponding to a private key is the final state of the mixture
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generator that would result if each component were to be clocked a number of times

given by the corresponding part of the private key.

A major distinction exists between the pairs of private keys and public keys used

in this system and those used in other systems. In many other systems, the key pairs

must be generated together automatically at the same time, according to specific

requirements and limitations. In the RPK system, the selection of a private key is

completely free and unrestricted. It may be selected arbitrarily by its user, if desired, rather

than being assigned. This is not only a significant practical advantage, but also forms a

major point of difference between the RPK system and other patented techniques.

In the context of the illustrative Geffe generator, for purposes of selecting.a private

key a user A selects three numbers D.n, Dt and Db, where D.is inthe range froml1to

0. 2n-m1 ,Dtis in the range from 1to 2n 1 and Dbis inthe range froml1to

It should be noted that each of these ranges include the extreme values

.:9mentioned, although strictly speaking the high end of the range (all ones in binary)

006 15 should be excluded since it is equal to the period. The public key for user A will consist

of the states EM, Etand Eb of the three component generators after D, and Db clock
0 cycles (shifts), respectively. For a mixture generator with, say, N domponent generators,

the private and public keys will have N, rather than 3, such component states.

0009 Note that the number of bits required to form either a private or public key is
nm nt nb, which is 303in the case of the smaller Geffe configuration being used for

an example and 737 for the larger one. One might wish to compare this with the 56 key

bits employed in the widely-used DES conventional encryption algorithm.

The following description of efficient methods for computing the public key from

any given private key is included for completeness and to aid in an understanding of the

invention but should be apparent to a practitioner skilled in the art. For reasons based

on the mathematics underlying the methods, it is appropriate to refer to the process of

determining a public key from a given private key as exponentiation.

It should be obvious that a method is required for calculating the future state of

a mixture generator, since in view of the extremely long period of such generators it is

not possible to actually run. them long enough to generate more than a tiny fraction of

the number of states required. A highly compact and efficient method for calculating the



future state of a Linear feedback shift (MILSRG) register generator exists and depends

upon interpreting the contents of the stages of the register (that is, its state) as

coefficients of a polynomial in one "indeterminate" x. Since the register has n stages, the

4contents of the stages can represent the coefficients of the powers of x 1A xi

Note that such polynomials are different from the "generator polynomial" p(x) mentioned

earlier, which is of degree n. It is convenient to renumber the stages of the generator

from zero to n-1, where stage 0 corresponds to the stage immediately following the

middle generator tap, so that stage (n 1) denotes the stage with th feedback tap in the

middle of the generator. The final (output) stage of the generator will then be numbered

(n m where m as before denotes the exponent in the middle term of the "generator

polynomial" p(x).
"Soo

0 A Using this interpretation, it is possible to verify that the state resulting from

*0clocking the generator once is equivalent to multiplying the polynomial representing its

state by the polynomial consisting just of the single term x. This is to be done with the

0 15 understanding first of all that all the arithmetic on the coefficients is done modulo 2 

1+ 1 0, etc.), and second that the polynomial "product", if it is of degree n or higher,

is understood to refer to the product modo the generator polynomial This last
*4 0

statement means that any polynomial of degree n or higher is to be replaced by the

remainder that would result after dividing it by Polynomial addition and
20 multiplication and division follow the usual algebraic rules, except that in this case

arithmetic on the coefficients is done modulo 2'(equivalent to XOR).

Taking this idea of multiplying polynomials modulo p(x) one step further, if the

initial generator state a0 is taken to be the one with a single 1 in the zero-numbered

stage, then the process of advancing the generator by a time D (or clocking it D times)

is equivalent to computing the product 1 x x x where the factor x appears D

times. The resulting product can be denoted as x2 mod Using D as an exponent

in this way suggests that an efficient method for computing A~ mod p(x) involves pre-

computing and tabulating the (n 1) polynomials representing the binary powers

1. x1 
2 X4

1 X1, 3 X2 all modulo and then multiplying together

(again, modulo p(x) each time) those corresponding to one bits in the binary

representation of D.



This conceptual process of multiplying polynomials modulo p(x) can be

accomplished in practice very simply and efficiently using the shift register itself. No

elaborate actual multiplication is required. To see this, we observe that since clocking

the generator once is equivalent to multiplying the polynomial corresponding to its

contents by x, we can multiply by i-j, say, by clocking the generator j times. Multiplying

by an arbitrary polynomial is accomplished simply by saving the states corresponding to

such intermediate "multiples" (for example, in registers) and adding corresponding

coefficients modulo 2 (that is, XOR-ing). This procedure eliminates the need for a

separate procedure for polynomial division in reducing products modulo Designing

special-purpose circuitry or chips to accomplish the entire process very quickly is a

straightforward matter, or it can be emulated easily in software if desired.

Encryption

As stated above, the private key D for user A consists of three numbers (Dmn, D~,

*:909 Db) while user A's public key E consists of the three numbers Eb) which are
assumed to be publicly known, perhaps posted in a public directory file, and which

represent the states of the corresponding generators at times D, and Db Sting from
.9 given and known initial states 0 aO, abo) at time zero. Equivalently, using D and

*9 E to denote times and states for a generic MLSRG, in polynomial notation we have E

*:9oQ P mod assuming that the initial state corresponds to the zero-degree polynomial

1.

daaIt is preferable that any plaintext messagb P to be encrypted has first undergone

dat compression. This is a well-known technique that is useful not only for reducing

9 data transmission costs and/or storage spare but which also decreases the redundancy of

the underlying message. This increases the difficulty of successful cryptanalysis and also

enhances the propagation of errors resulting either from transmission errors or from

malicious modifications ("spoofing") of the ciphertext.

In order to encrypt a plaintext message P, so that it can only be decrypted by user

A (using A's private key) another user B first generates a random initialisation key R 

Rb) that is to be used solely during the encryption of P. R is analogous to D in

that it represnus "exponents" for the component generators, and the three components

of R must Fatl in the same ranges as those of D. User B next computes Q Q~,

Qb) from R in the same way that a public key E is computed from a private key D. That

is, Q represents the states of the component generators at time R, starting from the initial



state ao User B then includes Q in the ciphertext message header, to be transmitted or

stored in the clear (that is, not encrypted) and which may also contain other information

useful for communication purposes. For instance, a particular application might include

addressing information, cyclic redundancy check (CRC) bytes or other error-correction

data in the message header.

To continue the actual encryption process, user B next loads the component

generators with an initial state consisting of E (user A's public key) and then again uses

the same random initialisation key R (Rn, R, Ri,) to compute a final state K (Km,

Kb) by "exponentiating" A's public key E, taking R as the exponent. In polynomial

notation this can be written as K E m mod forj m, t, b. User B does this

"exponentiation" of A's public key using the mixture generator's component shift registers

to compute products of binary powers E2- (k 0, 1, n analogous to the way

that a public key is computed from a private key.

Note that user B has used both the random initialisation key R and user A's public

15 key E in computing K, as well as publicly available knowledge of the initial state a0 and
0

Voo'° the structure of the underlying mixture generator. The total computational effort has
amounted only to the polynomial exponentiations required to advance the states of the

0
component generators twice (that is, once to compute Q and once to compute The

essential property of K for purposes of the present encryption system is that K describes

the state resulting from advancing the generatorg first by D and then exponentiating this

state by R (that is, the state that would be the result if the generator could be advanced
by a time equ A to R multiplied by despite the fact that user B has been able to

compute K without knowing D.

The state K is used as a final generator initialisation state with which to begin

creating the ciphertext. User B generates the body of the ciphertext C by using the

keystream obtained by clocking (running) the mixture generator starting from the state

K, operating with it and combining it with the plaintext bit stream P. This combining

process must be invertible (that is, it must be possible to recover the plaintext P given K

and C) and can be done in a variety of ways.

Although the simplest imaginable combining technique involves simply a bitwise

XOR (exclusive-OR) between the plaintext and the keystream, this approach has serious

cryptographic flaws when used by itself.
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Many simple combining methods are possible. For instance, a block encryption

system could be devised in which a fixed number. L of keystream bits are combined with

L plaintext bits by interpreting these two blocks of bits as integers in the range 0 to 2L 1

and defining the corresponding ciphertext block to be their product. This results in an

encryption system somewhat analogous to the well-known El Gamal public-key

cryptosystem. Unfortunately, it produces a ciphertext double the length of the plaintext.

The preferred combining method in the present system is one that produces a

quasi-block cipher. In classical cryptographic terminology, this part of the algorithm can

be compared to a running-key cipher combined with a pseudorandom transposition

cipher. The idea is to first create an intermediate ciphertext block by utilising a part of

the keystream generator output) as a means for generating a pseudorandom

permutation of the bytes (or even individual bits) of the plaintext block. One then

combines the intermediate ciphertext block with a subsequent portion of the keystream,

either on a bit-by-bit basis by XORing them together or on a byte-by-byte basis by
15 performing substitution using a lookup table. This approach produces a ciphertext body

whose length is the same as that of the plaintext. (Slightly different handling is required
when the plaintext length is not an integral multiple of the block size, to accommodate

the final partial block.)

An obvious refinement involves cascading this combining process by alternately

applying the above-mentioned pseudorandom transposition permutation) and

substitution procedures more thah once.

The only performance penalty associated with the preferred combining method is

.to increase the quantity of generator output required. However, since mixture generators

run very quickly this is unlikely to be a significant issue except in applications requiring

extremely high encryption bit rates. Additionally, in order to achieve the maximum

possible degree of security it may be advisable, although not essential, to restrict the

maximum length of any plaintext enciphered with a single random initialisation key R.

This is not a major restriction, since very long plaintexts can simply be broken into a

sequence of segments of acceptable size.

More complex ways of combining the keystream with the plaintext in order to

achieve various objectives include variations on known techniques such as cipher block

chaining. In one such variant, the plaintext is first broken into blocks of fixed size to

which additional timing, authentication or error-correction information may be appended
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or prefixed. Each plaintext block is first XORed with the previous ciphertext block

before combining it with the next block of the keystream.

When implementing the RPK system in software, it is useful to note that it is not

difficult to clock the mixture generator 8 bits (or more) at a time, and the entire

combining process can be accomplished accordingly. This can also be done in hardware

without unacceptable complexity.

In summary, then, the encrytion process involves the following steps, all of which

are accomplished using the mixture generator and its components:

Generate a random initialisation key R and use it to exponentiate the base state,

thereby generating an open key Q which is included within a header, preceding the main

body of the ciphertext.

Use R again to exponentiate the public key E, thereby generating a final (internal)

generator initialisation state K.

Starting from the state K, run the mixture generator to obtain a keystream output

15 and combine the ystream output with the plaintext P to obtain the main body of the

ciphertext C.
*e Note that since R is chosen randomly, even if the same plaintext were to be

encrypted again using the same public key the second ciphertext would differ randomly

from the first one, both in the open key Q and in the ciphertext body itself since the final

(internal) generator initialisation states would differ.

6. Combining Keystream with Plaintext 

A novel preferred combining method will now be described that incorporates a

number of the advanced approaches alluded to above. In what follows, we shall assume

that the plaintext is represented as a sequence of 8-bit bytes, and we shall use the term

"current CRC value" to refer to the 32-bit CCITT cyclic redundancy check value

corresponding to the portion of the plaintext starting at the beginning and continuing up

to any particular byte position within it It should however be understood that this term

could equally well refer to another type of CRC or message digest computation or even

to a generalised CRC of the type mentioned later in this document. We shall also assume

that it is convenient to process the plaintext, for combining purposes, in moderately large

"chunks" that are presented as the contents of a buffer. A typical such chunk size might

be in the order of two to four thousand bytes. Finally, we shall use the term "stuttered,

keystream" to refer to the output of a mixture generator modified so that the clocking of

I



-23-

one or more of the component generators is made state-dependent. An easy way to do

this is to sense the states of a particular set of generator stages and discard the generator

output (that is, clock the generator an additional tick) if the states obey some criterion.

For example, one can sense whether a particular set oi four stages of a component

contain all ones and clock this component an extra tick when this is so. It is well known

that this procedure greatly increases the non-linearity, and hence complexity, of a

keystream generator.

The general combining process is then as follows. First, compute the current CRC

value of the plaintext up through the end of the current chunk. Second, use a portion of

the stuttered keystream to generate a pseudorandom permutation of the bytes in the

current chunk and then XOR the permuted data with subsequent consecutive bytes of the

stuttered keystream. Finally, clock the stuttered keystream a number of bytes which

depends upon the current CRC value, discarding the bytes thus generated; the number

of bytes to discard might be given by, for example, simply the numerical value of the low-

order byte of the current CRC value. This final step ensures that the portion of the

keystream used for combining with any chunk depends both on the initial generator states
and on the entire plaiw*ext prior to that chunk and can thus be viewed as a type of cipher

block chaining. It also ensures that any single-bit alteration or transmission error in the

ciphertext causes a cascading of errors, averaging 50%, in subsequent chunks of decrypted

text.

The manner of pseudorandomly permutilig the data within a chunk can be varied

as efficiency considerations may dictate. One economical approach involves viewing the

chunk as a sequence of 256-byte blocks, possibly followed by a shorter end block if the

chunk size is not a multiple of 256. As we shall demonstrate, we can then use 127

2 stuttered keystream bytes to generate one pseudorandom swap table to be used for all

the 256-byte blocks, and a smaller additional number of stuttered keystream bytes to

generate one smaller p, udorandom swap table, if necessary, to be used for the shorter

end block. For the case of 256-byte blocks, such a pseudorandom swap table provides a

set of 128 pairings j) of distinct integers in the range 0 to 255. To use the swap table,

one simply exchanges the positions of bytes i and j within the block for each j) in the

table. A key feature of this method is that it is essentially self-inverting, that is, applying

the identical permutation a second time restores the original byte ordering. It is

interesting to note that the total possible number of such swap tables, when the block size
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n is even, is given by:

nI
Srn 

2r4 (!2)1

A particularly simple algorithm for generating a swap table of size n is concisely

described by the following fragment written in the C programming language:

typedef unsigned char BYTE;
BYTE stutclock8(void);
#define MODULO 
#define NOT EQUAL 

void MakeSwapTable(int n, BYTE table)
int index, remaining, i, k;
BYTE temp;

for(i 0;i 
15 table[i] i;

I for (k 0, remaining n; remaining 1; remaining remaining 2)

index k 1 stutclock8() MODULO (remaining 1) 
k k 1;
if (index NOT EQUAL k)

.temp table[index];
table[index] table[k];
table[k] temp;

k k+ 1;

v 

30 In the above code, the function stutclock8( returns the next byte of the stuttered

keystream. After it is c-ecuted, the table[] array will contain a sequence of consecutive

pseudorandom pairs of the integers from 0 to n 1. (If r happens to be odd, the last

table entry will designate a byte position which is not to be swapped.)

If a modest increase in computational overhead is acceptable, a somewhat more

complex version of the above approach is possible in which a different pseudorandom

swap table is used for each 256-byte block. In any case, it is worth emphasising here that

the actual permutations applied are different for each encrypted message since a different

(and randomly selected) portion of the keystream is used for each message.

Finally, although it does not constitute a part of the combining method discussed i



above, we point out here an additional feature of this approach that bears upon the issues

of validation and authentication. Since a CRC value for the entire plaintext is available

at the end of the encryption process, it is a relatively simple matter either to append this

value to the plaintext and encrypt it as well, or to insert an encrypted version of it into

the message header if desired. The resulting information can be used during decryption

to detect whether the message has been altered during transmission. Summary measures

other than the CRC or generalised CRC can be used here, and particular security

requirements may suggest the use of alternatives such as the Rivest MD4 algorithm or

the NIST Secure Hash Algorithm.

The following is an example of the preferred combining technique, in which the

chunk size is taken (for simplicity) to be only 4 bytes:

Plaintext chunk: "ABCD" (whose hexadecimal representation is 41 42 43 44)

Stuttered keystream output (hexadecimal): 37 04 FF BO 

o 9. Encryption:

1. Calculate the CCITT CRC32 value for the plaintext chunk. This value turns out

H to be DB 17 20 A5 (hexadecimal representation).

2. Generate a pseudorandom swap table using the first byte of the stuttered

keystream (apply the procedure given by the C language fragment in the text):

boo.- a) Initialise table to: 0 12 3.

b) The first stuttered keystream byte 37, modulo 3, is 1, so permute the

elements 1 and 2 in the table to produce a table of 0 2 1 3.

c) The resulting swap table contains the pairs 2) and 3).

3. Permute the bytes ABCD by swapping the Oth and 2nd bytes, then the 1st and 3rd

bytes, to produce CDAB, whose hexadecimal representation is 4' 42. This is the

permuted chunk.

4. XOR the permuted chunk byte-by-byte with the succt ba ttered keystream

bytes: 43 XOR 04 47, 44 XOR FF BB, 41 XOR BO Fl, 42 XOR 55 37, so the

ciphertext consists of the sequence of bytes (in hexadecimal) 47 BB F1 37.

The last byte of the CCIT CRC32 value is A5, which is equal to 165 in decimal,

so we would then generate and discard 165 bytes of the stuttered keystream before

encrypting the next chunk.

7. Decryption

To decrypt the received ciphertext, user A first uses the state given by the open



IT MM

-26-

key Q contained in the message header to compute the generator state corresponding to

QD, where the exponent is his private key D. This process of exponentiating Q by D is

done using the same kind of process used to exponentiate E by R during encryption. We

observe that the resulting generator state is K, since Q represents the generator state

after a time R starting from the base state a0 and the state after time R' D is just K, as

noted earlier. In polynomial notation this fact can be expressed as

E R (xDo) R K (x D Q Note that this means that the recipient has been

able to compute K without the need to know the random initialisation key R generated

for encryption. User A can then run the mixture generator starting from the final

initialisation state K (that is, clock it through successive states) to obtain the keystream

bits needed to invert (that is, undo) the combining process performed during encryption.

Since the mixture generator is started from the state K for both encryption and

D decryption, the keystream output will be identical in both cases.

If the combining process used for encryption were to involve simply XORing the

15 plaintext with the keystream, we note that XORing the resulting ciphertext with the same
0 keystream again would recover the plaintext. For the preferred combining process

00:0 described earlier, it is easy to invert the pseudorandom transposition and substitution
operations in reverse order for each successive block to recover the ciphertext from the

plaintext.

The specific steps required for decryptio'n, referring to the preferred combining
00. process discussed earlier, are:

1. Using the private key, exponentiate the open key Q contained in the ciphertext

Volga: header to compute the final initialisation key K. The procedure for doing this is the

same as the one used to exponentiate a public key by a random initialisation key during

encryption. The state of the mixture generator will then be given by K.

2. For each block of the ciphertext body, run the mixture generator to obtain a part

of the :.eystream output and use this to gunerate a pseudorandom permutation table.

3. Then run the mixture generator to obtain additional keystream output and

combine it with the ciphertext block, either bit-by-bit by XORing the two together or

byte-by-byte using a lookup table, to generate an intermediate text block. This step

inverts the substitution process performed during encryption.

4. Apply the pseudorandom permutation defined by the permutation table created
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earlier to the intermediate text block. This step inverts the transposition process

performed during encryption and produces a block of the original plaintext.

For the preferred combining method described earlier a slightly more complex

process of inverting is necessary. The steps taken to initialise the generator are identical

to those for the decryption of the simply combined ciphertext. However, the process of

undoing the combination process involves, for each chunk, firstly the step of generating

a representative pseudorandom permutation of a representative chunk corresponding to

that needed to invert the permutation applied to the plaintext in the enciphering proir,.

using the equivalent portion of the stuttered keystream. Secondly, XORing the current

ciphertext chunk with the subsequent consecutive bytes of the stuttered keystream. This

will produce a decrypted but pseudorandomly permuted version of the plaintext. Thirdly,

the same permutation applied to the representative chunk is applied to the permuted

version of the plaintext, to recover the plaintext. Lastly the current CRC value of the

decrypted text, up to the end of the current chunk, is calculated, and the stuttered

keystream is clocked a number of bytes dependent on the current CRC value. For the

earlier example where the pseudorandom permutation was applied using a pseudorandom

swap table to re-order the bytes of each 256 byte block of the chunk, the same swap table

would be generated, before XORing the keystream with the ciphertext. Then the swap

table, being self-inverting, would be used on the resulting deciphered but still permuted

20 plaintext to recover the plaintext.

The following is an example of the preferred separating technique, corresponding

to the earlier example of the preferred combining technique:

Decryption of the ciphertext 47 BB F1 37:

1. Assuming the correct decryption key (private key) is available, the sequence of

stuttered keystream bytes will be identical to that used for encryption: 37 04 FF BO 

2. Generate the pseudorandom swap table exactly as in the encryption process, using

the first stuttered keystream byte. The table contains the pairs 2) and 3).

3. Before swapping, XOR the ciphertext with the succeeding bytes of the stuttered

keystream: 47 XOR 04 43, EB XOR FF 44, Fl XOR BO 41, 37 XOR 55 42.

The intermediate ciphertext is thus 43 44 41 42.

4. Apply the swap table by swapping first the Oth and 2nd bytes of the intermediate

ciphertext and then the 1st and 3rd bytes: 41 42 43 44.

The result is 41 42 43 44, which is the hexadecimal representation of the ASCII

.1-
j
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string "ABCD", the correctly deciphered plaintext.

6. Calculate the CRC32 value for the plaintext up to this point. As before, its last

byte is A5, so as before we generate and discard the next 165 bytes of the stuttered

keystrearn before decrypting the next chunk.

8. Hardware Implementation

Although the present ystem is easy to implement in software, one of its

Outstanding advantages is its ability to be implemented in very fast special-purpose

hardware. Very large scale integrated circuit technology is progressing so rapidly that any

specific implementation details are soon out of date. However, off-the-shelf components

do exist that provide some insight into the relative ea~se or difficulty, and achievable

speed, of such an implementation. For example, special-purpose chips for performing

exponentiation over GF[21] do exit, such as the CA34C168 key management processor

produced by Newbridge Microsystems, a Canadian company. It is a 'TTL-compatible

CMOS device that operates at up to 16 MHz, and performs exponentiation over the field
GF[2931. This chip has a throughput of 300K bits/second. Despite the fact that this field

0 is not necessarily ideal for the present system, these specifications give some idea of the

rate at which public keys, open keys and final generator initialisation keys can be

0o. calculated. The same company produces the RBG 1210 random bit generator that

produces a true random bit stream at 20 K bits/second. Such a device would be suitable

for generating the random initialisation keys R required here. Very long shift registers

and discrete logic gates capable bf operating atextremely high speeds are available off-
000.

0060 the-shelf or can be easily integrated into custom chips or implemented as field-

0, programmable gate arrays.

Figure 4 shows a hardware implementation of an encrypter while Figure 5 shows

a hardware implementation of the decrypter process, both of which perform in hardware

the functions previously described.

9. Signatures and Authentication

A major and important variant of the preceding approach allows the recipient of

an encrypted message (user A in our terminology) to confirm that the received and

decrypted plaintext originated from a specific source (that is, user B) and is not "forged."

The requirement is to be able to append to a message a "signature" with the property that

anyone is able to compare the signature with publicly available information in order to

verify its origin, but that no one else is able to duplicate the signature. This requirement 



should be understood to also imply that it must not be possible to use signatures of

previous messages to generate signatures for new or spurious messages. It is therefore

essential that such a "digital signature" be message-dependent.

We remark here that an unstated assumption underlying any public-key encryption

system is that the public file (containing the list of addressees and their public keys) must

be secure against unauthorised modifications. If this weren~ot the case, an intruder could

replace someone else's public key with his own and thereby compromise the victim's

security until the tampering was detected. The security of such public files against

unauthorised tampering is usually provided by password systems or callback procedures,

and sometimes by physical means.

Here we assume that a secure public signature archive exists that can hold

appropriate information registered by individuals who wish to "sign" communications, and

that this archive is available to inspection by anyone, but secure against the threat of
o modification by anyone other than a legitimate subscriber. We also assume that the

015 security of this archive is such that a subscriber is able to append additional signature

information to his own fie but not to modify or delete existing information without

a leaving an adequate audit trail that permits system administrators, to record and track

such modifications. We remark that such precautions are not too different from those

that must surround "specimen!' signatures of the conventional variety.
We allow the possibility that the public signature archive may also be the same

one that contains public key infox'mation for the'encryption system, but note that the two

files have different functions and probably different legal status. The costs and

frequencies of modifications and accesses may also have different structures and different

administrative requirements, suggesting that separating these two publicly-accessible files

is advisable.

As background, we summarise the concept of a CRC (cyclic redundancy check)

value for a message. CRC values are in common use as indicators of fie and

communications integrity, and various international standards (such as C=II standards)

exist. The CRC value of a message is a numerical value, typically either 16 or 32 bits

long, computed from the message in such a way that any small change, distortion or error

7 in the message text results in a completely different CRC value. The method of

computation essentially involves the use of a shift register generator (implemented either2

in hardware or software) to divide a message polynomial (whose coefficients are just the



bits of the message) by a specific CRC generator polynomial. T'he CRC value represents

the coefficients of the remainder modulo the CRC generator polynomial. In the case of

the 32-bit CC=I standard, the generator polynomial is x32 x6+ +23 X1 

X1 0+ X8+ X7+ X+ +4 X 1.

Our authentication method utilises the CRC concept. In particular, in the context

of our example mixture (Geffe) generator, for any message M we can define Cm (CMM,

Cm?, Cmb) in which each of the three components denotes the generator state resulting

from dividing the message text by the corresponding generator polynomial We do

not describe here the method for utilising the shift register itself to perform the division,

since it is well-documented elsewhere. Cm then represents a value that is essentially

equivalent to the message itself up to multiples of p(x).

With this background, a method for secure authentication is as follows. Each

participant in the communication system is assumed to possess exclusive knowledge of

an authentication password P which is unique to that participant and which is registered

~0 15 with a public signature archive or other message authentication authority. The public

signature archive or authentication authority possesses its own private key Ds with its

corresponding public key Es previously defined with reference to the public key

cryptographic system that is the subject of this invention. When user B intends to sign

a message M he is sending to user A, he calculates the generalised CRC value Cm and

forms a signature SM by appending Cm to his authentication password PB, and then
.too.:encrypting the pair (PB, Cm) using the public keg' Es of the public signature archive. He

.0 1

00.0.0then appends the signature SM to the message.

If the recipient of the message or a third party wishes to verify the authenticity of

Sthe signature Sm, he computes the generalised CRC value C'for the actual message and

submits it, together with the signature Sm and the name or other information identifying

user B, to the public signature archive or authentication authority for authentication. The

public signature archive or authentication authority decrypts the signature using its private

key Ds and compares the generalised CRC value included therein with the value of 

and compares the included password with the authentication password registered for user

B. If both of these match, the public signature archive validates the signature as an

authentic signature of message M by user B.

It can be seen from the foregoing that only the actual signer of the message can
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generate the signature Sm since doing so requires knowledge of both user B's

authentication password and the generalised CRC value of the message. Any attempt to

duplicate one valid signature in order to sign additional messages is fruitless, since the

encrypted generalised CRC value matches the one of the message to which it

cor sponds. An advantage of this method is that it does not require additional

information to be inserted into the public authentication archive each time a message is

to be signed.

An alternative preferred embodiment of the public-key authentication system will

now be described. When user B intends to sign a message M he is sending to user A,

he generates random numbers Sm., SMt and Smb and calculates Cm Sm and also

Vu x su mod p(x) for each component generator. User B then registers the pair (Cm

Sm, VM) under his name in the public signature archive, and "signs"' the message by

appending Sm to the message header. If has already been registered in the public

signature archive, user B repeats this process, computing a new S. and corresponding Vm,

until a unique V. is determined. (That is, one which has not been previously registered

in the public signature archive.)

In order to verify that the above process ezsures an authentic "signature," observe

first that anyone in possession of the message and able to inspect the public signature

archive can compute the CRC value Ifor the actual message and add Sm in order to
0C

verify that the result matches the'value posted ifi the public signature archive. It is also

possible for anyone to compute VM xSIm mod p~x) and to verify that it also matches the

value posted in the public signature archive. However, assuming that our underlying
encryption process is adequately secure (as will be discussed later), it would have been

impossible for anyone other than user B to determine a signature Sm that meets these

requirements. As is common in other approaches to authentication, the possibility of

generating a spurious message with the same CRC value(s) can be forestalled by insisting

on a specific message structure or protocol, although the fact that the present approach

utilises three or more different polynomials makes it highly unlikely that such precautions

are required.

10. Multiplicative Congruential Generators as Component Generators

So-called multiplicative congruential generators (MCGs), or Lehmer generators,
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are widely used in computer systems as pseudorandom number generators. In the

simplest variant of this type of generator, a sequence of numbers is generated using the

relationship x. (mod where q is a prime number and c is a constant integer

between 2 and chosen in such a way that c is a "primitive root of unity." The

starting value or "seed" x0 is selected arbitrarily. For example, q is sometimes chosen to

be 2 31 1, which is a convenient Mersenne prime, and c might be chosen as the integer

524287. The resulting sequence of integers between 1 and has period 
essentially being a permutation of all 31-bit integers except for the two whose binary

representations are all zeroes or all ones.

Although these sequences have the attractive properties of being quick and easy

to compute and having reasonably long periods, they have long been known to have poor

statistical properties when used as pseudorandom number generators (unless they are

nonlinearly "shuffled") and D. Knuth has published a detailed analysis of their inadequacy 

as keystream. generators in cryptography. However, these weaknesses do not necessarily
3 0 15 impair their usefulness as component generators in mixture generators of the types we

have described, which have a highly nonlinear structure.
a. 0 Assuming that an MCG is selected so that its modulus q is a Mersenne prime of

athe form 2' 1, the generator output comes in n-bit blocks. T1hese can be viewed as a
00 0

stream of bits starting with the low-order bit. "Clocking" or advancing an MCG a
specified number of bits is accomplished by carrying out the appropriate number of

5 integer exponentiations ind multiplications motlulo q to obtain the necessary block and

then selecting the correct bit position within the block. Thus, for this type of component

generator, integer multiplication modulo 2'-1 replaces polynomial multiplication modulo

This procedure carries with it the need to perform arithmetic on quite large
integers, but methods exist to perform this arithmetic reasonably efficiently, particularly

when q is a Mersenne prime.

Using an MCG as the mixer generator can be accomplished either by utilising the
binary state given by the contents of several fixed bit positions within the generator and
discarding the rest (that is, clocking the MCG at a rate n times as fast as the generators
whose outputs are being selected) or by using groups of successive bits in the MCG's bit

stream output. An example of the latter approach is analogous to the one shown in
Figure 1, in which the MCG is used as a mixer to selectamong 8 other generators (whose
structures are irrelevant here). The entficz stream of bits coming from the MCG can be 
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used, three bits at a time, to accomplish the selection.

11. Cryptographic Security

We will discuss in general terms both the security level afforded by the

transformation from private keys to public keys and the properties of the ciphertext

resulting from a simple XOR combination of the generator keystream output with the

plaintext.

In terms of a so-called "chosen plaintext attack" against the private key, the

security level of the proposed system corresponds directly to the computational difficulty

of discovering a private key when its corresponding public key is known and the attacker

has full knowledge of the cryptographic system and is able to apply it to generate a public

key corresponding to any chosen private key. Assuming a generator structure such as the

one shown in Figure 2, the outputs of each of the 3 component MLSRGs can be viewed

0: mathematically as elements of a finite field of order 2P known as GF(2P). Since a

15 different random initialisation key R is chosen for each message, the operation of

advancing a generator in order to generate a public key corresponding to a given private

1^ "key can be viewed as mathematically equivalent to exponentiation over GF(2P), and the

inverse problem of finding the private key from the public key is mathematically

equivalent to computing logarithms over GF(2P). The level of computational security of

this part of the proposed system is therefore comparable to the difficulty of computing

logarithms over GF(2P). Although in the late 1970's the best known algorithm for doing

this required on (he order of 22 operations, more recent progress in this field now

indicates that using the best currently known method, only on the order of 2 c.VPp-

operations are required, where c is a "small" constant that has been empirically estimated

as about 1.4 or 1.5. In the case when a (1,30,127) MLSRG is used, so that p 127, a

comparison of these two quantities shows the difference between an exponent of about

63 in the first case as compared to about 26 or 27 in the second case. This means that

computation of logarithms in GF(212 which would earlier have been effectively

impossible, is now only moderately difficult, requiring only a few hours on a modem

30 mainframe computer. In terms of the small example suggested earlier in this document,

in which three MLSRGs of lengths 87, 89 and 127 were used in the Geffe configuration
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shown in Figure 2, these figures imply that only a moderate level of computational

security is obtained.

In the larger example suggested, using the same Geffe generator configuration but

With MLSRG lengths of 89, 127 and 521, the public key system proposed here can still

be easily implemented on a personal computer, but the level of computational security

is much higher. Considering only the longest generator, of length 521, the above figures

indicate that the number of operations needed to compute logarithms over GF(2 21

would be on the order of about 2' using the best currently-known algorithm, which is

believed to be near-optimal. Even assuming improvements of several orders of

magnitude over present-day computers, the proposed public-key system will be

computationally secure in these circumstances; that is, it will be infeasible to compute an

unknown private key from all available information regardless of the computational

resources brought to bear. Furthermore, still larger component generators can be used

with only a modest increase in the computational effort required for encryption and
decryption and without unduly burdening the public key file as a result of the additional

key length, so that the security of the system can be increased to any desired level.

Using multiplicative congruential generators instead of shift register generators

tends to increase the computational difficulty of the discrete logarithm problem, and

therefore to enhance the security of the encryption procedure. This is because the

logarithms must be computed over a field GF(q) where q is a prime rather than ove~r

S ~GF(2P), and the best currently known algoritbfn for this case is less efficient, ~r

on the order of 2c'434Pi operations when the modulus q is a Mersenne prime 2P 11

example, this translates roughly into about 240 a 1012, operations when p =127, sev i.

thousand times greater than in the case of GF(2P).

We now discuss the security of the system from the viewpoint of a "chosen

plaintext" attack against the keystreamn generator and combining procedure described

earlier. This type of attack is one in which a cryptanalyst has access to all public keys

and has available a complete cryptographic system, including direct access to the

keystreaxn generator (the mixture generator in this case) that he can use to generate

corresponding pairs of plaintext-ciphertext messages. This situation means that the

cryptanalyst can inspect any number of subsequences of any length he chooses from the

keystream. output, starting from any desired initial state of the generator. Note that the

period length of a mixture generator is very long (approximately 2' even for the smaller
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of the Geffe configurations discussed).

By generating a large number of such portions of the keystream ("search

fragments") and performing a sliding correlation between each of them and an unknown

ciphertext, the cryptanalyst might try to discover "overlaps" which could be detected by

statistical analysis. The likelihood of detectable overlaps depends upon the lengths of

messages and the speed at which the generator can be run, but probabilistic analysis

shows that the likelihood of any overlaps at all is extremely small. For example, even

assuming that the generator is capable of being clocked at 1000 gigabits per second (2 40

bits per second), that the plaintext length averages one gigabit (230 bits) and that an

overlap with a search fragment can be effectively detected ifstantaneously in zero

time) with a sliding correlator using search fragments only 210 bits (one kilobit) long, then

in the case of the smaller Geffe-type generator the expected time for "finding" a

particular ciphertext is on the order of 22 seconds!

1 A probabilistic analysis also shows that, under the same assumptions, the

s4 15 probability of any overlaps at all for messages corresponding to randomly chosen
initialisation keys is negligible, so that a "known plaintext" attack based on this approach
(the so-called "common birthday" problem) is also futile. In addition, even if portions of

o. the plaintext corresponding to an unknown ciphertext are assumed to be known (or can

be guessed) by the cryptanalyst, it is impossible to "extend" the keystream (in a manner

analogous to the solution of a running key cipher) so as to solve for the remaining

portions of the plaintext unlest the length 6f such a known portion exceeds the
o

"complexity" of the generator, which is 58193 bits even for the smaller of the Geffe

t generator configurations illustrated. Even this remote contingency can be addressed by

limiting the maximum length of a plaintext to be enciphered under any single random

initialisation key, segmenting longer messages when necessary, although the gain in

security must be evaluated in the light of the consequent performance penalty.

A simpler form of correlation attack in which the analyst attempts to discover

correlations between the output keystream and component generators has been discussed

ir the mathematical literature but is ineffective in the present system because of the very

long periods of the component generators and their excellent autocorrelation and cross-

correlation properties.

12. A Small Example

Although it is useless for cryptographic purposes, for clarity we include a small
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example to illustrate the operation of the proposed system. This example will use

MILSRG components in a Geffe configuration as shown in Figure 2. The individual

generators are shown in Figure 3. The stage numbers indicate the power of x

corresponding to the given stage.

The generator polynomials p(x) for these three generators are, respectively:

1 +x x, 1 x X3 1+ 3 

The entire output streams full periods) of these three generators are:

Mixer: 101

Top: 1001011

Bottom: 00100001011101100011111001101

000

o o

-o o 

0*o9

00000

o l x ^x



-37-

Table 1

000 0

0 0906

Mlixer Top Bottom

State 1 x State 1 XX 2  State i x Wx

01 10 001 10.0 00100 100 J 0
01 100 010 00010 01000

11 11 010 001 00001 00100

101 110 10000 00010

110 011 01000 00001

ill 111 10100 10010

011 101 01010 01001

101 10 110

1T10 1 01011
1 110 1 1011 1

0 11 10 1 100 1

1011 1 1 1 110

1 101 1 01 11 1

0 110 1 10 101

00110 11000

00011 0 1100

10001 00 110
1 1000 00011

1 1100 10011

1 1110 1 101 1

01111 1 1101

00111 1 1100

1001 1 01 110

1 100 1 00111

01100 10001

10110 1 1010

01011 01 101

00101 10100

10010 01010

01001 00101
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Table 1 above shows the complete sequences of states for these generators, and

the corresponding polynomial coefficients (that is, the state but with the stages

renumbered to match the Lppropriate powers of We should emphasize, however,

that the sizes of the generators involved would make computation of Table 1

impossible in a practical sense and it is included here for illustrative purposes only.

Sorting the columns of the table would effectively provide tables of logarithms modulo

the generator polynomials.

Here tile initial states are given by:

100
1010] 0

a a 1, a

0

Inspecting the stage numbers displayed in Figure 3 shows that each of these states

*corresponds to the polynomial 1 l.x0 F, D.xJ.
J-1

For each of the three component generators, the polynomial coefficients

corresponding to binary powers of x are easily computed (modulo as those given

20 in Table 2 below. We again emphasize that the states corresponding to these powers

obtained simply by rotating (that is, renumbering) the bits appropriately.

Table 2

Power k Mixer x' Top Xk Bottom xk

State 1 X State 1X? 2  State lXA x 4

=1 10 01 100 010 00010 01000
21'=2 11 1 1 010 001 00001 00100
2 2= 4 110 01 1 01000 00001

8 1010 0 10 1

2=16 00110

If we choose a private key of D 6, 24), the corresponding public key is

computed as follows, using Table 2 extensively:

a) Since DM 3 (11in binary), we computex' x2.x'bylrnt loading the mixer

generator with the state 1 1 corresponding to the polynomial x2 then clocking it once



to multiply by x, resulting in the state 0 1.

This gives E 

b) Since Dt 6 (110 in binary), we compute X 6 X 4 x2 by first loading the top

generator with the state 1 1 0 (polynomial coefficients 0 1 1) corresponding to the

polynomial X4 then clocking it twice to multiply by x2 resulting in the state 0 1 1.

This gives E, =1

*00 

o o

Since Db 24 (11000 in binary), we need to compute x~x 6 x.This is slightly

more complex than the previous cases, since the second factor xg corresponds to a

polynomial with more than one nonzero coefficient. We see from Table 2 that x'

0.1 Lx 0i2 Lx' 12x (that is, polynomial coefficients 0 1 0 1 so that we

must load the generator three times with the scate 1 0 0 0 1 corresponding to X16,

00 clocking it 1, 3 and 4 times respectively, to multiply by x, x3 ad x4 since these are the

powers of x that appear with nonzero coefficients in 8 and then adding corresponding

coefficients modulo 2. These 3 resulting states are:

1 1000, 1 1110, 11 1 11

*00900and adding their corresponding coefficients modulo 2 gives a final state of 1 10 0 1.

This gives E. o 0.

0

Now suppose that some other user wishes to send us a message by encrypting a

plaintext of, say, the characters whose ASCII representation in binary is

01000001 01000001. The sender first generates a random initialisation key R.

Various means for accomplishing this are possible, for example utilising a noisy diode.

We suppose that R has been generated here as R 3, 7).

The sender's first task is to compute Q. This is done in the same fashion as



computing E from D, and makes use of Table 2 as before.

d) can be read directly from the x1 line of the table as the state 1 1.

e) We obtain Q, by computing x' x2 The state of the top generator

corresponding to X2 is 0 10, and loading the generator with these contents and

clocking it once to multiply by x results in the state 1 0 1.

f) To compute Ob we use Table 2 to compute x7 x4lx2.x for the bottom generator.

The iasi~ two of these powers contain only a single nonzero coefficient each, so it is

easy'to ka d the bottom generator with 0 1 0 0 0 (the state corresponding to x4 clock

:4the generator two times, and finally clock it one more time. The resulting state is 1 0

The message header will then contain Q as follows (it may well contain additional

1

15 iortonQmessage-specific inomto b

The next step is to calculate We do this by a Similar exponentiation process,

but this time raising polynomials corresponding to the components of the public key E

to powers given by R

g) First K, is obtained by raising the polynomial corresponding to Em to the power

R. 2. It happens in this example that Em corresponds to the zero-degree

polynomial 1 1.x0 .xi, so that no work at all is required as, obviously, 1

raised to any power is still 1. Thus is the same as El,, and corresponds to the state

0 1. This situation should never be expected to occur in practice. It has been caused I

by the choice of D. to be 3, equal to the period length of the mixer generator. This

obviously poor choice for either D or R is simple to disallow when implementing

I V- L0 Ir



the system.

h) Next we raise E, to the power R, I 3 To compute this, we need to build a table

similar to Table 2, but listing the binary powers of E, rather than of x. For purposes

of this example, we only need to compute 2 since 3- E2 ic ~i h tt

0 1 1, corresponding to the polynomial 1 xwe load the top generator with this

state, clock it twice to obtain 1 0 0 and then add corresponding coefficients of these

modulo 2 to get the state 1 1 1 corresponding to 2.Thnwustegnrao

again to multiply this by We do this by loading the generator with 1 1 1, clocking
it twice to obtain 0 0 1 and adding coefficiertc of these modulo 2 to finally obtain 1 1

0forKY,

i) To compute Kb we raise Eb to the power Rb Again we need to build a table

similar to Table 2 to obtain E,4and Ebthen compute E.7 Eb~Eb.Eb. We have E,

1 10 01 x2 x3 x4 sowe getE.2 as the modulo 2sum of Ebi2 10 1 

too** E.0 0 101 1land E1,x 0 010 1 (obtained by clocking the generator), which

yields 1 10 0 0, corresponding to x3 x4 Squaring this gives EbI as 1 0 0 0 0,

eventually givingbas 0 110 1
The state K will therefore be given by:

ro

Km Kt 1 Kb =1

The output streams from the 3 generators starting from these states will be:

Mixer: 101101101101101101 

Top: 011100101110010111001 

Bottom: 1011000111110011010010000101011 
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k) The first 16 bits of the resulting (mixture) keystream will then be:

0011001111100001 

1) Computing the exclusive-OR of this stream with the plaintext will then yield the

ciphertext:

0111001010100000

m) The decryption process begins with the computation of K by raising the

components of Q to powers given by the private key D. This exponentiation process

10 is completely analogous t the procedures already illustrated in steps h) and i)
o

D. 3 Kt 6 4,2
above. Briefly, we have K Q Q and these

last two factors corresponding to the states 111 and 0 1 1, respectively, so that

S= Finally we can compute K Q Q Q .Q calculating the latter
o 0O(0 0

!000«0

two factors as corresponding to the respective states 1 1 1 1 0 and 0 11 0 0.

This gives the result

1
K 1

0

1l

n) Since (as expected) the state K is the same as the one computed by the sender of

the message, starting the mixture generator from this state produces the same

keystream output as shown in steps j) and k) above, which can be XOR-ed with the

ciphertext to recover the plaintext.

13. Randomisation and Key Management Issues

The present method involves a fairly high total number of key bits by comparison

with existing systems. The U.S. Data Encryption Standard (DES), for example,
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utilises 56 bits for the key, whereas the Geffe generators used as examples above

involve 87+89+ 127 303 key bits or 89+ 127+521 737 key bits, equal to the sums

of the lengths of the component generators. While these long keys provide high levels

of security, their lengths are high enough to merit special key management techniques.

First, all cryptographic keys are best selected randomly, rather than as easily-

remembered or systematically generated patterns, to protect against the more naive

forms of cryptanalytic attacks. Well-known hardware means exist for generating true

random bit streams, such as noisy diodes. Another approach is to use biometric

methods. Since microsecond-resolution timing hardware is present on virtually all

personal computers these days, an example of this is to record the time intervals

between successive asynchronous human-generated events such as keystrokes. The

low-order digits of the lengths of such intervals have acceptable randomness 

properties. In any case, it is important to attempt to select the random initialisation
keys R in the present invention in as nearly as possible a truly random manner, since

systematic or repeated use of such keys would severely compromise the security of the

system.

The present invention envisages the use of another biometric technique, with a

multi-dimensional (for example a two-dimensional) computer input device such as a

pen, a drawing pad, a mouse or other pointing device, or a touch screen. A user can

20 be requested to draw or "scribble" a random pattern, whereupon various possible

attributes of the generated pattern can be used to obtain adequately random input.

For example, when a mouse is available the low-order bits of the numbers

representing the mouse coordinates at specified times may be suitable. Alternatively,

the speeds of the mouse at particular times, or the time intervals between particular

types of mouse events, or spatial properties (such as curvature) of the parametric

curve traced by the mouse may be used.

In a preferred embodiment, a user can be requested to move a mouse pointer

more or less randomly (that is, to "wave it" or "scribble" with it) within the area of a

window displayed on a computer display screen for this purpose. The x and y

coordinates of the positions of the mouse pointer sensed by the computer's operating

environment at successive times can then be recorded as a succession of pairs of 16-

bit binary numbers, until an adequate number of mouse movements has occurred. The

first 25% and last 25%, for example, of these points can be discarded as being
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possibly insufficiently random, and then the low-order 4 bits of all the remaining 16-

bit coordinate values can be extracted and concatenated to form the desired random

number.

Care needs to be taken to ensure that quirks of the hardware and software do not

distort or destroy randomness of the attributes being measured. For instance, in the

Mficrosoft Windows operating environment, the timing resolution available for external

events such as mouse or keyboard events is only 55 milliseconds, so that inter-event

timings may turn out to be very non-randomL Also, attempts to intercept or interfere

with system timing information or mouse event processing must be guarded against,

since such intrusions could represent a serious security threat.

:While most pseudorandom number generators in common use on computer
9:systems are not adequate for these needs, the keystream output of the mixture

generators discussed in the present document have excellent randomness properties,

and provide compromise approaches we discuss here. In particular, if a moderate

number of the states in each component generator are initialised from a truly random

source and the generator is then run (or advanced) for a brief time (say, 1000 clock

cycles), the resulting final generator state will be statistically indistinguishable from a

true random state. We refer to this process as "key hashing."'nTe high complexity of
the generators described here makes this a reasonable alternative to other means that

have been suggested, such as the use of a DES chip or algorithm in so-called "counter"

mode.

The storage and management of cryptographic keys must be addressed, although

a public-key system is inherently less dependent upon such factors for its security than

conventional or private-key systems. If a private key is stored anywhere in a computer

or data storage system, physical security becomes an important issue. Ir some

applications, electromagnetic emissions of the cryptographic equipment or computer

must be considered. While compact storage is possible on portable media such as

magnetic or optically-encoded cards, cost or other considerations may dictate that keys

must either consist of or be able to be generated easily from data (for example, a

password) which is to reside solely in human memory. Since conventional

alphanumeric symbols provide only between 5 and 6 bits of information per character,

and since typical passwords are limited to no more than 8 to 10 characters, no more

than 50 to 60 key bits can be supplied in this manner.



The present invention envisages initialising a limited number of stages of the

component generators of a mixture generator with key bits obtained from a password

and then imitating the approach mentioned above, running or advancing the

generators for a brief time to simulate a random key. Such a system may be

vulnerable to cryptanalytic "key cluster" attacks or .the like, but by extending the

number of clock cycles used in the initialisation or "hashing" phase and introducing

nonlinearities like "stutter" (to inhibit rapid advancing of the generators and thus limit

the rate at which trial keys can be generated) security can be enhanced.

INDUSTRIAL APPLICABILITY

The encryption system of the present invention has application in most areas

where secure communications are required with the advantages which flow from a

V V true public key system. Non-limiting examples include:
the secure transfer of personal or financial information, including credit card

numbers or authorisations, over public networks such as the Internet, to eliminate th~

risk of theft or misuse of such information,

the transmission of secure voice communications over existing computer netiorks,

including the Internet, or over public switched lines, to ensure the privacy of such

communications. In this application, digitised and/or compressed voice data can be

encrypted in real time without the need for prior contact or prearrangement of a

secret "key",

ensuring the privacy of electronic mail or facsimile communications over either

public switched lines or computer networks, including the Internet.

ADVANTAGES

Known cryptanalytic difficulty

The difficulty of successful cryptanalysis of the present algorithms can be assessed

in quantitative terms. It is possible to "tailor"' this difficulty to any desired level by a

straightforward choice of system parameters depending upon the intended field of

application.

High speed

Whether implemented in software or hardware, the present algorithms allow the

following tasks to be accomplished as quickly as possible:
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a) Generating a public key from an arbitrarily chosen private key

b) Encryption of an arbitrary plaintext bit stream

c) Decryption of an encrypted ciphertext.

High security

The system is capable and provable of offering very high security, in terms of modern

cryptographic standards and methods, against sophisticated modem cryptanalytic attacks.

Minimum length of ciphertext

To prevent inefficiencies in transmission, the system produces ciphertext whose length

is substantially equivalent to the length of the plaintext.

10 Non-deterministic

Even if the system is required to encrypt an identical plaintext more than once using

the same public key, each resulting ciphertext differs from the others in a non-sy:tematic way

in order to deter compilation of a "codebook" and to foil other cryptanalytic attacks.

Simplicity and efficiency of implementation

15 The essential computations -:quired to implement the system are able to be

accomplished either in hardware or software while making a minimum of demands on

computational equipment. This facilitates implementation in embedded systems, custom or

dedicated hardware or "smart cards", as well as in software running on widely available

processors.

Throughout this specification and the claims which follow, unless the context requires

otherwise, the word "comprise", and variations such as "comprises" and "comprising", will

be understood to imply the inclusion of a stated integer or step or group of integers or steps

but not the exclusion of any other integer or step or group of integers or steps.
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THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-

1. A public-key authentication system wherein a message sender appends signature

f information to a message and registers corresponding authentication information

together with his name in a signature archive that is open to public inspection and

wherein a message verifier obtains the message and its signature information, and the

authentication information from the public signature archive and uses these to confirm

whether or not the message has been sent by the sender identified by said signature

information, characterised in that:

0 00.0 0o the message sender

selects a random digital signature consisting of a plurality of

binary numbers S 

y exponentiates a verification key V by, for each of said numbers S, ,o
S, by calculating the state of a pseudo-random binary number generator from a given

15 initial state after a number of clock pulses or state transitions equal to the corresponding
number given by the random digital signature S, to,, and providing each of the

calculated binary states as a component of the verification key V;

checks said dignature archive to ensure that the verification key V

9 computed in has not yet been registered and if V has previously been registered

repeats steps and 

computes a generalised cyclic redundancy check (CRC) value C by,

for each one of a set of pseudo-random binary number generators, computing the

remainder resulting from dividing the sequence of bits comprising the message being

sent by a modulus corresponding to said pseudo-random binary number generator and

providing each such remainder C, as a component of the generalised CRC value C;

computes the sum C S (modulo 2) and registers this sum and the

verification key V under his name in the public signature archive;

appends S to the message being sent, and

the message verifier

extracts the digital signature consisting of a plurality of binary

i numbers S1 t from the message;

I computes a generalised cyclic redundancy check (CRC) value C by,

for each of the said numbers S ,to computing the remainder resulting from dividing the
sequence of bits comprising the received message by a modulus corresponding to a

pseudo-random binary number generator and providing each such remainder C, to as

a component of the generalised CRC value C;
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computes a verification key V by, for each of said numbers 

exponentiating a given initial state of the corresponding pseudo-random binary number

generator using each said number S, to by means of the process defined in step 

computes the sum C S (modulo 2);

searches the public signature archive under the name of the sender

identified by said signature information of the message for authentication information

matching the values C S (modulo 2) and V computed in and 

validates the message as authentic if the search in is successful, or

rejects it as spurious if the search in is unsuccessful.

2. A method for generating random numbers comprising the steps of:
DOO. manipulating an electronic pointer device whose state at any time t can

be described as a point X, represented by a plurality of coordinates X1 Xt);

measuring the points X, describing the states of said input device at a

plurality of time instants t 1, 2, n;

selecting a subset of the points thus measured corresponding to a subset

of said time instants;

computing a numerical function of the coordinates of all the points thus

selected;

S producing the desired random numbers as the plurality of binary digits

20 which represent the value of the numerical function thus computed.

3 A method of combining a serial keystream output with binary information P,

comprising a succession of parts P, P, in which each part P, represents a number

of bytes to produce an encrypted bit stream C comprising a succession of parts C,,

said method comprising the steps of, for each successive part P,:

generating a pseudorandom permutation T of the bytes 1, ni using a

plurality of bytes of the serial keystream output;

permuting the relative positions of the bytes n, within the part, P

according to the permutation T to form an intermediate part Ii;

forming the i-th part C, of the encrypted bit stream by for each byte B of

the intermediate part 1,;

generating one or more bytes of the serial keystream output; and

replacing the byte B with a quantity that depends upon the byte B

and the said generated byte or bytes of the serial keystream output.

4 A method of combining a serial keystream with binary information according

to claim 11 including the steps of for each successive part Pi computing a cumulative
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current message digest value Di for all parts of the binary information P from its

beginning up to and including P; and

obtaining and discarding a number of additional bytes of the serial keystream

output, said number depending upon the current message digest value D,.

5. A method of combining a serial keystream output with an encrypted bit stream

C comprising a succession of parts C1 CN, in which each part 9 consists of a

number of bytes ni, to recover binary information P containing by a succession of parts

said method Qomprising the steps of for each successive part C,:

generating a pseudorandom permutation T of the numbers 1, nj using

a plurality of bytes of the serial keystream output;

forming an intermediate part I, by for each byte B of the part Ci

generating one or more bytes of the serial keystream output; and

replacing the byte B with a quantity that depends upon the byte B

and the said generated byte or bytes of the serial keystream output; and

permuting the relative positions of the bytes within the intermediate part

I, according to the permutation T to form the i-th part Pi of said binary information.

6 A method of combining a serial keystream with an encrypted bit stream

according to claim 14 including the steps of for each successive part Pi computing a

current message digest value D, for all parts of the binary information P from its

beginning up to and including P1 and

obtaining and discarding a number of additional bytes of the serial keystream

output, said number depending upon the current message digest value D,.
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ABSTRACT

1. A public-key authentication system wherein a message sender appends signature

information to a message and registers corresponding authentication information

together with his name in a signature archive that is open to public inspection and

wherein a message verifier obtains the message and its signature information, and the

authentication information from the public signature archive and uses these to confirm

whether or not the message has been sent by the sender identified by said signature

information, characterised in that:

the message sender

selects a random digital signature consisting of a plurality of

binary numbers S, 
9 4oby exponentiates a verification key V by, for each of said numbers S, ,t

by calculating the state of a pseudo-random binary number generator from a given
initial state after a number of clock pulses or state transitions equal to the corresponding

number given by the random digital signature S, to and providing each of the

calculated binary states V, ,to as a component of the verification key V;

checks said signature archive to ensure that the verification key V

computed in has not yet been registered and if V has previously been registered

repeats steps and 
i computes a generalised cyclic redundancy check (CRC) value C by,

for each one of a set of pseudo-random binary number generators, computing the

remainder resulting from dividing the sequence of bits comprising the message being

sent by a modulus corresponding to said pseudo-random binary number generator and
providing each such remainder as a component of the generalised CRC value C;

computes the sum C S (modulo 2) and registers this sum and the
verification key V under his name in the public signature archive;

appends S to the message being sent, and

the message verifier
extracts the digital signature consisting of a plurality of binary

numbers S, to, from the message;

computes a generalised cyclic redundancy check (CRC) value C by,
for each of the said numbers S, ton, computing the remainder resulting from dividing the
sequence of bits comprising the received message by a modulus corresponding to a
pseudo-random binary number generator and providing each such remainder C, to as
a component of the generalised CRC value C; iJ
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computes a verification key V by, for each of said numbers S, to,
exponentiating a given initial state of the corresponding pseudo-random binary number

generator using each said number by means of the process defined ia step 

computes the sum C S (modulo 2);

searches the public signature archive under the name of the sender

identified by said signature information of the message for authentication information

matching the values C S (modulo 2) and V computed in and 

validates the message as authentic if the search in is successful, or

rejects it as spurious if the search in is unsuccessful.
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