7007112 A2 I 0O 0O O OO A

r~

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization | ‘1”1‘

) IO O T R O

International Bureau

(43) International Publication Date
18 January 2007 (18.01.2007)

(10) International Publication Number

WO 2007/007112 A2

(51) International Patent Classification:
HO4N 7/16 (2006.01) HO04N 5/00 (2006.01)

(21) International Application Number:
PCT/GB2006/002619

14 July 2006 (14.07.2006)
English
English

(22) International Filing Date:
(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
0514492.8 14 July 2005 (14.07.2005) GB

(71) Applicant (for all designated States except US): NTNU
TECHNOLOGY TRANSFER AS [NO/NOJ; SP Ander-
sens vei 5, N-7465 Trondheim (NO).

Applicant (for MG only): JACKSON, Robert [GB/GB];
Frank B. Dehn & Co., St Bride’s House, 10 Salisbury
Square, London EC4Y 8JD (GB).

(1)

(71) Applicant (for all designated States except US): TE-
LENOR ASA [NO/NOJ; Snargyveien 30, N-1331

FORNEBU (NO).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GRIMEN, Gisle
[NO/NOJ; Ntnu Technology Transfer AS, SP Andersens
vei 5, N-7465 Trondheim (NO). MONCH, Christian

[DE/NO]J; Ntnu Technology Transfer AS, SP Andersens
vei 5, N-7465 Trondheim (NO).

Agent: FRANK B. DEHN & CO; St Bride’s House, 10
Salisbury Square, L.ondon EC4Y 8JD (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(74)

(81)

(34)

[Continued on next page]

(54) Title: MULTIMEDIA DATA PROTECTION

-
’

/ Trusted environment -
: 20 b 13
v 17 i
1)9 Key exchange . }/Key\SI Protection tool J~15
e fork i |
&h)llobi\e guard 7 Security !
Viewer |, E server 116
i { ;
1(0 Streaming | (A) (BC)JD
server ‘—Q
12

Media (2)

(57) Abstract: The invention provides a method of transmitting a media work such as a movie to a client comprising the steps of (a)
encrypting the work using a sequence of different keys corresponding to respective temporally spaced segments of the document, (b)
& transmitting software code containing an algorithm from a security server to the client, the algorithm having a result that is a function
& of the state of the client, (c) executing the code at the client and returning the result to the security server, (d) determining whether
the result is indicative of an unmodified client, and further comprising the steps of : (e) transmitting a segment from a server to the
client, (f) securely streaming a key corresponding to the transmitted segment from a secure remote server to the client, (g)decrypting
the segment using the obtained media key,(h)if step (d) indicates a modified client, preventing further keys from being transmitted,
otherwise repeating steps (e) to (g) and repeating steps (b) to (d) .

WO 2007/007112 A2 |00 00 0 000 0 00 0 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

Multimedia Data Protection

The present invention relates to the secure
distribution of multi-media works that have a temporal
dimension such as movies, TV shows, audio documents,
etc. In particular, it relates to a system for securely
delivering such works to a user in a manner that
prevents the user from obtaining an unauthorized copy of
the work. Aspects of the invention also have
applications in other server-client situations such as
on-line banking, gaming, etc.

Illicit copying of artistic works is a perennial
problem. In the early days of the movie industry, whilst
it was possible for unauthorized copies of films to be
made, it was expensive to do so and not practicable
except for persons with access to specialist equipment.
With the advent of home video recorders a new market for
movies and other recorded programmes became available to
producers whilst simultaneously it became possible for
those recordings to be illicitly copied and distributed.

Today the DVD format, which provides higher quality
playback and a more convenient and compact data carrier,
is rapidly supplanting the video. In addition, with the
advent of affordable broadband Internet connections,
there is now an emerging market for downloading or
streaming movies and other media from remote servers
onto home computers.

Where a media work is downloaded, a copy of it is
stored on the hard drive of the computer and it can
normally be viewed repeatedly by the user, analogously

to watching a video recording. Streaming content,

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

.

whether live or recorded, is watched as it is
transmitted to the computer (as with a conventional TV
programme) in almost real-time (there is a short delay
due to the need to provide some buffering). It is well
known for radio and some TV stations to offer their
content in this manner.

Whilst these improvements in technology have
allowed the development of a promising new market for
media companies, there is also a corresponding problem
in preventing the production and distribution of
unauthorized copies of the works. It now is commonplace
for even low-cost home computers to have the capability
to record content onto DVDs.

Techniques have therefore been developed with the
aim of preventing such copying. In a conventional
approach, the media supplier, who is referred to here as
a "content provider", owns encoded media works, for
example movies, which will be referred to generically as
"media works". These are to be distributed and presented
to a user’s client program/viewer in a way that does not
allow the user to create a copy of the encoded media
work. The delivery can be carried out by either
streaming over a network or by delivering a physical
medium, for example a DVD, to the client.

Where the work is transported over a network it is
usually secured by cryptographic means to protect the
work from being intercepted and copied by a third party.
We refer to these cryptographic means as "transport
encryption". (Encryption, which is a security measure,
is to be distinguished from encoding, whereby the work
is converted and usually compressed into a form that can
readily and efficiently be transmitted.) Encryption

techniques are sufficiently well developed and secure

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-3

that the communication over computer networks can be
secured in an appropriate way.

Before the media work is delivered to the client,
the content owner protects the encoded media document
using cryptographic means. Within a secure “provider
environment”, an encryption tool is used to encrypt the
work with a "media key" to create an encrypted encoded
media work, the "encrypted work".

The intention is that the client can then only use
the work if he has the media key that allows him to
decrypt it. This can be embedded in the client
program/viewer/player and/or the media, for example in
DVD~-players and DVDs. (The client program/viewer/player
may be a free-standing device or a viewer software
program on a computer.)

Another option, which is illustrated schematically
in Figure 1, is for the media key to be retrieved from a
license server 1 on demand. This allows for streaming of
the media work. To support this model, the encryption
tool 2 wraps the media key, together with additional
information, in a license 3 and sends this to the
license server 1. The client then receives an encrypted,
encoded media stream 4 from the streaming server 5 that
has to be decrypted in a viewer 6 before it can be
presented to the client. In order to watch the encrypted
movie 7, the viewer requests a license containing the
media key from the license server (see "Start-up Phase"
in Figure 1).

Once the viewer has received the license 3 (and
therefore the media key), it connects to the streaming
server 5 from which it receives an encrypted encoded
media stream 4. The viewer uses the media key to decrypt

the encrypted encoded media stream and present it to the

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

4.

client (see "Streaming phase" in figure 1).

A major problem in the scenario described above is
that the viewer is executed on a host that is controlled
by the client. Thus, the viewer is not executed in the
trusted environment 8 (where the movie 9 was originally
encrypted). There is, therefore, a risk that the client
could modify the viewer. Even though the viewer will
usually only decrypt and decode part of the media
stream, during the whole presentation process every part
of the encoded media stream will at some point be
present in the viewer memory-image. Another risk is
that, since the memory image of the viewer has to
contain the key, the user could extract the media key,
in which case he would be able to create a copy of the
unencrypted encoded media.

The problem of modification exists for purely
software-based viewers as well as for hardware-based
viewers, for example, designated DVD players. Though it
is more difficult to modify a hardware-based viewer than
to modify a software-based viewer, it is not impossible.
Thus there exists a need for a system that addresses
these drawbacks.

General requirements for any effective protection
mechanisms include the following: It should be resource-
intensive to break so that the cost of breaking is at
least of the same magnitude as the value of the work.
Any successful attack should not be generalisable so
that it can be applied elsewhere. It should preferably
also facilitate detection. The various aspects of the
invention described below address these requirements
individually and the preferred forms of the invention
provide a system that satisfies them all.

In the following discussion, a media work is a work

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

_5-

that has a temporal aspect, i.e. it contains a number of
presentational steps that have to be performed in an
appropriate order. The steps are normally
computationally independent of each other and can be
processed independently. In most cases, the complete
presentation takes a significant amount of time: many
minutes or some hours in the case of a movie.

According to one aspect of the invention there is
provided a method of transmitting a media work to a
client comprising the steps of:

(a) encrypting the work using a sequence of
different keys corresponding to respective
temporally spaced segments of the work,

(b) securely transmitting a first key from a
secure server to the client and transmitting
the corresponding segment from a server to the
client,

(c) in the client, using the first key to decrypt
the corresponding segment,

(d) in the viewer, presenting the decrypted
portion,

(e) repeating steps (b) to (d) in respect of
further segments and keys.

The invention may be applied to any kind of media
work (as defined above) that has a temporal aspect, and
is particularly useful for distributing movies, for
example streaming them over the Internet.

By dividing the document into a sequence of
segments, it becomes impracticable to copy more than a
small part because each key can decrypt only one
segment, i.e. the keys are functionally independent.
Thus, only one segment of the movie at a time can be

copied. Furthermore, there should not be a master key

WO 2007/007112 PCT/GB2006/002619

-6-

that can unlock other keys, i.e. the keys should
preferably be structurally independent. Preferably,
thousands of different keys are used for a typical
length of film such that each corresponds to a segment

5 of a pre-determined length, e.g. of only a few seconds,
say less than two or three seconds, and most preferably
a second or less. Most kinds of media works only have
significant value if they are substantially complete.
For example, a movie with only the last few minutes

10 missing will usually be of little value. Thus, someone
seeking to illicitly copy a movie will have to decrypt
each of the segments.

In order to maintain a continuous flow of data
decryption, in some embodiments the client may ask for

15 the current key and the next key(s) and cache a small
number of keys (e.g. 2, 3, 4 or so) in memory.

Normally, the secure server is remote from the
viewer, and is referred to herein as a 'security
server'.

20 The movie is generally encrypted in a trusted
environment. Preferably, the keys generated during
encryption are supplied to the security server, which is
within the trusted provider environment. However,
although the keys are then transmitted from the security

25 server to the viewer, the movie or other work may be
transmitted from elsewhere. For example, it may be
streamed from a separate server that is outside the
trusted environment. Therefore, in one preferred
embodiment, once the movie has been encrypted in the

30 trusted provider environment, it is then supplied to a
non-secure streaming server.

Thus, in this arrangement, the client, which may be

a software viewer program running on a remote computer

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-7 -

(e.g. a user’s PC) communicates with a security server
to receive the keys (referred to as media keys) and with
a separate streaming server.

The media keys are preferably transmitted to the
client following a request from the client, and this is
preferably done using a key exchange protocol that makes
use of a random data generator and the public key of the
security server, which is known to the viewer.

In one implementation, when it is necessary to
obtain the next media key, the client generates random
data and encrypts it with the public key of the security
server. The encrypted data may then be included in a
request for the next media key, preferably with data
identifying the client, which is sent to the security
server. When it receives the request, the security
server checks whether that client is entitled to receive
the media work, decrypts and extracts the random data
and performs a function using it and the requested key,
to encrypt the key using the random data. In one
embodiment, they may be XOR’ed. The result is then sent
back to the client. When the client receives the result,
it can then extract the requested key from the result by
carrying out a corresponding function, for example by
XORing it with the same random data that was provided in
the original request for the key. In this way the
encrypted, encoded media stream can be decrypted without
any secret keys hidden in the source code of the viewer.

Preferably, the public key is included in the
checksum calculation in order to prevent a “man in the
middle” attack in which the public key is exchanged.

In a preferred form of the protocol, steps are also
taken to ensure that the client checked by the mobile

guard is the same one as the one generating the random

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-8-

data. This may be done by extending the input to the
checksum to include the random data used to request the
media key. Thus, the input to the checksum may include
code from the client, the public key of the security
server and the random data sent with the key request.

As external entropy sources can be monitored, the
entropy source used for generating the random numbers
may be that generated by the executing environment
itself in the form of how tasks are scheduled and
interrupted. Thus, the random generation process may
consist of creating several threads that work on
different computational tasks that can be input into a
secure hash algorithm along with data from the current
state of the viewer and the executing mobile guard.

The need for a continuing sequence of keys to be
received by the client can be used to enforce user co-
operation. Thus, if a certain step required by the
provider is not carried out by the client, the supply of
keys can be ceased. As will be discussed further below,
this step may be an integrity check of the client, and
preferably, the request for a new key is only responded
to when a so-called "mobile guard" indicates that the
viewer is unmodified.

Where the a mobile guard is employed, it is
possible for it to generate the random number used in
the preferred key exchange protocol described above,
rather than the actual client viewer/player program.

It will be appreciated that this enforcement of co-
operation is possible because the content provider
controls the media work and because of the work’'s
temporal nature, the work can be supplied in small parts
with the user being required to co-operate in order to

receive subsequent parts. This is in contrast to

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-9.

conventional systems where a licence unlocks the whole
document, effectively neutralising the temporal
property.

In an alternative embodiment of the invention the
trusted environment is extended so that the streaming
server is included within it. When this is done it is
possible to have the streaming server generate media
keys and encrypt the media stream on the fly. This
ensures that each media stream is encrypted with a
unique set of media keys. That means that a leaked media
key cannot be used to decrypt a different copy of the
same movie. To facilitate distribution of the media keys
the streaming server sends them to the security server,
which will distribute them to the viewer as described
above. The downside is that another entity needs to be
trusted and that the encryption on the fly is
computationally expensive. Thus, there is a trade off
here between very high security on the one side and
complexity of the trusted environment and computational
costs on the other side.

The invention is not limited to arrangements where
the document is streamed from a remote server. Because
it is encrypted, the document can be distributed in any
convenient manner. Thus, the encrypted document may be
provided to the client from a local server or on a
physical medium (e.g. a DVD). The document may then be
transmitted from the local server or physical medium to
the viewer and decrypted in the same manner as
previously discussed.

Although this arrangement provides a significant
improvement over the prior art system, there still
remains the risk that the viewer could be tampered with

so that the decrypted work (movie etc.) could be

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-10 -

recorded and copied. Thus, preferably, the invention
further comprises means for checking the integrity of
the viewer to ensure that it has not been tampered with.
This may be done by programming it to send a signal such
as a checksum to the security server at regular
intervals, and/or when a key is requested. Such a signal
would be designed to depend on the state of the viewer
so that any modification to the viewer would change the
signal.

However, there is a risk that such a measure could
be overcome by programming the modified viewer to send
the "correct" signal regardless of its true state.
Preferably, therefore, the method further requires that
the security server interrogate the viewer using a
number of different tests, which vary with time. In a
particularly preferred form, the tests comprise the use
of randomly generated algorithms which will only return
the correct result if the viewer is unmodified.
Furthermore, failure to respond or an undue delay in
responding can be taken as an indication of viewer
modification.

Thus, preferably the security server is arranged to
cease the supply of keys in the event that viewer
modification is detected and/or if such a viewer
integrity check is not successful.

The most preferred arrangement is for the
algorithms to be transmitted by the security server to
the client in the form of software code (e.g. machine
code). The software code may be termed a "mobile
guard”, and is described further herein.

Such a system of integrity checking is considered
to be an inventive concept ;n its own right and

therefore, viewed from a further aspect, there is

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-11 -

provided a method of transmitting data to a client
comprising the steps of:
(a) transmitting the data to the client,
(b) transmitting software code containing an
algorithm from a security server to the
client, the algorithm having a result that is

a function of the state of the client,

(c) executing the code at the client,

(d) returning the result to the security server,
and

(e) determining whether the result is indicative

of an unmodified viewer.

The data may be a media work that is streamed to
the client, for example over the Internet, or it can be
supplied from a local server, DVD or other media as
discussed above. However, as will be discussed more
fully below, it may be any kind of data that can be
transmitted between server and client. The client may be
a program running on a computer or a hardware device
such as a TV set-top box. The algorithm referred to in
step (b) may be transmitted before any part of the
document has been transmitted, or the whole or part of
the work may be transmitted before the algorithm.
Preferably, the document is not viewed until after step
(d) has been carried out.

Depending on the outcome in step (d), appropriate
action can be taken. Where the work is being streamed,
if the viewer is found to be unmodified, the
transmission of the work and of any keys required to
decrypt it would normally be allowed to continue.
However, there may be a further step of (e) ceasing the
transmission of the work and/or of keys necessary to

decrypt it in the event that the result is not

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-12-

indicative of an unmodified client. Preferably, if no
result is returned from the mobile guard, this is also
deemed to indicate that the client has been modified.

Where the work is being transmitted from a local
source such as a local server, DVD, etc. the action may
be to cease the transmission of the keys needed to
decrypt the document.

Alternatively, other action may be taken if it is
found that the client has been modified. For example,
the transmission could be allowed to continue and
evidence gathered to identify the user. This may be
appropriate if it is desired to take legal or
investigative action, e.g. to detect criminal activity
or to prevent future illicit copying of documents.

As noted above, the action taken in response to the
identification of a modified client may be to cease
transmission of decryption keys. It will therefore be
appreciated that the method may further comprise
dividing the work into a plurality of temporally spaced
segments, which are encrypted using different keys.
These keys may be distributed to the client
sequentially, and preferably as discussed above. Thus,
if their distribution is ceased, the remaining part of
the work cannot be decrypted.

The method is preferably carried out using randomly
generated secret algorithms in the software code (as
mentioned above). These so-called enforcement algorithms
generate a result that is dependent on the state of the
client (e.g. of a viewer program), but the correct
result is not guessable by the user because of the
random aspect. Preferably, they contain a checksum
calculation into which the viewer program’s code is

input. Although the algorithm as a whole is secret, the

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-13 -

checksum calculation may be a known one such as the
Message Digest Algorithm 5 (MD5) (RFC1321

www.fags.org/rfecs/rfcl321.html), which may be used in

combination with randomized input modification.

Input modification refers to the random creation of
a modifier that permutates the data that will be input
into the checksum. In one implementation, when the
software code (referred to here as a "mobile guard") is
generated, a random sequence 1s determined. When the
algorithm is executed, the input code from the viewer is
divided into n blocks of the same size. These are then
shuffled into the above-mentioned random sequence and
the result is then input into the checksum algorithm.
Although in this arrangement the checksum algorithm
itself is public, its result is a function of the order
in which the n blocks are input to it. This order is
known to the security server and so the security server
can determine whether the result returned to it
indicates an intact viewer.

An alternative approach to creating an input-
filtered checksum is to decompose a known checksum
algorithm and reassemble it in a way that reads the
input in a given sequence.

Instead of using input filtering, it is possible to
generate a checksum function from scratch. Thus the
input can be split into 1 words (32 bits) and a function
f is created that reads 1 words from the input and m
words from a variable area that outputs a word. The
function may comprise a random number of assignments
that are performed one after another and the checksum
may be the sum modulo 2** of all the results of the
application of f.

Composing functions has the advantage that almost

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-14 -

all code of the checksum algorithm is randomly created,
leading to more structural diversity in the code. Since
the building blocks are quite small, it allows for
easier interleaving with other algorithms.

The software code also preferably contains
additional algorithms, which may be secret or non-
secret. They are preferably functionally and/or
spatially entangled with the secret algorithm. In this
way the client’s computer/viewer can be forced to carry
out the additional algorithms because if it does not the
secret one will not be implemented. The additional
algorithms may be used, for example, to check the
integrity of viewer hardware.

As the mobile guard is present in the same
environment as the viewer, it is potentially vulnerable
to attacks. A user might try to modify it in order to
circumvent the protection methods it implements.
Automated attacks on it can be prevented by ensuring
that the mobile guards are partly randomly created, as
discussed above. In addition, obfuscation
transformations may be applied to the mobile guards. The
mobile guard may hide the checksum in an opaque data
structure that is interleaved with the checksum in a way
that is specific to the mobile guard. Variables may be
located randomly in the mobile guard’s memory and, in
addition, the mobile guard’s instructions may be split
into blocks, which are also located randomly in memory.
This preferably includes the entry point into the mobile
guard. Indeed, the entry point for one mobile guard can
be provided by the previous one.

If these steps are carried out, a human attack then
becomes necessary to overcome the obfuscation before any

automated attack can commence. Such an approach

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-15 -

inevitably takes a significant amount of time and so
provided the “trust interval” between successive mobile
guards is sufficiently short, it will not be effective.
In other words, because the mobile guards are replaced
frequently, there is insufficient time for this to be
worthwhile. Thus, the obfuscation process protects the
mobile guard from tampering in the time interval before
it is replaced by another mobile guard.

There is a risk of an observer spying on memory
locations in a computer where the decrypted movie data
is stored. If a known memory location is used then the
data could be copied. Therefore, it is undesirable for
it to be practicable to locate code by identifying a
certain memory location (location-based identification)
and preferably, once locations have been used, they
should not be re-used. Also, pattern-based
identification — where code may be sought by looking for
sequences like MPEG headers — should preferably be
prevented too.

The viewer is, therefore, preferably protected by
the mobile guard against its state being determined by
spying. To do this the mobile guard will preferably
further comprise one or more protection algorithms to
protect against such attacks. This it may perform
obfuscation tasks on the client (e.g. on a viewer
program), referred to hereinbelow as "runtime viewer
obfuscation", i.e. obfuscation is carried out on the
viewer as it runs. This changes the memory image of the
running viewer.

This runtime viewer obfuscation is considered a
further inventive concept, and thus from another aspect,
the invéntion provides a method of obfuscating an

executing viewer, comprising randomising the memory

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-16 -

image of the executing viewer.

Runtime obfuscation may comprise one or more of the
following techniques.

Code relocation comprises moving code blocks around
in memory. As the program executes, the mobile guard
will move the code to other parts of memory, which will
then later be executed. This algorithm is preferably
tightly interleaved with the checksum calculation.

Preferably, code relocation is implemented by (1)
identifying all the basic building blocks in the program
and partitioning it into small relocatable segments; (2)
during execution of the mobile guard these segments may
be rearranged in memory to random locations; and (3)
modifying all jump instructions to correspond to the new
code locations. As a result, an attacker will be
confronted by a memory image that changes during the
execution of the mobile guard. Since the location of the
segments is determined by the mobile guard provided by
the security server, it is unpredictable to the attacker
who cannot then rely on the assumption that certain
memory locations contain certain data.

Data relocation comprises moving the data and
changing the instructions that access it. Again, the new
locations can be determined randomly.

Data hiding addresses the problem of location and
pattern-based identification. One approach is to apply a
two-way function to alter the appearance of the data —
effectively to mask it. Preferably, a simple one-time
pad approach is used. It may comprise a newly created
modulo function that creates an index into an array of
random data. The random data may be used to alter the
sensitive data by applying the XOR operator between the

random and sensitive parts. Preferably it is applied

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-17-

between these and part of the address of the sensitive
data.

One approach is to scramble (mask) and unscramble
the data so that sensitive data is stored in scrambled
form, unscrambled when needed, and then re-scrambled or
deleted. However, this does leave a short window when
the data is unscrambled.

However, it is possible to take advantage of stream
processing to delay the unscrambling until the data is
in the processor'’s registry.

Thus, the actual content decoder may be modified to
perform the last decryption operation, as it needs new
data. This means that there will not be any decrypted
data present in main memory at all. It may be provided
using the following steps:

a) The Mobile guard modifies the decoder to

perform the last decryption step as needed;

b) The next encrypted segment is obtained;

c) Media key for the encrypted segment is
obtained;

d) The decryption stream is generated and placed

in random places in memory according to how the decoder
was modified;

e) The decoder will then read a byte or a word
at a time and decrypt them as needed.

Code diversification comprises operations performed
by the mobile guard on the client program during
execution. The operations performed change the code such
that it consists of different instructions without
changing its semantics. This is to prevent pattern-based
identification. One or more of the following steps may
be carried out:

Context-independent instructions may be inserted.

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-18 -

These are instructions whose input context may be shared
with contexts in the program but whose output context is
different from any input context in the program. Since
they cannot alter any input context of the program, it
does not matter what they process.

Context dependent instructions may be replaced by
instructions that perform the same function. It will be
appreciated that this is more difficult to achieve, but
it is also more effective because they cannot be
identified by data-flow analysis.

Functional independent changes that can be made
include changing the order of execution of instructions,
inserting instructions with or without temporary
variables, re-ordering instructions in memory and making
control flow changes.

Functional dependent changes require care in order
to keep the function and side effects intact. They
include replacing instructions with functional
equivalents, introducing identity functions, introducing
operators so that literal values are replaced by
instructions that initialise the value arbitrarily and
perform an operation that corrects the value to match
the original literal. Also, variables can be introduced
so that copies to a destination are replaced by copies
of a newly created variable.

In an embodiment in which a hardware-based viewer
solution is employed, for example a TV set-top box, the
distributor of the viewer controls not only the viewer
software, but also the viewer environment, i.e. the
hardware and operating system. Therefore, a hardware
based viewer can generally be checked by a mobile guard
in a much more complete manner than a purely software

based solution. In this embodiment, the checksum

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-19 -

algorithm in the mobile guard is not restricted to
checking the viewer software but can also check
different aspects of the operating system and the
hardware.

Thus, the system can be used in two ways in
connection with hardware-based viewers. Firstly, it can
be used to replace solutions that are based on expensive
tamper-proof hardware. Secondly, it can provide
additional security measures that come into play in the
event that the tamper-proof hardware should be
compromised.

It will be seen that the invention preferably
relates to the combination of individually encrypted
segments of the document and the use of the "mobile
guard" concept. Thus, viewed from a still further
aspect, the invention provides a method of transmitting
a media work to a client comprising the steps of:

(a) encrypting the work using a sequence of
different keys corresponding to respective
temporally spaced segments of the work,

(b) transmitting software code containing an
algorithm from a security server to the
client, the algorithm having a result that is
a function of the state of the client,

(c) executing the code at the client and returning
the result to the security server,

(d) determining whether the result is indicative
of an unmodified viewer,

(e) transmitting a segment from a server to the
viewer,

(£) in the event that the result is indicative of
an unmodified viewer, securely streaming a key

corresponding to the transmitted segment from

WO 2007/007112

10

15

20

25

30

PCT/GB2006/002619

-20 -

a secure remote server to the viewer,

(g) decrypting the segment using the key.

It will be appreciated that although the steps may
be executed in the order in which they are given above,
at least some of the steps may be executed in a
different order, or concurrently. For example, step (e)
may be carried out concurrently with steps (b), (c), (d)
or (f), such that the segments are transported before,
with or after the keys. However the keys must be
available before the segment is decrypted. '

In one embodiment, the method comprises a further
step (h) wherein steps (b) to (g) are repeated.

However, generally, the transmitted software code
has a certain 'lifetime' or ‘trust interval’, for
example less than 30 seconds. On the other hand,
segments are generally transmitted more frequently than
the lifetime of the software code, for example one per
second. As such, new software code does not need to be
transmitted each time a segment is transmitted, but will
generally only need to be transmitted once the lifetime
of the present software code has expired. Thus, steps
(e) to (g) will generally be repeated until new software
code is required, when step (b) will be repeated. In
this way one piece of software code (mobile guard)
protects the delivery of many keys.

Although the execution of the code and
determination of whether the result is indicative of an
unmodified viewer (steps c¢ and d) can be done more than
once for each piece of software code, generally, it will
only be necessary to do it once during the lifetime of
the software code. As such, steps (c) and (d) will
generally only be repeated after step (b) has been

repeated.

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

221 -

vViewed from a still further aspect, the invention
provides a method of transmitting a media work to a
client comprising the steps of:

(a) encrypting the work using a sequence of
different keys corresponding to respective
temporally spaced segments of the work,

(b) transmitting software code containing an
algorithm from a security server to the client,
the algorithm having a result that is a
function of the state of the client,

(c) executing the code at the client and returning
the result to the security server,

(d) determining whether the result is indicative of
an unmodified viewer,

and further comprising the steps of:

(e) transmitting a segment from a server to the
viewer,

(f) securely streaming a key corresponding to the
transmitted segment from a secure remote server
to the viewer,

(g) decrypting the segment using the obtained media
key,

(h) if step (d) indicates a modified viewer,
preventing further keys from being transmitted,
otherwise repeating steps (e) to (g).

Preferably, the method further comprises the step
(1) of repeating steps (b) to (d).

It will be appreciated that although the steps may
be executed in the order in which they are given above,
at least some of the steps may be executed in a
different order, or concurrently. In fact, some steps
may be carried out more times than others.

Steps (b) to (d) can be carried out independently

WO 2007/007112

10

15

20

25

30

-22 .

of steps (e) to (h), and are preferably carried out
concurrently therewith. As mentioned previously, the
software code generally has a lifetime that will
encompass the sending of many segments and keys. As
such, the repetition of steps (b) to (d) (mentioned in
step (i)) will generally be carried out less frequently
than the repetition of steps (e) to (g) (mentioned in
step (h)). Preferably, step (i) is only carried out if
the lifetime of the software code has expired.

The invention also extends to apparatus configured
to operate as discussed above, including a client
configured to receive such streamed media and also the
server arrangement, both in combination and separately.
Thus, from a still further aspect it may provide a

system for delivering a media work to a client

comprising:

(a) means for transmitting the work to the
client,

(b) means for transmitting software code
containing an algorithm from a security
server to the client, the algorithm having a
result that is a function of the state of the
client, and

(c) means associated with the security server for

receiving the result and determining whether
the result is indicative of an unmodified
client.

Another aspect provides a client, e.g. a viewer for
playing a work such as a movie, the client being
arranged to: receive the work and to receive software
code containing an algorithm from a remote source; to
execute the algorithm on the client; and to return a

result of the algorithm to the remote source, thereby

PCT/GB2006/002619

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-23 .

demonstrating the integrity of the client to the remote
source and enabling the playing of the document.

The client preferably enables the playing of the
work by decrypting it, or decrypting a segment of it
using a key supplied to it by the remote source.
Preferably the client is configured to request a
sequence of keys and uses the keys in sequence to
decrypt consecutive sections of the work, which are then
played as a continuous presentation. Preferably, as
discussed above, the provision of keys is dependent on
the client demonstrating its integrity to the source.

The invention also extends to a combination of a
system for delivering works as described above, in
combination with a client, whereby documents are
delivered to the client and can only be played if the
viewer demonstrates its integrity to the source.

It will be seen that, in contrast to prior art
software solutions, the present invention does not rely
on secrets that are contained in the data that is made
available to the user, whether in the program code or in
the media documents. It allows the early detection of
copy attempts and allows the content provider to
initiate counter-measures before a substantial part of
the media document can be copied.

It has also been recognized that the concept of
checking system integrity using a mobile guard has other
applications beyond the transmission of documents (as
defined) to a client. It can be used generally to verify
the integrity and authenticity of code that is run in
uncontrolled environments that perform calculations on
input data. It can be used to prevent a party from
changing the way that data is processed without this

being detected. Thus, the discussion above in relation

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

224 -

to a media viewer can be applied to any client program.
Applications include games, banking, audio, etc.

Thus, viewed from a still further aspect, the
invention comprises transmitting software code (such as
a mobile guard) from a secure source to a client
computer running a client program, the software code
comprising an algorithm having a result that is
dependent on the state of the client program, executing
the software code and returning the result to the
source, whereby the source can determine the integrity
of the client program. The inﬁention also extends to
apparatus arranged to operate in accordance with such a
method.

This aspect of the invention may employ any or all
of the preferred features discussed above, in particular
concerning the mobile guard. References above to media
works apply likewise to temporal payload data sent
between server and client. Thus, the service provider
can enforce the cooperation of the user'’s client in the
same manner and can withhold further payload data if
either cooperation ceases or tampering is detected.

Thus, it will be appreciated that any client that
is in communication with a server can have its integrity
checked on an on-going basis. The invention therefore
allows a client that operates in an uncontrolled
environment to be trusted. If it transpires that the
integrity of a client has been compromised then action
can be taken. For example, communication with the client
could be terminated, the provision of decryption keys
suspended (as with the media streaming applications
discussed above) and/or steps taken to gather evidence
(e.g. in the case of suspected fraudulent attacks on

banking systems).

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-25 .

The invention is useful in the context of
distributed calculations where, although confidentiality
and dishonesty are not usually issues, the correct
execution of software is. Thus, the mobile guard may be
used to protect against intentional or unintentional
modification of the client — both its software and, if
required, hardware. Thus, the instance that launches the
distributed computing job can use mobile guards to check
the correct operation of the clients at remote nodes
that carry out calculations.

In the context of on-line gaming, modification of
client programs can enable cheating which, if
uncontrolled could cause customer dissatisfaction and
lead to loss of revenue. The data concerned is not
confidential and there is little point in recording it
(as with a media work), so it is normally sufficient to
verify only the integrity of the client software. Where
the game operated on a client-server basis, mobile
guards can be applied as discussed previously. If the
user does not allow cooperation with the mobile guard
then he can be refused updates on the global game-state.

In the case of home banking, mobile guards can be
used to make sure that third parties do not access
confidential data. While a normal user will not normally
be interested in modifying his client program, he may be
the victim of a man-in-the-middle attack. The banking
server could therefore use a mobile guard to verify the
integrity and authenticity of the home banking client
and it may also contain the public key of the banking
server. This public key is used to encrypt all data that
is passed from the home banking client to the banking
server and since the integrity of the mobile guard is

guaranteed, the user can be sure that his data is kept

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-26 -

confidential.

The invention extends to apparatuses configured to
employ the methods described above and to software
products containing instructions to cause computers to
operate in such manner. It also extends to server-client
combinations and/or networks where data is supplied to
the client in accordance with the aspects of the
invention discussed above.

Certain embodiments of the invention will now be
described, by way of example only, with reference to the
accompanying drawings:

Figure 1 is a schematic drawing of a prior art
media streaming system as described above;

Figure 2 is a schematic overview of a first
embodiment of the invention;

Figure 3 is a schematic diagram showing the
components of a randomly generated checksum algorithm as
used in the embodiment;

Figure 4 is a flow chart showing the operation of
the embodiment; and

Figure 5 is a flow chart of the server algorithm
employed in the embodiment.

As may be seen from Figure 2, a client is provided
with a viewer 10 which can be used to view media (e.g. a
movie) that is streamed from a streaming server 11 or
alternatively from a local storage media, e.g. CD 12.
Each of these components of the system is outside the
trusted environment 13. Within the trusted environment
is the unencrypted movie 14, a protection tool 15 to
generate a protected movie 16 and a security server 17.

As in the prior art system illustrated in Figure 1,
the content owner protects the encoded media document,

before it is delivered to the client. However, instead

WO 2007/007112

10

15

20

25

30

-27 -

of using a single media key, protection tool 15 encrypts
the movie with a very large number (thousands) of media
keys 20. This process yields an encrypted, encoded
media, the protected movie 16.

The media keys 20 are distributed so that they are
spread out in time; during presentation of a media
resource, they are securely streamed to the client one
at a time at intervals on request as will be described
below. The media itself is streamed separately. Each key
comprises only a few bytes (about sixteen) so the
resources needed to stream the keys create a very low
overhead.

Each key can be used to decrypt only about a
second, or at most a few seconds, of the movie so that
obtaining only a single key is of little value.

Tn the first embodiment of the invention, the
protected movie is delivered to the client in form of a
data stream via path A, streaming server 11 and media
stream 18. In further embodiments, tangible media, e.g.
a CD or DVD 12 are used.

The viewer 10 is executed on the client’s host and
is arranged to receive the protected movie 16 from the
streaming server 11 via media stream 18 (or from the
CD/DVD in other embodiments). During the presentation
process, the viewer 10 communicates with a security
server 17 to download the necessary media keys 20 to
decrypt the protected movie 16.

In addition, the viewer 10 also downloads pieces of
code called mobile guards 19 at regular intervals of
about 30 seconds. These each have embedded within them
secret information in the form of an algorithm that is
created in the security server 17. The execution of

these algorithms is necessary to make use of the

PCT/GB2006/002619

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-28 -

streamed data 18. When each mobile guard 19 is
transferred into the viewer it performs calculations
determined by the secret algorithm and returns the
result to the security server. The mobile guard is
structured in such a way that the result of the
calculation is only correct if the viewer has not been
tampered with. The result of the secret algorithm
contains a checksum that proves the integrity of the
viewer to the security server.

The mobile guard can also have other additional
algorithms functionally and spatially entangled with the
secret algorithm. In this way the client’s
computer/viewer can be forced to carry out the
additional algorithms because if it does not the secret
one will not be implemented. In this way, the viewer may
be fully checked.

If the result returned to the security server 17 by
the mobile guard does not match the expected result, the
security server stops the distribution of the media keys
20 to the viewer. The same happens if the viewer 10
refuses a mobile guard or if the correct result does not
arrive within a certain time. The key exchange protocol
will be explained in more detail later.

The secret algorithms are based on checksum
calculations that have a high probability of detecting
changes in the checked data (i.e. the viewer code). As
may be seen from figure 3, a randomly generated checksum
algorithm 21 (for use in a mobile guard) uses a checksum
calculation divided into two steps: input modification
22, which is randomized, and a known checksum
calculation 23 which is performed on the modified input.
These steps together make the randomized and secret

checksum algorithm.

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-29 -

Input modification refers to the random creation of
a modifier that permutates the data that will be input
into checksum calculation 23. When a mobile guard is
generated by the security server, a random sequence is
determined. When the checksum algorithm 21 is executed
by the viewer, the input Program Code from the viewer is
divided into n blocks of the same size. These are then
shuffled into the above-mentioned random sequence in the
Input Modification stage 22. The result of this is then
input into the Checksum Calculation stage 23. This uses
the known Message Digest Algorithm (MD5). The checksum
calculation is then carried out and its result returned
to the security server.

It will be appreciated that although the checksum
algorithm itself is public, its result is a function of
the order in which the n blocks are input to it. This
order i1s known to the security server and so the
security server can determine whether the result
returned to it indicates an intact viewer.

The mobile guard needs to be protected against
tampering and against the spying out of its inner
workings. The first aspect of the protection of the
mobile guard is to randomly create new versions each
time a viewer needs to be checked. Secondly the lifetime
of the mobile guard in the viewer environment when it is
being used is short (less than thirty seconds). Although
human (i.e. intelligent, as opposed to automated)
attacks on the mobile guard are theoretically possible,
they would take a significant amount of time. By having
an expiration time of some seconds for each mobile
guard, human-assisted attacks therefore become virtually
impossible because the mobile guard is redundant long

before any attack can be completed.

WO 2007/007112 PCT/GB2006/002619

-30 -

The mobile guard is obfuscated, as previously
discussed, to defend against an automated attack.
The mobile guard randomises the memory image of the
running viewer, referred to herein as 'runtime viewer
5 obfuscation'. Code and data areas of the viewer are
swapped and the stack is scrambled. This is discussed
more fully below.
The effect of runtime viewer obfuscation is to make
sure that only intellectual attacks can be performed on
10 the runtime image of the viewer because it randomises
and thereby hides the memory locations of the decrypted,
encoded stream,
In order to randomize the location of memory
accesses, the mobile guard modifies the structure of the
15 viewer code and the data area. The code and data area
are. split into logical segments. Care is taken that
segment borders are not located inside opcodes.
After a newly downloaded mobile guard receives
control and before starting with the decryption of the
20 stream, the mobile guard relocates the segments to new
positions. This process includes the modification of
code segments — similar to relocation performed by
dynamic linkers — to make sure that:
1. Jump- and Branch-instructions are transferring
25 control to the relocated positions.
2. Read- and Write-instruction are accessing the
data at the relocated positions.
After relocating the segments, the mobile guard
performs its operation until it is replaced by the next
30 mobile guard.
The mobile guard needs to know the entry points of
certain functions in the viewer. The new positions of

the segments are known by the security server and

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-31 -

provided to the mobile guard. In this way there is no
need to transfer information between two mobile guards
on the client side.

With regard to stack scrambling, the stack contains
the return addresses to prior function calls. This can
be used to either spy out control flow or to alter the
control flow of the viewer by changing a return address
on the stack. In such an attack, when the program is
about to jump back to the calling function, it could
instead be transferring control to possible hostile
code.

To protect the stack against such an attack, a
method is used that gradually scrambles the stack as new
return addresses are added to it. The checked code will,
after a function call, transfer control to a scramble
function in the mobile guard, which scrambles the new
return address on the stack before returning control
back to the calling function. To unscramble the stack a
corresponding unscramble function in the mobile guard is
called before using any return address.

The implementation of the scramble function takes
advantage of the fact that mobile guards are created as
needed in order to check the viewer. This enables a
unique scramble and unscramble function to be created in
each mobile guard. The scramble function basically
consists of a set of random data created by the security
server and contained in the mobile guard that is XORed
with the return addresses on the stack of the viewer. To
select which part of the random data to use, a simple
mathematical function is applied to compute an index
into the set of random data.

The viewer is therefore protected by the mobile

guard against its state (including the position of the

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

-32 -

control flow and variable content) being determined by
spying (as discussed previously).

The media keys are transmitted at a rate of
approximately one per second to the viewer. This is done
using a key exchange protocol that makes use of a random
data generator and the public key of the security
server, which is known to the viewer. When it is
necessary to obtain the next media key the viewer 10
generates sixteen bytes of random data and encrypts them
with the public key of the security server 17. The
encrypted data is then included in a request for the
key, which is sent to the security server.

The security server examines the request and only
approves it if the mobile guard indicates that
everything is correct in the viewer. If the mobile guard
indicates that everything is fine, the security server
extracts the random data, XOR’s it with the requested
key and sends the result back to the viewer.

When the viewer receives the result, it extracts
the requested key from the result by XORing it with the
same random data that was provided in the original
request for the key.

This protocol provides a way to decrypt the
encrypted, encoded media stream, without any secret keys
hidden in the source code of the viewer. The lifetime of
a key is a only few seconds, which prevents the secure
streaming process from constituting a single point of
failure in the event of the extraction of one or a few
secret keys.

It will be appreciated that there are effectively
two separate threads that are carried out by the client
and these are summarised in the flow chart of Figure 4.

The first thread is verification. The client

WO 2007/007112 PCT/GB2006/002619

10

15

20

-33 -

receives a mobile guard, which then verifies the client
program. Once verification has been confirmed, a number
n of keys can be received during the following trust
interval until the mobile guard expires. The thread must
then be repeated with a new mobile guard.

Running in parallel to this is the presentation
thread. For each key, a segment of the media stream is
received decrypted and presented.

Figure 5 summarises the operation of the server. On
receiving a key request, it sends a key to the client
if, and only if, the mobile guard is still alive (i.e.
if it is still within the trust interval of that mobile
guard). If the mobile guard has expired, a new mobile
guard is sent to the client and this is used to verify
the client. If the result is incorrect, the client is
deemed to have been tampered with and key transmission
is then stopped. If the result is satisfactory, then a
new trust interval commences and during it the keys are

sent to the client.

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

35

-30 -

Claims

1. A method of transmitting a media work to a client
comprising the steps of:
(a) encrypting the work using a sequence of
different keys corresponding to respective
temporally spaced segments of the work,
(b) securely transmitting a first key from a secure
server to the client and transmitting the
corresponding segment from a server to the client,
(¢) in the client, using the first key to decrypt
the corresponding segment,
(d) in the viewer, presenting the decrypted
portion, and
(E) repeating steps (b) to (d) in respect of
further segments and keys.

2. A method as claimed in claim 1, wherein the keys
are cryptographically independent of each other such
that no key can be used to decrypt more than one

segment.

3. A method as claimed in claim 1 or 2, wherein keys
are only supplied following a check that the client is

entitled to receive the document.
4. A method as claimed in claim 1, 2 or 3, wherein the
keys are used to enforce co-operation between the secure

server and the client.

5. A method as claimed in claim wherein each key

corresponds to a segment of pre-determined length.

6. A method as claimed in any preceding claim, wherein

the secure server is remote from the client.

7. A method as claimed in any preceding claim, wherein

SUBSTITUTE SHEET (RULE 26)

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

35

-31 -

the keys are transmitted using a key exchange protocol
that makes use of a random data generator and the public
key of the secure server, the public key being known to
the client.

8. A method as claimed in any preceding claim, wherein
each key must be requested individually by the client.

9. A method as claimed in any preceding claim, further
comprising the step of checking the integrity of the
client to ensure that it has not been tampered with.

10. A method as claimed in claim 9, wherein the
security server is arranged to cease the supply of keys
in the event that client modification is detected and/or
if the client integrity check is not successful.

11. A method as claimed in claim 9 or 10 wherein the
integrity of the client is checked by a mobile guard (as
herein defined).

12. A method as claimed in claim 11, wherein the each
key is transmitted only during the trust interval of a
mobile guard that has successfully verified the
integrity of the client.

13. A method as claimed in claim 9, 10 or 11,
comprising the use of randomly generated algorithms
which will only return the correct result if the client
is unmodified.

14. A method as claimed in any preceding claim, wherein
the segments are transmitted independently of the
corresponding keys such that transmission may continue
even if the supply of keys is ceased.

15. A method as claimed in any preceding claim wherein

SUBSTITUTE SHEET (RULE 26)

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

35

-32 -
the media work is a recording.

16. A method as claimed in any of claims 1 to 14,

wherein the media work is a live performance.

17. A method as claimed in any preceding claim wherein
the media work is streamed to the client from a remote

server.

18. A method of transmitting data to a client
comprising the steps of:

(a) transmitting the data to the client,

(b) transmitting software code containing an
algorithm from a security server to the client, the
algorithm having a result that is a function of the
state of the client,

(c) executing the code at the client and returning
the result to the security server, and

(d) determining whether the result is indicative of

an unmodified viewer.

19. A method as claimed in claim 18, wherein the data

is a media work.

20. A method as claimed in claim 18 or 19, wherein the
client is prevented from using the data until after step
(d) has been carried out.

21. A method as claimed in claim 18, 19 or 20, further
comprising the step of (e) éeasing the tranémission of
the data and/or of keys necessary to decrypt the data in
the event that the result is not indicative of an
unmodified viewer.

22. A method as claimed in any of claims 18 to 21,

wherein the code contains a checksum calculation into

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 2007/007112 PCT/GB2006/002619

-33.

which the client’s program code and/or memory image is
input.

23. A method as claimed in claim 22, wherein the
checksum calculation includes in its input a random
number.

24. A method as claimed in claim 23, wherein the client
encrypts the random number with a public key of the
security server; the encrypted random number is
transmitted to the security server with a request for a
media key and the calculated checksum; the security
server decrypts the random number and uses it to encrypt
the media key; the security server uses the random
number to update its own calculation of the checksum;
and the security server then compares the two values of
the checksum.

25. A method as claimed in claim 24, wherein if, and
only if, the two values are equal the encrypted media
key is transmitted to the client such that the client
may decrypt the media key.

26. A method as claimed in claim 25, wherein, if the
two values are not egual, it is determined that the
client viewer has been tampered with

27. A method as claimed in any of claims 18 to 26,
wherein the code performs obfuscation task(s) on the

viewer.

28. A method as claimed in claim 27, wherein the
obfuscation task(s) comprise randomising the memory
image of the executing viewer.

29. A method as claimed in claim 27 wherein the
obfuscation tasks include one or more of the following:

SUBSTITUTE SHEET (RULE 26)

WO 2007/007112

10

15

20

25

30

35

PCT/GB2006/002619

-34 -

code relocation, code diversification, data relocation,

and data hiding, all as defined herein.

30. A method as claimed in any of claims 18 to 29,
wherein the mobile guard is obfuscated.

31. A method of obfuscating an executing viewer,
comprising randomising the memory image of the executing

viewer.

32. A method of transmitting a media work to a client
comprising the steps of: '

(a) encrypting the work using a sequence of
different keys corresponding to respective
temporally spaced segments of the work,

(b) transmitting software code containing an
algorithm from a security server to the
client, the algorithm having a result that is
a function of the state of the client,

(c) executing the code at the client and returning
the result to the security server,

(d) determining whether the result is indicative
of an unmodified client,

(e) transmitting a segment from a server to the
client,

(f) in the event that the result is indicative of
an unmodified client, securely streaming a key
corresponding to the transmitted segment from
a secure remote server to the client,

(g) decrypting the segment using the key.

33. A method as claimed in claim 32, wherein each
algorithm-containing software code has an assoclated
trust interval and a plurality of keys are streamed to
the client during that trust interval.

34. A method as claimed in claim 32 or 33, further

SUBSTITUTE SHEET (RULE 26)

WO 2007/007112 PCT/GB2006/002619

10

15

20

25

30

35

-35-

comprising a further step (h) wherein steps (b) to (g)
are repeated.

35. A method of transmitting a media work to a client
comprising the steps of:

(a) encrypting the work using a sequence of
different keys corresponding to respective
temporally spaced segments of the document,

(b) transmitting software code containing an
algorithm from a security server to the
client, the algorithm having a result that is
a function of the state of the client,

(c) executing the code at the client and returning
the result to the security server,

(d) determining whether the result is indicative
of an unmodified client,

and further comprising the steps of:

(e) transmitting a Segment from a server to the
client,

(£) securely streaming a key corresponding to the
transmitted segment from a secure remote
server to the client,

(g) decrypting the segment using the obtained
media key,

(h) if step (d) indicates a modified client,
preventing further keys from being
transmitted, otherwise repeating steps (e) to
(g).

36. A method as claimed in claim 35, further comprising'
the step (i) of repeating steps (b) to (4).

37. A method of checking the integrity of a client
program comprising the steps of transmitting software
code from a secure source to a client computer running a
client program, the software code comprising an
algorithm that is dependent on the state of the client

SUBSTITUTE SHEET (RULE 26)

10

WO 2007/007112 PCT/GB2006/002619

-36 -

program, executing the software code and returning the
result to the source, whereby the source can determine
the integrity of the client program.

38. A method as claimed in claim 37, wherein the client
program is used in one of the following: Internet

banking, on-line gaming, and distributed calculation.

39. BAn apparatus configured to operate according to the
method of any preceding claim.

SUBSTITUTE SHEET (RULE 26)

WO 2007/007112 PCT/GB2006/002619

173

Startup phase /

__
-,

environment

—
-~
c
2]
~—
@
Q
=
o
<.
o
©

E —— i I 42

? nse1 M Ticense Encryption t(io |

(1 lice E v '

. W P L SCTVeT (License) 5
Viewer ; 2 ™7

N e e k= e 0 o b 02 e e el T o e

5~ Streaming
server

Streaming phase

'@,

Viewer
(
6

edia stream | | Streaming server

{ \
¢ é
FIG. 1

-

]
1

\
—
w

17 20

19 -) }/Ke%l Protection tool f~15

- ——-—.‘-”

Key exchange - :
& ‘\}l’obi\e guard | Security Protected) 1. .
Viewer | ownload server Movie :
(i — —— NG
10 Streaming cD
_server C) 1o

SUBSTITUTE SHEET (RULE 26)

WO 2007/007112

Randomly Changed

Secret
Checksum Algorithm

Part

213

(Checksum)

A

PCT/GB2006/002619

Known Checksum
Calculation

423

Input Modification 1

22

A

b

Program Code

Thread 1: Verification

Y

Receive mobile

guard
Verify client
program
Repeat Y
n'times Securely

receive keys

Y

Expiration of
mobile guard

SUBSTITUTE SHEET (RULE 26)

FIG. 3

Key Queue

——)

FIG. 4

Thread 2: Presentation

\ 4

Receive
segment

A 4

Decrypt
segment

Y

Present
segment

WO 2007/007112 PCT/GB2006/002619
3/3
Server Algorithm
Y
Receive key
request
Y
Send key

Correct

Repeat n times
for n keys

Expired Check mobile

guard lifetime

Send new
mobile guard

OK

Verify
checksum

Incorrect

FIG. 5

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings

