VAPOR PROOF COVER OR FREEZER DOOR ASSEMBLY

Filed July 23, 1958

FIG. 1

FIG. 2

FIG. 3

INVENTOR

ROBERT L. WALKER

VICTOR J. EVANS & CO.

ATTORNEYS
The present invention relates to a door assembly, and more particularly to a door assembly for a cooler or freezer for containing foodstuffs.

The object of the invention is to provide a door assembly which is vapor proof and easy to keep clean as well as being light in weight.

Another object of the invention is to provide a vapor proof cooler or freezer door assembly which is moisture proof so that it will not rot or be subject to mold problems, and which cannot sag or distort of the parts is minimized or prevented.

Further objects and advantages of my invention will become apparent as the following description proceeds, and the features of novelty which characterize my invention will be pointed out with particularity in the claim appended and forming a part of this specification.

In the drawings, of which there is one sheet,

Figure 1 is a perspective view showing the door in open position.

Figure 2 is a fragmentary perspective view illustrating certain constructional details of the assembly.

Figure 3 is an enlarged sectional view showing the door in closed position.

Referring in detail to the drawings, the numeral 10 indicates a body member which includes an outer wall member 11, and the body member is hollow and has insulation 12 therein. The wall member 11 is shaped to include a first portion 13, a right angularly arranged second portion 14, and an inclined angularly arranged third portion 15, the third portion 15 terminating in a fourth portion 16. The wall member 11 is further provided with a fifth portion 17 which is arranged in spaced parallel relation with respect to the portion 16.

The numeral 18 indicates a strip, Figure 3. The strip 18 is shaped to include a first section 19 which is contiguous to the first portion 13, and the strip 18 further includes a second section 20 which is arranged at right angles with respect to the first section 19. An inclined third section 21 extends from the second section 20, and the third section 21 terminates in an angularly arranged fourth section 22. A layer of material such as plastic material 23 surrounds the strip 18.

The numeral 24 indicates a frame member which includes a base piece 25 as well as a right angularly arranged end piece 26. The body member 10 is provided with an enlarged opening 27, and a door 28 is mounted for movement into and out of the opened and closed relation with respect to the opening 27. A latch 29 may be provided for retaining the door 28 in locked or closed position, and a handle 30 is provided for use in opening the door 28.

The door 28 includes a wall piece 31 which embodies a first portion 32, a right angularly arranged second portion 33, and an inclined third portion 34. The portion 34 terminates in a lip 35. As shown in Figure 3 the wall piece 31 further includes a portion 36. As shown in Figure 3, plate members 37 and 38 are provided, and gaskets 39 and 40 are carried by the door for helping to provide a tight joint or seal. The door 28 is hollow and has insulation 41 therein, and a layer of plastic 42 surrounds the door 28.

Securing elements 43 may be provided for retaining parts of the door connected together.

From the foregoing, it is apparent that there has been provided a door assembly which is constructed so that a tight joint or seal is provided between the door and frame so that with such a door assembly used in a desired location such as on a cooler, or freezer or refrigerator, it will be seen that leakage of air past the door when the door is in closed position will be prevented or minimized.

In Figure 1 there is illustrated a door and casing while in Figure 3 there is illustrated a cross section of the door in closed position.

The door is adapted to be constructed of a molded Fiberglas shell or other moldable materials and may consist of several parts which form a cavity varying in depth depending upon whether the door is for high or low temperature coolers. The space within the door may be filled with a suitable insulation such as polystyrene insulation as indicated by the numeral 41, and sheets of laminated wood such as the sheeted or plates 37 and 38 may be provided for giving the door the required amount of rigidity as well as providing a means for securing hinges and other hardware. When the parts are properly assembled and sealed, the entire door is vapor proof. The outer edge of the door extends outward to provide a seal for the gasket 40 which engages the door casing as shown in Figure 3.

The door casing or body member 10 includes the wall member 11 which may be made of steel to provide the necessary rigidity, and the door may be encased in Fiberglas or other moldable material. With the parts arranged as shown in the drawings, when the door is in closed position, there will be a complete seal against air or moisture and the door fits snugly against the casing when the door is closed. The gasket 39 fits in an offset portion between the door and casing so that the pair of gaskets 39 and 40 provide a double gasket seal.

The member 24 may be made of Fiberglas and has an angled formation to fit the inside of the door.

Some of the advantages of the Fiberglas cooler and freezer door assembly of the present invention are that it is vapor proof, easy to keep clean, light in weight and since it is moisture proof, it cannot rot and is not subject to mold problems. Furthermore, the technique of assembly, namely, adhering of Fiberglas or other moldable materials to wood or polystyrene to wood, or to Fiberglas true platen produces a solid mass that will not deflect, or other moldable materials under pressure over a flat warp or distort.

The member 24 is of angular formation. A bottom member connecting the lower ends of the portion 26 in Figure 1, may be composed of angle iron designed to be embedded in the cement floor, and if made of Fiberglas it would be beveled to raise ¾" from the outer edge to the center portion which would lie under the closed door. This ¾" bevel permits the door gasket to swing free when the door is opened.

Thus, according to the present invention it will be seen that there has been provided a door assembly which is light in weight and warp-proof. The assembly can be used as a walk-in door and can be sheathed in molded Fiberglas insulated with expanded polyurethane and sealed so that any possibility of moisture absorption is locked out. The weight thereof is one-fourth to one-third that of conventional wood doors and it cannot rot, corrode, warp or wear and it can be provided in white or color which is molded in and the door never needs painting and the assembly is priced competitively with wood and steel.
Some of the advantages of the door assembly of the present invention are as follows. When used as a refrigerator door, the molded Fiberglas exterior locks out moisture permanently, and the rigidity of material guarantees against any warpage. Weight is reduced considerably as compared to most wood doors, and the Fiberglas exterior is highly resistant to impact and will not rot or corrode. The gleaming surface can always be kept clean and bright. The insulation of expanded polyurethane is sealed in and can never lose its insulating properties.

The exterior of the refrigerator door is of reinforced glass such as Fiberglas construction. The front and back sections are molded separately in one piece and they are then permanently bonded together in a moisture-proof, rigid shell. Plywood or Masonite may be molded in the Fiberglas and also steel back-up plates to which hardware is fastened can be molded in. Through an opening in the top of the shell, expanded polyurethane insulation is foamed until the door is full and the foaming and expansion of this product insures that the door is tightly filled with insulation. The opening in the top is then filled with Fiberglas and the door is complete except for hardware, and it is perfectly rigid and will not dent, crack or break under any normal conditions.

Various types of sills are available and if desired a Fiberglas threshold, beveled, can be furnished to be placed flush in the flooring. A removable gasket can also be used. Furthermore, standard hardware is adapted to be employed and because of the light weight and absolute rigidity of the door of the present invention, only two hinges are needed on most sizes and latching is required at only one point and an inside opening safety release can be furnished as standard equipment.

The doors can be arranged to swing from either the right or left and a frame may be provided with the door. Minor changes in shape, size and rearrangement of details within the field of invention claimed may be resorted to in actual practice, if desired.

I claim:

In a device of the character described, a body member provided with an enlarged opening, a frame member mounted in the opening in said body member in fixed relation thereto, said body member including a wall member, said body member being hollow and having insulation therein, said wall member being shaped to include a first portion, a second portion arranged at right angles to said first portion, a third portion arranged angularly with respect to said second portion, a fourth portion arranged angularly with respect to said third portion, a fifth portion which is arranged in spaced parallel relation with respect to said fourth portion, a strip including a first section secured to the first portion of said wall member, a second section arranged at right angles to said first section and secured to the second portion of said wall member, said second section terminating in an angularly arranged third section, said third section terminating in a fourth section which is secured to the fourth portion of said wall member, a layer of material surrounding said strip, a frame member including a base piece that is secured to the fifth portion of said wall member, said frame member further including a right angularly arranged end piece that is parallel with the first portion of said wall member and which is arranged in contact with the layer of material surrounding the said strip; and a door hingedly mounted on said wall member for selectively closing said opening and said door including a wall piece that is disposed in complementary relation with the opening in said body member, said wall piece embodying a first portion, a right angularly arranged second portion extending from said first portion, an inclined third portion extending from said second portion, a lip extending from the third portion of said wall piece, said wall piece further including a fourth portion extending at right angles from and in spaced parallel relation to said lip, parallel plate members one of which is secured to the inner surface of the fourth portion of said wall piece and the other plate member being secured to said lip, gaskets carried by said door in sealing engagement with the body member when the door is in closed position, insulation within said door, and a layer of plastic surrounding said door.

References Cited in the file of this patent

UNITED STATES PATENTS

2,076,821 Lipman Apr. 13, 1937
2,287,622 King June 23, 1942
2,559,087 Phillip July 3, 1951
2,756,468 Bright July 31, 1956