(12) STANDARD PATENT (11) Application No. AU 2008214054 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(43)

(44)

(71)

(72)

(74)

(56)

Title
System and method for testing autoverification rules

International Patent Classification(s)
GOG6F 19/00 (2006.01)

Application No: 2008214054 (22) Date of Filing: 2008.01.31
WIPO No: WO08/097794

Priority Data

Number (32) Date (33) Country
11/701,708 2007.02.02 us
Publication Date: 2008.08.14

Accepted Journal Date: 2013.03.14

Applicant(s)
Beckman Coulter, Inc.

Inventor(s)
Payne, Kathleen M.;Parkhurst, Jason

Agent / Attorney
Pizzeys, PO Box 291, WODEN, ACT, 2606

Related Art
US 6426759
US 7337432

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 August 2008 (14.08.2008)

AP
‘fﬂ}‘l‘)| 00 0O R O

(10) International Publication Number

WO 2008/097794 A3

(51) International Patent Classification:
GOG6F 19/00 (2006.01)

(21) International Application Number:
PCT/US2008/052568

(22) International Filing Date: 31 January 2008 (31.01.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/701,708 2 February 2007 (02.02.2007) US

(71) Applicant (for all designated States except US): BECK-
MAN COULTER, INC. [US/US]; 4300 N. Harbor Blvd.,

Mail Code A-42-c, Fullerton, CA 92834 (US).

(72) Inventors: PARKHURST, Jason; 13616 Stanford Drive,
Westfield, IN 46074 (US). PAYNE, Kathleen, M.; 2741

Ambherst Street, Indianapolis, IN 46268 (US).

(74) Agent: WONG, Charles, C.; Beckman Coulter, Inc., 4300
N. Harbor Blvd., Mail Code A-42-c, Fullerton, CA 92834
(US).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(88) Date of publication of the international search report:
25 September 2008

(54) Title: SYSTEM AND METHOD FOR TESTING AUTOVERIFICATION RULES

08/097794 A3 I NN OO0 OO

O (Sewn) Rue Edlar [NEE
[Oe R soe DY kv Aozion (T081 led & ot Fp ko
[Garur) |
5
" et - Qyfepice M“lyﬁrﬁm ‘ge' g ,@,
250
ol
246
L) 1
Rus Cracs for CA (Seun) E)m Owd < 0t et @ Oorogegrcs (@) Okts 290e | Misang P O 0 of 14]
28 7 nh checis (et
128
MUW)] [} Somora.
2 T 7
317 Poga | oo st 244
(S g [0 [oen]] A 7] Gl et o, crd v oot e et 220 \ 942
[@] Agprovee [0 [Tecn [} 51 75 it remt Yo, ond roun doms rot cnfem U resck)
2] [} %ol ek P, v v doe ot corfem U ot
Qi 4 Y]) o realt Wb, o e cafimo B reait
240
| A\ For bis check the nle deboviar {ar CA (Sewn) has changed Clck “Asgrove” 1 the cumun. rve behoviar for CA (Serum) is oh.
FIG. 14

(57) Abstract: A method of testing an autoverification rule comprises providing a rule check including a example test result. After
the rule check is provided, the autoverification rule is automatically performed on the rule check. Performance of the autoverification

& rule on the rule check provides a rule check output. It is then determined whether the rule check output is an expected output. A
€\ system for testing the autoverification rules comprises a graphical user interface configured to display an autoverification rule and

WO

receive the rule check for the autoverification rule. The system further includes a processor configured to automatically perform
the autoverification rule on the rule check and provide a rule check output. The processor is further configured to receive an input
indicating whether the rule check output is an approved output for the autoverification rule.

WO 2008/097794 PCT/US2008/052568

SYSTEM AND METHOD FOR TESTING AUTOVERIFICATION RULES

FIELD
[0001] This disclosure relates to the field of laboratory testing, and
particularly clinical diagnostic testing and pre-clinical testing and verification of

related laboratory test results.

BACKGROUND

[0002] Clinical diagnostic tests are commonly used in the medical profession
to assist in diagnosing various medical conditions of a patient. Clinical diagnostic
tests refer to those tests where a laboratory conducts an analysis on a
specimen/sample from a patient. The term “sample” or “specimen” as used herein is
intended to refer to such substances taken from a body including, without limitation,
blood, urine, tissue, saliva, or other body substances. Following analysis of the
patient sample, the laboratory produces a test result. The test result is then used by
the doctor or other medical professional to assist in the diagnosis of one or more
medical conditions.

[0003] In addition to clinical diagnostic testing, specimens may also be
analyzed in other environments, such as pre-clinical testing. Pre-clinical testing refers
to situations where drugs or devices are tested in a laboratory setting using various
samples. For example, a new drug may be administered to a patient, and the patient’s
blood may be monitored to determine the effects of the drug on the patient. The term
“clinical test result” as used herein is intended to refer to test results produced from
clinical diagnostic testing and/or pre-clinical testing.

[0004] In a hospital lab, a test order for a clinical diagnostic test is delivered

from a doctor and received in the laboratory accompanied by a patient sample. The

WO 2008/097794 PCT/US2008/052568

patient sample is analyzed on one or more laboratory instruments to obtain test
results. Examples of laboratory analyzers used to analyze patient samples include
flow cytometers, hematology analyzers, immunoassay analyzers, and electrophoresis
analyzers. It will also be recognized that numerous other laboratory analyzers may be
used to analyze patient samples. Furthermore, manual testing may also be performed
on the sample by a laboratory technician to provide test results for the test order.
Once a sample is analyzed in the laboratory, the fulfilled test order is sent back to the
doctor in the form of a test result. In many environments, the test order is received
electronically and the test results are reported electronically through a local area
network which provides access to various information systems.

[0005] The release of actual test results from the clinical diagnostic laboratory
is typically staged. In particular, "raw" test results from the laboratory analyzer are
typically held in the laboratory’s own database and computer system, often referred to
as the laboratory information system (“LIS). These raw test results are typically not
released for viewing outside of the laboratory until they are approved by the lab. As
mentioned above, raw test results may be approved automatically or manually
following review by a lab technician. Once test results are approved, the test results
are released to a hospital or other medical facility’s database and computer system,
often referred to as the hospital information system (“HIS). Doctors and other care
providers have access to the approved test results in the HIS, but only the laboratory
staff has access to unapproved results in the LIS.

[0006] Accordingly, one task for the laboratory technician performing or
overseeing clinical diagnostic tests is to validate the test results obtained from the
laboratory analyzers or from manual testing before they are released to various

information systems. The need for validation is present because many problems can

WO 2008/097794 PCT/US2008/052568

occur during the sample gathering and testing process. For example, a patient sample
may be mislabeled, resulting in test results being reported in association with the
wrong patient. As another example, the patient sample may have been improperly
drawn or improperly handled, resulting in sample contamination and erroneous test
results. Furthermore, a laboratory analyzer may be either malfunctioning or drifting
out of calibration, again causing the analyzer to report erroneous results.

[0007] Abnormal test results do not necessarily indicate erroneous results, but
may instead indicate a serious medical problem. In such cases, it may be important
for the lab technician to report the test results immediately to the doctor or other
medical professional in addition to the normal reporting procedure of making the test
results electronically available through a database. In these situations, the test results
indicating a critical condition may call for the lab technician to make an immediate
and confirmed report to the doctor, such as by telephone or in person.

[0008] Evaluating test results can, in many cases, be done automatically by a
computer. This process of using a computer to automatically evaluate laboratory test
results is called autoverification (or autovalidation). Using autoverification, a test
result from a laboratory analyzer is sent to a computer for evaluation. If the computer
determines that the test result meets predetermined criteria established by the
laboratory, the test result is approved and automatically released to the doctor. Test
results that fail autoverification are held for manual review by the lab technician.
Upon manual review, the lab technician may decide upon certain actions, such as
releasing the test result, calling for a new test, calling for a new patient sample, calling
for service on the laboratory analyzer, requesting confirmation of input data, or

various other actions.

WO 2008/097794 PCT/US2008/052568

[0009] Existing laboratory information systems attempt to provide
autoverification capabilities by having the user write a series of "if/then" rules that are
evaluated by the computer when test orders are received, test results are obtained,
and/or results are uploaded to the HIS. These if/then rules essentially amount to a
text-based programming language where the user is expected to write the complete
autoverification process with the provided language. However, laboratory technicians
are not typically trained in computer programming skills and find it difficult to write
the autoverification rules based on the common text-based language. In addition,
even for accomplished programmers, the provided language is typically awkward, and
it is easy for the programmer to neglect certain aspects of the desired autoverification
rule which is displayed as a confusing list of textual statements. Furthermore, once an
autoverification process is defined using such systems, it is difficult for a laboratory
technician to pull the defined autoverification process at a later time and easily
determine the workflow within the process, since the series of textual “if/then”
statements are difficult to follow. Accordingly, it would be advantageous to provide
an autoverification system where autoverification processes created using the system
are casily defined by the user and quickly and easily understood when presented to the
user at a later time.

[0010] In addition to the awkward language used to define autoverification
rules, existing systems also do not assist the technician in checking the correctness of
autoverification rules. Before autoverification rules are used in the laboratory, they
are typically hand checked to determine if the rules are correct and will operate as
expected. In order to determine if an autoverification rule is correct, a lab tech will
provide several example inputs, and work through the autoverification rule to arrive at

a result based on the example input. The user must then decide whether the rule

WO 2008/097794 PCT/US2008/052568

provides an unexpected result based on the example input. If an unexpected result is
obtained, this indicates a potential problem with the autoverification rule as defined.
This process of hand checking autoverification rules is tedious and subject to human
error, as the lab technician works through the autoverification rule one example input
at a time. In particular, if the user does not follow the rule precisely, the outcome
determined by the user for a particular rule check may be entirely different than the
actual outcome under the rule. Accordingly, it would be advantageous to provide a
system for testing autoverification rules that is accomplished automatically, thus
relieving the laboratory technician of the burden of manually checking
autoverification rules while also providing a systematic process for rule testing.

[0011] Another problem with current rule checking processes is the difficulty
in confirming that all possible steps through the rule have been checked. With the
current rule checking processes, it is easy for the lab technician to forget about certain
steps within the autoverification rule and forget to provide and test example inputs
that move through these steps. Accordingly, it would be advantageous to provide a
system for testing autoverification rules that includes a tool for ensuring that all
possible steps through the defined autoverification rule have been tested.

[0012] Furthermore, if an autoverification rule is modified following initial
rule checking, current systems provide no support for regression testing of the rule. In
other words, when an autoverification rule is modified, no tools are provided to assist
the user in seeing different outcomes based on the changes to the rule. This means
that all previous rule checking for a particular autoverification rule must be redone
whenever there is a modification to the rule. Accordingly, it would be advantageous
to provide a system for testing autoverification rules that includes a tool for retesting a

modified rule without the need to completely redo the original rule testing.

WO 2008/097794 PCT/US2008/052568

[0013] Yet another need with current systems for testing autoverification rules
is the ability to easily document rule testing. In many laboratories, rule checking is
mandatory before the rule may be used in the laboratory. With current systems, hand
written notes are the only available proof of rule checking. Therefore, it would be
advantageous to provide a system for testing autoverification rules where the testing
procedure may be easily documented, thus providing proof that the autoverification

rules have been properly tested.

SUMMARY

[0014] A method of testing at least one autoverification rule configured to
autoverify laboratory test results is disclosed herein. According to at least one
embodiment, the method comprises first providing a rule check including a sample
input. After the rule check is provided, the autoverification rule is automatically
performed on the rule check. Performance of the autoverification rule on the rule
check provides a rule check output. It is then determined whether the rule check
output is an expected output.

[0015] A system for testing the autoverification rules is also disclosed herein.
According to at least one embodiment, the system includes a graphical user interface
configured to display an autoverification rule and receive a rule check for the
autoverification rule. The rule check includes an example test result. The system
further includes a processor configured to automatically perform the autoverification
rule on the rule check and provide a rule check output. The processor is further
configured to receive an input indicating whether the rule check output is an approved

output for the autoverification rule.

WO 2008/097794 PCT/US2008/052568

[0016] In at least one embodiment, the system disclosed herein provides a
plurality of different environments related to the autoverification rule. The plurality
of environments comprise an editor environment configured to define the
autoverification rule. The plurality of environments further comprise a rule check
environment configured to receive a rule check including an example test result. The
rule check environment is further configured to perform the autoverification rule
based on the rule check and determine whether performance of the autoverification
rule based on the rule check provides an expected output. The plurality of
environments also comprise a laboratory environment configured to perform the
autoverification rule on actual clinical test results.

[0017] The above described features and advantages, as well as others, will
become more readily apparent to those of ordinary skill in the art by reference to the

following detailed description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] FIG. 1 shows a block diagram of a system for autoverifying laboratory
test results, including a graphical user interface;

[0019] FIG. 2 shows an exemplary autoverification process in the form of a
flowchart created using the system of FIG. 1;

[0020] FIG. 3 shows an exemplary flowchart for an autoverification process
displayed on a screen of the graphical user interface of FIG. 1;

[0021] FIG. 4 shows the exemplary flowchart of FIG. 3 with an exemplary
configuration box displayed on the screen along with the flowchart;

[0022] FIG. 5 shows the exemplary flowchart of FIG. 4 with a decision node

having a plurality of output edges;

WO 2008/097794 PCT/US2008/052568

[0023] FIG. 6 shows the exemplary flowchart of FIG. 5 wherein one of the
output edges of the decision node has been directed to a different node;

[0024] FIG. 7 shows the exemplary flowchart of FIG. 6 with a rerun node
added to the flowchart and a dialog box appearing on the screen along with the
flowchart;

[0025] FIG. 8 shows the exemplary flowchart of FIG. 7 including further
nodes and redirected edges;

[0026] FIG. 9 shows a rule check table associated with the exemplary
flowchart of FIG. §;

[0027] FIG. 10 shows entry of an example test result for a rule check in the
rule check table of FIG. 9;

[0028] FIG. 11 shows approval of the rule check of FIG. 10, and a highlighted

node-to-node progression of the rule check;

[0029] FIG. 12 shows the table of FIG. 11 expanded to include additional rule
checks;
[0030] FIG. 13 shows a modified autoverification rule from that of FIG. 12

and the resulting rule check changes in the rule check table;

[0031] FIG. 14 shows a differences window highlighting the differences in the
rule check output from the original version of the rule shown in FIG. 12 to the
modified version of the rule;

[0032] FIG. 15 shows a highlighted path through the modified rule of FIG. 13
for which no rule check exists in the rule check table; and

[0033] FIG. 16 shows additional rule checks included in the rule check table

of FIG. 15 based on the missing paths highlighted by the system.

WO 2008/097794 PCT/US2008/052568

DESCRIPTION
[0034] Exemplary System Arrangement
[0035] With reference to FIG. 1, an exemplary system for autoverifying

laboratory test results is shown. The system 10 is provided as a computer 12
including input/output devices 14, a processor 16, a memory 18, and data storage 20.
The computer 12 is connected to a laboratory analyzer 30. The computer 12 and the
laboratory analyzer 30 are also connected to a network 40. The network 40 includes a
laboratory information system (LIS) 42 and a hospital information system (HIS) 44 in
communication with the LIS. The LIS and HIS include databases configured to retain
test results available for viewing through either the HIS or the LIS, as permission to
view the test results is granted by the system.

[0036] When a test order is received in the clinical laboratory, it is
accompanied by a patient sample. The laboratory analyzer 30 is configured to
perform a test on the patient sample and provide a test result that may be used for
clinical diagnostic purposes. Exemplary laboratory analyzers include hematology
analyzers, flow cytometers, immunoassay analyzers, protein analyzers, and
electrophoresis analyzers. However, it will be recognized that any of numerous other
laboratory analyzers capable of analyzing a sample and providing a test result may
also be utilized. Manual testing may also be performed on the sample, such as
viewing tissue under a microscope, and the results of such analysis may be manually
entered into the system. In addition, while only a single laboratory analyzer 30 is
shown in FIG. 1, it will be recognized that a plurality of laboratory analyzers may be
connected to the computer and configured to provide test results to the computer.
While the laboratory analyzer of FIG. 1 is shown connected directly to the computer

12, the laboratory analyzer 30 may instead be connected to a network along with other

WO 2008/097794 PCT/US2008/052568

analyzers. For example, the laboratory analyzer 30 may be connected to the LIS 42,
and test results from the laboratory analyzer may be reported to the computer through
the LIS 42.

[0037] The computer 12 includes various input/output devices 14 configured
to communicate with the lab technician or other operator/user. For example, one
output device is a graphical user interface 15 which comprises a screen capable of
displaying graphical images to the operator. Exemplary graphical user interfaces 15
comprise CRT screens and LED screens. The computer 12 further comprises various
input devices 14, such as a mouse, touchscreen, keyboard, etc., which allow the
operator to provide inputs to the computer 12.

[0038] The processor 16 is in communication with the input/output devices 14
and generally controls the flow of data within the computer, processes various
instructions, and performs calculations. The processor 16 is further connected to the
memory 18, and the data storage device 20, such as a hard drive. Software programs
are stored on the data storage device 20 and memory 18, and the instructions provided

by the software programs are executed by the processor 16.

[0039] Creating and Editing Autoverification Rules / Editor Environment

[0040] One software program stored on the computer 12 is an autoverification
rule editor 21. The editor software 21 works in association with the processor 16 and
the graphical user interface 14 and allows the user to easily create autoverification
processes (also referred to herein as “autoverification rules”). In particular, the editor
21 uses a flowchart-based language which allows the user to create autoverification
rules as flowcharts. As discussed previously, autoverification rules are configured to

evaluate test results provided by the laboratory analyzer 30 and determine if the

10

WO 2008/097794 PCT/US2008/052568

laboratory test results meet certain predetermined criteria established by the
laboratory.

[0041] With reference now to FIG. 2, an exemplary autoverification rule 100
created with the editor is shown as seen by the user on the graphical user interface 14.
The term “‘autoverification rule” or ‘“‘autoverification process” as used herein
references the instructions and processes used to evaluate laboratory test results as
well as the workflow involved with the evaluation process. Accordingly, an
autoverification rule may comprise instructions to perform testing or take some other
action on a sample in addition to evaluating test results.

[0042] In FIG. 2, the autoverification rule 100 is displayed in the form of a
flowchart 102. The flowchart 102 provides a schematic representation of the
autoverification rule and comprises a plurality of nodes 104 and a plurality of edges
106 connecting the nodes. Some action, instruction or analysis occurs at each node
104. The edges 106 define a workflow between the plurality of nodes 104, showing
the direction of progress from one node to another node within the flowchart 102.
Accordingly, a given node (e.g., node 104a) may be connected to input edges 106a
indicating progress into the node and/or output edges 106b indicating progress out of
the node. If more than one output edge 106b extends from a node 104, the output
edges 106b extending from the node 104 will also indicate a contingency required
before following the edge (e.g., “pass”, “fail”, “above”, “below”, etc.).

[0043] The nodes 104 are shown as box-like structures in the embodiment of
FIG. 2, but it will be recognized that the nodes 104 may also be displayed in other
forms. Similarly, the edges 106 are shown as arrow-like symbols in FIG. 2, but it will

be recognized that the edges 106 may also be displayed in other forms.

11

WO 2008/097794 PCT/US2008/052568

[0044] The nodes 104 available for use in building a flowchart using the editor
comprise start nodes 110, decision nodes 112, and action nodes 114. Each
autoverification rule includes one start node 110. Execution of the autoverification
rule begins with the start node 110. An exemplary start node 110 is shown in FIG. 2
at the top of the flowchart 100.

[0045] Decision nodes 112 are those nodes where a decision is made to
proceed to one of a plurality of other nodes based on an input. For example, a
decision node may check information provided about a patient, a specimen from the
patient, one or more test results from a laboratory analyzer, or other information.
After analyzing the input, the node determines a process flow based on the input
information. Accordingly, each decision node includes two or more output
edges106D.

[0046] An exemplary decision node 112 shown in FIG. 2 is the range node
113. As described in further detail below, a range node 113 is configured to
determine whether an input is above a predetermined range, below a predetermined
range, or within a predetermined range. Accordingly, the range node 113 includes
three output edges, each indicating a path to a different node depending upon whether
the input is above the given range, below the given range, or within the given range.
[0047] Action nodes 114 are those nodes where some action, notice, or other
side-effect occurs in the system as a result of execution of the node. For example, an
action node may comprise validating a test result, releasing a test result to a higher
level information system, holding a test result for review by a technician, adding a
comment to a test result, ordering a dilution or test rerun, canceling a test, or
calculating test results. Accordingly, action nodes are available to define the

workflow associated with a particular autoverification rule, such as the ordering of

12

WO 2008/097794 PCT/US2008/052568

tests, dilutions, or reruns. Action nodes may have one or more input nodes, but have
only one or zero output nodes, as no decisions are made in an action node.

[0048] An exemplary action node 114 shown in FIG. 2 is the validate result
node 115. When execution of the autoverification rule 100 reaches the validate result
node 115, the system has evaluated the test result and confirmed that it meets certain
predetermined criteria. At this point, the test result may be released to a higher level
information system, where before validation the test result was only available to
laboratory personnel using the laboratory information system. Following validation
and release of the test result to the higher level information system, the test result may
be viewed by medical personnel, such as doctors, on the hospital information system.
[0049] Use of the editor to create autoverification rules in an exemplary editor
environment for the system is now described with reference to FIGs. 3-8. FIG. 3
shows an embodiment of the editor 120 as may be seen on the screen of the graphical
user interface. The editor 120 comprises a top menu 122, a toolbar 124, a rule builder
window 126, and a rule check window 128.

[0050] The top menu 122 of the editor provides the user with access to various
options 130-135. For example, when the “open rule” option 130 is selected, the user
may open a rule from one of the system folders. Other options listed on the top menu
include the “save” option 131, “new procedure” option 132, “edit test” option 133,
“print” option 134, and “flip direction” option 135. The tab 140 just below the top
menu 122 indicates the autoverification rule shown in the rule builder window 126.
As shown by the tab 140, the autoverification rule currently displayed in the rule
builder window 126 of FIGs. 3-8 is for the serum calcium test.

[0051] The toolbar 124 is provided below the top menu 122. The toolbar 124

lists a plurality of options for use by the user when working in the rule builder

13

WO 2008/097794 PCT/US2008/052568

window 126 and displays the options as buttons 125. In FIG. 3, the toolbar is shown
with several buttons, including the “insert” option 141, “replace with” option 142, and
“select children” option 143. Each of these options is described in further detail
below with respect to the rule builder window 126 and FIGs. 3-8. FIGs. 3-8 also
show other options on the toolbar 124, and it will be recognized that these or different
options may be provided on the toolbar in various embodiments as determined by the
user.

[0052] As mentioned above, the editor’s rule builder window 126 displays a
selected autoverification rule 100 in flowchart form 102. The autoverification rule
100 displayed in the rule builder window 126 may be saved, edited, or executed. As
explained in further detail below, execution of an autoverification rule results in
automation of the workflow for the associated test order.

[0053] With continued reference to FIG. 3, assembly and editing of an
autoverification rule begins when the “open rule” option 130 is selected from the top
menu 122. When this option 130 is selected the selected rule appears in the rule
builder window 126. The selected rule may be as simple as a start node connected to
a run procedure node. In any event, the user may edit the rule in the rule builder
window 126. Additional nodes may be obtained by selecting the “insert” option 141
on the toolbar 124. Upon selecting the “insert” option 141, the user is presented with
a drop down menu of nodes that may be used in the rule. The drop down menu
associate with the “insert” option 141 includes a list of various decision nodes,
various action nodes, and a start node. In order to insert a node 110 in the rule builder
window 126, the user simply clicks on the node selection from the drop down menu,
and the selected node appears in the rule builder window. To connect a selected node

110 to another node existing in the rule builder window 126, the user clicks on the

14

WO 2008/097794 PCT/US2008/052568

selected node 110 and drags it to make the desired connection to another node within
the window.

[0054] In FIG. 3, the user has inserted a hold node 150 in the rule builder
window 126 and connected it to the start node 110. In addition to inserting nodes, the
user may easily replace a node inserted into the rule builder window with a different
node. In order to do this, the user first clicks on the node to be replaced in the rule
builder window. When a node is selected by clicking on the node, the node is
highlight in the rule builder window. After highlighting the node to be replaced in the
rule builder window, the user selects the replace option 142 on the toolbar. Upon
selecting the replace option, the user is provided with another list in the form of a
drop down menu of available nodes for insertion in the rule builder window. By
selecting a node from the provided drop down menu, the highlighted node in the rule
builder window is replaced with the selected node. In the example provided, the user
has highlighted the hold node 150 in FIG. 3, and the hold node is shown in the rule
builder window 126 highlighted with a bold outline. In FIG. 4, the user has selected a
range node 152 from the drop down menu associated with the replace option 142, and
the hold node 150 (previously shown in FIG. 3) has been replaced by the range node
152.

[0055] As described above, when a node is selected from the insert menu 141
or the replace menu 142, the node appears in the rule builder window 126. Certain
nodes selected for insertion in the rule builder window will require configuration.
When a selected node requires configuration, a configuration box appears in the rule
builder window which prompts the user to insert all necessary data required to
properly configure the node. For example, as shown in FIG. 4, when the user selects

the range node 152, a configuration box 170 appears in the rule builder window 126.

15

WO 2008/097794 PCT/US2008/052568

The configuration box 170 instructs the user to enter the proper data in order to
configure the node. In the example of FIG. 4, the user must configure the range node
152 by specifying a particular test to range check and specifying a particular range for
comparison.

[0056] In some instances, nodes may be configured in different manners. For
example, a range node, such as the one shown in FIG. 4, may be configured based on
numerical limits inserted by the user or based on named ranges which are predefined
by the laboratory for the particular test. Thus, in some instances the user may insert a
numbers in the configuration box to define the lower limit and upper limit for the
node. In other instances, the user may select one of several named ranges, each
named range having a predefined upper limit and a predefined lower limit. Examples
of named ranges include a validation range, a reference range, or a critical range.
[0057] When a range node is designed in this manner such that the user is not
required to insert specific details (such as numerical values) for the range, it is
considered a common node. A common node one in which the node’s configuration
is independent of the specific test in which the node is used. If specific details are
required in association with the configuration of the node for a particular rule, those
details are predetermined by the laboratory and are automatically retrieved when the
common node is inserted into the rule. Thus, common nodes allow the user to easily
build autoverification rules without having to pull specific details related to the test
result being analyzed, such as specific acceptable ranges for different test results.
[0058] FIG. 4 shows an embodiment where the range node 152 is configured
as a common node. In this embodiment of the range node 152, the user configures the
node by simply selecting one of several named ranges. The numerical values

associated with the named range have already been predefined by the laboratory for

16

WO 2008/097794 PCT/US2008/052568

the particular test in which they are used. In FIG. 4, the user has selected the
“validation range” from the lower drop down menu 172 of the configuration box 170.
The validation range is a predefined range determined by the laboratory where test
results falling within the range will be considered valid test results for the particular
test results being analyzed by the rule. For the serum calcium autoverification rule of
FIG. 4, the laboratory may predefine the validation range to be between 2 and 20
mg/dL. This means that the lab considers any test result within this range to be
consistent with what can be considered a realistic test result from a serum calcium
test. However, if the laboratory receives a result of 50 mg/dL, the system will
consider this to be an unrealistic test result for serum calcium, and the lab will assume
that some error has been made in the analysis.

[0059] Similar to the “validation range”, the laboratory may define other
ranges, such as a “reference range” or a “critical range” for the range node 152 when
used as a common node. For example, the laboratory may define the reference range
for serum calcium to be between 9 and 10.5 mg/dL. This means that a serum calcium
test result within this range is considered normal, and the test result does not indicate
an issue for the patient. As another example, the laboratory may define the critical
range for serum calcium to be between 8 and 15 mg/dL. This means that a serum
calcium test result outside of the critical range suggests a critical issue for the patient.
In this case, the system may be configured to immediately notify the physician of the
test result so that immediate attention may be given to the patient. It will be
recognized that the above ranges are merely examples of ranges that may be
predefined by a laboratory using the system, and numerous other ranges could be
defined by the laboratory. Furthermore, while the range node 152 has been described

herein as one example node that requires configuration when inserting the node into

17

WO 2008/097794 PCT/US2008/052568

the rule builder window 126, it will be recognized that many other nodes that may be
selected by the user must also be configured before they are properly included into the
autoverification rule.

[0060] Once a node has been inserted into the rule builder window and
configured (if required), outputs from the node must be associated with subsequent
nodes. As discussed previously, all decision nodes will have at least two outputs. To
assist the user with properly associating the two or more required outputs from a
decision node with subsequent nodes, the editor is configured to show each of the
possible outputs from a decision node when the decision node is placed in the rule
builder window. Accordingly, in the example of FIG. 5, when the range node 152 is
placed in the rule builder window 126 the editor immediately displays the range node
152 with three output edges 153 already extending from the node 152. The three
output edges 153 extending from the node 152 advantageously remind the user that
three possible outcomes may result from a range node. In particular, a range node
will compare a test result to the defined range and determine whether the test result is
within the defined range, above the defined range, or below the defined range. By
displaying an output edge 153 for each of the three possible outcomes, the user is
reminded to connect each of the three possible outcomes to a resulting node. To
further assist the user, the editor extends each of the three output edges 153 from the
range node 152 to a dummy node 168a-168c (i.c., an un-configured “then ...”” node).
[0061] The output edges of a decision node which automatically appearing
upon the insertion of the decision node into the rule builder window 126 may be
manipulated by the user to lead to either two or three nodes. For example, in FIG. 6
the user has manipulated the output edges 153 of the range node 152 to indicate that a

test result outside of the validation range leads to a first node 168b, regardless of

18

WO 2008/097794 PCT/US2008/052568

whether the test result is above or below the validation range, and a test result within
the validation range leads to a second node 168c. To accomplish this, the user simply
clicks near the arrow on the “above” edge 153 shown in FIG. 5, and drags the edge to
the node 168b associated with the “below” edge. The editor then automatically
removes the dummy node previously associated with the “above” edge from the rule
builder window 126, and both the “above” edge and the “below” edge lead to the
same dummy node 168b, as shown in FIG. 6. While manipulation of edges has been
described herein with respect to edges leading to dummy nodes, it will be recognized
that the editor may allow manipulation of any edges within a partial or complete
flowchart in a similar manner. Accordingly, the editor provides a convenient way for
users to manipulate flowcharts and the node-to-node progression through the
flowchart.

[0062] In addition to manipulating edges within the flowchart 102, the user
may also manipulate nodes by inserting new nodes or replacing existing nodes. For
example, as shown in FIG. 7, the user had replaced the dummy node 168b in the rule
builder window 126 with a functional node 154. This is accomplished using the
replace option 142 from the toolbar 124, described above. When using the “replace”
option 142, the user first highlights the node to be replaced and then selects the
“replace” option 142 from the toolbar. When the “replace” option 142 is selected, the
user is presented with a drop-down menu listing various nodes to replace the
highlighted node. After the user selects a replacement node from the drop down
menu, it automatically appears in the rule builder window 126 in place of the
previously highlighted node. In the case of FIG. 7, the user has replaced the dummy

node 168b following the above and below edges 153 with a “rerun” node 154.

19

WO 2008/097794 PCT/US2008/052568

[0063] As shown in FIG. 7, when the user selects the “rerun” node 154 for
insertion, a configuration box 170 automatically appears in the rule builder window
126, instructing the user to properly configure the “rerun” node 154. At the same
time, a new dummy node 168d is provided in the rule builder window 126 on the
output edge 106 of the “rerun” node.

[0064] FIG. 8 shows that the “rerun” node 154 has been configured by the
user. As a result of the configuration, the “rerun” node now includes two output
edges, and the node has instructions to compare the rerun test result to the previous
test result. Thus, the “rerun” node 154 is an action node that is also configured to
make a decision related to the action. In the embodiment of FIG. &, the user has
configured the “rerun” node 154 to rerun the original test result since it fell outside of
the validation range. The node 154 has also been configured to compare the new test
result following the rerun to the previous test result. As also shown in FIG. 8, if the
rerun test result is not within five percent of the previous test result, the rule holds the
test result at hold node 158, which indicates that the test result is an invalid test result
outside of the validation range and should be manually checked by the user.
However, if the rerun test result is within five percent of the previous test result, the
rule has been configured to validate the test result at the validate node 156.

[0065] As also shown in FIG. 8, the user has clicked the “within” output edge
153 from the range node 152 and dragged it down to the validate node 156. Upon
validation, test results are noted as validated within the information system (e.g., the
LIS) and may be released for observation in other information systems (e.g., the HIS).
[0066] As discussed above with reference to FIGs. 3-8, the editor allows the
user to build an autoverification rule as a flowchart shown on a graphical user

interface. The user may easily insert new nodes as well as replace existing nodes in

20

WO 2008/097794 PCT/US2008/052568

order to build the desired rule. In addition, the user may easily manipulate edges
extending between nodes and define the node-to-node progression through the
flowchart. The editor’s flowchart-based language is generally intuitive and facilitates
the user’s expression of a desired autoverification procedure.

[0067] Creation and editing of autovalidation rules have been described above
with respect to the “insert” option 141 and “replace” option 142. However, it will be
recognized that numerous other options may be provided in the menu 122 or toolbar
124 for building and editing autoverification rules. For example, the select children
option 143, which was not discussed above allows the user to specify subsequent
nodes or “children” following an action node that does not automatically create edges
and connected dummy nodes when placed in the rule builder window.

[0068] Another example of a tool that may be provided for the user is the
ability to define node macros. Macros include a plurality of nodes connected in a
certain order but not specifically associated with a particular autoverification rule.
These macros may then be sclected from a menu and inserted into different
autoverification rules. In one embodiment, the macros are not configurable and can
not be specialized for a particular rule. However, in another embodiment, some
macros may be designed such that configuration and specialization for particular rule
1s possible. The “new procedure” option 132 from the top menu 122 may provide the

user with the ability to create such macros.

[0069] Testing Autoverification Rules / Rule Check Environment

[0070] After an autoverification rule 100 is prepared, the autoverification rule

will typically be tested before being used in the clinical laboratory. The present

21

WO 2008/097794 PCT/US2008/052568

system provides a tool for such testing autoverification rules. FIGs. 9-16 provide an
exemplary rule check environment provided by the system.

[0071] With reference to FIG. 9, an exemplary autoverification rule 100 is
shown in the rule builder window 126. After creating an autoverification rule, the
user uses the rule check window 128 in combination with the rule builder window 126
to perform a rule check in the rule check environment of the system.

[0072] A rule check toolbar 202 is provided across the top of the rule check
window 128. The rule check toolbar provides several options to the user, including a
“new check” option 210, an “order tests” option 211, a “demographics” option 212, a
“duplicate” option 213, a “delete” option 214, and a “missing paths” option 215.
[0073] To begin a rule check, the user clicks the “new check” option 210, and
a table 220 appears in the rule check window 128. The table 220 includes a title block
222 indicating the autoverification rule related to the table. In the example of FIG. 9,
the table 220 is related to the serum calcium autoverification rule. The table 220 also
includes a header row 224 listing a plurality of column headings. In the exemplary
embodiment of FIG. 9, the table includes a status column 225, an “age” column 226, a
“prior” test result column 227, a “run 1” test result column 228, and a “scenario”
column 229. Below the header row 224 in the table 220 are one or more rows, each
row containing a single rule check for the autoverification rule shown in the rule
builder window 126. As shown in FIG. 9, when the “new check” option 210 is
initially selected, only a single row 231 is provided in the table 220. However, each
time the “new check” option 210 is selected, an additional row appears in the table
220, providing an additional rule check for the autoverification rule.

[0074] As shown in FIG. 9, the user is invited define the rule check by

entering an example input in the form of an exemplary test result in column 228 of the

22

WO 2008/097794 PCT/US2008/052568

table 220 to define the rule check. In order to draw the user’s attention to this column
228 and its instruction, the column 228 or its text may be highlighted. For example,
the column 228 may appear in yellow color or with flashing text.

[0075] In addition to information provided in the table itself, an instruction bar
240 appears at the bottom of the rule check window 128 and provides additional
information concerning the table 220. An arrow 241 appears next to the row of the
table 220 that relates to the current information in the instruction bar 240. In the
example of FIG. 9, the arrow 241 is located next to rule check 231 and the instruction
bar 240 indicates that a numerical value should be entered in column 228 as an
example test result for the rule check. In some situations, additional rule check data
in addition to the example test input may be required, such as exemplary demographic
information or exemplary prior test results.

[0076] With reference now to FIG. 10, the user has inserted a numerical value
of “9.12” in column 228, indicating that the example test result for the rule check of
row 231 is 9.12 mg/dL. When the user inputs an example test result for a rule check
in column 228, a comment may also be entered by the user in the scenario column
229. The comment in the scenario column will typically indicate the intended
purpose of the rule check. For example, in FIG. 10, the user has entered the words
“normal result” in the scenario column 229, indicating that the example test result
value of “9.12” in column 228 is indicative of a normal serum calcium test result.
[0077] When the required rule check data is entered into the table 220 of the
rule check window 128, the system automatically runs the autoverification rule using
the rule check data and provides a rule check output. The rule check output indicates
the side effects of the autoverification procedure on the system, including any final

action resulting from the autoverification procedure, such as validation of the example

23

WO 2008/097794 PCT/US2008/052568

test result. Other examples of rule check outputs include instructions to run additional
tests, dilute the sample, hold the test result for further review, cancel a test, add a
comment, modify a test result, or have the tech run a manual protocol. It will be
recognized that numerous other rule check outputs are also possible.

[0078] In the example of FIG. 10, the rule check output can be seen by
reviewing the action nodes in the rule check’s path through the flowchart. To assist
the user in following the rule check’s path through the flowchart, the path is
highlighted in the rule builder window 126. The highlighted path of the rule check is
shown by highlighting the node-to-node progression of the rule check through the
flowchart, which progression includes the nodes used in the rule check and the edges
connecting such nodes. Highlighting the node-to-node progression may be
accomplished in various ways, such as providing the nodes and edges in the path in a
different color than the rest of the flowchart. For example, in FIG. 10, the start node
110, the range node 152, and the validate result node 156, along with their connecting
edges may be shown in green, while the remaining nodes and edges in the flowchart
102 may be shown in blue.

[0079] With the rule check’s path through the autoverification rule shown in
the rule builder window 126, the table 220 provides a notice in column 225 asking the
user to investigate the node-to-node progression of the rule check. For example, the
notice to investigate may be provided by highlighting the column 225 of the row 231
in red and including the word “investigate” in the column. At the same time, the
instruction bar 240 instructs the user to click the approve button 242 at the end of the
instruction bar if the rule behavior for the rule check is the expected behavior.

[0080] If the autoverification rule provides an expected output for the rule

check, the user clicks on the approve button 242. An expected output is one in which

24

WO 2008/097794 PCT/US2008/052568

the system response is appropriate based upon the entered test result. Once the
approve button 242 is selected, the rule check is listed as approved in the rule check
window 128. For example, as shown in FIG. 11, the word “approved” is included in
column 225 for the rule check of row 231.

[0081] Multiple rule checks will be required to properly test all possible paths
through an autoverification rule. With reference to FIG. 12, in order to submit
additional rule checks for the autoverification rule shown in the rule builder window
126, the user selects the “new check” option 210 from the rule check toolbar 202.
When this option 210 is selected, a new row appears in the table 220, and the user
populates the new row with the desired data for the rule check. In FIG. 12, the user
has included a total of five rule checks in the table, as shown in rows 231-235. The
user has also approved each of these rule checks, as noted in column 225 of the table
220. The five rule checks 231-235 shown in FIG. 12 contemplate all possible paths
through the flowchart 102 shown in the rule builder window 126. When all of the
rule checks provided by the user have been approved, the autoverification rule is
released for use in the laboratory with actual test results.

[0082] Another option for the user when creating new rule checks is to select
the “duplicate” option 213 from the rule check toolbar 202. To use this option, the
user highlights one row in the table and then clicks on the “duplicate” button 213.
This results in a second row appearing in the table which is identical to the
highlighted row. The user may then edit the second row to provide a new rule check
for the displayed autoverification rule. The “duplicate” option 213 is useful when
only minor changes are needed between rule checks, thus limiting the amount of input

data required for the rule check.

25

WO 2008/097794 PCT/US2008/052568

[0083] Yet another option for the user when editing rule checks is the “delete”
option 214. This option 214 allows the user to completely remove a rule check from
the table 220.

[0084] In certain situations, the creation of a new rule check will require
additional exemplary data that was not required for other rule checks already shown
in the table 220. In these situations, a new column for the additional exemplary data
must be inserted into the table 220 by the user. Two example options for adding new
columns include the “order tests” option 211 and the “demographics” option 212.
[0085] The “order tests” option 211 allows the user to add columns to the
table 220 which provide additional simulated test results for the rule check. For
example, in FIG. 12, the user may select the “order tests” option 211 in order to add
additional test results to the table 220 if the defined rule 100 is dependent upon such
additional test results. With such additional test results inserted in the table 220, the
complete path through the autoverification rule 100 can be shown in the rule builder
window 126 for the rule check.

[0086] It will be noted that the creation of a new column does not require the
entry of new data for all rule checks. For example, in FIG. 12 the first rule check 231
did not progress through node 154, so it did not require an example rerun test value in
column 228a. Accordingly, this column 228a remains blank in for the first rule check
231 in FIG. 12.

[0087] Another example of a situation where a new column may be created in
the table 220 is for additional demographic data for the rule check. When the user
clicks the “demographics” option 212, the user may select additional demographic

data for addition to the table 220, such as data related to the patient’s sex or race.

26

WO 2008/097794 PCT/US2008/052568

Depending on the autoverification rule being checked, this additional data may be
optional or mandatory to the rule check.

[0088] In the above exemplary embodiments, additional columns are
manually added to the table 220 by the user. However, the system may also be
configured to automatically add columns to the table 220 when required by the
autoverification rule and associated rule check. For example, in FIG. 12, the system
may be configured to automatically add the rerun column 228a when a rule check is
created with a path that will go through rerun node 154. Thus, when the user enters a
“Run 17 test result of “5.1” in column 228, the system recognizes that this test result
is below the validation range defined in node 152 of the autoverification rule, and
progresses to the rerun node 154 according to the defined autoverification process.
Requiring an exemplary rerun test result from the rule check, the system then creates
the additional column 228a in the table 220, and indicates that a “Run 2 example test
result should be entered in this column 228a. In the example of FIG. 12, the user
entered a value of “5.15” in the column 228a.

[0089] After an autoverification rule is created, tested and implemented in the
laboratory, the laboratory may decide that revisions to the autoverification rule are
necessary. In particular, the laboratory may find that additional workflow or analysis
on a test sample would provide a better autoverification rule for a particular test. As
described previously, autoverification rules may be easily edited from the rule builder
window 126. In order to edit a particular test, the user selects the “open rule” option
130 from the top menu 122 and selects the autoverification rule to edit. The flowchart
for the autoverification rule then appears in the rule builder window 126, and the
flowchart may be easily edited by adding nodes and edges, deleting nodes and edges,

or changing node configurations.

27

WO 2008/097794 PCT/US2008/052568

[0090] When an existing autoverification rule is modified, the outputs
associated with rule checks for the autoverification rule may also change. When this
happens, the user is asked to approve the modified rule check outputs before the
modified autoverification rule is approved and released for actual use. FIG. 13 shows
an example of this situation.

[0091] In FIG. 13, the autoverification rule previously shown in FIG. 12 has
been edited to include additional nodes and edges. In addition to the previous nodes,
the flowchart 102 for the modified autoverification rule 100 now includes first and
second delta check nodes 160, 161, second and third validation nodes 162, 163, and
an additional hold node 164.

[0092] As shown in the rule check window 128, by editing the
autoverification rule 100, rule checks 232 and 235 now have different rule outputs
which have not been approved. Accordingly, rule checks 232 and 235 are highlighted
in column 225 of the table 220 and include an instruction to “investigate” the rule
check. At the same time, the instruction bar 240 tells the user that the rule check’s
behavior has changed based on edits to the serum calcium rule, and that such behavior
needs to be approved.

[0093] To assist the user in approving changes to rule check behavior, a “view
differences” button 244 is provided on the instruction bar 240. When the “view
differences” button is selected, the user is presented with a differences window 246,
such as that shown in FIG. 14. The differences window 246 shows the differences
between the original outputs for the rule check and the new outputs for the rule check
following the edits to the rule. In the example of FIG. 14, this information is provided
in the table 250. The table 250 includes an “expected” column 252 and an “actual”

column 254. The “expected” column 252 shows the originally approved outputs for

28

WO 2008/097794 PCT/US2008/052568

the rule check from the previous version of the rule check. In this case, the original
outputs included the rerun side effect from the rerun node 154 and the validate side
effect from the validate node 156. The “actual” column 254 shows the rule check
outputs for the modified version of the rule. In this case, the new rule check outputs
include the same rerun side effect from the rerun node 154, and also include a
different side effect in the form of a hold from the hold node 164. The different side
effect outputs are highlighted in red in the second row of the table to emphasize the
difference in the outputs. Accordingly, with the differences window 246, the user is
provided with a convenient tool that quickly emphasizes differences in the rule checks
resulting from the edited autoverification rule.

[0094] With reference now to FIG. 15, when a user reviews rule checks for a
new or modified autoverification rule, the missing paths option 215 may be selected
to help the user provide rule checks for all paths through the autoverification rule.
When the missing paths option is selected, the system determines how many potential
paths through the flowchart 102 do not have an associated rule check in the table 220.
The first of these missing paths is then highlighted in the flowchart 102 in the rule
builder window. For example, a missing path may be highlighted by providing the
edges for the path in red and bordering the associated nodes in red. The remaining
edges in the flowchart may remain in black along with black outlines around the
remaining nodes. In the example of FIG. 15, the highlighted missing path includes
the following nodes and edges: the start node 110, the range node 152, the “above”
output edge, the delta check node 160, the “fail” output edge, the rerun node 154, the
“same” output edge, the delta check node 161, the “pass” output edge, and the

validate result node 163.

29

WO 2008/097794 PCT/US2008/052568

[0095] When the user is presented with a missing path, the user may build a
rule check for the missing path in the table 220. The total number of missing paths
for the flowchart 102 displayed in the rule builder window 126 is shown on the rule
check toolbar 202 at box 218. The user may sequentially display such missing paths
from the first to the last using the arrows provided in box 216. In particular, each
time the forward arrow is selected, the next missing path will be highlighted in the
flowchart 102. Each time the reverse arrow is selected, the previous missing path will
be highlighted in the flowchart 102.

[0096] As shown in FIG. 16, the user has added and approved two additional
rule checks from FIG. 15 based on the missing paths made available to the user. With
all rule checks approved, the autoverification rule is available for use in the
laboratory. Advantageously, the user may print the flowchart 102 and table 220 of
rule checks to provide documentation of the rule check procedures used on a given
autoverification rule before the rule was released to the laboratory. In addition, the
rule checks for any given autoverification rule will be saved in the system’s data

storage should the rule checks need to be viewed in the future.

[0097] Execution of Autoverification Rules / Laboratory Environment

[0098] Once an autoverification rule is created along with its rule checks, the
rule is saved by the system in data storage 20 (see FIG. 1) and is available for
execution by the processor 16 when a test order associated with the autoverification
rule is received in the laboratory. A test order typically includes at least one test to be
run by a laboratory analyzer and data related to the patient associated with the test
order (e.g., name, age, sex, weight, height, etc.). Test orders may be received

automatically via a computer network, or may be manually entered into the system by

30

WO 2008/097794 PCT/US2008/052568

a laboratory technician. When a test order is received by the laboratory it is
accompanied by a test sample. The test sample is delivered to the appropriate
laboratory analyzer (or manual analyzer station) so the designated test can be
performed on the sample. Upon receipt of a test order, the system operates in a
laboratory environment where actual clinical test results are verified using the
autoverification rules.

[0099] Execution of an autoverification rule associated with a test order
begins when the system receives the test order. Upon receipt of the test order, the
system pulls the saved autoverification rule from memory or data storage and
proceeds with execution of the rule.

[00100] Execution of each rule begins with the start node. Thereafter, the rule
proceeds from node-to-node 104 as directed by the edges 106. When reaching a new
node, the system calls the routines associated with the node including any logic and
side-effects. Upon performing the routines associated with the node 104, the defined
rule indicates whether the system should stop rule execution, wait for a new result, or
follow one of the output edges 106 from the node to a new node 104 and begin
execution of the new node. When the rule reaches an action node with no output
edges, the rule terminates. The rule does not execute again until a new test order
calling for the rule is received. If desired, the user may display the flowchart
representation 102 of the autoverification rule on the graphical user interface 14
during execution. However, in most instances, the processor will execute the rule
without displaying it on the graphical user interface.

[00101] The laboratory will typically receive multiple test orders for multiple
samples at one time. Accordingly, the processor 16 may run multiple autoverification

rules in parallel. This may include simultaneously running two or more instances of

31

WO 2008/097794 PCT/US2008/052568

the same autoverification rule on two or more different test orders and/or
simultaneously running two or more different autoverification rules on two or more
different test orders.

[00102] As mentioned above, during the execution process an autoverification
rule may be suspended and instructed to wait. A typical example of a situation where
a rule suspends is where a node can not be executed because necessary data is
unavailable. For example, if the rule of FIG. 8 is executed, the rule must wait at node
152 to receive a serum calcium test result from the laboratory analyzer before moving
on to subsequent nodes 154 or 156. Thus, when a test order for serum calcium is
received, the rule suspends at node 152 until the laboratory analyzer produces the
serum calcium test result. In this situation, a rule will suspend indefinitely until it
receives the serum calcium test result or is cancelled by the user. If a rule is
terminated by the user, the system generates an error notice. The test result is then
passed on to the laboratory technician for handling. The technician can then manually
determine whether the test result is valid.

[00103] FIG. 8 also provides another example of a situation where a rule may
suspend. Upon reaching the rerun node 154, the previously executed test is re-
ordered by the system, and the rule is suspended until the new test result is received.
In order to accomplish this, the system may issue a notification to the laboratory
technician to place the sample tube back on the laboratory analyzer. Alternatively, if
the system includes robotics or some other mechanized sample transportation device,
the system may automatically rerun the test through the laboratory analyzer and the
laboratory technician would not be notified at all. In this situation, the rerun is

handled entirely by the system.

32

12 Jan 2011

2008214054

[00104] Although the present invention has been described with respect to certain
preferred embodiments, it will be appreciated by those of skill in the art that other
implementations and adaptations are possible. Moreover, there are advantages to individual
advancements described herein that may be obtained without incorporating other aspects
described above. Therefore, the spirit and scope of the appended claims should not be limited to

the description of the preferred embodiments contained herein.

[00105) Throughout this specification and the claims which follow, unless the context
requires otherwise, the word "comprise”, and variations such as "comprises" and "comprising”,
will be understood to imply the inclusion of a stated integer or step or group of integers or steps

but not the exclusion of any other integer or step or group of integers or steps.

[00106] The reference to any prior art in this specification is not, and should not be tak