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MONITORING SYSTEM USING KERNEL
REGRESSION MODELING WITH PATTERN SEQUENCES

BACKGROUND OF THE INVENTION

Field of the Invention

[0001]

The subject matter disclosed herein relates generally to the field of kernel regression
modeling used for predictive condition monitoring and prognostics of an object such as
machine, system, or process, and more particularly to the use of multivariate models for
analysis of measurements of parameters to provide an assessment of the object being

monitored.

Brief Description of the Related Art

[0002]

[0003]

Kernel regression is a form of modeling used to determine a non-linear function or
relationship between values in a dataset and is used to monitor machines or systems to
determine the condition of the machine or system. One known form of kernel regression
modeling is similarity-based modeling (SBM) disclosed by U.S. Patent Nos. 5,764,509
and 6,181,975. For SBM, multiple sensor signals measure physically correlated
parameters of a machine, system, or other object being monitored to provide sensor data.
The parameter data may include the actual or current values from the signals or other
calculated data whether or not based on the sensor signals. The parameter data is then
processed by an empirical model to provide estimates of those values. The estimates are
then compared to the actual or current values to determine if a fault exists in the system

being monitored.

More specifically, the model generates the estimates using a reference library of selected
historic patterns of sensor values representative of known operational states. These
patterns are also referred to as vectors, snapshots, or observations, and include values
from multiple sensors or other input data that indicate the condition of the machine being
monitored at an instant in time. In the case of the reference vectors from the reference
library, the vectors usually indicate normal operation of the machine being monitored.

The model compares the vector from the current time to a number of selected learned
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[0004]

[0005]

vectors from known states of the reference library to estimate the current state of the
system. Generally speaking, the current vector is compared to a matrix made of selected
vectors from the reference library to form a weight vector. In a further step, the weight
vector is multiplied by the matrix to calculate a vector of estimate values. The estimate
vector is then compared to the current vector. If the estimate and actual values in the
vectors are not sufficiently similar, this may indicate a fault exists in the object being

monitored.

However, this kernel regression technique does not explicitly use the time domain
information in the sensor signals, and instead treat the data in distinct and disconnected
time-contemporaneous patterns when calculating the estimates. For instance, since each
current vector is compared to the reference library vectors individually, it makes no
difference what order the current vectors are compared to the vectors of the reference

library — each current vector will receive its own corresponding estimate vector.

Some known models do capture time domain information within a kernel regression
modeling construct. For example, complex signal decomposition techniques convert time
varying signals into frequency components as disclosed by U.S. Patent Nos. 6,957,172
and 7,409,320, or spectral features as disclosed by U.S. Patent No. 7,085,675. These
components or features are provided as individual inputs to the empirical modeling
engine so that the single complex signal is represented by a pattern or vector of frequency
values that occur at the same time. The empirical modeling engine compares the
extracted component inputs (current or actual vector) against expected values to derive
more information about the actual signal or about the state of the system generating the
time varying signals. These methods are designed to work with a single periodic signal
such as an acoustic or vibration signal. But even with the system for complex signals, the
time domain information is not important when calculating the estimates for the current
vector since each current vector is compared to a matrix of vectors with reference or

expected vectors regardless of the time period that the input vectors represent.
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BRIEF DESCRIPTION OF THE INVENTION

[0006] In one aspect, a method for monitoring the condition of an object includes obtaining

[0007]

[0008]

reference data that indicates the normal operational state of the object, and obtaining
input pattern arrays. Each input pattern array has a plurality of time-ordered input
vectors, while each input vector has input values representing a plurality of parameters
indicating the current condition of the object. Then, at least one processor generates
estimate values based on a calculation that uses an input pattern array and the reference
data to determine a similarity measure between the input values and reference data. The
estimate values are compared to the corresponding input values so that resulting values

from the comparison can be used to determine the condition of the object.

In another aspect, a method for monitoring the condition of an object includes obtaining
reference data that indicates the normal operational state of the object and in the form of a
plurality of learned sequential pattern matrices. In this case, each learned sequential
pattern matrix has a plurality of reference vectors, while each reference vector has
reference values representing a plurality of parameters. The method also includes
obtaining input data representing a plurality of parameters indicating the current
condition of the object, and then using at least one processor to generate estimate values
based on a calculation that uses the input data and the learned sequential pattern matrices
to determine a similarity measure between the input data and reference values in the
plurality of reference matrices. After that, the estimate values are compared to the
corresponding input values so that resulting values from the comparison can be used to

determine the condition of the object.

In yet another aspect, a method for monitoring the condition of an object includes
obtaining reference data that indicates the normal operational state of the object, and
obtaining input data representing a plurality of parameters indicating the current
condition of the object. The method then includes generating, by at least one processor,
estimate values based on a calculation that uses both the input data and the reference data
to determine similarity measures between the input data and the reference data. The

estimate values are generated in the form of an estimate matrix having a plurality of time-



WO 2013/012534 PCT/US2012/044614

[0009]

[0010]

ordered estimate vectors, where each estimate vector has estimate values representing
multiple parameters. The method then includes comparing at least one estimate vector
for cach time period represented by the estimate matrices to the input data so that the
resulting values from the comparison can be used to determine the condition of the

object.

In another form, a monitoring system for determining the condition of an object has an
empirical model with reference data that indicates the normal operational state of the
object, and input pattern arrays where each input pattern array has a plurality of time-
ordered input vectors. Each input vector has input values that represent a plurality of
parameters indicating the current condition of the object. The empirical model is
configured to generate estimate values based on a calculation that uses an input pattern
array and the reference data to determine a similarity measure between the input values
and the reference data. A differencing module then compares the estimate values to the
corresponding input values so that resulting values from the comparison can be used to

determine the condition of the object.

In a further form, a monitoring system for determining the condition of an object has an
empirical model operated by at least one processor. The model comprises reference data
that indicates the normal operational state of the object and in the form of a plurality of
learned sequential pattern matrices. Each learned sequential pattern matrix has a plurality
of reference vectors, while each reference vector has reference values representing a
plurality of parameters. The model also has input data representing a plurality of
parameters that indicate the current condition of the object. The empirical model is
configured to generate estimate values based on a calculation that uses the input data and
the learned sequential pattern matrices to determine a similarity measure between the
input data and reference values in the plurality of reference matrices. The system also
has a differencing module comparing the estimate values to the corresponding input
values so that resulting values from the comparison can be used to determine the

condition of the object.
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[0011]

[0012]

[0013]

[0014]

[0015]

[0016]

[0017]

[0018]

[0019]

In yet a further form, a monitoring system for determining the condition of an object has
an empirical model with reference data that indicates the normal operational state of the
object. The model also has input data representing a plurality of parameters that indicate
the current condition of the object. Otherwise, the empirical model is configured to
generate estimate values based on a calculation that uses both the input data and the
reference data to determine similarity measures between the input data and the reference
data. The estimate values are generated in the form of an estimate matrix having a
plurality of time-ordered estimate vectors. Each estimate vector has estimate values
representing multiple parameters. The system also has a differencing module comparing
at least one estimate vector for each time period represented by the estimate matrices to
the input data so that the resulting values from the comparison can be used to determine

the condition of the object.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of an example arrangement of a monitoring system;
FIG. 2 is flow chart showing the basic process for the monitoring system;
FIG. 3 is a schematic diagram of the autoassociative similarity based modeling equation;

FIG. 4 is a schematic diagram of one form of the inferential similarity based modeling

equation;

FIG. 5 is a schematic diagram of another form of the inferential similarity based

modeling equation;

FIG. 6 is a schematic diagram of the autoassociative sequential similarity based modeling

equation;

FIG. 7 is a schematic diagram of one form of the inferential sequential similarity based

modeling equation that extrapolates in the modeled sensor dimension;

FIG. 8 is a schematic diagram of another form of the inferential sequential similarity

based modeling equation that extrapolates in the modeled sensor dimension;
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[0020]

[0021]

[0022]

[0023]

[0024]

FIG. 9 is a schematic diagram of an inferential sequential similarity based modeling

equation that extrapolates in the time dimension;

FIG. 10 is a schematic diagram of an inferential sequential similarity based modeling

equation that extrapolates in the time dimension; and

FIG. 11 is a schematic diagram of an inferential sequential similarity based modeling

equation that extrapolates in the time dimension and the sensor dimension.

DETAILED DESCRIPTION OF THE INVENTION

It has been determined that the accuracy of the estimates in a kernel regression model,
and specifically a similarity based model, can be substantially improved by incorporating
time domain information into the model. Thus, one technical effect of the present
monitoring system and method is to generate estimate data by capturing time domain
information from the large numbers of periodic and non-periodic sensor signals that
monitor industrial processes, systems, machines, or other objects. The technical effect of
the present system also is to operate an empirical model that extends the fundamental
non-linear mathematics at the core of kernel regression modeling from a vector-to-vector
operation to a matrix-to-matrix (or array-to-array) operation as explained in detail below.
Another alternative technical effect of the monitoring system and method is to generate
virtual or inferred estimate values for future time points to determine a future condition of
the object being monitored whether the reference data used to generate the estimates is
data representing normal operation of the object being monitored or failure mode data to

better match data from the object that indicates a fault.

Referring to FIG. 1, a monitoring system 10 incorporating time domain information can
be embodied in a computer program in the form of one or more modules and executed on
one or more computers 100 and by one or more processors 102. The computer 100 may
have one or more memory storage devices 104, whether internal or external, to hold
sensor data and/or the computer programs whether permanently or temporarily. In one
form, a standalone computer runs a program dedicated to receiving sensor data from

sensors on an instrumented machine, process or other object including a living being,
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[0025]

[0026]

[0027]

measuring parameters (temperature, pressure, and so forth). The object being monitored,
while not particularly limited, may be one or more machines in an industrial plant, one or
more vehicles, or particular machines on the vehicles such as jet engines to name a few
examples. The sensor data may be transmitted through wires or wirelessly over a
computer network or the internet, for example, to the computer or database performing
the data collection. One computer with one or more processors may perform all of the
monitoring tasks for all of the modules, or each task or module may have its own
computer or processor performing the module.  Thus, it will be understood that
processing may take place at a single location or the processing may take place at many

different locations all connected by a wired or wireless network.

Referring to FIG. 2, in the process (300) performed by the monitoring system 10, the
system receives data or signals from sensors 12 on an object 16 being monitored as
described above. This data is arranged into input vectors 32 for use by the model 14.
Herein, the terms input, actual, and current are used interchangeably, and the terms
vector, snapshot, and observation are used interchangeably. The input vector (or actual
snapshot for example) represents the operational state of the machine being monitored at

a single moment in time.

Additionally, or alternatively, the input vector 32 may include calculated data that may or
may not have been calculated based on the sensor data (or raw data). This may include,
for example, an average pressure or a drop in pressure. The input vector 32 may also
have values representing other variables not represented by the sensors on the object 16.
This may be, for example, the average ambient temperature for the day of the year the

sensor data is received, and so forth.

The model 14 obtains (302) the data in the form of the vectors 32 and arranges (304) the
input vectors into an input array or matrix. It will be understood, however, that the model
14 itself may form the vectors 32 from the input data, or receive the vectors from a
collection or input computer or processor that organizes the data into the vectors and
arrays. Thus, the input data may be arranged into vector 32 by computer 100, another

computer near location of computer 100, or at another location such as near the object 16.
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[0028]

[0029]

[0030]

[0031]

The model 14 also obtains (306) reference data in the form of reference vectors or
matrices from reference library 18 and sometimes referred to as a matrix H. The library
18 may include all of the historical reference vectors in the system. The model 14 then
uses the reference data and input arrays to generate estimates (310) in the form of a
resulting estimate matrix or array. The estimate matrix is provided to a differencing
module 20 that determines (312) the difference (or residual) between the estimate values
in the estimate matrix and corresponding input values in the input array. The residuals
are then used by an alert or analysis management module (or just alert module) 22 to

determine (314) if a fault exists.

As shown in dashed line, the monitoring system 10 also may have a Localization Module
28 that changes which data from the reference library is used to form (308) a subset or
matrix D(t) (referred to as a three-dimensional collection of learned sequential pattern
matrices below (FIG. 6)) to compare to the vectors in each input array. Otherwise, the
matrix D(t) of reference data may remain the same for all of the input matrices as
explained in detail below. Also, the monitoring system may have an adaption module 30
that continuously places the input vectors into the reference library to update the data in
the library or when a certain event occurs, such as when the model receives data that
indicates a new normal condition of the machine not experienced before, for example.

This 1s also described in detail below.

The alert module 22 may provide alerts as well as the residuals directly to an interface or
output module 24 for a user to perform their own diagnostic analysis, or a diagnostic
module 26 may be provided to analyze the exact nature of the cause of the fault to report

diagnostic conclusions and severity ratings to the user through the output module 24.

The output module 24, which may include mechanisms for displaying these results (for
example, computer screens, PDA screens, print outs, or web server), mechanisms for
storing the results (for example, a database with query capability, flat file, XML file),
and/or mechanisms for communicating the results to a remote location or to other

computer programs (for example, software interface, XML datagram, email data packet,
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[0032]

[0033]

asynchronous message, synchronous message, FTP file, service, piped command and the

like).

A more detailed explanation of the empirical model 14 requires certain knowledge of
kernel regression. In pattern recognition techniques such as kernel regression, a pattern
consists of input data (as described above) grouped together as a vector. The data for
cach vector is collected from a piece of equipment at a common point in time. Here,
however, and as explained in greater detail below, the pattern (vector) of
contemporaneous sensor values associated with existing kernel regression methods is
augmented with temporally-related information such as sequential patterns from
successive moments in time or the output from time-dependent functions (for example,
filters, time-derivatives and so forth) applied to the patterns from successive moments in
time. Therefore, the individual patterns (vectors) processed by traditional kernel
regression methods are replaced by temporally-related sequences of patterns that form an

array (or simply pattern arrays or pattern matrices).

All kernel-based modeling techniques, including kernel regression, radial basis functions,

and similarity-based modeling can be described by the equation:

L
Xest = ZciK(Xnew ’Xi)
= (1)

where a vector Xe of sensor signal or sensor value estimates is generated as a weighted
sum of results of a kernel function K, which compares the input vector Xpew 0of sensor
measurements to L learned patterns of sensor data, x;. x; is formed of reference or
learned data in the form of vectors (also referred to as observations, patterns, snapshots,
or exemplars). The kernel function results are combined according to weights ¢;, which
may be in the form of vectors and can be determined in a number of ways. The above
form is an ‘“autoassociative” form, in which all estimated output signals are also
represented by input signals. In other words, for each input value, an estimate sensor

value 1s calculated. This contrasts with the “inferential” form in which certain estimate
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[0034]

[0035]

output values do not represent an existing input value, but are instead inferred from the

inputs:

L
yest = ZciK(Xnew’Xi)
i-1 2)

where in this case, yest 1S an inferred sensor estimate obtained from the kernel-based
comparison of the input vectors Xpew of other parameters to the L learned exemplars x; of
those parameters. Each learned exemplar x; is associated with another exemplar vector y;
of the parameters to be estimated, which are combined in a weighted fashion according to
the kernel K and vectors ¢; (which are functions at least in part of the y;) to predict output

Vest. In a similar fashion, more than one sensor can be simultaneously inferred.

What is common to the kernel-based estimators is the kernel function, and the generation
of a result from a linecar combination of exemplars (for example, a matrix of the
exemplars or vectors), based on the kernel results and the vectors ¢; that embodies the
exemplars. Kernel function K is a generalized inner product, but in one form has the

further characteristic that its absolute value 1s maximum when Xyew and x; are identical.

According to one embodiment of the invention, a kernel-based estimator that can be used
to provide the model is Kernel Regression, exemplified by the Nadaraya-Watson kernel

regression form:

L

Zy?utK(Xnew 2 Xin)

_ o
Yt = 1T (Inferential form) 3)

ZK(Xnew 2 Xin)
i=1

L
in K(Xnew > Xi )
i=l

X

est (Autoassociative form) 4)

iK(Xnew’ Xi )
i=1

10
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[0036]

[0037]

[0038]

In the inferential form, a multivariate estimate of inferred parameters yes 1S generated
from the results of the kernel K operator on the input vector of parameter measurements
Xpew and the L learned exemplars x;, linearly combined according to respective learned
vectors yi, which are each associated with each x;, and normalized by the sum of kernel
results. The y; represent the L sets of learned measurements for the parameters in Y,
which were associated with (such as, measured contemporaneously with) the learned
measurements of parameters in X. By way of example, X may comprise a plurality of
pressure readings, while Y may represent a corresponding plurality of temperature
readings from a common system. In other words, the pressure readings may be used to
calculate weights which are then used in a calculation with y; (the reference vector with
previous values of the missing parameter) to calculate estimated temperature readings or

sensor values for yest.

In the autoassociative form of the kernel regression, a multivariate estimate of parameters
Xest 1S generated by a normalized linear combination of the learned measurements of those
parameters x; (for example, in the form of a matrix D of exemplars described below),
multiplied by the kernel operation results for the input vector Xpew vis-a-vis the learned

observations Xx;.

In kernel regression for the present example, the ¢; from equations 1 and 2 above are
composed of the learned exemplars normalized by the sum of the kernel comparison
values. The estimate vectors, Yest O Xest, cOmprise a set of estimated parameters that are,
according to one example, differenced with actual measured values (Xpews OF Ynew, Which

is not input to the model in the inferential case) to provide residuals.

In a specific example of Kernel regression, a similarity-based model (SBM) can be used
as the model according to the present invention. Whereas the Nadaraya-Watson kernel
regression provides estimates that are smoothed estimates given a set of (possibly noisy)
learned exemplars, SBM provides interpolated estimates that fit the learned exemplars
when they also happen to be the input as well, such as if the input vector is identical to

one of the learned exemplars. This can be advantageous in detecting deviations in

11
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[0039]

parameters, since noise in these signals will be overfit to a certain extent (if noise was
similarly present on the exemplars from which the model was made), thus removing the
noise somewhat from the residuals as compared to the Nadaraya-Watson kernel
regression approach. SBM can be understood as a form of kernel-based estimator by
rewriting the kernel function K as the operator ®, and equating the set of learned
exemplars x; as a matrix D with the elements of x; forming the rows, and the x;

observations forming its columns. Then:

Kzil (Xz” Xnew) = (DT ® Xnew) (5)

where D has been transposed, which results in a column vector of kernel values, one for
cach observation x; in D. Similarly, the comparison of all exemplars with each other can

be represented as:

K’ _(x,x;)=(D" ®D) (6)

Then, the autoassociative form of SBM generates an estimate vector according to:

x,,=D-(D"®D)" (D" ®x,,) (7

where Xeo 18 the estimate vector, Xpew 1S the input observation, and D is a learned vector
matrix comprising the set (or subset) of the learned exemplary observations of the
parameters. The similarity operator or kernel is signified by the symbol ®, and has the
general property of rendering a similarity score for the comparison of any two vectors
from each of the operands. Thus, the first term (D' ® D) would yield a square matrix of
values of size equal to the number of observations in D as shown in equation (6) above.
The term (DT ® Xpew) Would yield a vector of similarity values, one similarity value for
cach vector in D as shown in equation 5. This similarity operator is discussed in greater
detail below. The equation is shown schematically on FIG. 3 and shows how each

component of the equation is formed by vectors as represented by the rectangular boxes.

12
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[0040]

[0041]

[0042]

In this example, each vector contains sensor values for parameters 1-5 (although this
could also include other non-sensor values as described above). It will be understood that
the numbers 1-5 indicate which parameter is being represented and not the exact sensor
value. Thus, the sensor value itself will be different for the different parts of the equation
(for example, the value for parameter 1 may be different in Xpew versus that in D versus

that in Xest).

It will also be understood that for equation (7), time domain information among a group
of input vectors is ignored to generate estimates. In other words, since equation (7)
generates an estimate vector by using a single input vector Xpew, the order in which the
vectors in a group of input vectors are analyzed to generate estimate vectors is largely
unimportant. If a certain order related to time (such as sequential) is needed later in the
process to determine if a fault exists or to diagnose the particular type of fault for

example, then the vectors can be ordered as desired after generating the estimates.

The estimate can further be improved by making it independent of the origin of the data,
according to the following equation, where the estimate is normalized by dividing by the

sum of the “weights” created from the similarity operator:

. D- (D" ®D)"- (D' ®x, )
est — Z((DT ®D)_1 _(DT ®Xnew)) (8)

In the inferential form of similarity-based modeling, the inferred parameters vector yes 1S

estimated from the learned observations and the input according to:
T -1 T
yest = Dout ) (Dm ® Dm) ) (Dm ® Xin) (9)

where Dip has the same number of rows as actual sensor values (or parameters) in Xin, and
Dout has the same number of rows as the total number of parameters including the
inferred parameters or sensors. Equation (9) is shown schematically on FIG. 4 to show
the location of the vectors, the input values (1 to 5), and the resulting inferred values (6-

7).

13
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[0043]

[0044]

[0045]

In one form, the matrix of learned exemplars D, can be understood as an aggregate
matrix containing both the rows that map to the sensor values in the input vector x;, and

rows that map to the inferred sensors:

D.
D — n
a |:D :| (10)

out

Normalizing as before using the sum of the weights:

_ Dout ) (Dz];z ® Din )_1 ) (Dz];z ® Xm)
3 (bren,) b ex,) "

It should be noted that by replacing Dgy,e with the full matrix of leaned exemplars D,,
similarity-based modeling can simultancously calculate estimates for the input sensors

(autoassociative form) and the inferred sensors (inferential form):

|:xest :| — D, (Dz];z ®D, )_1 (Dz];z ®Xz’n)
val 2 en,)" 0 ex,) "

Referring to FIG. 5, Equation (12) uses the matrix D, with reference values for both the
input and inferred values. This results in an estimate vector with both representative

input values and inferred values.

Yet another kernel-based modeling technique similar to the above is the technique of
radial basis functions. Based on neurological structures, radial basis functions make use
of receptive fields, in a special form of a neural network, where each basis function forms
a receptive field in the n-dimensional space of the input vectors, and is represented by a
hidden layer node in a neural network. The receptive field has the form of the kernels
described above, where the “center” of the receptive field is the exemplar that particular

hidden unit represents. There are as many hidden unit receptive fields as there are

14
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[0046]

[0047]

exemplars. The multivariate input observation enters the input layer, which is fully
connected with the hidden layer. Thus, each hidden unit receives the full multivariate
input observation, and produces a result that is maximum when the input matches the
“center” of the receptive field, and diminishes as they become increasingly different (akin
to SBM described above). The output of the hidden layer of receptive field nodes is

combined according to weights ¢; (as above in equation 1).

As mentioned above, the kernel can be chosen from a variety of possible kernels, and in
one form is selected such that it returns a value (or similarity score) for the comparison of
two identical vectors that has a maximum absolute value of all values returned by that
kernel. While several examples are provided herein, they are not meant to limit the scope
of the invention. Following are examples of kernels/similarity operators that may be used

according to the invention for the comparison of any two vectors x, and xj.

xax|”
K,(x,,x,)=e / (13)
x|
Kt x)=| 1402 »
kx|
K,(x,,x,)=1 7 (15)

In equations 13-15, the vector difference, or “norm”, of the two vectors is used; generally
this is the 2-norm, but could also be the 1-norm or p-norm. The parameter h is generally
a constant that is often called the “bandwidth” of the kernel, and affects the size of the

“field” over which each exemplar returns a significant result. The power A may also be
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used, but can be set equal to one. It is possible to employ a different h and A for each
exemplar x;. By one approach, when using kernels employing the vector difference or
norm, the measured data should first be normalized to a range of 0 to 1 (or other selected
range), for example, by adding to or subtracting from all sensor values the value of the
minimum reading of that sensor data set, and then dividing all results by the range for
that sensor. Alternatively, the data can be normalized by converting it to zero-centered
mean data with a standard deviation set to one (or some other constant). Furthermore, a
kernel/similarity operator according to the invention can also be defined in terms of the
clements of the observations, that is, a similarity is determined in each dimension of the
vectors, and those individual elemental similarities are combined in some fashion to
provide an overall vector similarity. Typically, this may be as simple as averaging the

elemental similarities for the kernel comparison of any two vectors x and y:

1 L

m=1

Then, elemental similarity operators that may be used according to the invention include,

without limitation:

Atnral
Kh(xmﬁym):e ¢ (17)
2 -1
_[ Rl
[t =3
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[0048] The bandwidth h may be selected in the case of elemental kernels such as those shown

[0049]

[0050]

above, to be some kind of measure of the expected range of the mth parameter of the
observation vectors. This could be determined, for example, by finding the difference
between the maximum value and minimum value of a parameter across all exemplars.
Alternatively, it can be set using domain knowledge irrespective of the data present in the
exemplars or reference vectors. Furthermore, it should be noted with respect to both the
vector and elemental kernels that use a difference function, if the difference divided by
the bandwidth is greater than 1, it can be set equal to one, resulting in a kernel value of
zero for equations 14, 15, 18 and 19, for example. Also, it can readily be seen that the
kernel or similarity operator can be modified by the addition or multiplication of different
constants, in place of one, h, A, and so on. Trigonometric functions may also be used, for

example:

-1
K,(x,,y,)= [1 + Sin(;—hhm ~Vm m (20)

In one form, the similarity operator or kernel generally provides a similarity score for the
comparison of two identically-dimensioned vectors, which similarity score:
1. Lies in a scalar range, the range being bounded at each end;

2. Has a value of one (or other selected value) at one of the bounded ends, if the two

vectors are identical,
3. Changes monotonically over the scalar range; and

4. Has an absolute value that increases as the two vectors approach being identical.

All of the above methods for modeling use the aforementioned kernel-based approach
and use a reference library of the exemplars. The exemplars (also called reference
observations or reference vectors) represent “normal” behavior of the modeled system.
Optionally, the available reference data can be down-selected to provide a characteristic

subset to serve as the library of exemplars, in which case a number of techniques for
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“training” the kernel-based model can be employed. In this case, the down-selected
library itself may form the matrix D used in the equations above. According to one
training method, at least those observations are included in the library that have a highest
or lowest value for a given parameter across all available reference observations. This
can be supplemented with a random selection of additional observations, or a selection
chosen to faithfully represent the scatter or clustering of the data. Alternatively, the
reference data may be clustered, and representative “centroids” of the clusters formed as
new, artificially generated exemplars, which then form the library. A wide variety of
techniques are known in the art for selecting the observations to comprise the library of
exemplars. Thus, at least in general terms for this case, the matrix D remains the same in
equation (7) for all of the input vectors X, unless the library is changed (i.e. such as when

the library is updated).

In an alternative arrangement for both the inferential and autoassociative forms of the
empirical kernel-based model, matrix D can be reconfigured for each input vector Xin SO
that the model can be generated “on-the-fly” based on qualities of the input observation,
and drawing from a large set of learned observations, i.c., a reference set. One example
of this is described in U.S. Patent No. 7,403,869. This process is called localization.
Accordingly, the inferential and autoassociative forms of kernel-based modeling can be
carried out using a set of learned observations x; (matrix D) that are selected from a larger
set of reference observations, based on the input observation. Kernel-based models are
exceptionally well suited for this kind of localization because they are trained in one pass
and can be updated rapidly. Advantageously, by drawing on a large set of candidate
exemplars, but selecting a subset with each new input observation for purposes of
generating the estimate, the speed of the modeling calculation can be reduced and the
robustness of the model improved, while still well characterizing the dynamics of the

system being modeled.

For the monitoring system 10, the localization module 28 can use a variety of criteria to
constitute the localized matrix membership for collection D(t), including the application
of the similarity operator itself. In general, however, the input observation 32,

comprising the set of parameters or derived features that are to be estimated by the model
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as part of the monitoring process, are provided to the localization module 28, which
accesses a large store of exemplar observations in the form of reference library 18, in
order to select a subset of those exemplar observations to build the model. Localization
module 28 selects exemplars from library 18 that are relevant to the input observation 32,
which can be a much smaller set than the size of the library. By way of example, the
reference library 18 might comprise 100,000 exemplar observations that characterize the
normal dynamics of the system represented by the parameters being modeled, but the
localization module 28 might select only a few dozen observations to build a localized
model in response to receiving the input observation 32. The seclected exemplar
observations are then provided to the now localized model 14. In the vector-based
system, these observations then comprise the set of learned exemplars x; for purposes of
the kernel-based estimator (also shown as D in connection with SBM above). The
estimate observation Xes 18 then generated accordingly as described above. For the
monitoring system 10, the selected learned exemplars each may represent a vector at time
point t,, such that a sequential pattern matrix is built for each vector at t, to form the
collection D(t) described below. As the next input observation 32 is presented to the
monitoring system 10, the process is repeated, with selection of a new and possibly

different subset of exemplars from library 18, based on the new input observation.

According to one approach, the input observation 32 can be compared to the reference
library 18 of learned observations, on the basis of a clustering technique. Accordingly,
the exemplar observations in library 18 are clustered using any of a number of techniques
known in the art for clustering vectors, and the localization module 28 identifies which
cluster the input observation 32 is closest to, and selects the member exemplars of that
cluster to be the localized observations provided to the localized model 14. Suitable
clustering methods include k-means and fuzzy c-means clustering, or a self-organizing

map neural network.

According to another approach, a kernel can be used to compare the input observation 32
to each exemplar in the library 18 to yield a similarity value that provides a ranking of the
reference observations vis-a-vis the input observation. Then, a certain top fraction of

them can be included in the localized collection D(t). As a further refinement of this
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localization aspect, observations in the ranked list of all reference observations are
included in localized collection D(t) to the extent one of their component elements
provides a value that “brackets” the corresponding value in the input vector. For
example, a search down the ranked list is performed until values in the input vector are
bracketed on both the low and high side by a value in one of the reference observations.
These “bracketing” observations are then included in localized collection D(t) even if
other observations in library 18 have higher similarity to the input. The search continues
until all input values in the input vector are bracketed, until a user-selectable maximum
limit of vectors for building sequential pattern matrices to include in collection D(t) is
reached, or until there are no further reference observations that have sufficiently high

similarity to the input to surpass a similarity threshold for inclusion.

Other modifications in determining the membership of localized collection D(t) are
contemplated. By way of example, in both the clustering selection method and the
similarity selection method described above, the set of elements, i.e., parameters used to
comprise the vectors that are clustered or compared with the kernel for similarity, may
not be identical to those used to generate the model and the estimate, but may instead be a
subset, or be a partially overlapping set of parameters. As mentioned above, an
additional step for the system 10 and model 14 is then performed to generate the
collection D(t). Specifically, once the vectors (referred to as primary vectors t,) are
selected for inclusion in collection D(t), other temporally related vectors (whether
looking forward or looking back in time) are selected for each primary vector to form a
learned sequential pattern matrix for each primary vector and included in the collection
D(t). The process for choosing the temporally related vectors is explained below. It will
be understood that the localization by the module 28 can be applied to any of the three-

dimensional collections of learned sequential pattern matrices described in detail below.

Turning now to the incorporation of the time domain information into the model 14, by
one approach for the monitoring system 10 described herein, the above kernel function,
which operates to compare the similarity of two vectors, is replaced by an extended

kernel function K that operates on two identically-dimensioned arrays:
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K(Xnew’Xi) (20)

where Xpew 18 an input pattern array and X; is a learned pattern array. A pattern array or
pattern matrix is composed of a sequence of temporally-related vectors, where each of its
constituent vectors contains sensor measurements from a distinct moment in time. One
of the vectors in a pattern array is designated the primary vector, and the time at which its
data 1s derived is designated the current primary time point t,. The other vectors are

associated with time points that relate to the primary time point in a systematic manner.

In one form, the primary time point is the most recent of the time points that compose a
sequence of the time-ordered points (or time-ordered vectors that represent those time
points) in the pattern array. By one approach, the other time points are equally-spaced
and precede the primary time point by integer multiples of a time step At providing
uniform time intervals between the time points. For a given number of samples ny,, the
time points form an ordered sequence: (t, — npAt, t, — (np-1)AL, ..., t, — 2At, t, — At, t,).

The sequence of time points defines a look-back pattern array,
X, )=[xle, —myae) (e, = (my = 1)Ac) - xle, =280} xle, —A) e, )] 1)

As shown in FIG. 6, the primary vector t, is positioned as the right-most column of each
pattern array, and the other (my,) data vectors are column vectors that are located to the
left of the primary vector t,. The rows of the pattern arrays correspond to short segments

of the time-varying signals from the modeled sensors.

By using look-back pattern arrays, the extended kernel function in equation (20) can be
applied to real-time system monitoring. The primary vector t, (which means the vector at
time point t,) in the input pattern array Xyew contains system data from the current point
in time, and the remainder of the array consists of data vectors from recent time points in
the past. Thus, not only does the input pattern array contain the current, albeit static,
vector used by traditional kernel methods, but it also contains a sequence of vectors that
express the developing, dynamic behavior of the monitored system. As system time

progresses, new input pattern arrays are formed which contain much of the same data as
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preceding arrays except that new primary vectors appear in the right-most position of the
arrays, and the oldest vectors are dropped from the left-most position. Thus, a single
input vector representing a single instant in time will be used in multiple input pattern
arrays Xpew, and assuming the vectors are used in sequence, the vectors will be used the
same number of times as there are vectors in the array. In this manner, the input pattern
array describes a moving window of patterns through time. Here, moving window means
a set or group of a fixed number of vectors in chronological order that changes which
vectors are included in the set as the window moves along the timeline or along a

sequence of time-ordered sensor value vectors.

The pattern array defined in equation (21) above contains my, data vectors that span a
window in time equal to np=At. The data vectors are equally-spaced in time for this
example. Another way to say this is that each input pattern array or matrix is defined
only by uniform time intervals between time points represented by the input vectors

within the input pattern array Xpew.

Alternatively, a kernel can be used to compare pattern arrays that span differing lengths
of time. If a pattern array contains data from time points that are spaced by one time step
Aty (say one second apart for example), and if the time points of another pattern array
differ by a second time step At (say ten seconds apart for example), then the pattern
arrays will span two differing time windows: np+At; and np=At; so that there are two
pattern arrays that represent different durations. In one form, as long as the pattern arrays
contain the same number of vectors even though one pattern array may have different
time intervals between the vectors (or time points) than in another pattern array, a kernel
function that matches vectors from the same positions in the two pattern arrays (such as
right-most with right-most, second from right with second from right, and onto left-most
with left-most) will be capable of operating across varying time scales. Thus, in one
example, the matrices may extend across differently spaced time points so that the time
interval spacing could correspond to the harmonics (1/f) of the peaks in a spectral time
signal. It also will be understood that this difference in time period or duration covered
by the pattern arrays may be used between the learned pattern arrays and input pattern

arrays, from input pattern array to input pattern array, from learned pattern array to
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learned pattern array, or any combination of these as long as each vector in the input
pattern array has a corresponding learned exemplar in the learned pattern arrays (or in

other words, both learned and input matrices have the same number of vectors).

According to another example, a kernel can be used to compare pattern arrays whose
pattern vectors are not equally-spaced in time. Instead of spacing pattern vectors by a
constant time interval or step, the time step can vary by position within the pattern array.
By using small time steps for most recent vectors (positioned near the right side of the
array) and larger time steps for the older vectors (positioned near the left side of the
array), the kernel function will focus attention on the most recent changes while still

retaining some effect from changes in the more distant past.

Referring again to FIG. 1, an additional filtering step may be performed on the pattern
arrays by a filter module 106 prior to analysis by the kernel function (equation (21)).
When the filtering is used, it is performed on both the reference vectors and the input
vectors to avoid any substantial, unintentional mismatch between the two resulting signal
values to be used for generating estimates. In the filtering step, each of the time-varying
sensor segments (rows of a pattern array) are processed by a filtering algorithm to either
smooth the data in the segment or to calculate statistical features from the data.
Smoothing algorithms, such as moving window averaging, cubic spline filtering, or
Savitsky-Golay filtering, capture important trends in the original signal, but reduce the
noise in the signal. Since smoothing algorithms produce smoothed values for each of the
elements in the input signal, they produce a pattern array that has the same dimensions as
the original pattern array of sensor data. Alternately, the filtering step can consist of the
application of one or more feature extraction algorithms to calculate statistical features of
the data in ecach signal. These features may include the mean, variance, or time
derivatives of the signal data. As long as the same number of feature extraction
algorithms is applied to the data in the pattern arrays, the number of data vectors in the

original pattern array can vary.

As described above, there are numerous methods in which pattern arrays are used to

represent temporal information from the system being modeled. These methods include,
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but are not limited to, sequences of data vectors from equally-spaced time points,
sequences of data vectors that span differing time periods such that the pattern arrays
have varying durations, and sequences whose data vectors are not equally-spaced in time.
The input pattern array may have different intervals than the reference pattern arrays, or
they may be the same. In addition, the pattern sequences can be filtered by smoothing or
feature extraction algorithms. The only limitation on the form of the pattern arrays or the
arrays produced by filtering algorithms are that the two arrays processed by the extended
kernel function (equation 20) be identically-dimensioned (i.c., having the same number of

rows and columns).

Similar to the vector-based kernel function described above, the extended kernel function
returns a scalar value or similarity measure, although here, the scalar value represents the
similarity between two arrays rather than two vectors. The extended kernel function
produces a similarity score that displays the same properties as the vector-based kernel
function enumerated above. Namely, the similarity score is a scalar whose range is
bounded; has a value of one (or other selected value) for one of the bounds when the two
arrays are identical; varies monotonically over the range; and whose absolute value
increases as the two arrays approach being identical. In addition, the extended kernel
function operates on the matching temporal components of the two arrays. This means,
for the example of two look-back pattern arrays, that the extended kernel function finds
the similarity between the two primary vectors t, from the reference and input pattern
arrays respectively, then on the two data vectors to the left of the primary vectors -1, and

so forth across the preceding vectors in the arrays.

One example of an extended kernel function is based on the similarity operator described
in U.S. Patent No. 6,952,662. Letting Xyew and X; be two identically-dimensioned
pattern arrays, containing data from ngens sensors (or parameters) and spanning ny,

sequential time points, the extended kernel function is written as follows:

. - 1
S(Xnew 2 Xz) =
M sens ﬂ, (22)

1
1+ — (- G
+p<n Z (1)

sens
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where p and A are constants. The time-dependent function @(t) in equation 22 operates on
the temporal clements of the pattern arrays, matching data from the same time point
vectors in the two arrays. One means of accomplishing this temporal data matching is to

use a weighted average of the temporal data for a given sensor j:

yp My

0,(t)= Z(Wij’k) ;Wk (23)

k=1

The similarity (sjx) between data elements for a given sensor j is defined as the absolute
difference of the data elements normalized by the range of normal operating data for a
sensor range;. Thus, the time-dependent similarity function 0(t) for a given sensor’s data

18:

-

. b Wk‘)?new;j,k T Xi;j,k‘ b
6’]. (0= Z‘ range kz:‘ Wi (24)

Combining equations 22 and 24, produces an extended kernel function for two pattern

arrays:
L !
S(XnewﬁXi): — . N 4
L VVI{‘Xnew;j,k B Xl';j,k‘ (25)
1 . Msens k=1 rangej
1 + ; P sens ip
Jj=1 ZW
k
k=1

[0067] Another example of an extended kernel function is based on the similarity operator

described in U.S. Patent No. 7,373,283. Again letting Xpew and X; be two identically-
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dimensioned pattern arrays, containing data from ngens Sensors and spanning nyp

sequential time points, this second extended kernel function is written as follows:

- 1 e 1
new? z'): Z
M 57 14 Lo, ()
P 1

S(X
(26)

This extended kernel function utilizes the same time-dependent function 0(t) as defined

by equations 23 and 24 to compare the temporal data of a given sensor in the two pattern

matrices:
- n:en: 1
— _1
S(Xnew ’ i) T Mg N N A (27)
- _
J L VVk ‘Xnew;j,k Xi;j,k
k=1 rangej
1
1+ -
2
k=1

[0068] While referring to FIG. 6, the two extended kernel functions (equations 25 and 27) differ
only in how they aggregate information from the modeled sensors, with the first equation
representing the elemental form of a kernel function, and the second equation
representing the vector difference form (such as 1-norm) of a kernel function. Both
equations utilize weighted averaging to account for differences between the segments of
time-varying signals in the two arrays Xpew and X;. Specifically, for both example
equations 25 and 27, and for each sequential learned pattern matrix a to g, the absolute

difference is calculated for each corresponding pair of learned and input values. The
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values correspond when they represent (1) the same sensor (or parameter) and (2) either
the same time point within the pattern array (such as both values being from the primary
time t,) or the same position relative to the other vectors in the array (such as when both
values are on vectors that are second from the right within the pattern array). The
absolute differences from the pairs of learned and input values are combined via
weighted averaging to obtain a resulting single average value for the particular sensor.
This is repeated for each sensor or parameter (1 to 5) represented by the pattern matrices
a to g and pattern arrays Xpew SO that there is one resulting average scalar for each

sensor/parameter in the weighted averaging step.

Then, in the first extended kernel function (equation 25), the results from the weighted
averaging step are in turn averaged across all sensors to produce a scalar value for the
array-to-array comparison. Finally, this scalar value is transformed into a value that
adheres to the properties of a similarity score as described above so that it falls within a
range of zero to one for example, with one meaning identical. This process is then
repeated for each learned sequential pattern matrix a to g in the three-dimensional
collection D(t). In the second extended kernel function (equation 27), the results from
the weighted averaging step are converted into similarity scores right away, one for each
sensor. Then this vector of similarity scores is averaged so that a single similarity score
is returned by the function for each learned sequential pattern matrix a to g in the three-

dimensional collection D(t).

When used within context of similarity-based modeling, the extended kernel functions
described above can also be termed extended similarity operators without loss of
generality. The notation used in the above equations (S(Xpew,Xi)) can also be written

using the traditional similarity operator symbol (Xpew @ Xi).

Extended versions of other vector-based kernel functions defined above (for example,
equations 13 through 20) can be constructed by using weighted averaging to match
temporal data from the same time points in two sequential pattern arrays. For instance,

letting Xyew and X; be two identically-dimensioned pattern arrays, containing data from
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Ngens SCNSOTS and spanning ny, sequential time points, an extended version of the kernel

function defined in equation 16, using the elemental similarity operator of equation 17, is:

~
7 - -

Hgong 1 ZWk|Xn€W;j,k - Xi;j,k|

_ 1 _ | k=l

Kh(Xnew’Xi)_ e eXp ny

-2 h S,
i k=1

(28)

Weighted averaging (equation 22) is used to account for differences between segments of
the time-varying signals in pattern arrays since the weights can be selected such that more
recent data are more heavily weighted than outdated data. Thus, data from the primary
time point t, are typically given the highest weight, with data from preceding time points
(equation 21) given ever-decreasing weights. Numerous schemes can be used to define
the weights, such as having them decline linearly or exponentially with time relative to

the primary time point.

It will be understood that various other time-dependent functions 0(t) can be used to
match data from sequential time points in two segments of time-varying signals. Such
methods include, but are not limited to, other weighted norms (2-norm and p-norm) and
maximum, minimum, or median difference. All that is required of the function is that it
returns a scalar value that is minimized (a value of 0) if the two sequences are identical

and increases in value as the sequences become more different.

In order to combine the concept of sequential pattern arrays with an extended similarity
operator (for example, equation 25 or 27) in the autoassociative form of SBM (equation
7), the concept of the vector-based learned vector matrix D is extended. In the standard
form of SBM described above, the learned vector matrix consists of a set of learned
exemplars (vectors) selected from various points in time during periods of normal
operation. Letting the time points from which these vectors are selected represent
primary time points, each learned vector can be expanded into a learned sequential
pattern matrix by collecting data from a sequence of time points that precede ecach

primary time point. In this manner, the learned vector matrix D is expanded into a
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collection of learned sequential pattern matrices D(t). This collection of learned pattern
matrices forms a three-dimensional matrix, wherein the dimensions represent the
modeled sensors or parameters in a first dimension, the learned exemplars (vectors) from
various primary time points in a second dimension, and time relative to the primary time

points in a third dimension.

The training methods described above that are used for constructing the learned vector
matrix used in vector-based forms of SBM can be utilized to create the three-dimensional
collection of learned sequential pattern matrices D(t) required by the sequential pattern
forms of SBM. This is accomplished by augmenting each reference vector selected by a
training algorithm with reference vectors from preceding time points to construct a
sequential pattern matrix. The collection of learned pattern matrices, one for each
reference vector selected by a training algorithm, is drawn from reference library 18 of
exemplars which represents “normal” behavior of the modeled system. If the time-
inferential form of sequential SBM (described below) is used, then additional vectors

from succeeding time points are added to each sequential pattern matrix.

The training methods that are used for the vector-based forms of SBM select exemplars
(vectors) from various points in time during periods of normal operation, without regard
to the time domain information inherent in the reference data. In the sequential pattern
array forms of SBM, that time domain information is supplied by augmenting each of the
selected exemplars with data vectors from a sequence of time points that immediately
precede and (possibly) succeed the primary time points. In an alternative process for
building and localizing the collection D(t) of sequential learned pattern matrices while
factoring in the time domain information, each input pattern array may be compared to
every sequence of reference vectors that is equal in number (namely, nj,+1) to that in the
input pattern array. The comparison is accomplished by using an extended form of the
similarity operator (for example, equation 25 or 27) to identify those sequences of
reference vectors that are most similar to the input pattern array. Each of the identified
sequences of reference vectors forms one of the sequential learned pattern matrices in the
collection D(t). Whatever the selection process, it is possible for a training method to

select exemplars from primary time points that are quite near to one another. When two
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exemplars are selected from nearby primary time points, the corresponding sequential

pattern matrices may contain data vectors in common.

Referring to FIG. 6, equation 7 is shown with an input pattern array Xyew and a three-
dimensional collection of learned sequential pattern matrices D(t). The input pattern
array Xpew may also be referred to as the current or actual pattern array or matrix since it
includes the vector t, representing a current instant in time, and in contrast to the learned
pattern matrices in D(t). In the illustrated example, the input pattern array Xpew includes
four vectors where vector t, is the last (right-most) vector in the array. The other vectors
are numbered as -3 to -1 referring to the number of time intervals before t, for simplicity.
Thus, it will be understood that vector -3 on FIG. 6 represents the same thing as (t, —
npAt) where ny, = 3. As shown in FIG. 6, the three dimensions of the collection of
learned sequential pattern matrices (modeled sensors, primary time points, and pattern
sequences) are depicted as follows: the numbers 1 through 5 represent data from five
modeled sensors, the four columns (or vectors) of numbers represent four sequential time
points, and the seven layered rectangles each represent a sequential pattern matrix a to g
each with a primary time point t, selected from various periods of normal operation. The
three-dimensional collection of learned sequential pattern matrices D(t) contains the
seven sequential pattern matrices a to g. Thus, each sequential pattern matrix a to g
comprises data from five sensors and four sequential points in time, and has the same
dimensions as the input pattern matrix Xpew. For comparison, another way to visualize
the difference between the prior vector-based equation with a two-dimensional matrix D
(FIG. 3) and the three-dimensional collection of learned sequential pattern matrices D(t)
(FIG. 6) is that the prior two-dimensional array would merely have been formed by a
single matrix cutting across the seven sequential pattern arrays a to g to include only the

t, vectors from the three-dimensional collection D(t).

In the right-most bracket in FIG. 6, the extended similarity operator (®) calculates the
similarity between the input pattern array Xpew and the seven learned sequential pattern
matrices a to g as explained above. In the example of FIG. 6, and using the weighted
averaging step from equations 25 or 27, the model compares the time-varying signal for

sensor 1 in sequential pattern matrix a to the time-varying signal for sensor 1 in the input
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pattern array Xpew to obtain a single average value for sensor 1. This is repeated for
sensors 2-5 until one average value is provided for each sensor. Then, these scalar values
(or similarity scores for equation 27) are averaged to determine a single similarity
measure for sequential pattern matrix a. This is then repeated for each sequential pattern
matrix b to g, returning a similarity vector containing seven similarity scores, one

similarity score for each learned sequential pattern matrix a to g.

The operation in the middle bracket produces a seven-by-seven square similarity matrix
of similarity values, one for each combination of a pair of learned sequential pattern
matrices a to g in collection D(t). Multiplication of the inverse of the resulting similarity
matrix with the similarity vector produces a weight vector containing seven elements. In
a final step, the weight vector is multiplied by the collection D(t) to create an estimate
matrix Xe. In one form, the estimate matrix X 18 the same size as the input pattern
array Xpew SO that it has an estimate vector that corresponds to each of the time periods
represented by the input vectors in the input pattern arrays. In the present example of
FIG. 6, the estimate matrix Xeq has an estimate vector for the current moment in time t,
and for each of the three preceding time points -1 to -3 as if formed in a look-back
window. The use of the estimate matrix X 18 described in further detail below. It also
should be noted that the preceding vectors grouped together with or without the current or
primary vector may be called a look-back window anywhere herein, and the succeeding
vectors grouped together with or without the current or primary vector may be called a

look-ahead window explained below and anywhere herein.

Extensions to the inferential form of SBM (equation 9) that utilize sequential pattern
matrices with an extended similarity operator are readily apparent. Analogous to the
vector-based form of inferential modeling, the three-dimensional collection of learned
sequential pattern matrices Dy(t) can be understood as an aggregate matrix containing
learned sequential pattern matrices a to g that map to the sensor values in the input
pattern array Xy and sequential pattern matrices a to g that map to the inferred sensors
Dou(t). Referring to FIG. 7, equation 9 is shown with an input pattern array Xi, and a
three-dimensional collection of learned sequential pattern matrices Djy(t) with seven

learned sequential pattern matrices a to g for the five input sensors 1 to 5. It is
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understood that the aggregate matrix Dy(t) is a three-dimensional extension of the two-
dimensional aggregate matrix defined in equation 10. Comparing the illustration in FIG.
7 to that in FIG. 6, the matrices within the brackets of both figures are identical except for
how they are denoted. Therefore, the calculation of the weight vector for an inferential
model proceeds in the same manner as that described above for an autoassociative model.
Then, as in FIG. 4, the weight vector is multiplied by the learned sequential pattern array
for the inferred sensors in FIG. 7 except that here matrix Deu(t) is now a three-
dimensional collection of learned sequential pattern matrices, and this step forms an
estimate matrix Yest representing only the inferred sensors. As described above for the
vector-based form of inferential modeling, the weight vector can also be multiplied by the
full three-dimensional collection of learned sequential pattern matrices D,(t) that includes
both Dj,(t) and Dg,(t) to generate estimate matrices for both input and inferred sensors

(depicted in FIG. 8).

Inferential modeling enables calculation of estimates for sensors whose data are not
included in the input data stream because reference data for these sensors are included in
the three-dimensional collection of learned sequential pattern matrices D,(t) or Doye(t).
Conceptually, an inferential model extrapolates along the dimension of the modeled
sensors. It is also possible to create an inferential model that extrapolates in the time
dimension. This can be understood by revisiting the concept of the primary time point
and the look-back window of equation 21. The time points in the look-back window
precede the primary time point, meaning that they lie in the past relative to the primary
time. One can also define a look-ahead window, constructed of time points that succeed
the primary time. The time points in a look-ahead window are in the future relative to the
primary time. Consider an ordered sequence of time points composed of a given number
(myp) of time points that precede the primary time point and a given number (ny,) of time
points that succeed the primary time point: (t, — npAt, t, — (mp-1)At, ..., t, — 2At, t, — At,
tp, tp + At, t, + 2At,..., t;, + (na-1)At, t, + nAt). The sequence of time points defines a

pattern array that contains both look-back and look-ahead data,

xle, = mye) 2o, = (ny, - DAe), - xle, —280) x{e, — Ac) (e, )

X <tp){ x(tp A, x(tp +2A1), ---X(tp +(n, ~1)Ar), x(tp +m,Al) .
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Referring to FIG. 9, an extension to the inferential form of SBM (equation 9) that
supports extrapolation into the time dimension is produced if the three-dimensional
collection of learned sequential pattern matrices D,(t) is created with sequential pattern
matrices a to g that contain both look-back and look-ahead data. Since the input pattern
array Xin contains data only from the current time point and preceding time points (data
from future time points do not exist yet), the collection of learned sequential pattern
matrices D,(t) is an aggregate matrix composed of two sub-matrices separated along the
time dimension. The first of these sub-matrices Dy,(t) contains the data from the various
primary time points and from the look-back time points. The second sub-matrix Dyu(t)
contains the data from the look-ahead time points. Equation 9 is shown with an input
pattern array X, of five input sensors and a look-back window of three time intervals
between the time points t, to -3. The look-back portion or sub-matrix Dy (t) 1s a three-
dimensional collection of learned sequential pattern matrices that contains data from five
input sensors (1-5), seven primary time points each on its own sequential pattern matrix a
to g, and four look-back time points or reference vectors t, to -3 on each sequential
pattern matrix a to g. The look-ahead portion or sub-matrix Di,(t) is a three-dimensional
collection of learned sequential pattern matrices that contains data from five input sensors
(1-5), seven learned sequential pattern matrices a to g each with its own primary time
point, and two future or succeeding time points or vectors +1 and +2. The resulting
weight vector, generated by the operations within the two sets of brackets, is multiplied
by the look-ahead collection of learned sequential pattern matrices Dy, (t) to create an
estimate matrix Yy, that extrapolates in time. In this example, two extrapolated estimate
vectors +1 and +2 are calculated for estimate matrix Yj,, representing the time points that
are one and two time steps At into the future. As described above with the vector-based
equation (FIG. 5), the weight vector can also be multiplied by the full collection of
learned sequential pattern matrices Dy(t) that includes both Dy,(t) and Dip(t) to generate
estimate matrices Xy, and Y, within an estimate matrix XY that contains estimate data

for past, current, and future time points (depicted in FIG. 10).

Comparing the illustrations in FIGS. 9 and 10 to those in FIGS. 7 and 8, the matrix

calculations within the brackets of all four figures are identical. This means that the
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calculation of the weight vector for an inferential model that extrapolates in the time
dimension is identical to that for an inferential model that extrapolates along the
dimension of the modeled sensors. The two forms of inferential modeling differ only by
the data that are included in the full collection of learned sequential pattern matrices. A
model that includes data for time points that are in the future relative to the primary time
points extrapolates into the future. A model that includes data for sensors that are not in
the input data stream extrapolates into these sensors. Referring to FIG. 11, an inferential
model that extrapolates into both the time and modeled sensor dimensions is shown. Its
three-dimensional collection of learned sequential pattern matrices D,(t) is an aggregate
matrix composed of four sub-matrices separated along the modeled sensor and time
dimensions. Its sub-matrices contain data for the look-back window of the input sensors
Dyy(t), data for the look-ahead window of the input sensors Dy,(t), data for the look-back
window of the output (inferred) sensors Dioue(t), and data for the look-ahead window of
the output (inferred) sensors Dioue(t). The calculations generate estimate matrices Xyp
and Y\, within an estimate matrix XY, that contains estimate data for past, current, and

future time points (depicted in FIG. 10) for both input and output (inferred) sensors.

Each of the various forms of kernel regression modeling with sequential pattern arrays
described above produces an estimate matrix of model estimate data. In one example,
estimate matrix Xes 1S formed for each input pattern array Xpew (FIG. 6). As understood
from the examples described above, in addition to the estimate vector corresponding to
the current time point, the estimate matrix contains vectors for each of the time points in
the look-back and/or look-ahead windows. The number of sequential vectors in the
estimate matrix depends on the form of the modeling equation (autoassociative or
inferential) and the number of time points ny, in the look-back window and the number of
time points ny, in the look-ahead window. As system time progresses, each fixed time
point along the timeline accumulates multiple estimate vectors as the input pattern array
reaches, moves through, and past the time point. The total number of estimate vectors
that will be calculated for a fixed moment in time equals the total number of sequential
patterns (vectors) in the sequential pattern matrix and analyzed by the model. For an

autoassociative model or an inferential model that extrapolates along the sensor
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dimension, this total number is given by my, + 1, corresponding to an estimate vector for
cach pattern in the look-back window and an estimate vector for the primary (current)
time point. For an inferential model that extrapolates along the time dimension, this total
number is given by ny, + 1 + ny,, corresponding to an estimate vector for each pattern in
the look-back and look-ahead windows and an estimate vector for the primary (current)

time point.

Because multiple estimate vectors are calculated for a fixed point in time, utilizing
sequential kernel regression models to feed algorithms for condition monitoring or
diagnostics is complicated by the fact that many of these algorithms expect that only a
single estimate vector exists for a time point. The simplest means of dealing with the
multiple estimate vectors is to simply designate less than all of the multiple vectors in the
estimate matrix as the source of the model estimates and to ignore any others. In one
form, only one of the estimate vectors from each estimate matrix is selected for further
diagnostic analysis. Typically, this means that the estimate vector in the estimate matrix
selected for a fixed, arbitrary point in time t; while looking across multiple estimate
matrices 18 the one generated when that time point becomes the current time point (t; =
teur) Or in other words, the most recent time point (t, in the example estimate matrices of
FIGS. 6 to 8). As the input pattern window moves past ti, and t; becomes part of the
look-back window to the new current time point, new estimate data calculated for t; are
ignored. In other words, the older or preceding vectors relative to the current vector t, in

the estimate matrix are ignored.

Other, more complex methods can be used to produce or select a single estimate vector
for each fixed time point across multiple estimate matrices, while taking advantage of the
information in the multiple vectors. Such methods include, but are not limited to, an
average; weighted average; other weighted norms (2-norm and p-norm); maximum,
minimum or median value, and so forth. The estimate vector chosen for diagnostic
analysis could also be the vector with the greatest similarity to its corresponding input
vector, and may use a similar similarity equation as that used to determine the weight
vector. It will also be understood these methods can be applied to provide a single

estimate vector for each estimate matrix to represent multiple sequential time points
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within the estimate matrix rather than a single fixed time point across multiple estimate

matrices.

For an inferential model that extrapolates in the time dimension, a prognostic module 34
(FIG. 1) can use the future estimate matrix Xy, to feed prognostics algorithms, such as
calculations of the remaining useful life of an asset (or to state it another way, to
determine the future condition or operational state of the object being monitored). This is
based on the fact that the sequence of extrapolated estimates of a modeled sensor is a
trend-line that predicts the future behavior of the modeled sensor. As system time
progresses and new input pattern arrays are formed containing new primary vectors, new
future estimate matrices are calculated. Like the other kernel regression models
described above, the new estimate matrices substantially overlap previous matrices,

meaning that multiple estimate values are produced for each sensor at each time point.

Also similar to the other kernel regression models, the inferential time extrapolating
model can use various methods devised to reduce the multiple estimate values that are
calculated at a fixed time point to a single value suitable for trending of the sensor. The
simplest method is to select the most-recently calculated estimate matrix to supply the
estimate data at each of the time points in the look-ahead window. Specifically, for a
fixed time point t; well into the future, an estimate vector will be generated for it when
the look-ahead pattern window first reaches it: ti = teur + NI *At. At cach succeeding time
step as the look-ahead window passes through the fixed point, a new estimate vector is
calculated for it, which replaces the last vector. Thus, all of the estimate vectors are used
to build a trend line, and the results for each time point (or fixed point) represented by
estimate vectors are constantly being updated by the more recent estimate values to
correspond to vectors as they past through the look-ahead window used to build the

estimate matrices.

Besides being simple, this approach produces sensor trends that react quickly to dynamic
changes since only the most-recently calculated estimate matrix is used. Since estimate
data in the trend-lines are replaced for each succeeding time step, the trends are

susceptible to random fluctuations. This means that the trend value at a fixed time point
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can vary dramatically between successive time steps. Other more complex methods, such
as average, weighted average, or other weighted norms, utilize two or more, or all, of the
estimate values calculated at a fixed time point across multiple estimate matrices to
produce a single estimate value for it. Trend lines produced by these methods are
smoother, but less responsive to rapid dynamic changes. In addition to the above
methods, which are designed to produce trend-lines representative of expected system
behavior, other trend-lines can be produced that indicate the range of possible behaviors.
For instance, a trend-line that connects the maximum estimate values at each future time
point coupled with a trend-line connecting the minimum estimate values, bound the

results produced by the model.

Returning again to FIG. 1, the full estimate matrix Xes Or a single representative estimate
vector, as described above, is passed to differencing engine 20. The differencing engine
subtracts the estimate matrix from the input pattern array (Xin or Xyew) Or it subtracts the
representative estimate vector from the current time point’s input vector. Specifically,
cach selected estimate value from the estimate matrix is subtracted from a corresponding
input value from the input pattern array. This array of residual vectors or a single
representative residual vector is then provided to the alert module 22. Alert module 22
applies statistical tests to the residual data to determine whether the estimate and input
data are statistically different. The alert module 22 performs any of a variety of tests to
make the fault determination. This may include a rules engine for assessing rules logic
using one or more residual values. The rules can be of any of a variety of commonly
used rules, from simple univariate threshold measures, to multivariate and/or time series
logic. Furthermore, the output of some rules may be the input to other rules, as for
example when a simple threshold rule feeds into a windowed alert counting rule (e.g., x
threshold alerts in y observations). Furthermore, statistical techniques may be used on
the residual data to derive other measures and signals, which themselves can be input to
the rules. Applicable statistical analyses can be selected from a wide variety of
techniques known in the art, including but not limited to moving window statistics

(means, medians, standard deviations, maximum, minimum, skewness, kurtosis, etc.),

37



WO 2013/012534 PCT/US2012/044614

[0091]

[0092]

statistical hypothesis tests (for example, Sequential Probability Ratio Test (SPRT)),
trending, and statistical process control (for example, CUSUM, S-chart).

The alert module 22 may determine that any differences between the estimate and input
data is due to the normal operating conditions that were not encountered during training.
In this case, sensor data indicative of the new operating conditions are provided to the
optional adaptation module 30, which incorporates that data into the learning of model 14
via library 18, for example. In addition, adaptation module 30 may optionally perform its
own automated tests on the data and/or residual analysis results to determine which input

vectors or input arrays should be used to update the model 14.

The process of adapting a model comprises adding sensor data indicative of the new
operating conditions to the set of reference data in the library H from which the original
kernel-based model was “trained”. In the simplest embodiment, all reference data are
used as the model exemplars, and therefore adapting a model means adding the new
sensor data to the exemplar set of the model. Since sequential kernel regression models
operate on sequences of observation vectors by design, new operating data added to the
reference data must consist of a sequence of observation vectors. The minimum number
of vectors added during any adaptation event equals the total number of sequential
patterns (vectors) analyzed by the model. As described above, this total number is given
cither by mjp + 1 for an autoassociative model or an inferential model that extrapolates
along the sensor dimension, or by ny + 1 + ny, for an inferential model that extrapolates
along the time dimension. If a training method has been used to down-select the
reference observations to a subset stored as “representative” of system dynamics as
described above for forming the three-dimensional collection of learned sequential
pattern matrices D(t), then the new sequence of observation vectors (or in other words the
entire input pattern array) is added to the original reference dataset, and the down-
selection technique is applied to derive a new representative exemplar set, which should
then include representation of the new observations. It is also possible to merely add the
new sequence to a down-selected set of learned pattern arrays, without rerunning the
down-selection technique. Furthermore, in that case, it may be useful to remove some

learned pattern arrays from the model so that they are effectively replaced by the new

38



WO 2013/012534 PCT/US2012/044614

[0093]

[0094]

[0095]

data, and the model is kept at a manageable size. The criteria for which old learned
pattern arrays are removed can include clustering and similarity determinations using
equations described above which compare the observations at the new primary time
points to the observations at old primary time points and replace those sequential pattern

arrays most like the new sequential pattern arrays.

To this point, the invention describes sequential kernel regression models that are trained
with representative data from periods of normal operation. It has been shown that such
models can be used to detect and diagnosis system faults. In addition, the time-inferential
form of the invention produces models that can extrapolate system behavior into the
future. But since the models are trained only with normal operating data, their utility as a
fault progresses is limited as the system behavior departs further and further from

normality.

To improve diagnostics and prognostics during developing faults, separate sequential
kernel regression models that are trained with data collected during fault conditions (or
failure mode reference data) can be utilized. These fault models are activated only after
there is an indication that a fault is developing in the system. The fault indication can be
provided by sequential models trained with normal system data, or by numerous other
means; including, but not limited to, vector-based kernel regression models (for example,
SBM), neural networks, k-means clustering models, and rule-based fault detection
models. The fault models are trained with full transient histories of known fault events
for the asset being monitored. These fault events need not have occurred on the actual
asset from an carlier period in time, they can come from fault events that have occurred
on other machinery that are substantially equivalent to the asset being monitored. The
fault histories consist of all system data collected from the time at which the fault was
first indicated to the final end state of the event, such as system failure or system

shutdown.

It will be appreciated by those skilled in the art that modifications to the foregoing
embodiments may be made in various aspects. Other variations clearly would also work,

and are within the scope and spirit of the invention. The present invention is set forth
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with particularity in the appended claims. It is deemed that the spirit and scope of that
invention encompasses such modifications and alterations to the embodiments herein as
would be apparent to one of ordinary skill in the art and familiar with the teachings of the

present application.
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What is claimed is:

1. A monitoring system for determining the condition of an object, comprising:

an empirical model having reference data that indicates the normal operational state of
the object, and input pattern arrays, each input pattern array having a plurality of time-ordered
input vectors, each input vector having input values representing a plurality of parameters
indicating the current condition of the object,

the empirical model being configured to generate estimate values based on a calculation
that uses an input pattern array and the reference data to determine a similarity measure between
the input values and the reference data; and

a differencing module comparing the estimate values to the corresponding input values so

that resulting values from the comparison can be used to determine the condition of the object.

2. The system of claim 1, wherein at least one of the input vectors is in multiple

input pattern arrays.

3. The system of claim 1, wherein each input pattern array represents a time period
including a plurality of time points along a sequence of the input vectors representing the

operational state of the object.

4. The system of claim 3, wherein each input pattern array represents a time period
that is different than, but overlaps, the time period of at least one of the other input pattern

arrays.
5. The system of claim 3, wherein each input pattern array has a current primary
vector from the sequence of input vectors and representing the most recent time point within the

input pattern array.

6. The system of claim 5 wherein the input vectors are selected for each input

pattern array by moving a look-back window along the sequence, selecting the current primary
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vector, and selecting one or more older vectors that follow the primary vector along the sequence

and fit within the window.

7. The system according to claim 6 wherein the older vectors are consecutive along

the sequence.

8. The system according to claim 6 wherein the older vectors are not consecutive

along the sequence.

9. The system according to claim 1 wherein time intervals between the time points

represented by the input vectors within an input pattern array are uniform.

10. The system according to claim 1 wherein time intervals between the time points

represent by the input vectors within an input pattern array are unequal.

11.  The system according to claim 1 wherein time intervals between time points
represented by the input vectors within an input pattern array are shorter between input vectors
that are more recent than the time intervals between later input vectors within the same input

pattern array.

12.  The system according to claim 1 wherein the total duration represented by the

input pattern arrays varies.

13. The system according to claim 1 wherein the calculation is based on an equation

that comprises:
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15.  The system of claim 1 wherein the similarity measure is a value on a bounded

range that indicates an input value and reference value are identical at one end of the range and

have no similarity at another end of the range.
16.  The system of claim 1, wherein the reference data comprises at least one learned

sequential pattern matrix, each learned sequential pattern matrix having a plurality of reference

vectors, each reference vector having reference values representing a plurality of parameters.
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17. The system of claim 16 wherein the reference data forms a three-dimensional

collection of the learned sequential pattern matrices.

18.  The system of claim 17 wherein the three-dimensional collection is defined by
three dimensions representing the parameters along a first dimension, the learned sequential
pattern matrices along a second dimension, and time represented by the reference vectors in a

third dimension.

19.  The system of claim 17 wherein each input pattern array is compared to each
learned sequential pattern matrix in the three-dimensional collection to determine a similarity

measure for each learned sequential pattern matrix.

20.  The system of claim 17 herein each learned sequential pattern matrix represents a
time period including time points represented by the reference vectors, wherein the time period is
different than, but overlaps, the time period of at least some of the other learned sequential

pattern matrices in the three-dimensional collection.

21.  The system of claim 17 wherein the learned sequential pattern matrices have the

same number of vectors as the input pattern arrays.

22.  The system of claim 17 wherein the learned sequential pattern matrices represent

the same time points as the input pattern arrays.

23.  The system of claim 17 wherein the similarity between one of the learned
sequential pattern matrices and one of the input pattern arrays is based on the similarity between
corresponding reference and input values that represent the same vector position relative to the

position of the other vectors represented within their respective array.
24.  The system of claim 17 wherein the similarity between one of the learned

sequential pattern matrices and one of the input pattern arrays comprises calculating an average

scalar similarity value for each parameter represented by the arrays.
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25.  The system of claim 17 wherein at least some of the input pattern arrays represent
a time period that is different than the time period represented by at least one of the learned

sequential pattern matrices.

26.  The system according to claim 17 wherein the time period represented by the

learned sequential pattern matrices varies.

27.  The system according to claim 1 wherein the empirical model is configured to
generate the estimate values in the form of an estimate matrix having a plurality of estimate

vectors.

28. The system of claim 27 wherein the estimate vectors in each estimate matrix

corresponds to the time points represented by the input vectors in the input pattern arrays.

29. The system of claim 27 wherein less than all of the estimate values within the

estimate matrices are used to determine the condition of the object.

30.  The system of claim 27 wherein the differencing module only uses the estimate
values that represent the most recent time point within each estimate matrix to determine the

condition of the object.

31.  The system of claim 27 comprising providing a single estimate vector for each

time point represented across multiple estimate matrices to determine the condition of the object.

32.  The system of claim 31 wherein the single estimate vector is provided by using at
least one of:

selecting the estimate vector with one or more estimate values that has a maximum,
minimum, or median value relative to other estimate vectors at the time point across multiple

estimate matrices,
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calculating an average, a weighted average, or weighted norm of the estimate values at
the time point across multiple estate matrices, and
selecting an estimate vector with the greatest similarity to a corresponding input vector

relative to other estimate vectors at the time point across multiple estimate matrices.

33.  The system of claim 27 wherein the empirical model provides an estimate vector
to determine the condition of the object by using at least one of:

an cstimate vector within each estimate matrix that has a maximum, minimum, or median
estimate value,

a weighted average or weighted norm of the estimate values in the estimate matrix to
form a single estimate for each matrix, and

the estimate vector within the estimate matrix with the greatest similarity to a respective

corresponding input vector.

34.  The system of claim 1 wherein the empirical model is configured to use the
similarity measures as weights in a calculation with a three-dimensional collection of learned
sequential pattern matrices that represents parameters that are not represented in the input pattern

arrays.

35.  The system of claim 34 wherein the reference data used to generate the similarity

measures do not represent all of the parameters represented by the three-dimensional collection.

36.  The system of claim 34 wherein the three-dimensional collection represents only

parameters that are not represented by the input pattern arrays.

37.  The system of claim 35 wherein the three-dimensional collection represents both
parameters that are not represented by the input pattern arrays and parameters that are
represented by the input pattern arrays.

38.  The system of claim 1 comprising a localization module to redetermine which

reference data is to be used to generate the estimate values for each input pattern array.
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39.  The system of claim 1 comprising an adaption module configured to add the input
pattern arrays to the reference data when the estimate values indicate the corresponding input

pattern array represents normal operation.

40. A monitoring system for determining the condition of an object, comprising:

an empirical model operated by at least one processor and comprising reference data that
indicates the normal operational state of the object and in the form of a plurality of learned
sequential pattern matrices, each learned sequential pattern matrix having a plurality of reference
vectors, each reference vector having reference values representing a plurality of parameters, and

input data representing a plurality of parameters indicating the current condition of the
object,

wherein the empirical model is configured to generate estimate values based on a
calculation that uses the input data and the learned sequential pattern matrices to determine a
similarity measure between the input data and reference values in the plurality of reference
matrices; and

a differencing module comparing the estimate values to the corresponding input values so

that resulting values from the comparison can be used to determine the condition of the object.

41. A monitoring system for determining the condition of an object, comprising:

an empirical model comprising reference data that indicates the normal operational state
of the object, and

input data representing a plurality of parameters indicating the current condition of the
object,

wherein the empirical model is configured to generate estimate values based on a
calculation that uses both the input data and the reference data to determine similarity measures
between the input data and the reference data, wherein the estimate values are generated in the
form of an estimate matrix having a plurality of time-ordered estimate vectors, each estimate

vector having estimate values representing multiple parameters; and
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a differencing module comparing at least one estimate vector for cach time period
represented by the estimate matrices to the input data so that the resulting values from the

comparison can be used to determine the condition of the object.
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