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(57) Abstract

This invention unifies a set of statistical signal process-
ing, neuromorphic systems, and microelectronic implementa-
tion techniques for blind separation and recovery of mixed
signals. A set of architectures, frameworks, algorithms, and
devices for separating, discriminating, and recovering origi-
nal signal sources by processing a set of received mixtures
and functions of said signals are described. The adaptation
inherent in the referenced architectures, frameworks, algo-
rithms, and devices is based on processing of the received,
measured, recorded or otherwise stored signals or functions
thereof. There are multiple criteria that can be used alone or in
conjunction with other criteria for achieving the separation and
recovery of the original signal content from the signal mix-
tures. The composition adopts both discrete-time and contin-
uous-time formulations with a view towards implementations
in the digital as well as the analog domains of microelectronic
circuits. This invention focuses on the development and for-
mulation of dynamic architectures with adaptive update laws
for multi-source blind signal separation/recovery. The system
of the invention seeks to permit the adaptive blind separation
and recovery of several unknown signals mixed together in

s(f) sources

Mixing medium /channel

m(t) mixed signals

Signal Separation Process

‘ ‘ ' uft) separated signals

changing interference environments with very minimal assumption on the original signals. The system of this invention has practical
applications to non—multlplexed media sharing, adaptive interferer rejection, acoustic sensors, acoustic diagnostics, medical dlagnostlcs and
instrumentation, speech, voice, language recognition and processing, wired and wireless modulated communication signal receivers, and
cellular communications. This invention also introduces a set of update laws and links minimization of mutual information and the infor-
mation maximization of the output entropy function of a nonlinear neural network, specifically in relation to techniques for blind separation,
discrimination and recovery of mixed signals. The system of the invention seeks to permit the adaptive blind separation and recovery of
several unknown signals mixed together in changing interference environments with very minimal assumption on the original signals.
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ADAPTIVE STATE SPACE SIGNAL SEPARATION,
DISCRIMINATION AND RECOVERY ARCHITECTURES AND THEIR
ADAPTATIONS FOR USE IN DYNAMIC ENVIRONMENTS

BACKGROUND OF THE INVENTION

Field of the Invention

This invention pertains to systems for recovering original signal
information or content by processing multiple measurements of a set of mixed
signals. More specifically the invention pertains to adaptive systems for
recovering several original signals from received measurements of their
mixtures. To best understand the problem solved by the invention, and previous
approaches to solve this problem, the following problem statement is helpful:
With reference to FIGURE 1 of the attached drawings, consider N independent

signals s 1 (), ... and sN (1) These signals may represent any of, or a

combination of, independent speakers or speeches, sounds, music, radio-based
or light based wireless transmissions, electronic or optic communication signals,
still images, videos, etc. These signals may be delayed and superimposed with
one another by means of natural or synthetic mixing in the medium or
environment through which they propagate. One consequently desires an
architecture, framework, or device that, upon receiving the delayed and
superimposed signals, works to successfully separate the independent signal
sources using a set of appropriate algorithms and procedures for their

applications.

Discussion of Related Art

The recovery and separation of independent sources is a classic but
difficult signal processing problem. The problem is complicated by the fact
that in many practical situations, many relevant characteristics of both the signal

sources and the mixing media are unknown.
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Two main categories of methods are used:
1. Neurally inspired adaptive algorithms (e.g., U.S. Patent Nos. 5,383,164
and 5,315,532), and
2. Conventional discrete signal processing (e.g., U.S. Patent Nos.

5,208,786 and 5,539,832).

Neurally inspired adaptive arhitectures and algorithms follow a method

originally proposed by J. Herault and C. Jutten, now called the Herault-Jutten
(or HJ) algorithm. The suitability of this set of methods for CMOS integration
have been recognized. However, the standard HJ algorithm is at best heuristic
with suggested adaptation laws that have been shown to work mainly in special
circumstances. The theory and analysis of prior work pertaining to the HJ
algorithm are still not sufficient to support or guarantee the success encountered
in experimental simulations. Herault and Jutten recognize these analytical
deficiencies and they describe additional problems to be solved. Their proposed
algorithm assumes a linear medium and filtering or no delays. Specifically, the
original signals are assumed to be transferred by the medium via a matrix of
unknown but constant coefficients. To summarize, the Herault-Jutten method
(i) is restricted to the full rank and linear static mixing environments, (i1)
requires matrix inversion operations, and (ii1) does not take into account the
presence of signal delays. In many practical applications, however, filtering and
relative delays do occur. Accordingly, previous work fails to successfully
separate signals in many practical situations and real world applications.

Conventional signal processing approaches to signal separation originate

mostly in the discrete domain in the spirit of traditional digital signal processing
methods and use the statistical properties of signals. Such signal separation
methods employ computations that involve mostly discrete signal transforms
and filter/transform function inversion. Statistical properties of the signals in
the form of a set of cumulants are used to achieve separation of mixed signals
where these cumulants are mathematically forced to approach zero. This

constitutes the crux of the family of algorithms that search for the parameters of

2
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transfer functions that recover and separate the signals from one another.
Calculating all possible cumulants, on the other hand, would be impractical and
too time consuming for real time implementation.

The specifics of these methods are elaborated in these categories below.

1. Neurally Inspired Architectures and Algorithms for Signal

Separation
These set of neurally inspired adaptive approaches to signal separation

assume that the "statistically independent" signal vector S(t)=[s1(),.., and

sN (1) 1T is mixed to produce the signal vector M(t). The vector M(t) is

received by the sensors (e.g. microphones, antenna, etc.).

Let the mixing environment be represented by the general (static or

dynamic) operator 3. Then,

M(t)=3(S()) Equation (1)

There are several formulations that can be used to invert the mixing process,
i.e., operator 33 in a "blind" fashion where no apriori knowledge exists as to the
nature or content of the mixing operator 3 or the original sources S(t). We
group these into two categories, static and dynamic. Additional distinctions can
be made as to the nature of the employed adaptation criteria, €.g., information

maximization, minimization of high order cumulants, etc.

1.1.  The Static Case

The static case is limited to mixing by a constant nonsingular matrix. Let

us assume that the "statistically independent" signal vector S(t)= [s 1 (1), ...,
and s\ (t) 1T is mixed to produce the signal vector M(t). Specifically, let the

mixing operator 3 be represented by a constant matrix A, namely

M(t) = A S(t) Equation (2)
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In FIGURE 2, two architectures that outline the modeling of the mixing and the
separation environments and processes are shown. The architecture in
FIGURE 2(a) necessarily computes the inverse of the constant mixing matrix A,
which requires that A is invertible, 1.¢., A exists.

The alternate architecture in FIGURE 2(b) does not impose this
restriction in that upon convergence the off diagonal elements of the matrix D

are exactly those of the off diagonal elements of the matrix A. In this case,

“however, diagonal elements of the matrix A are restricted to equal “1.0.” By

setting the diagonal elements of D to zero, one essentially concludes that the
mixing process is invertible even if the mixing matrix 1s not.

In both cases. S(t) is the set of unknown sources, M(t) is the set of
mixtures, U(t) is the set of separated signals that estimate S(t), and Y(t) is the set
of control signals used to update the parameters of the unmixing process. As
shown in FIGURE 2, the weight update utilizes a function of the output U(t).

In the first case, we labeled the unmixing matrix W, and in the second
case we labeled it D. Note that D has zero diagonal entries. The update of the
entries of these two matrices is defined by the criteria used for signal separation,
discrimination or recovery, €.g., information maximization, minimization of
higher order cumulants, etc.

As an example, one possible weight update rule for the case where

U =W M@ Equation (3)
could be
wij =n[W T + g’ /g My Equation (4)

where 1 is sufficiently small, g is an odd function, and M is the set of mixtures,

U is the set of outputs which estimate the source signals, subscript T denotes
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transpose, and -T denotes inverse of transpose. Note that the function g ( ) plays

an additional role in the update which can be related to the above diagram as
Y(t) =g (U) Equation (5)

One uses Equation (4) to update the entries of W in Equation (3). Through this
is an iterative update procedure, the entries of W converge so that the product

WA is nearly equal to the identity matrix or a permutation of the identity matrix.

On the other hand, in the second case, one potentially useful rule for the update

of the D matrix entries d; is generically described as
dij =nf(uj®)eg(uj@®) Equation (6)

where 1 is sufficiently small. In practice some useful functions for f(.) include
a cubic function, and for g () include a hyperbolic tangent function. When
using this procedure, one computationally solves for U(t) from Equation (7)

below

U@ty =[1+D ]I M(v) Equation (7)

at each successive step and sample point. This computation is a potentially

heavy burden, especially for high dimensional D.

1.2.  The Dynamic Case

The dynamic mixing model accounts for more realistic mixing
environments, defines such environment models and develops an update law to
recover the original signals within this framework.

In the dynamic case, the matrix A is no longer a constant matrix. In
reference to the feedback structure of the static example, it is simpler to view

5
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Equation (7) where U(t) = [I+D] -1 M(t) as an equation of the fast dynamic

equation

tU (1) =-U®)-DUEY + M(®) Equation (8)

This facilitates the computation by initializing the differential equation in
Equation (8) from an arbitrary guess. It is important however to ensure the
separation of time scales between Equations (8) and the update procedure like
the one defined by Equation (6). This may be ensured by making 1 in Equation
(6) and 1 in Equation (8) sufficiently small.

If we assume the dimensionality of M(t) is N, a set of differential

equations that define the dynamic signal separation algorithm can be written as

for 1=1,.....N Equation (9)

This enumerates N differential equations. In addition, the adaptation process for
the entries of the matrix D can be defined by multiple criteria, e.g., the
evaluation of functions f () and g () in Equation (6). FIGURE 3 is a pictorial
illustration of the dynamic model in feedback configuration.

Current methods outline little in the way of procedures for the
application of adaptation criteria within the architectures defined thus far. Two
implied procedures have been noted:

First is the application of the signal separation functions, adaptation
procedures and criteria to arbitrary points of data - regardless of whether each of
these points is practically and physically accessible or not. Thus, the adaptive
separation procedure applies the adaptation functions and criteria to each
element of the measured mixed signals individually and instantaneously, after

which appropriate parameter updates are made.

6
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The second type of procedure has been described in FIGURE 2(a) that
uses Equation (3). In this case, the criteria is applied to the entire data set, or
selected data points from the entire data set. Thus, the related adaptation
process does not progress per sample, but utilizes the whole data set over which
a constant, static mixing matrix is assumed to apply. Although this method 1s
somewhat more robust than the first, it is essentially an off-line method not
suitable for real time signal separation. Furthermore, when the assumption of a

static constant matrix is incorrect, the accuracy of the unmixing process suffers.

13. Feedforward State Space

The architecture is shown in FIGURE 7. Let the n-dimensional source
signal vector be s, and the m-dimensional measurement vector be M. The
mixing environment may be described by the Linear Time-Invariant (LTI) state

space:

wn

Equation (10)

ol wi
w

>

Il
ol »|
Xl |
+

The parameter matrices A . B, C and D are of compatible dimensions. This
formulation encompasses both continuous-time and discrete-time dynamics The
dot on the state X means derivative for continuous-time dynamics, it however
means "advance" for discrete-time dynamics. The mixing environment 1s
assumed to be (asymptotically) stable, i.e., the matrix A has its eigenvalues in
the left half complex plane. The (adaptive) network is proposed to be of the

form

X=AX+BM Equation (11)
y=CX + DM,
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where y is the n-dimensional output, X is the internal state, and the parameter
matrices are of compatible dimensions. For simplicity, assume that X has the
same dimensions as X. FIGURE (7) depicts the feedforward form of this

framework.

The first question is the following: Does there exist parameter matrices
A, B, C, and D which would recover the original signals? The answer now

follows.

Existence of solutions to the recovery problem:

We state that the (adaptive) dynamic network would be able to counter
act the mixing environment, if the network parameters are set at (or attain via an

adaptive scheme) the following values:

A=A*=T(A-BDC)T" Equation (12)
B=B*=T B [D] Equation (13)
C=C*=-[D]CcT" Equation (14)
D=D*=[D] Equation (15)

where [D] equals

D' : the inverse of D, if m=n,

() "' D "; a pseudo-inverse, if m>n, and

D7 (Dp")": a pseudo-inverse if m <n.
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The matrices A*, B*, and C* can take on a family of values due to the
nonsingular state-equivalent transformation T. We shall use T to render the
network architecture “canonical” or simple from a realization view point. This
formulation in effect generalizes the formulations in the literature, which are
limited to FIR filters, predominantly for 2-dimensional sources and two
measurements, into general n-dimensional sources, and m-dimensional
measurements. Note that, this modeling includes the FIR filtering models, and
extends to IIR filtering if A 1s nonzero.

While this feedforward form for the adaptive network is viable, we note
a limitation for its applicability, namely, that the parameters of the mixing
environment have to be such that the matrix A* is (asymptotically) stable. That
is, for a stable mixing environment, the composite matrix of the adaptive

network
A*=A-B[D]C Equation (16)

must be (asymptotically) stable. i.e., has its eigenvalues in the left half complex
plane. It is apparent that this requirement places a limiting condition on the
allowable mixing environments which may exclude certain class of
applications!
2. The Transfer Function Based Approach to Signal Separation

The representation of signal mixing and separation by transfer functions
makes this approach a dynamic environment model and method.

Current methods thus define a structure for separating two signals by
processing two mixture measurements, which was illustrated in FIGURE 4.

Other architectures for the separation functions in the transfer function
domain results in three serious shortfalls which are all impediments to the
design and implementation of a practical method and apparatus. First, this
formulation, as expressed, precludes the generalization of the separation

procedure to higher dimensions, where the dimensionality of the problem

9
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exceeds two. In other words, a practical formalization of the separation method
does not exist when there are more than two mixtures and two sources. One can
illustrate this by direct reference to other approaches, where matrix
multiplication terms are written out, so that each scalar equation defines one of
the entries of the resulting product matrix desired to be equal to zero. Since
permutations of a diagonal matrix are also allowed, multiple sets of equations
are created. For a two mixture problem, this results in two pairs (four total) of
equations, each with two product terms. Beyond that the number of equations
increases. To be precise the number of equations needed to describe the number
of equations for a specific permutation of the N dimensional case is equal to
(N*-N). For the two dimensional problem this value is 2.

Second, the inversion procedure for the transfer function is ad hoc and
no recipe or teaching exists. The impact of dimensionality plays a crucial role
in this. It is apparent from the method that the resulting architecture gives rise
to networks requiring transfer components whose order is dependent on
products of the transfer components of the mixing environment. Thus, one can
not design a network architecture with a fixed order.

Third, the initial conditions can not be defined since the formulation is
not in the time domain and can not be initialized with arbitrary initial
conditions. Hence, the method is not suitable for real time or on line signal

separation.

SUMMARY OF THE INVENTION

The present invention describes a signal processing system for
separating a plurality of input signals into a plurality of output signals, the input
signals being composed of a function of a plurality of source signals being
associated with a plurality of sources, the output signals estimating the source
signals or functions of source signals. The system comprises a plurality of
sensors for detecting the input signals, an architecture processor for defining and

computing a signal separation method, the signal separation method delimiting

10
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a signal separation architecture for computing the output signals, and an output
processor for computing the output signals based on the signal separation

method or architecture.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1. Signal separation, discrimination and recovery problem
statement.

FIGURE 2. Architecture of the signal separation and recovery network
in case of static mixing by matrix A. U(t) is the output which approximates the
original source signals s(t). Y(t) contain the values that are used in updating the
parameters of the unmixing processes, i.c., W in (a) and D in (b).

FIGURE 2(a). A static neural network structure for signal separation.
U(t) approximates S(t). Y(t) is used for weight update of the network.

FIGURE 2(b) An alternate static neural network structure for signal
separation. U(t) approximates S(t). Y(t) is used for weight update of the
feedback network.

FIGURE 3. Architecture of the signal separation and recovery network
in case of feedback dynamic mixing and separation models. U(t) approximates
S(t). The function g defines the criteria used for weight update of the feedback
network.

FIGURE 4. (a) Conventional transfer function representation for signal
mixing and separation for a two signal system. The two signals U, and U,
approximate S1 and S2. G inverts the mixing process modeled as H. (b) The
method is described only in two dimensions. The computation procedure and
is neither practical nor extendible in the case of higher dimensional signals.
Furthermore, the extension of the mixing environment to transfer function
domain has also eliminated the time domain nature of the signals. This also
causes the exclusion of the initial conditions from the set of equations.

FIGURE 5. Two mixing models for the state space time domain
architecture. (a) General framework. (b) Special case where 4 and B are

11
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fixed, and its relation to conventional signal processing. Both models apply to
multiple types of separation architectures.

FIGURE 6. Signal separation model for the state space time domain
architecture. (a) General model and architecture. (b) Special case, only the
model is shown without the arrows in (a) which depict parameter update
procedures.

FIGURE 7. Feedforward state space architecture.

FIGURE 8. Feedback state space architecture.

FIGURE 9. (a) Flowchart of the method of the present invention. (b)
DSP implementation architecture. A/D stands for analog to digital conversion,
and D/A for digital to analog conversion. The internals of the DSP may
include a variety of functional units as shown below. Different configurations
are possible depending on the nature of the application, number of mixtures,
desired accuracy, etc.

FIGURE 10. Audio application based on the signal separation and
recovery procedures of this invention. Audio signals are converted electrical
signals by the elements of the microphone array. Each element of the
microphone array receives a different version (or mixture) of the sounds in the
environment. Different arrangements of microphone elements can be designed
depending on the nature of the application, number of mixtures, desired
accuracy, and other relevant criteria. Following some signal conditioning and
filtering, these mixture signals are converted from analog format to digital
format, so that they can be stored and processed. The digital signal processor of
the system is programmed in accordance with the procedures for signal
separation and recovery procedures of this invention. The internals of the DSP
may include a variety of functional units for various arithmetic and logic
operations, and digital representation, data storage and retrieval means to
achieve optimum performance. Circuits and structures shown in figure may
undergo further integration towards realization of the whole system on a single

chip.

12
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DETAILED DESCRIPTION OF THE INVENTION

The present invention seeks to recover and separate mixed signals
transmitted through various media wherein the separation of signals is of such
high quality as to substantially increase (i) the signal carrying capacity of the
medium or channel, (ii) the quality of the received signal, or (ii1) both. The
media or channels may include a combination of wires, cables, fiber optics,
wireless radio or light based frequencies or bands, as well as a combination of
solid, liquid, gas particles, or vacuum.

The present invention also seeks to separate mixed signals through
media or channel wherein a high quality of signal separation is achieved by
hardware currently available or produceable by state of the art techniques.

The system of this invention introduces a set of generalized frameworks
superior to the described preexisting approaches for coping with a range of
circumstances unaddressed to date. Specifically, the feedback state space
architecture shown in FIGURE 8 and its continuous and discrete renditions are
described. Moreover, the architecture is mapped onto a set of adaptive filters in
both FIR and IIR form, commonly used by those skilled in the art of digital
signal processing. In addition, many functions and procedures for the adaptive
computation of parameters pertinent to the architectures of this invention are
outlined. Both the architectures and the procedures for adaptive computation of
parameters are designed for achieving on-line real time signal separation,
discrimination and recovery. The most practically pertinent shortfalls of many
other techniques, namely the failure to account for multiple or unknown number
of signals in the mixing, noise generation, changing mixing conditions, varying
signal strength and quality, and some nonlinear phenomena are addressed by the
formulations of this invention. The invented method overcomes the
deficiencies of other methods by extending the formulation of the problem to
include two new sets of architectures and frameworks, as well as a variety of
parameter adaptation criteria and procedures designed for separating and

recovering signals from mixtures.

13
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Introduction

This invention presents a framework that addresses the blind signal
separation and recovery (or de-convolution) in dynamic environments. The
original work was motivated by the work of Herault and Jutten and Comon.
Most of the recent results have focused primary on establishing analytical
foundation of the results reported by Herault, Jutten and Kullback. Several
researchers have used a host of analytical tools that include applied
mathematics, statistical signal processing, system theory, dynamical systems
and neural networks. The challenge still exists in generalizing the environment
to more general dynamic systems.

Several theoretical results and formulations address the blind separation
and recovery of signals in dynamic environments. We consider state space
dynamic models to represent the mixing environment and consequently the
adaptive network used to perform the signal separation and recovery. We
employ dynamic models which are easily, and directly, adapted to discrete as
well as continuous time channels. The presented environment model and the
adaptive network allow for the case when the mixing environment includes
(state) feedback and memory. The feedback of the state/output corresponds to
Infinite Impulse Response (IIR) filtering in the discrete-time case, where as the
feedforward corresponds to the FIR formulation.

The empbhasis of our method is in developing the network architecture,
and the improved convergent algorithms, with a view towards efficient
implementations. An improved approximation of the (nonlinear) mutual
information/entropy function is used in order to ensure whitening and also to
eliminate the assumption of output unit covariance. The improved expansion
produces an odd polynomial in the network outputs which includes a linear
term, as well as higher order terms -- all absent from the expansion in other
methods. It should be noted however, that some work has addressed only the

static case where the mixing environment is represented by a constant matrix.
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Specifically, a formulation for an FIR filter was also converted into a static

matrix mixing problem.

Method Summary

FIGURE 9(a) shows a process flow diagram of a method of the present
invention. This includes (1) obtaining samples, (2) pre-processing of the
samples, (3) computing outputs using the present value of the states or adaptive
parameters, (4) computing adaptive parameters, (5) computing internal states,
and storing and/or presenting of outputs.

Obtaining samples includes obtaining the multi channel data recorded
through multiple sensors, e.g., microphones. Such data could also come from
previously recorded outputs of said muitiple sensors or mixtures thereof, e.g.,
mixed tracks of sounds. Data can be sampled on line for a real time or near real
time process, or be recalled from a storage or recording media, e.g., tape, hard
disk drive, etc.

Preprocessing of the samples include various processing techniques for
manipulation of the obtained samples, including but not limited to up or down
sampling to vary the effective sampling rate of data, application of various
frequency filters, e.g., low, high, or band pass filters, or notch filters, linear or
nonlinear operations between sensor outputs of the present or previous samples,
e.g., weighted sum of two or more sensors, buffering, random, pseudorandom or
deterministic selection and buffering, windowing of sampled data or functions
of sampled data, and various linear and nonlinear transforms of the sampled
data.

Computing outputs uses the states and parameters computed earlier. It is
also possible delay this step until after the computation of adaptive parameters,
or after the computation of the internal states, or both. Moreover, alternately,
outputs could be computed twice per sample set.

Computing of adaptive parameters may involve a method or multiple

methods which use the derivatives of a function to compute the value of the
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function, the function defining the constraints imposed on the adaptive
parameters. One or more such constraints can be used. A variety of methods
and criteria specifically for computation of adaptive parameters are outlined in
the present invention.

Computing of internal states involves invoking the structure of the
architecture, along with the current or available values of adaptive parameters.
The internal states may be in the form of a vector of states, scalar states, their
samples in time, or their derivatives. The particular architecture defines the

number of states.

Dynamic Architectures

Dynamic models encompass and describe more realistic environments.
Both feedforward and feedback architectures of the state space approach can be
implemented. Feedforward linear state space architecture was listed above.
Throughout this description, we shall refer to the mathematical model for signal
mixing as the mixing environment, while we refer to the mathematical model for
the signal recovery as the (adaptive) network.

The method of this invention extends the environment to include more
realistic models beyond a constant matrix, and develops successful update laws.
A crucial first step is to include dynamic linear systems of the state space which
are more general than FIR filters and transfer functions due to the inclusion of
feedback and variations in initial conditions. Moreover, these models lend
themselves to direct extension to nonlinear models. Another motivation of this
work is to enable eventual implementation in analog or mixed mode micro-
electronics.

The formulation addresses the feedback dynamic structures, where the

environment is represented by a suitable realization of a dynamic linear system.
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The Feedforward Linear Structure:

The feedforward state space architecture was described in the
introduction section and illustrated in FIGURE 7.

The Feedback Linear Structures:

A more effective architecture than its feedforward precursor is the so-
called (output) feedback network architecture, see FIGURE 8. This architecture
leads to less restrictive conditions on the network parameters. Also, because of
feedback, it inherits several known attractive properties of feedback systems
including, robustness to errors and disturbances, stability, and increased

bandwidth. These gains will become apparent from the following equations

Existence of solutions to the recovery problem

Ify is to converge to a solution proportional (via a permutation matrix P)
to s, namely, y= Ps, then, the following parameter matrices of the (adaptive)

network will constitute a solution that recovers the original signals:

A=A*=TAT"
B=B*=TBP"
C=C*=CT"

In addition to the expected desired properties of having feedback in the
architecture of the network, we also achieve simplicity of solutions to the
separation/recovery of signals. In this case, the architecture is not introducing
additional constraints on the network. Note that H in the forward path of the
network may in general represent a matrix in the simplest case, or a transfer
function of a dynamic model. Furthermore, in the event that m=n, H may be

chosen to be the identity matrix.
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The elements of the procedure and its advantages are now apparent.
Further generalizations of the procedures for developing the architectures can
also account for non-minimum phase mixing environments. These steps are
straightforward application of the above procedure and hence will not be
elaborated upon.

An important generalization is to include nonlinearity as part of the
architecture-- explicitly. One model is to include nonlinearity as a static
mapping of the measurement variable M(t). In this event, the adaptive network
needs to include a compensating nonlinearity at its input stage. Thus, the input
must include an "inverse-type" nonlinearity to counter act the measurement
prior to further processing. This type of mixing environment is encountered in
wireless applications that include satellite platforms.

The dynamic architecture defined in this proper way ensures that a
solution to the blind signal separation does exist. We now move to the next step
of defining the proper adaptive procedure/algorithm which would enable the
network to converge to one of its possible solutions. Consequently, after

convergence, the network will retain the variable for signal processing/recovery.

Discrete State Space Representation and Specialization to Discrete-time IIR and
FIR Filters
Performance Measure/Functional

The mutual information of a random vector y is a measure of

dependence among its components and is defined as follows:

In the continuous case:

Ly)= [p,(»n ,—&(&" y

et [Tr. &)
J=l

18
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In the discrete case:

L) =3 p.()in| 2

e [1r, )
j=1

An approximation of the discrete case:

0= 35,00 2

H P, (v; (k)
=

where p (y) is the probability density function (pdf) of the random vector y,
whereas p, (y;) isthe probabilty density of the j-th component of the output
vector y. The functional L (y) is always non-negative and is zero if and only if
the components of the random vector y are statistically independent. This
important measure defines the degree of dependence among the components of
the signal vector. Therefore, it represents an appropriate functional for
characterizing (the degree of) statistical independence. L(y) can be expressed

in terms of the entropy
L(y) = -H(y)+ 2 H ()

where H (y) := - E[Inf,], is the entropy of y, and E[.] denotes the expected

value.

The General Nonlinear Discrete Time Non-Stationary Dynamic Case:

The Environment Model

Let the environment be modeled as the following nonlinear discrete-time

dynamic (forward) processing model:
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X, (k+1)= [ (X, (k),s(k),w,*)
m(k) = g, (X, (k),s(k),w,*)

where s(k) is an n-dimensional vector of original sources, m(k) is the m-
dimensional vector of measurements, X, p(k) isthe N, -dimensional state vector.
The vector (or matrix) w, * represents constant/parameter of the dynamic
equation, and w, * represents constant/parameter of the “output™ equation. The
functions f,(.) and g,(.)are differentiable. It is also assumed that existence and
uniqueness of solutions of the differential equation are satisfied for each set of

initial conditions X (7,) and a given waveform vector s(k).

The Processing Networks

The (processing) network may be represented by a dynamic (forward)

network or a dynamic feedback network.

The Feedforward Network is

X(k+1)= f (X (k),m(k),wi)

v(k) = g" (X (k),m(k), w2)

where k is the index. m(k) is the m-dimensional measurement, y(k) is the r-
dimensional output vector, X(k) is the

N-dimensional state vector. (Note that N and N, may be different.) The vector
(or matrix) w, represents the parameter of the dynamic equation, and w,
represents the parameter of the “output” equation. The functions f(.) and

g(.) are differentiable. It is also assumed that existence and uniqueness of
solutions of the differential equation are satisfied for each set of initial

conditions X(¢,) and a given measurement waveform vector m(k).

20
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Update Law for the discrete-time dynamic network: general nonlinear case

The update law is now developed for dynamic environments to recover
the original signals. The environment here is modeled as a linear dynamical
system. Consequently, the network will also be modeled as a linear dynamical

5  system.

The network is a feedforward dynamical system . In this case, one

defines the performance index
k-1
AWmm=;ku

subject to the discrete-time nonlinear dynamic network

k -
Xoo = (X, m,w), X,

o

Ve = gk(Xk”"w“":)

It noted that this form of a general nonlinear time varying discrete dynamic
model includes both the special architectures of multilayered recurrent and
feedforward neural networks with any size and any number of layers. It is more
15 compact, mathematically, to discuss this general case but its direct and
straightforward specialization to feedforward and recurrent (feedback) models is

strongly noted.

Then, the augmented cost function to be optimized becomes

k-1
20 Jywwy) = D L () A (S (Xomw) = X))

k=ko

The Hamiltonian is then defined as

H* = L' ((k)) + AL, [E(X.mw)

2]
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Consequently, the sufficient conditions for optimality are:

oH* .
Xin=%—-7 .fA(XHmk’wl)
O/lkﬂ

cH* ‘T art
= =(fe ) A, +—
an (fx) kel an

oH"
Aw, = -11 = —77(f”k, )T;tkn
ow,

oH' oL
v, ow,

A

Aw, = -1

5 The boundary conditions are as follows: the first equation, the state equation,
uses an initial condition, while the second equation, the co-state equation, uses a
final condition equal to zero. The parameter equations use initiai values with

small norm which may be chosen randomly or from a given set.
10 General Discrete Linear Dynamic Case:

Environment

X, (k+1)=A X (k)+B s(k)
m(k)=C X, (k)+ D s(k)

15  Feedforward Network

X(k+1)= 4 X(k)+ B m(k)
y(k) = C X(k)+ D m(k)

The first question is the following: Does there exist parameter matrices of the

20 processing network which would recover the original signals? The answer is

yes, the explicit solutions of the parameters are given next.
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Existence of solution to the recovery problem:

The Update law for the linear dynamic case

k
Xk+1=—aﬁ~_=fk(X5nlawl):AXk+Bmk
a/lkﬂ
5Hk aLI‘ aLk
Ap=mme=(f4) A+ = A+ G —
k an (ka) k+l an Kk k ayk
oH*
Ad=-n = _U(f:)flml = ~/1k+leT
0A
OH* .
AB =77 =) A = =Ry
oH* oLt _
AD =~ =—n—=n(D]" -1, G)m’
=D 20 n((py" =f,0)m’)
oH" oL ,
1=~ ¢ n=f,(y) X)

Specialization to IIR and FIR Filters

The general discrete-time linear dynamics of the network are given as:

X(k+1) = A X(k)+ B m(k)
y(k)y=C X(k)+ D m(k)

where m(k) is the m-dimensional vector of measurements, y(k) is the n-
dimensional vector of (processed) outputs, and X(k) is the (mL) dimensional
states (representing filtered versions of the measurements in this case). One may
view the state vector as composed of he L m-dimensional state vectors

X,X,,...., X, . Thatis,
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X, (k)
X, = X(k) = X, (k)
X, (k)

Consider the case where the matrices and A and B are in the

5 “controllable canonical form.” We represent the A and B block matrices as,
Al ! Al 2 Al L ]
I 0 0 0
A= ! and B=
I/ 0
o o0 7 0 0

where each block sub-matrix 4,; may be simplified to a diagonal matrix, and

10 each I is a block identity matrix with appropriate dimensions.

Then,

X (k+1)=> A, X, (k) +m(k)

j=1

X, (k+1)= X}(k)

X, (k+)=X, (k)

Y)Y = 3 C,X, (k) + D)

J=1

15 This model represents an IIR filtering structure of the measurement vector m(k).
In the event that the block matrices 4,; are zero, then the model is reduced to

the special case of an FIR filter.
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X,(k+1) = m(k)
X, (k+1) = X, (k)

X, (k+1) =X, (k)

k) = Z C,.X,(k)y+ Dm(k)

The equations may be re-written in the well-known FIR form

X, (k) = m(k=1)
X, (k)= X, (k=1) = m(k~2)

X, (k)=X, (k=1)=m(k—L)

L
k) =Y C.X,(k)+ Dm(k)

J=1

This last equation relates the measured signal m(k) and its delayed versions

represented by X; (k), to the output v(k).

Special Canonical Representation cases:

The matrices 4 and B are best represented in the “controllable
canonical forms” or the form I format. That B is constant and A has only the
first block rows as parameters in the IIR network case. In that event, No update
equation for the matrix B are used. While for the matrix A only the first block

rows are updated. Thus the update law for the matrix A is limited to

oH' kK NT T
T/ :_n(f,;,,) Ara :_77/11(k+1)X,‘ (k)
O,

Noting the form of the matrix A, the co-state equations can be expanded as

AA

25
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.
A (k)= 2, (k+1)+ C,T%(k)

Sk

- oLt
Ay (ky= A (k+1)+C) —(k
2(k)y=A;(k+D)+ Gy,()

k

oLt
A (k)=C] —(k
(k) 6y,()

k

L aL/\

A (k+1)= ZC,T;(k+Z)

I=1 Vi

Therefore, the update law for the block sub-matrices in A are:

oH"

Ay ==n—=—nA(k+DX](k)==n) (]

v o

1j

——(k+1) X’
ayk( ) J

PCT/US99/13550

The [D] " represents the transpose of the pseudo-inverse of the D matrix. The

update laws for the matrices D and C can be elaborated upon as follows:

AD = n([DY" = [, (0 m")y=n(I- f,(») (Dm)")[ D]’

10  where I is a matrix composed of the r x r identity matrix augmented by

additional zero row (if n>r) or additional zero columns (if n <r). In light of

considering the “natural gradient,” an alternate update law in this case is

AD = n([D]" = f,(») m")D"D=n(I - f,(y) (Dm)") D

15 For the C matrix, the update equations can be written for each block matrix as

follows:
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oH* ort r
AC. =—- =—p—=pn(- X.
; ”acj nac_, n—f,(y)X,")

If one reduces the state space by eliminating the internal state, one reduces the

system to a static environment where

m(t) = DS(t)

In discrete notation it is defined by

m(k) = DS(k)

Two types of (discrete) networks have been described for separation of statically
mixed signals. These are the feedforward network where the separated signals

y(k) are

v(k)y=WM(k)

and feedback network where y(k) is defined as

y(k) = m(k) = Dy(k)
y(k) = (1 + D) m(k)

Discrete update laws suggested for these are as follows

In case of the feedforward network,

Wty {—f(y(k)) gl (k)+ el )
27
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and in case of the feedback network,

DI = D' { £ Ng (k) 1}

where (< I ) may be replaced by time windowed averages of the diagonals of

the f (y(k) ) g1 (y(k) ) matrix.

Note: One may also use multiplicative weights in the update. The following

"dynamic" FIR models can demonstrate analogous update law modifications.

Environment Model:

In an FIR, single delay case, the mixed samples m(k) are defined by the

equation

1 _
m(k) = DoS(k) + DyS(k =1) = ¥ D;S(k i)
i=0

Separating feedforward network Model

This network produces approximated source signals y(k) defined by

L
yky= T WMk - )
j=1

Using the update laws for matrices W, to W, as follows:
AWy = o oe 1= £ (4(0)) g0k |
AW, == {f (V(k)g(r(k =D}
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or AW, = - f ()g(k =) +7 f(y(k —1)g(y(k)

L
AW =-p {f(y(k)){ 28k~ f)T)}

t=1

L T L T
or AW =—u 3 fO(k) glg(y(k—f)) +y EI/ (y(k—1)) |g((k)

A specific update can be performed simply by means of adding the rate of

change AW to W as

Wil —wt AW

or by another known integration method for computing values of variables from

their derivatives.

Continuous Time Models

This invention introduces a set of update laws and links minimization of
mutual information and the information maximization of the output entropy
function of a nonlinear neural network, specifically in relation to techniques for
blind separation, discrimination and recovery of mixed signals. The system of
the invention enables the adaptive blind separation and recovery of several
unknown signals mixed together in changing interference environments with
very minimal assumption on the original signals.

In the previous section, discrete time models were developed. This
section deals primarily with continuous time derivations. These continuous
system derivations parallel those in the discrete case and described here to
complement the continuous time models. It is noted that continuous time and

discrete time derivations in the content of this invention for the large part are
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analogous of each other. Updates laws of one domain can also be converted to

update laws of the other domain by those skilled in the art.

Performance Measure/Functional
The mutual information of a random vector y is a measure of
dependence among its components and is defined as follows:

In the continuous case:

1= [ o2l

J=r
A PNES
=1 ,

In the discrete case:

L)=3 p.ym 2

veY 1;[10‘% (_V/-)
j=1

An approximation of the discrete case:

L= potkyn | L0

[1». (y,(k))‘
j=!
where p (y) is the probability density function (pdf) of the random vector y,
whereas p. (y;) is the probabilty density of the j-th component of the output

vector y. The functional L (y) is always non-negative and is zero if and only if
the components of the random vector y are statistically independent. This
important measure defines the degree of dependence among the components of

the signal vector. Therefore, it represents an appropriate functional for
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characterizing (the degree of) statistical independence. L(y) can be expressed

in terms of the entropy
L(y)=-H(y)+Y H(y)

where H (y) := - E[Inf]], is the entropy of y, and E[.] denotes the expected
value.
Derivation of the Update Law

Assume a linear feedforward structure of the neural network as shown

below.

S(t M(t)
N y(1) >

Then the probability density functions fo the (random vector) output and the
mixed input variables are related asThe mutual information of a random vector

y is a measure of independence among its components and can be defined as:

S (W)
wl

fou)=

Thus, L(y) = —H(y)+z H(y,)can be written as

L(y) =~H(M)-In|W|+ ZH(yi)

To optimize (actually, minimize) L(y) as a function of W, knowledge (or
approximation) of only the marginal entropies is required. Such information is
not available, by hypothesis, and thus one needs to approximate these quantities
in order to minimize L(y). Comon and Amari et. al. used respectively an
Edgeworth and a Charlier-Gram expansion of the pdf's to approximate the

marginal entropies. The approximation produces:
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L(y) =DM, y,W)

the derivations lead to the following gradient update rule

W=nW' -f,(M']
where functional approximation leads to a different function f; (y). Our work
assumed a Charlier-Gram expansion and includes higher approximations than

used previously. In our case, the function f(y) is given by

7115 355,13 190 11 4033 9 941 7 475 )3

= —— — + v 4+
J, =577 3 24 3 g7 TV Y

As an example, the algorithm defined by the previous two equations converges
when a uniform random noise and sine function are applied as unknown

sources. One can use the natural gradient to express the update law defined

previously as W =n[W ™" ~ f, (y)M']as

W=n[L-f,(»)y"1W

In this case, simulations show that such an algorithm converges for a variety of
signals. However, it fails if a random and a sine waveforms were used. These
results will also apply if some nonlinear functions are used. Hence, in this case,

both functions have similar effects.

Parameter Update Techniques for Continuous Dynamic Environments

We consider more realistic environments, define their models and apply
the update law to recover the original signals. In our formulation, the
environment is modeled as linear dynamic system. Consequently, the network
will also be modeled as a linear dynamic system.
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The update law is now developed for dynamic environments to recover the
original signals. The environment here is modeled as a linear dynamical
system. Consequently, the network will also be modeled as a linear dynamical

system.

The Feedforward Case:
The network is a feedforward dynamical system as in FIGURE 7. In

this case, one defines the performance index

Jx,w) = [£0x%,2, wyde

where -’is the Lagrangian and is defined as

AL XA, W) = ¢ (6,x,w) + 1 T(Xx— AX — Be)

where A(t) is the adjoint state equation defined by

The functional ¢ may represent a scaled version of our measure of dependence
I (y), w is a vector constructed of the rows of the parameter matrices C and D.
Note that a canonical realization may be used so that B is constant. The matrix
A, in the canonical representation, may have only N-parameters, where N is the
dimension of the state vector X. The parameters, A, C, and D, represented

generically by wp , will be updated using the general gradient descent form:

. oL
=
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Therefore, using the performance index defined as /(y) = -H(y) + Z H(y,),

the matrices C and D are updated according to
D=n(I-f£,(y)y")D

C=yU~f,(y)x)C

where £ (.) is given by a variety of nonlinear expansive odd-functions which

include hyperbolic sine, and the inverse of a sigmiodal function.
In one specific computation/approximation, the function is given as

. 355, 190 ,, 4033 , 941 , 47 . |
Sy ey oy ey —y Y 4y

71
f"(y)__z) 2" 3 24 3 8 ’

1

The essential features in using the above equation for f; (y) are summarized as

follows:
1. it is analytically derived and justified,
2. it includes a linear term in y and thus enables the performance of second

order statistics necessary for signal whitening,

3. it contains higher order terms which emanate from the 4th order

cumulant statistics in the output signal y, and

4, it does not make the assumption that the output signal has unity

covariance.

The function for f; (v) represents the only function used in the literature
to date with the above characteristics. This function, therefore, exceeds the

limitations of the other analytically derived functions.
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Computer simulations confirm that the algorithm converges if the

function for f; () defined above is used.
The Feeback Architecture
5 The (output) feedback architecture of FIGURE 8 may be simplified in

realization with the following (canonical) state-space representation:

The environment:

10 L
M= > CX +DS
i=1
The network:
X;= A;X; + Bjy, 1 i< L
L
Z= Y CX; + Dy
i=1
y=M-Z
15
where each X, represents a state vector of the environment of the same
dimension as the source signals, and each X; represents a state of the network
of the same dimension as the output signal. For simplicity, we assumed the
same number, L, of the state vectors in both environment and network.
20 Now, using the performance index /(y) = -H(y) + ZH (3,) , the
matrices C, and D are updated according to
D=nD(-1+f,(Ny")
G =y G-I+ fu(yx")
25
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A simpler update law which was verified to work in certain cases may be

satisfactory in special applications:

D=nf,(yy

C =y funx

Computer simulations performed demonstrated the performance of the two

equations above.

It should be clear that the states may, in the simple FIR filtering, represent
simple delays of the sources, while the states in the network represent delays in
the fed back output signals. However, this view is a simple consideration of the
delays of the signal that occur in real physical applications. The framework,
therefore, is more general since it may consider arbitrary delays including those

of IIR filtering and continuous-time physical effects.

Observations
Connection to Information Maximization

One can rewrite the averaged mutual information in terms of the entropy
of the output vector of a nonlinear network with a weight matrix followed by an
activation function nonlinear. This view would link the about analytical

approach with the information-maximization approach. To see the connection,

Su®)

we now proceed as follows. Using ( f, (u) = |W| .), one can re-express the

mutual information criterion as

S (@) ]

I(V=E]l
) [n‘Wlni )
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S ()
1 —————d
Ify(u) n| I f ) u

One can now view the expression

T £,

as the Jacobian of a nonlinear (activation) function applied to the output vector
components. Thus if we were to insert an activation function nonlinearity,

following the linear mapping of the weight matrix, we would render the

expression for /(y) = _[ f.(u)n —L(—li)—du equals to
) ' Hifri ()

1(y)=E [In f ()]

Note that, in this last step, we took the liberty in using the same symbol f to
stand for the unknown joint probability function of the vector output of the non

linear activation function.

Thus now one can state that the minimization of

S ()

I(y)= I So@yn—— du is equivalent to the minimization of

IT; f i (u)

I(y)=E[Inf,(u)]. One observes that minimizing the quantity
I(y)=E[In f,(w)] 1s, by definition, equal to the maximization of the entropy

function of the output of the nonlinear activation function. Note that the
nonlinear activation function used is constructed so that its derivative is
necessarily equal to the marginal probability distributions. Hence this

establishes the exact link between the analytical approach pursued herein with
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other discussions. This bypasses the generally invalid assumptions made

previously which assume that

H(yle)

does not depend on the weight matrix.

We note that the crux of the matter in the formulation is to determine an
approximation to the marginal probability density functions. Such an
approximation needs to rely on the statistical properties of the processed signals

and justifid by analytical means.

Stochastic versus Deterministic Update
Two key points should be noted, One is that while the formulation
adopts a stochastic functional, in the eventual implementation of the update

laws, only deterministic functions of the output variable y are used. The second
point is that the update laws of W=nWw ' -f(y)M']or

W=n[L-f,(») y" ] W are applied on line. In contrast, the application of the

update laws described before are applied using a window and selecting random

output samples to emulate the stochastic process in the update law.

Implementation of the architectures and update laws

A direct hardware implementation of a practical extension of the HJ
network to a first-order dynamic network has been reported previously with
experimental results. Direct implementations represent an avenue of effective
implementation of the architectures and algorithms for the fastest execution of
the recovery network.

Another paradigm includes DSP architectures. For a DSP based
emulation of the signal separation algorithm families discussed here, it will be

up to the tradeoffs in a particular application to identify the best processor

38

SUBSTITUTE SHEET (RULE 26)



WO 99/66638 PCT/US99/13550

10

15

architecture and numerical representations, e.g., floating or fixed point. To
achieve a highly integrated solution (e.g., one chip) will require embedding a
DSP core either from a pre-designed device or designed from standard silicon
cell libraries.

The compiler front-end to the DSP assembler and linker forms a direct
bridge from a high level language coded algorithm simulation environment to
DSP emulation. In addition, a similar direct link exists between many
computing environments and the DSP emulation environments, for example,
C/C++ library and compilers for various processors.

Programmable logic can be an integral part of the related development
process. A programmable DSP core (a DSP processor that is designed for
integration into a custom chip) can be integrated with custom logic to

differentiate a system and reduce system cost, space, and power consumption.

What is claimed is:
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CLAIMS

1. A signal processing system for separating a plurality of input
signals into a plurality of output signals, the input signals being composed of a
function of a plurality of source signals being associated with a plurality of
sources, the output signals estimating the source signals or functions of source
signals, the system comprising:

a plurality of sensors for detecting the input signals,

an architecture processor for defining and computing a signal separation
method, the signal separation method delimiting a signal separation architecture
for computing the output signals, and

an output processor for computing the output signals based on the signal

separation method or architecture.

2. A signal processing system according to claim 1 wherein the

input signals are received and stored in a device.

3. A signal processing system according to claim 1 wherein the

signal separation architecture has variable parameters.

4. A signal processing system according to claim 3 wherein the
signal processing systems also contains an update processor computing the
variable parameters of the signal separation architecture.

5. A signal processing system according to claim 1 wherein the

signal processing systems also contains an update processor for computing the

time varying parameters of the signal separation architecture.
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6. A signal processing system according to any one or more of
claims 1-5, wherein the signal processing system contains an input signal

processor for computing functions of the input signals.

7. A signal processing system according to any one or more of
claims 1-6, wherein the signal processing system contains an output signal

processor for computing functions of the output signals.

8. A signal processing system according to claim 7, wherein the
variable parameters of the signal separation architecture are computed based on

the data from either of the input or the output signal processor, or both.

9. A signal processing system according to any one of claims 1-8
wherein the plurality of sensors are arranged in a sensor array having a

directional response pattern.

10. A signal processing system according to claim 9 wherein the
directional response pattern of the sensor array is capable of being modified by

performing signal processing on the input signals.

11. A signal processing system according to any one of claims 1-10
wherein a quantity of the input signals and a quantity of the output signals are

not equal.

12. A signal processing system according to any one of claims 1-11

wherein at least one output signal is a function of at least two source signals.

13. A signal processing system according to any one of claims 1-12

wherein at least two output signals is a function of a same source signal.
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14. A signal processing system according to any one of claims 1-13
wherein the computing of the output signals is based also on a plurality of

internal states of the system.

15. A signal processing system according to any one of claims 1-14
wherein the computing of the output signals is based also on at least one of the
input signals, the output signals, previously received input signals, and

previously computed output signals.

16. A signal processing system according any one of claims 1-15
wherein the signal separation architecture is defined by a feedback state space
representation that establishes the relationship between the input signals and the

output signals.

17. A signal processing system according to claim 16 wherein the
computing of the output signals is based also on one of more of the current and

previous states of the state space architecture.

18. A signal processing system according to any one of claims 16-17
wherein the feedback state space representation is mapped onto a finite impulse

response (FIR) filter.

19. A signal processing system according to any one of claims 16-17
wherein the state space representation is mapped onto an infinite impulse

response (IIR) filter.

20. A signal processing system according to claims 16-19 wherein

the state space representation is generalized to a nonlinear time variant function.
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21. A method for computing a plurality of parameters of a signal
separation architecture, the architecture defining a relationship between a
plurality of input signals and a plurality of output signals, comprising:

receiving a plurality of input signals;

computing the parameters of the signal separation architecture;

computing the plurality of output signals; and

presenting a plurality of output signals.

22. A method according to claim 21 wherein the method includes a

means for storing the input signals.

23. A method according to claim 21 wherein the method includes a

means for storing the output signals.

24. A method according to claim 21 wherein the method includes a

means for computing transforms of or analysis of the input signals.

25. A method according to claim 21 wherein the method includes a

means for computing transforms of or analysis of the output signals.
26. A method according to any one of claims 21-25 wherein the
signal separation architecture is defined by a feedback state space representation

that establishes the relationship between the input signals and the output signals.

27. A method according to claim 26 wherein the parameters of the
signal separation architecture are organized into a plurality of two-dimensional

arrays (matrix).
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28. A method according to claim 26 wherein the rates of change in
the parameters of the signal separation architecture are organized into a plurality

of two-dimensional arrays (matrix).

29. A method according to any one of claims 27-28 wherein at least
one of the two-dimensional arrays which contain a set of the parameters or the
rate of change in the parameters of the signal separation architecture, is a
function of the outer product of a function of a set of any one of the input
signals, internal states, and output signals arranged in a one dimensional array
and a function of a set of any one of the input signals, internal states, and output

signals arranged in a one dimensional array.

30. A method according to claim 29 wherein the dimension of the

arrangement is three or greater.

31. A method according to claim 30 wherein the number of one
dimensional arrays being multiplied to obtain a plurality of outer products is

three or greater.

32. A method according to claims 21-31 wherein multiple methods

are overlapped in time.

33. A method according to claims 21-31 wherein the architecture is

altered during the execution of the method.

34, A method according to claim 32-33 wherein at least one of the
methods uses zeros or a random set of numbers for the initialization of the

parameters.
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35. A method according to claims 32-33 wherein at least one of the
methods uses the parameters previously computed by another method

overlapping in time.

36. A method according to claim 32-33 wherein at least one method

uses the parameters computed by previously terminated methods.

37.  An acoustic signal discrimination system for discriminating a
plurality of signals into a plurality of output signals, the input signals being
composed of functions of a plurality of source signals that have been affected by
a medium, the source signals being associated with a plurality of sources, the
output signals estimating the source signals, the system comprising:

a plurality of acoustic sensors for detecting the input signals, the input
signals being composed of a set of functions of a set of the source signals;

an architecture processor for defining and computing a plurality of
parameters of a signal separation architecture, the architecture defining a
relationship between a plurality of input signals and a plurality of output
signals, and

an output processor for computing the output signals based on the

acoustic signal separation method.

38.  An acoustic signal discrimination system according to claim 37

wherein the input signals are received and stored in a device.

39.  An acoustic signal discrimination system according to claim 37

wherein the signal separation architecture has at least one variable parameter.

40.  An acoustic signal discrimination system according to claim 39
wherein the signal processing systems also contains an update processor

computing the variable parameters of the signal separation architecture.
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41.  An acoustic signal discrimination system according to any one or
more of claims 37-40, wherein the signal processing system contains an input

signal processor for computing functions of the input signals.

42.  An acoustic signal discrimination system according to any one or
more of claims 37-41, wherein the signal processing system contains an output

signal processor for computing functions of the output signals.

43.  An acoustic signal discrimination system according to claim 42,
wherein the variable parameters of the signal separation architecture are
computed based on the data from either of the input or the output signal

processor, or both.

44, An acoustic signal discrimination system according to claim 43,
wherein the plurality of acoustic sensors are arranged in an acoustic sensor

array, the acoustic sensor array having a directional response pattern.

45. An acoustic signal discrimination system according to claim 43,
wherein the directional response pattern off the acoustic sensor array is capable
of being modified by processing of the signals detected by the acoustic sensors

of the acoustic sensor array.

46.  An acoustic signal discrimination system according to claim 43,
wherein a quantity of the input signals and a quantity of the output signals are

not equal.

47.  An acoustic signal discrimination system according to claim 43,

wherein at least one output signal is a function of at least two source signals.
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48. An acoustic signal discrimination system according to claim 43,

wherein at least two output signals are functions of the same source signal.
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