WO 2004/040776 A2 ||| 080 A0 00O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
13 May 2004 (13.05.2004)

AT O Y0 O O

(10) International Publication Number

WO 2004/040776 A2

(51) International Patent Classification’: H04B
(21) International Application Number:
PCT/1B2003/004349

(22) International Filing Date: 2 October 2003 (02.10.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/286,350 1 November 2002 (01.11.2002)  US
(71) Applicant: NOKIA CORPORATION [FI/FI|; Keilalah-

dentie 4, FIN-02150 Espoo (FI).

(71) Applicant (for LC only): NOKIA, INC. [US/US]; 6000
Connection Drive, Irving, TX 75039 (US).

(72)

(74)

(81)

(84)

Inventors: IYER, Sreeram; 1063 Morse Avenue, Apt.
4-300, Sunnyvale, CA 94089 (US). MAHAMUNI, Atul;
3857 Jasmine Circle#1-309, San Jose, CA 95135 (US).

Agents: BRANCH, John, W. et al.; Darby & Darby P.C.,
P.O. Box 5257, New York, NY 10150-5257 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,
SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,

[Continued on next page]

(54) Title: SOCKET EXTENSIONS FOR REDUNDANCY

100
~~
115
SGSN |~
190
Server [~
135,
145

Data
Data Network

Netwark

(57) Abstract: A standard socket interface is provided
to implement socket redundancy. The interface includes
socket options to create redundant sockets, obtain the
status of redundant sockets, as well as providing error
information relating to redundant sockets. A redundant
socket may be created on a standby side that becomes
active should the active side fail. The standby socket is
associated with the active side socket. When an active side
fails that has a redundant socket created, the standby side
socket seamlessly takes over the sockets operations.



WO 2004/040776 A2 I} N0 A0VOH0 T 00000 A RO AR

SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, Fortwo-letter codes and other abbreviations, refer to the "Guid-
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

—  without international search report and to be republished
upon receipt of that report



10

15

20

25

WO 2004/040776 PCT/IB2003/004349

SOCKET EXTENSIONS FOR REDUNDANCY

Field of the Invention

The present invention relates to IP networks, and more particularly to

socket redundancy.

Background of the Invention

The Berkeley Software Distribution (BSD) socket interface has become a

de-facto standard network programming interface used to implement Transmission
Control Protocol (TCP)/ User Datagram Protocol (UDP) based applications. These
socket based applications have become essential in today's networking environment. As
a result, a network element should be able to handle the situation when one of its
processing elements fails and thus, the connections fail. |

As a result of the importance of networking, the resiliency of networks
has become quite importaht in the current networking world so as to keep the downtime
of routing devices and hosts minimal. A problem, however, is that when a routing
device is not operating correctly, or has failed, it can cause instability in a network.

Protocols like Border Gateway Protocol (BGP), LDP, etc. run over TCP.
The breakdown and re-establishment of a BGP session and the convergence can take a
few minutes, and this creates instability in the whole Internet. Hence it is extremely
important that the sessions never go down due to a single-point failure in a network
element.

The BSD socket API, however, does not provide an interface for
applications to implement socket redundancy. What is needed is a way for the BSD
socket interface to provide a mechanism for applications to perform redundancy

operations.



10

15

20

25

WO 2004/040776 PCT/IB2003/004349

Summary of the Invention

The present invention is directed at addressing the above-mentioned
shortcomings, disadvantages and problems, and will be understood by reading and
studying the following specification.

According to one aspect of the invention, a standard interface is provided
to implement socket redundancy. The interface includes socket options to create
redundant sockets, obtain the status of redundant sockets, as well as providing error
information relating to redundant sockets.

According to yet another aspect of the ipvention an application sets a
redundant socket option that instructs a redundant socket to be created as a standby to
the active socket. A unique identifier is sent to the standby side that is used to link the
standby socket with the active socket.

According to yet another aspect of the invention, when a routing device
fails, the redundant (standby) side seamlessly takes over the socket operations.

According to yet another aspect of the invention, the standard socket
redundant interface may be applied to any family of sockets, though the examples cover

oniy TCP/UDP.

Brief Description of the Drawings

FIGURE 1 illustrates an exemplary IP network in which the invention
may operate;

FIGURE 2 shows a schematic diagram that illustrates an exemplary
system overview in which local area networks and a wide area network are
interconnected by routing devices;

FIGURRE 3 illustrates an overview block diagram of a routing device;

FIGURE 4 shows a block diagram of an architecture for socket
redundancy; and

FIGURE 5 illustrates a process for socket redundancy, in accordance

with aspects of the invention.



10

15

20

25

WO 2004/040776 PCT/1B2003/004349

Detailed Description of the Preferred Embodiment

In the following detailed description of exemplary embodiments of the
invention, reference is made to the accompanied drawings, which form a part hereof,
and which is shown by way of illustration, specific exemplary embodiments of which
the invention may be practiced. Each embbdiment is described in sufficient detail to
enable those skilled in the art to practice the invention, and it is to be understood that
other embodiments may be utilized, and other changes may be made, without departing
from the spirit or scope of the present invention. The following detailed description is,
therefore, not to be taken in a liﬁﬁting sense, and the scope of the present invention is
defined only by the appended claims.

Throughout the specification and claims, the following terms take the meanings
explicitly associated herein, unless the context clearly dictates otherwise. The term
"node" refers to a netWork element, such as a client, server, routing device, and the like.
The term "flow" means a flow of packets. The term "socket library" refers to the socket
API code that is executed in the context of the application. The term "socket layer"
refers to the socket backend. The term "active node" is the node that is active and
processing packets. The term "standby node" is a node that is redundant to the active
node. The term "switchover” refers to the situation when the “active node” fails, and
the “standby node” takes over.

The term support node refers to both "GGSN" and "SGSN" nodes. The
term “user” refers to any person or customer such as a business or organization that
employs a mobile device to communicate or access resources over a mobile network.
The term “operator” refers to any technician or organization that maintains or services
an IP based network. Referring to the drawings, like numbers indicate like parts
throughout the views. Additionally, a reference to the singular includes a reference to
the plural unless otherwise stated or is inconsistent with the disclosure herein. ’

- For purposes of discussion, a redundant socket application is assumed to
be redundancy-aware, and has the capability to exchange messages between an active
node and a standby node. Additionally; the discussion herein assumes a message-based

3



10

15

20

25

WO 2004/040776 PCT/1B2003/004349

interaction between the socket library and the socket layer. The rﬁechanism, however,
can also be applied to a system-call based approach as well.

'fhe redundancy may be applied to any family of sockets, though the
examples cover only TCP/UDP.

Briefly described, the present invention is directed at providing an
interface for applications to implement socket redundancy. An application may set

socket options such that a redundant socket is opened.

Hlustrative Operating Environment

With reference to FIGURE 1, an exemplary mobile IP network in Which
the invention may operate is illustrated. As shown in the figure, mobile IP network 100
includes mobile node (MN) 105, radio access network (RAN) 110, SGSN 115, core
network 120, routers 125, 5, server 190, GGSNs 135, 5, data network 140, and data
network 145.

The connections and operation for mobile IP network 100 will now be
described. MN 105 is coupled to radio access network (RAN) 110. Generally, MN 105
may include any device capable of connecting to a wireless network such as radio
access network 110. Such devices include cellular telephones, smart phones, pagers,
radio frequency (RF) devices, infrared (IR) devices, integrated devices combining one
or more of the preceding devices, and the like. MN 105 may also include other devices
that have a wireless interface such as Personal Digital Assistants (PDAs), handheld
computers, personal computers, multiprocessor systems, microprocessor-based or
programmable consumer electronics, network PCs, wearable computers, and the like.

Radio Access Network (RAN) 110 manages the radio resources and
provides the user with a mechanism to access core network 120. Radio access
network 110 transports information to and from devices capable of wireless
communication, such as MS 105. Radio access network 110 may include both wireless
and wired components. For example, radio access network 110 may include a cellular

tower that is linked to a wired telephone network. Typically, the cellular tower carries

4



10

15

20

25

WO 2004/040776 . PCT/1B2003/004349

. communication to and from cell phones, pagers, and other wireless devices, and the

wired telephone network carries communication to regular phones, long-distance

communication links, and the like. As shown in the figure, RAN 110 includes routers

- 125, . According to one embodiment of the invention, routers 125, ; include redundant

_routing cores that may provide socket redundancy. Server 190, or some other dedicated

network element, may be used to provide Quality of Service (QoS) rules, or some other
rules, relating to how the routers process the packets. Briefly described, server 190 may
be used to monitor and aid in providing the appropriate behavior model for packet
processing within the routers for IP based networks. According to one embodiment,
each router may inform the server of information relating to its operation and receive
information from the server to set the parameters appropriately.

Some nodes may be General Packet Radio Service (GPRS) nodes. For
example, Serving GPRS Support Node (SGSN) 115 may send and receive data from
mobile nodes, such as MN 105, over RAN 110. SGSN 115 also maintains location
information relating to MN 105. SGSN 115 communicates between MN 105 and
Gateway GPRS Support Node (GGSN)s 135, 5 through core network 120. According

~ to one embodiment of the invention, policy server 190 communicates with RAN 110

and core network 120.

Core network 120 is an IP packet based backbone network that includes
routers, such as routers 125, to connect the support nodes in the network. Routers are
intermediary devices on a communications network that expedite message delivery. On
a single network linking many computers through a mesh of possible connections, a
router receives transmitted messages and forwards them to their correct destinations
over available routes. Routers may be a simple computing device or a complex
cbmputing device. For example, a router may be a computer including memory,
processors, and network interface units.

GGSNs 135, 5 are coupled to core network 120 through routers 125,

and act as wireless gateways to data networks, such as network 140 and network 145.



10

15

20

25

WO 2004/040776 PCT/1B2003/004349

Networks 140 and 145 may be the public Internef or a private data network. GGSNs
135, 5 allow MS 105 to access network 140 and network 145.

The operator may set QoS rules to determine whether or not to accept a
packet based on different service classes for a particular user or group of users. For
example, conversational traffic from user group A may be carried using standard AF/EF
behavior, whereas conversational traffic from user group B may be carried with DSUI
behavior. The specific user of MN 105 may be differentiated into one of these user
groups by an identifier associated with the user. For example, the identifier may be the
user Mobile Station Integrated Services Digital Network (MSISDN) number that is
known to both the SGSN and the GGSN support nodes. |

Server 190 is coupled to core network 120 through communication
mediums. Server 190 may be programmed by an operator with rules to manage the
3GPP quality-of-service (QoS) to IP QoS mapping for mobile IP network 100. More
specifically, an operator may generate the rules that are used by the nodes on mobile IP
network 100 to help ensure end-to-end QoS. These rules may be supplied to the nodes
by server 190. Furthermore, computers, and other related electronic devices may be
connected to network 140 and network 145. The public Internet itself may be formed
from a vast number of such interconnected networks, computers, and routers. Mobile
IP network 100 may include many more components than those shown in FIGURE 1.
However, the components shown are sufficient to disclose an illustraﬁve embodiment
for practicing the present invention.

The media used to transmit information in the communication links as
described above illustrate one type of compﬁter—readable media, namely communication
media. Generally, computer-readable media includes any media that can be accessed by
a computing device. Communication media typically embodies computer-readable
instructions, data structures, program modules, or other data in a modulated data signal
such as a carrier wave or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a signal that has one or more
of its characteristics set or changed in such a manner as to encode information in the

6



10

15

20

25

WO 2004/040776 . PCT/1B2003/004349

si;gnal. By way of example, communication médiarincludes wired media such as
twisted pair, coaxial cable, fiber optics, wave guides, and other wired media and
wireless media such as acoustic, RF, infrared, and other wireless media.

FIGURE 2 shows another exemplary system in which the invention
operates in which a number of local area networks ("LANs") 220, 4 and wide area
network ("WAN") 230 interconnected by routers 210. On an interconnected set of
LANs-—including those based on differing architectures and protocols--, a router acts as
a link between LANS, enabling messages to be sent from one to another.

Routers 210 are configured such that they include multiple routing cores
to support redundant socket control.

Communication links within LANs typically include twisted wire pair,
fiber optics, or coaxial cable, while communication links between networks may
utilize analog telephone lines, full or fractional dedicated digital lines including T1, T2,
T3, and T4, Integrated Services Digital Networks (ISDNs), Digital Subscriber Lines
(DSLs), wireless links, or other communications links. Furthermore, computers, such
as remote computer 240, and other related electronic devices can be remotely connected
to either LANs 220, ; or WAN 230 via a modem and temporary telephone link. The
number of WANSs, LANSs, and routers in FIGURE 2 may be increased or decreased
without departing from the spirit or scope of this invention. As such, the Internet itself
may be formed from a vast number of such interconnected networks, computers, and
routers and that an embodiment of the invention could be practiced over the Internet

without departing from the spirit and scope of the invention.

Socket Redudancy

FIGURE 3 illustrates a block diagram of an exemplary routing device in
accordance with aspects of the invention. As shown in the figure, router 300 includes
service interface 310, ingress interface 320, memory 330, routing cores 340, 5, and

egress interface 350. Router 300 may include many more components than those shown



10

15

20

25

WO 2004/040776 PCT/1B2003/004349

in FIGURE 3. However, the components shown are sufficient to disclose an illustrative
embodiment for practicing the present invention. .

' As illustrated in FIGURE 3, router 300 is divided into five blocks.
Routing cores 340, ; provides a router's normal routing and switching functionality.
One of the functionalities of the routing core is to select the egress interface for data
packets entering through the ingress interface. The routing cores moves packets between
interfaces according to set policies. The routing cores implement routing protocols and
run the software to configure and manage the router. The routing core elements serve as
an abstraction of a router's normal routing and switching functionality. Routing core
340,, or routing core 340,, may act as a redundant routing core depending on the
routing core that is acting as the primary routing core. For example, if the primary, or
active, routing core 340, fails, redundant routing core 340, can take over the operation.
When socket redundancy is used, routing core 340, will continue operation, as if
routing core 340, did not fail.

' Service interface 310 monitors and provisions operating parameters. For
example, monitored parameters may include statistics regarding traffic carried at various
service levels. These statistics may be used for accounting purposes and/or for tracking
compliance to Traffic Conditioning Specifications (TCSs) negotiated with customers.
Provisioned parameters are primarily the TCS parameters for Classifiers and Meters and
the associated per-hop behavior (PHB) configuration parameters for actions and
queuing elements. The operator, typically through a system administrator, interacts
with service interface 310 through one or more management protocols, such as SNMP
or COPS protocol, or through other router configuration tools. The operator may
interact with service interface 310 through a policy server, a serial terminal, a telnet
console, and the like.

Memory 330 is coupled to routing cores 340, and may include RAM,
ROM, flash or other types of memory, including volatile and non-volatile memory.
Memory 330 is used to store the router's application, including its operating system as
well as other programs, such as socket redundancy software.

8



10

15

20

25

WO 2004/040776 PCT/1B2003/004349

- Ingress interface 320, routing cores 340, 5 and egress interface 350 are
illustrated at the center of the diagram illustrating router 300. In actual router

implementations, there may be any number of ingress and egress interfaces

- interconnected by the routing cores. Additionally, there may be more routing cores.

Ingress interface 320 may provide classification, metering, action, and
queuing elements. A packet arriving at ingress interface 320 picks up its policy from a’
classifier, which selects traffic according to some specification for each traffic class.

Typically, a classifier identifies a variety of traffic and breaks it up into separate classes

-and is parameterized by filters and output streams. Packets from the input stream are

sorted into various output streams by filters which match the contents of the packet or

possibly match other attributes associated with the packet. -The simplest classifier

" element is one that matches all packets that are applied at its input. In this case, the

classifier may be omitted. A classifier may also classify the input streams according to
their service class.

Egress interface 350 is arranged to receive data from service interface
310, and routing cores 340, ;. Egress interface 350 also includes an output for
outputting packets. As mentioned above, many actions may be applied to the packets.

FIGURE 4 illustrates a block diagram of a socket control redundancy
architecture and procedure, in accordance with aspects of the invention. As shown in
the figure, the socket control redundancy architecture includes a primary side 402 and a
standby side 404. Primary side 402 includes application 405, socket library 410, and
socket layer 415. Standby, side 404 includes application 420, socket library 425, and

. socket layer 430.

The operation of an exemplary redundancy procedure will now be
described. Application 405 initializes and performs an bpen socket operation using
socket ﬁbrary 410. The application may set many different socket options. According
to one embodiment of the invention, the application performs a set socket operation
such as (setsockopt(socket-id, SOL,_SOCKET, SO_REDUNDANT, (char *) &cookie,
sizeof{cookie))) to set the socket to be redundant. This operation requests a redundant

9



10

15

20

25

WO 2004/040776 PCT/1B2003/004349

socket to be establisﬁed on redundant (standby) side 404. Socket layer 415 receives the

instruction to establish a redundant socket and sends a message with the socket

_parameters to the standby socket layer 430 to instruct it to create a socket. According to

one embodiment of the invention, socket layer 415 includes a “cookie" with the

message that uniquely identifies the socket. The message may include other items of
information relating to the socket, as well. In response to the message sent by socket
layer 415, socket layer 430 creates a socket and associates the cookie with the socket.
Socket layer 430 also sends an acknowledgment message (ACK) to socket layer 415.

Socket layer 415 sends a response to application 405 through socket
library 410. The response may indicate the status of the requested operation.
Application 405 may then request the socket operations from the newly opened socket,
such as (getsockopt(socket-id, SOL._SOCKET, SO_REDUNDANT, (char *) &cookie,
&cookieSize), in order to obtain the cookie. Application 405 then sends the cookie to
standby application 420. Application 420 may then execute a set socket option
operation (setsockopt()) with the socket id and the cookie to complete the association
between the socket on the active side (402) with the socket on the standby side (404).
The application may call the set socket option operation with a SOCKET-ID-INVALID
as an argument wherein the set socket operation call also internally calls socket() to
create a new socket, before actually performing the set socket option operation.
Application 420 may also send an ACK message back to application 405
acknowledging the message.

Once the socket association has been performed successfully, all new
socket control operations (listen, bind, setsockopt, ioctl, etc.) are automatically
transferred to the standby by the socket layer 415. Data redundancy may also be
established, at this stage. ’ |

Once the socket is redundant, application 405 need not send any further
socket control operations to the standby. Application 405, may, however, send control

operations to the standby. If application 405 does send these operations to the standby,

10



10

15

20

25

WO 2004/040776 PCT/1B2003/004349

“then the 6perati'ons performed by the socket layer 430 on behalf of the Active side

override the operations performed by the application 420 on the standby side.

Two possible sources of requests for the socket layer on the standby
include: (1) the socket control operation performed by the application 420 on the
standby; and (2) the socket control operation performed by the application 405 on the
Active, and propagated to the standby 430 by the socket layer 415.

Socket control operation (2) takes precedence and overwrites the
pérameters in (1), since this socket has been marked as redundant. If the
application-message reached the standby after the socket-message, and the parameters
are different, an error is returned to the user with ERED (a newly defined error type) as
the error (errno); otherwise the API returns success. Two socket operations (connect
and accept) will now be discussed in more detail.

Connect

Connect for UDP and raw sockets is a local operation, and hence the
connect operation is handled in the same way as bind, listen, etc. For TCP sockets,
when the application 405 invokes connect on the Active side, the TCP state machine is
activated and is in progress. There is a connect timeout associated with this connect
call. Application 420 may or may not call connect on the standby side (404).

When the application does not invoke connect on the standby (404),
then, as soon as the TCP connection is established, this information is sent to the
standby socket layer (430) by the active socket layer (415). Data redundancy may also
be established with immediate effect. A

‘When the application (420) invokes connect on the standby as well, then
the socket layer on the standby (430) performs a dummy wait and keeps the caller
blocked. (For non-blocking sockets, EWOULDBLOCK is returned and the application
can use select to check if the connection was successful.) There is no timer on the
standby (404) for this connect call, since the timeout should be synchronized with the
Active node (402). If connect returns successfully, this is sent to the standby by the
socket layer 415, and then the application on the standby 420 is woken up by the socket

11 -



10

15

20

25

WO 2004/040776 PCT/1B2003/004349

layer on the staridby (430). After sending the message to fhe standby, the user on the -
Active is woken up with the connect success message. When the connect timeout
happens on the Active, the message is sent to the standby by the socket layer 415, and
the application 420 is woken up with the ETIMEOUT error. After sending the message
to the standby, the application 405 on the Active is woken up with the connect failure
message. |

Ifthereis a switch(over before thé connection is established, when the
socket layer 430 (on the standby-turned-active side) detects the switchover, the
application 420 is woken up with an error, and the error code as ESWITCHOVER. The

application 420 calls connect once more to initiate the TCP state machine again.

Accept

- The active application 405 opens a listening socket. When the active

application enables redundancy on this listening socket, all the socket operations on this

- -socket are also made redundant. Redundancy is automatically enabled on all the new

sockets created as a result of new TCP connections now. Even if redundancy is not

enabled on the listening socket, the application can choose to enable redundancy only

~on the child socket, by performing setsockopt as described in the previous sections.

There are two cases for redundant listening sockets: (1) the application
does not perform accept on the standby, and (2) the application performs accept on the
standby. _

In case (1), when the active application 405 receives the response, it calls
the getsockopt(SO_REDUNDANT) and obtains a cookie. (The socket layer 415 would
already have transferred this information to the socket layer 430, before returning the
cookie to 405.) The active application 405 sends the cookie to the standby application.
The standby application creates a socket and executes the setsockopt() call with the
socket id and the cookie to associate the two sockets on the active éide and the standby
side. The application may opt to call the setsockopt with SOCKET-ID-INVALID as an

argument wherein the setsockopt call also internally calls socket() to create a new

12



10

15

20

25

WO 2004/040776 PCT/1B2003/004349

socket, before actually performing setsockopt(). Data redundancy may also be
established immediately.

In case (2), when the application 420 performs accept on the standby,
then the active application 405 invokes getsockopt to obtain the cookie and ships it to
the standby. But the application 420 is blocked on accept. The application on the
standby is woken up with ERED so that it can obtain the message from the standby and
perform the setsockopt with the cookie. The application on the standby (420) now
creates a socket and performs setsockopt(SO_REDUNDANT) or calls the
setsockopt(SO_REDUNDANT) with SOCKET-ID-INVALID and gets the socket id.
(For non-blocking sockets, EWOULDBLOCK is returned and the application 420 can
use select to check if the connection was successful.)Once the application 420 has
received the ERED message, it waits for the message from 405 to get the cookie and
invoke setsockopt. Accept on 404 continues to return ERED until all pending sockets
are associated using setsockopt.

Once control redundancy is established as in the procedure explained

above, the data redundancy may also start.

Special Scenarios -

Active failure:

When the active node fails or is removed, the standby takes over

seemlessly.

Standby Failure

When the standby is removed, all the redundant sockets become
non-redundant. All the sockets are marked temporarily non-redundant by the socket
layer on the active (415). The application can perform a getsockopt on SO-
REDUNDANT STATE to find the status of redundancy. An asynchronous signal or
message may be sent to the application to notify the application 405 of ~this event, or
the application itself detects the failure and takes appropriate actions.

Standby Introduction Scenarios:

13




10

15

20

WO 2004/040776 PCT/1B2003/004349
When the standby node is introduced (after the active node is in a stable
state), all the redundant sockef parameters are sent to the socket layer 415 on the
standby by the socket layer 415 on the active (bulk-update). . Now, the application 405
performs a setsockopt call on each of the sockets that it has marked redundant, géts a
cookie from the socket layer, and then ships it to the application 420 on the standby.
The application on the standby issues setsockopt to associate the Active and the standby
sockets.
Table 1 shows extensions to the socket API, according to one

embodiment of the invention.

Socket options:

SO-REDUNDANT This socket option is used by the active
application to enable redundancy on the socket

and to obtain the cookie from the socket layer.

SO-REDUNDANT-STATE The current state of redundancy.
SOCKET RED OFFLINE
SOCKET RED ONLINE

Table 1
Socket operations may return ERED as the errno to the application in

case the operation cannot be completed on the node due to reasons related to

redundancy. The same errno indicates different errors, based on the context. This may

be extended to have multiple errno values.

There are many conditions under which ERED may be returned. Some
of these have been listed in the prior sections.

FIGURE 5 illustrates a process flow for a socket control redundancy
procedure, in accordance with aspects of the invention. After a start block, the flow
moves to block 510 where a sockét is initialized (See FIGURE 4, blocks 405, 415).
During the initialization the socket is created and the socket options are set to be

redundant. Flowing to block 515, a message is sent to the standby to create a standby
14



10

15

WO 2004/040776 PCT/1B2003/004349

(redundant) socket (See FIGURE 4, block 415 to block 430). The standby socket is
created with a unique identifier. According to one embodiment of the invention, the
standby socket receives a cookie from the active side socket and associates the cookie

with the standby socket. Transitioning to block 520, an acknowledgment message

- (ACK) is sent to the active side (See FIGURE 4, block 430 to block 415). Next, at

block 525, a response is provided to the application that opened the redundant socket
(See FIGURE 4, block 415 to block 405). Moving to block 530, the application request
the socket operations from the newly opened socket in order to obtain the unique
identifier associated with the socket (See FIGURE 4, block 430). Flowing to block 535,
the unique identifier is sent to a standby application (See FIGURE 4, block 405 to block
420). Transitioning to block 540, the standby socket is opened using the unique
identifier (See FIGURE 4, block 420). The standby socket may also set socket options
(block 545) (See FIGURE 4, block 420 to block 430). An acknowledgment message is

-then sent to the active application side (block 550) (See FIGURE 4, block 420 to block

405). The process then steps to an end block and returns to processing other actions.

The above specification, examples and data provide a complete
description of the manufacture and use of the composition of the invention. Since many
embodiments of the invention can be made without departing from the spirit and scope

of the invention, the invention resides in the claims hereinafter appended.

15



WO 2004/040776 PCT/1B2003/004349

WE CLAIM:

1. A method for socket redundancy, comprising:
opening a primary socket; ‘
requesting a redundant socket to be opened through a socket layer
associated with the primary socket and as socket layer associated with the redundant
socket;
associating the primary. socket with the redundant socket;
determining when the primary socket fails; and when, making the

redundant socket the primary socket.

2. The method of Claim 1, wherein opening the primary socket further

comprises setting a socket option that sets the primary socket to be redundant.

3. The method of Claim 1, wherein associating the primary socket with the
redundant socket further comprises sending a message to the redundant socket that
includes a unique identifier that is associated with the primary socket and the redundant

socket.

4. The method of Claim 3, further comprising sending an acknowledgement

message in response to the request to open the redundant socket.

5. The method of Claim 1, wherein associating the primary socket with the
redundant socket further comprises sending an application associated with the redundant

socket a cookie.

6. The method of Claim 5, further comprising associating the cookie with

the redundant socket.



WO 2004/040776 PCT/1B2003/004349

7. = The method of Claim 6, further con;prising providing a standard socket

interface for an application.

8. The method of Claim 7, wherein the standard socket interface further
comprises providing a redundant socket state and an option to make the socket

redundant.

9. A system for socket redundancy that provides a standard socket interface,
comprising:
an active node configured to open a primary socket, request that a
redundant socket is opened, and associate the primary socket with the redundant socket;
and
a standby node configured to open the redundant socket and associate the
redundant socket with the primary socket, wherein the redundant socket is configured to

act as the primary socket when the primary socket fails.

10.  The system of Claim 9, wherein the active node and the standby node

further comprise an application, a socket library, and a socket layer.

11. The system of Claim 10, wherein the socket layer for the active node is

further configured to request that the redundant socket be opened on the standby node.

12. The system of Claim 11, wherein the applications are further configured

to set socket options.

13. The system of Claim 11, wherein the socket layer for the active node and
the socket layer for the standby node are further configured to send a message relating

to the creation of the redundant socket.

17



WO 2004/040776 PCT/1B2003/004349

14.  The system of Claim 13, wherein the message further comprises a cookie

that uniquely identifies the socket.

15.  The system of Claim 14, wherein the redundant socket and the primary

socket are associated with the cookie.

16.  The system of Claim 15, wherein the standby node is further configured
to send an acknowledgement message to the primary side in response to the request to

. open a redundant socket.

17.  The system of Claim 16, wherein the acknowledgement message is sent

by the redundant socket layer to the primary socket layer.

18. A standard socket redundancy interface, comprising:
means for opening a primary socket;
means for opening a redundant socket associated with the primary
socket;
means for associating the primary socket with the redundant socket;
means for determining when the primary socket fails; and when, means

for making the redundant socket the primary socket.

19.  The standard socket redundancy interface of Claim 18, further
comprising means for providing socket options relating to operations involving

redundant sockets.

18



WO 2004/040776

1/5

110

125,

_ Routerv
. 15)5

Rouer Roudter

GGSN|~/

140

Data
Network

Fig.1

100
~

PCT/1B2003/004349

Server

190

GGSN|

Data

Network

155

145



WO 2004/040776 PCT/1B2003/004349

210

200

Fig.2



WO 2004/040776 PCT/1B2003/004349
3/5
300
~)
310
Service Interface
340,
320 — 350
L ~ Routing Y
Core
Ingress Interface  |— 340 ™| Egress Intetface |—1—»
B .
)
* \ 330 ) 4
: oJ Routing
‘ - Core
Memory > -
Routing
Cores

Fig.3



WO 2004/040776 PCT/1B2003/004349

4/5
402 404
- ~
405 420
Application Application
410 425
Socket Library N/ Socket Library ™

430

Socket Layer

Socket Layer

L M GEu Gt G— TR Goheh GvG C— — D AR RGNS — Gw—— p— v amwe oy cvee fems enem aums — onm— v

Fig.4



WO 2004/040776
Initialize Socket f\5/1 0
Y
Send Message to Standby |
to Create Redundant
Socket
Send Acknowledgment 520
Message r\/
Y
Provide Response to 525
Application Opening
Redundant Socket
Obtain Cookie Associated|. 530
with Socket N\J
| Send Cookie to Standby | 535
Application \/

PCT/IB2003/004349

5/5
,\.5:/00
A | .
Standby Application 540
Opens Socket using
Cookie
Standby Application Sets | 545
Socket Options
Send Acknowledgment 550
Message ° r\/
End



	Abstract
	Bibliographic
	Description
	Claims
	Drawings

