

(11) (21) (C) **2,074,681**

1992/07/27

1993/01/27 (43)

2000/11/28 (45)

- (72) Zimmermann, Thomas, CH
- (72) Robins, Karen, CH
- (72) Birch, Olwen M., CH
- (72) Böhlen, Elisabeth, CH
- (73) Lonza Ltd., CH
- (51) Int.Cl.⁵ C12N 15/55, C12N 9/80, C12N 15/70, C12N 1/21, C12P 13/02
- (30) 1991/07/26 (2247/91) CH
- (54) PROCEDE DE GENIE GENETIQUE POUR LA PRODUCTION DE S-(+)-2,2-DIMETHYLCYCLOPROPANECARBOXAMIDE AU MOYEN DE MICROORGANISMES
- (54) GENETIC ENGINEERING PROCESS FOR THE PRODUCTION OF S-(+)-2,2-DIMETHYLCYCLOPROPANECARBOXAMIDE BY MICROORGANISMS

(57) A genetic engineering process is disclosed for the production of S-(+)-2,2-dimethylcyclopropanecarboxamide. For this purpose, a new DNA that codes for a stereospecific hydrolase is isolated from a microorganism. This DNA is then ligated in an expression vector, and a hybrid plasmid results, which is used to transform microorganisms. These microorganisms are then able to biotransform the R-(-) isomer in racemic R,S-(\pm)-2,2dimethylcyclopropanecarboxamide into R-(-)-2,2-dimethylcyclopropanecarboxylic acid. Optically active S-(+)-2,2dimethylcyclopropanecarboxamide is thus obtained.

ABSTRACT OF THE DISCLOSURE

A genetic engineering process is disclosed for the production of S-(+)-2, 2-dimethylcyclopropanecarboxamide. For this purpose, a new DNA that codes for a stereospecific hydrolase is isolated from a microorganism. This DNA is then ligated in an expression vector, and a hybrid plasmid results, which is used to transform microorganisms. These microorganisms are then able to biotransform the R-(-) isomer in racemic $R, S-(\pm)-2$, 2-dimethylcyclopropanecarboxamide into R-(-)-2, 2-dimethylcyclopropanecarboxamide is thus obtained.

The present invention relates to a new process for the production of S-(+)-2,2-dimethylcyclopropane-carboxamide using new microorganisms suitable for that process. These microorganisms have been transformed with a new gene, which forms a stereospecific hydrolase, and is thus able to biotransform the R-(-)-isomer in racemic R,S-(±)-2,2-dimethylcyclopropanecarboxamide into the corresponding acid. Optically active S-(+)-2,2-dimethylcyclopropane carboxamide is thus obtained.

Hereinafter, 2,2-dimethylcyclopropanecarboxamide may be abbreviated as 2,2-DMCPCA and 2,2-dimethylcyclopropanecarboxylic acid may be abbreviated as 2,2-DMCPCS.

10

Optically pure S-(+)-2,2-DMCPCA is used as the initial material for the production of the dehydropeptidase inhibitor cilastatin, which is administered, in treatment, together with penem or carbapenem antibiotics, to prevent deactivation of the antibiotics by a renal dehydropeptidase in the kidneys (see European Published Patent Application No. 048301).

Examples of microorganisms known in the art which produce a stereospecific hydrolase for the R-(-)-2,2-DMCPCA are microorganisms of the species <u>Comamonas acidovorans</u>

A:18 (DSM No. 6315), <u>Bacterium sp. VIII:II</u> (DSM No. 6316),

<u>Pseudomonas sp. NSAK:42</u> (DSM No. 6433) and <u>Comamonas</u>

25 <u>acidovorans</u> TG 308 (DSM No. 6552) as well as the descendants and mutants thereof. These microorganisms have already been described in detail in European Published

Patent Application No. 92103780.0.

The main object of the present invention is to provide new microorganisms as production strains, by recombinant DNA techniques, in which the catalytic capability as well as the expression of the above-mentioned hydrolase gene can be considerably increased as compared to the results achievable by known processes.

Accordingly, the present invention provides a genetic engineering process for the production of S-(+)
2,2-dimethylcyclopropanecarboxamide, wherein R-(-)-2,2dimethylcyclopropanecarboxamide in racemic R,S-(+)2,2dimethylcyclopropanecarboxamide is biotransformed, by
microorganisms which have been transformed, with a gene
that forms a stereospecific hydrolase, to form R-(-)-2,2dimethylcyclopropanecarboxylic acid, and optically active
S-(+)-2,2-dimethylcyclopropanecarboxamide is thus obtained
and is then isolated.

The present invention also provides a DNA coding for a stereospecific hydrolase characterized by the 20 restriction map which is represented in Figure 1.

The present invention further provides a DNA fragment coding for a polypeptide with stereospecific hydrolase activity whose amino acid sequence is represented in Figure 3.

25 Another aspect of the present invention further provides a DNA fragment that hybridizes with the DNA

fragment represented in Figure 3 and which codes for a polypeptide with stereospecific hydrolase activity.

The invention involves a genetic engineering process for the production of S-(+)-2,2-5 dimethylcyclopropanecarboxamide. According to the process of the present invention, R-(-)-2,2-dimethylcyclopropane-carboxamide in racemic R,S-(+)-2,2-dimethylcyclopropane-carboxamide is biotransformed by means of microorganisms transformed with a gene that forms a stereospecific hydrolase to R-(-)-2,2-dimethylcyclo-propanecarboxylic acid. Optically active S-(+)-2,2-dimethylcyclopropanecarboxamide is thus obtained and can then be isolated.

Preferably, the biotransformation of the present invention is performed with microorganisms which have been 15 transformed with a gene that is characterized by the restriction map represented in Figure 1. Preferably, the biotransformation is performed with microorganisms, which have been transformed with a DNA fragment, which codes for a polypeptide with stereospecific hydrolase activity whose 20 amino acid sequence is represented in Figure 3. Preferably, the biotransformation is performed with microorganisms, which have been transformed with a DNA fragment that hybridizes with the DNA fragment represented in Figure 3 and which codes for a polypeptide with 25 stereospecific hydrolase activity. Preferably, the biotransformation is performed with microorganisms of genus Acinetobacter, Escherichia, Pseudomonas, Comamonas,

Agrobacterium. Rhizobium or Preferably, the biotransformation is performed with microorganisms of the species Escherichia coli. Preferably, the biotransformation is performed with microorganisms of the species Escherichia coli XL1-Blue* (DSM No. 6551) or their descendants and mutants, which have been transformed with the hybrid plasmid pCAR6. Preferably, the biotransformation is performed with microorganisms of the species Escherichia coli DH5* (DSM No. 7053) or their descendants 10 and mutants, which have been transformed with the hybrid plasmid pCAR6. Preferably, the biotransformation is performed with an immobilized stereospecific hydrolase. Preferably, the biotransformation is performed in a medium racemic $R,S-(\pm)-2,2-dimethylcyclopropane$ containing 15 carboxamide in an amount of 0.2 to 5 percent by weight. Preferably, the biotransformation is performed at a pH of 6 to 11 and a temperature of 15° to 55°C.

The invention involves a DNA coding for a stereospecific hydrolase characterized by the restriction 20 map which is represented in Figure 1. The invention also involves a DNA fragment coding for a polypeptide with stereospecific hydrolase activity whose amino acid sequence is represented in Figure 3. The invention further involves a DNA fragment that hybridizes with the DNA fragment which is represented in Figure 3 and codes for a polypeptide with stereospecific hydrolase activity. Preferably, the DNA or the DNA fragment in hybrid plasmid pCAR6, according to any

^{* -} Trade-mark

of the above, is deposited in <u>Escherichia coli</u> XL1-Blue* (DSM No. 6551). Preferably, any of the above DNA or DNA fragments in hybrid plasmid pCAR6 is deposited in <u>Escherichia coli</u> DH5* (DSM No. 7053).

of an expression vector with any of the above DNA or DNA fragments inserted in it. Preferably, the hybrid plasmid is hybrid plasmid pCAR6 composed of any of the above DNA or DNA fragments and expression vector pBLUESCRIPT-KS+*, deposited in Escherichia coli XL1-Blue* (DSM No. 6551). Preferably, the hybrid plasmid is hybrid plasmid pCAR6 composed of any of the above DNA or DNA fragments and expression vector pBLUESCRIPT-KS+*, deposited in Escherichia coli DH5* (DSM No. 7053).

15 The invention involves microorganisms that have been transformed with any of the above hybrid plasmids. Preferably, the microorganisms are of the species Escherichia coli XL1-Blue* (DSM No. 6551) and the descendants and mutants thereof that have been transformed with hybrid plasmid pCAR6. Preferably, the microorganisms are of the species Escherichia coli DH5* (DSM No. 7053) and the descendants and mutants thereof that have been transformed with hybrid plasmid pCAR6.

The present invention is further illustrated by reference to the accompanying drawings in which:

Figure 1 is the restriction map of the gene of the present invention;

^{* -} Trade-mark

Figure 2 is a diagram of hybrid plasmid pCAR6;

Figure 3 shows both the amino-acid sequence and the DNA sequence of the gene which codes for the stereospecific hydrolase;

Figure 4 shows the DNA-oligomer mixture based on the N-terminal peptide sequence of the hydrolase; and

Figure 5 shows the DNA-"antisense" oligomer mixture based on the N-terminal peptide sequence of the hydrolase.

According to the invention, the process is performed so that R-(-)-2,2-DMCPCA in racemic R,S-(+)-2,2-DMCPCA is biotransformed, by microorganisms transformed with a gene that forms a stereospecific hydrolase, to R-(-)-2,2-DMCPCS. Optically active S-(+)-2,2-DMCPCA is thus obtained and than then be isolated.

Productions of the Transformed Microorganisms

The production of the microorganisms, according to the present invention, which form a stereospecific hydrolase, takes place such that:

- (A) a DNA coding for hydrolase according to the present invention is isolated;
- (B) this specific gene sequence is introduced in an expression vector, and a hybrid plasmid results. Optionally it can be advantageous to perform further 25 modifications in the hybrid plasmid to achieve more effective expression of the gene sequence thus introduced.

(C) this hybrid plasmid is introduced by transformation [transformation takes place] in a suitable microorganism (host strain) and this transformed microorganism then forms the production strain for the biotransformation process according to the present invention.

(A) <u>Isolation of Stereospecific Hydrolase DNA</u>

As a source of the hydrolase DNA, which is designated below as hydrolase DNA (rad) or hydrolase gene 10 (rad), for example, the chromosomal DNA of microorganisms Comamonas acidovorans A:18 (DSM No. 6315) or Comamonas acidovorans TG 308 (DSM No. 6552), which has already been described in European Published Patent Application No. 92103780.0, can be used. Preferably, Comamonas acidovorans A:18 is used as the source. The hydrolase DNA can be isolated from a linear gene bank of Comamonas acidovorans A:18 in Escherichia coli (E. Coli) XL1-Blue* with BLUESCRIPT* (BLUESCRIPT-KS+ or BLUESCRIPT-SK+) (available from the Stratagene Co., supplier Genofit SA, Geneva, Switzerland) as a commercially available gene bank vector).

DNA of <u>Comamonas acidovorans</u> A:18 is isolated following the method of <u>R.H. Chesney et al</u> [J. Mol. Biol., 130, (1979), pages 161 to 173]. This DNA can then be cut by the usual molecular biological methods with the restriction enzyme EcoRI and then inserted in the previously likewise cut

^{* -} Trade-mark

expression vector DNA pBLUESCRIPT-KS+*. Then this ligated DNA (hybrid plasmid mixture) can be transformed, for example, according to the method of <u>S. Fiedler and R. Wirth</u> [Analyt. Biochem., 170, (1988), pages 38 to 44], in the appropriate commercially available microorganisms <u>E. coli</u> XL1-Blue*.

The "screening" of the gene bank can also take place according to methods known in the art. In this connection, the hybrid plasmid clones can advantageously be examined for their growth capability in a suitable medium with R,S-(±)-2,2 DMCPCA as the sole N-source, a usual C-source, a suitable inductor and a suitable antibiotic. After this "screening" the hybrid plasmid clones can be selected which contain the active hydrolase gene (rad) on the hybrid plasmid DNA and, thus, are, preferably, capable of using R-(-)-2,2-DMCPCA as the sole N-source. These hybrid plasmid clones are then able to hydrolyse the R-(-)-2,2-DMCPCA to the corresponding acid.

Suitably, the location of the hydrolase gene (rad) then takes place in the hybrid plasmid pCAR1 (selected from the hybrid plasmid clones) which consists of the expression vector pBLUESCRIPT-KS+* and an EcoRI-"insert" of about 23 kb.

The actual location of the hydrolase gene (rad)

can then take place using the "Southern-Blot" hybridization technique known in the art [Current Protocols in Molecular Biology, John Wiley and Sons, New York, (1987), section

^{* -} Trade-mark

2.9]. Preferably, for this purpose hybrid plasmid pCAR1 is
first digested with the restriction enzymes BamHI, PstI,
PvuII and EcoRI. The DNA fragments thus developed can then
be hybridized against radioactively labelled DNA oligomers
which correspond to the N-terminal protein sequences of the
hydrolase. In this way a 2.3 kb EcoRi-BamHI DNA section or
a 1.85 kb PvuII-BamHI DNA section can be labelled on the
hybrid plasmid pCAR1.

The DNA oligomers for the hybridization can be 10 obtained according to prior art methods, for example, by the stereospecific hydrolase being chromotographically enriched and the N-terminal amino acid determined after which the corresponding DNA sequence can be synthesized and radioactively labelled. The DNA section which codes for 15 the stereospecific hydrolase (rad) and whose restriction map is represented in Figure 1 is also a novel feature of the present invention. Subsequently, the aforesaid DNA section can be isolated with the restriction enzymes BamHI and EcoRI or BamHI and PvuII from the hybrid plasmid pCAR1 20 according to methods known in the art, i.e., to determine the entire amino acid sequence by analysis of the nucleotide sequence comprising the genetic code and to produce the transformed microorganisms suitable for the process of the present invention.

Therefore, the present invention provides both a DNA fragment which codes for a polypeptide with stereospecific hydrolase activity, whose amino acid

sequence is represented in Figure 3, and a DNA fragment which hybridizes with the DNA fragment represented in Figure 3 and codes for this polypeptide.

(B) <u>Ligation of the Specific Gene Sequence (Hydrolase</u>

<u>Gene; rad) in Expression Vectors</u>

The gene sequence thus obtained can be ligated by standard molecular biological techniques with a previously likewise cut expression vector DNA to provide a hybrid plasmid.

most cases adjustable, promoter (expression control sequence). At best there are one or more singular cutting sites for the restriction enzymes behind this promoter in the direction of transcription. Usually the gene section intended to be expressed is then inserted in these cutting sites.

For the process according to the present invention either expression vectors with a broad host range can be applied or, for example, the commercially available expression vector pBLUESCRIPT-KS+* can be applied. Preferably, pBLUESCRIPT-KS+* with promoter P_{lac} (lactose promoter) can be used as the expression vector. Suitably, the expression vector pBLUESCRIPT-KS+* is cut with the restriction enzymes EcoRI and BamHI or with PvuII and BamHI. The restriction ends that are thus developed are ligated with the isolated DNA section (EcoRI-BamHI or

^{* -} Trade-mark

PvuII-BamHI) which codes for the stereospecific hydrolase, for example, by using T4-DNA-ligase.

(C) <u>Hybrid Plasmids</u>

The invention further relates to the hybrid plasmids thus developed which contain the stereospecific hydrolase gene sequence (rad).

Basically, all hybrid plasmids which are able to replicate and express the DNA sequence coding for the hydrolase according to the invention in the selected 10 microorganism (production strain) are suitable. Suitable hybrid plasmids contain, from their original expression vector, an intact replicon and a labelling gene which makes possible the selection and identification of the microorganisms transformed with the hybrid plasmid on the 15 basis of a phenotypic feature. A suitable labelling gene provides, for example, resistance to the microorganism against antibiotics.

To achieve effective expression in a hybrid plasmid, it is suitable for the hydrolase gene (rad) to be 20 placed, correctly, in "phase" with the promoter.

Examples of such hybrid plasmids that are suitable for the expression of the hydrolase gene in an <u>E. coli</u> strain are the hybrid plasmids pCAR5 and pCAR6, having the labelling gene <u>bla</u> (which provides resistance to ampicillin; Ap*) and the promotor P_{Lac}. Suitably, the hybrid plasmid pCAR5 consists of the 2.3 kb EcoRI-BamHI DNA fragment (the restriction map in Figure 1) and the

* - Trade-mark

expression vector pBLUESCRIPT-KS+*. Preferably, the hybrid plasmid pCAR6 consists of the 1.85 kb PvuII-BamHI DNA fragment in Figure 1 (restriction map) and the expression vector pBLUESCRIPT-KS+*.

Suitably, the hybrid plasmid pCAR6 is used with promoter P_{lac} and the expression of the hydrolase gene (rad), depending on the host strain, is induced with isopropylthiagalactoside.

The hybrid plasmid pCAR6 was deposited both on June 6, 1991, under DSM No. 6551 in <u>E. coli</u> XL1-Blue* and on April 21, 1992, under DSM No. 7053 in <u>E. coli</u> DH5*, in the Deutsche Sammlund fur Mikroorganismen und Zellkulturen GmbH [German Collection for Microorganisms and Cell Structures GmbH], Mascheroderweg 1b, D-3300 Brunswick, 15 Germany.

Figure 2 shows a diagram of the hybrid plasmid pCAR6.

(D) <u>Host Strains</u>

....

The hybrid plasmids thus obtained are 20 advantageously used in host strains.

Preferably in the case of "broad-host-range" hybrid plasmids, host strains with high substrate and precursor tolerance are used, such as, microorganisms of genus Pseudomonas, Comamonas, Acinetobacter, Rhizobium,

25 Agrobacterium or Escherichia.

In the case of hybrid plasmids which have a limited host range, such as, the hybrid plasmid pCAR6, usually the specific host strains in which they replicate

^{* -} Trade-mark

are used. Accordingly, microorganisms of the genus Escherichia, especially those of species E. coli which are listed in Table 1, are preferably used as the host strains for the hybrid plasmid pCAR6.

5 (E) <u>Transformation</u>

The transformation of the host strains takes place with the hybrid plasmids of the present invention according to known processes. Preferably, the isolation of the transformed host strains then takes place from a selective nutrient medium to which an antibiotic is added, against which the labelling gene contained in the hybrid plasmid provides resistance. Preferably, the hybrid plasmid pCAR6 which contains the <u>bla</u> gene is used, ampicillin is accordingly added to the nutrient medium.

15 (F) <u>Production Strain</u>

All host strains which are transformed with the hybrid plasmid which contains the stereospecific hydrolase gene can be used as production strains according to the present invention. Preferably, the microorganisms of the species <u>E. coli</u> that are listed in Table 1 and the descendants and mutants thereof, and that are transformed with hybrid plasmid pCAR6 are used as production strains. The microorganisms <u>E. coli</u> XL1-Blue* (DSM No. 6551) and <u>E. coli</u> DH5* (DSM No. 7053) were deposited as described above.

If, for example, from Table 1 <u>E. coli</u> MC4100 [described in <u>Mol. Gen. Genet.</u>, 192, (1983), pages 293 and 294] is used as the host strain, the expression of the

^{* -} Trade-mark

stereoselective hydrolase gene (rad) takes place under the permanent control of promotor P_{Lac}, because of a deletion in the <u>lac</u>-operon (lactose operon) [deletion of (arqF - lac) U169]. Accordingly, the <u>lac</u> repressor-gene <u>lacI</u> is not 5 formed (repressor gene negative microorganism). If, for example, from Table 1, <u>E. coli</u> K12 (obtainable under DSM No. 498) or <u>E. coli</u> HB101 [<u>H.W. Boyer and D. Roulland-</u> <u>Dussoix</u>, J. Mol. Biol., 41, (1969), pages 459 to 472] is used as the host strain, the expression of hydrolase gene 10 (rad) with IPTG is induced because of the presence of the positive <u>lacI</u> (repressor gene repressor gene microorganism).

(G) Biotransformation

All microorganisms (production strains) can be used for the biotransformation of the present invention which have been transformed with a gene that forms a stereospecific hydrolase and, thus, hydrolize stereospecifically R-(-)-2,2-DMCPCA into acid.

Preferably, the biotransformation is performed with microorganisms which have been transformed with a hydrolase gene (rad) whose restriction map is represented in Figure 1. Microorganisms which have been transformed with a DNA fragment that codes for a polypeptide with stereospecific hydrolase activity whose amino acid sequence is represented in Figure 3 can also be used. Also suitable are microorganisms which have been transformed with a DNA fragment that hybridizes with the DNA fragment represented

in Figure 3 and that codes for a polypeptide with stereospecific hydrolase activity. Especially preferred for the process of the present invention are, as described above, the microorganisms of the species <u>E. coli</u> (Table 1) transformed with the hybrid plasmid pCAR5 or pCAR6, especially those transformed with the hybrid plasmid pCAR6. The cell-free enzymes (the stereospecific hydrolases) from these microorganisms are also suitable. These cell-free enzymes can be obtained by breaking down the microorganism cells using prior art methods. For this purpose, for example, the ultrasonic, the French press or the lysozyme methods can be used. In carrying out the process of the present invention, these cell-free enzymes can then be immobilized on a suitable support material according to methods known in the art.

Preferably, the process is performed with dormant microorganism cells (not growing cells) which previously have been induced in accordance with their expression system. This means that, if repressor gene-positive 20 microorganisms are used for the process, such as, E. coli XL1-Blue* or E. coli DH5* that have been transformed with hybrid plasmid pCAR6, the induction takes place with IPTG. If, for example, repressor gene-negative (i.e., absence of the repressor gene) microorganisms of species E. coli, such 25 as, E. coli MC4100, are used for the process, the expression of the hydrolase gene (rad) takes place permanently.

^{* -} Trade-mark

In as especially preferred embodiment, the specific hydrolase activity of the microorganisms is increased with C_1 - C_4 alcohols. For example, methanol, ethanol, propanol, isopropanol or butanol can be used as the C_1 - C_4 alcohols. Preferably methanol or ethanol is used.

As a medium for the process of the present invention, media commonly used in the art can be selected, such as, low-molecular phosphate buffers, a mineral salt medium according to <u>Kulla et al</u>. [Arch. Microbiol., <u>135</u>, 10 (1983), pages 1 to 7] or HEPES-buffer (N-2-hydroxyethyl-piperazine-2'-ethanesulfonic acid). Preferably, the process is performed in a low-molecular phosphate buffer.

Preferably the medium for the biotransformation contains racemic R,S-(±)-2,2-DMCPCA in an amount of 0.2 to 5 percent by weight, preferably 0.2 to 2 percent by weight. The biotransformation can be performed in a range of pH 6 to 11, preferably in a range of pH 6.5 to 10. The temperature for the biotransformation can be between 15° and 55°C, preferably between 20° and 40°C. After a usual reaction time of 1 to 30 hours, preferably 5 to 25 hours, R-(-)-2,2-DMCPCA is completely converted to the corresponding acid and optically pure S-(+)-2,2-DMCPCA is obtained. The S-(+)-2,2-DMCPCA thus obtained can then be isolated, for example, by extraction, electrodialysis or drying.

Deposit and taxonomic information for <u>Comamonas</u> acidovorans A:18 (DSM No. 6315), <u>Comamonas acidovorans</u> TG308 (DSM No. 6552), <u>Pseudomonas sp.</u> NSAK:42 (DSM No. 6433), and microorganism <u>Bacterium sp.</u> VIII:II (DSM No. 6316) is set out below.

The strains of DSM Nos. 6315 and 6316 were deposited on January 29, 1991, those of DSM No. 6433 on March 25, 1991, and those of DSM No. 6552 on April 6, 1991, with the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (German Collection of Microorganisms and Cell Cultures GmbH), Mascherodeweg 1B, D-3300 Brunswick, Germany.

The scientific (taxonomic) description of Comamonas acidovorans A:18 (DSM No. 6315), is:

cell shape	rods
width micron	0.5 to 0.7
length micron	1.5 to 3.0
mobility	+-
flagella	polar > 1
Gram reaction	-
lysis by 3% KOH	-
aminopeptidase (Cerny)	+
spores	
oxidase	+
catalase	· -
growth	

	anaeropic	***
	37°/41°C	+/
	pH 5.6	+
	MacConkey agar	+
	SS agar	+
	cetrimide agar	+
pigme	nts	
	nondiffusing	_
	diffusing	
	fluorescent	
	pyocyanin	_
acid	from (OF test)	
	glucose, aerobic	
	glucose, anaerobic	
gas f	rom glucose	
acid	from	
	glucose	-
	fructose	+
	xylose	
	mannitol	+
	glycerol	+
ONPG		****
ADH		
VP		
indol	_e	
NO, f	rom NO,	+

denitrification	
phenylalaninedesaminase	
levan from saccharose	
lecithinase	-
urease	
hydrolysis of	
starch	
gelatin	
casein	****
DNA	_
Tween 80 *	
aesculin	_
tyrosine	
catabolism	•
use of substrate	
acetate	+
adipate	+
caprate	+
citrate	+
glycolate	+
laevulinate	+
malate	+
malonate	-
phenyl acetate	+
L-arabinose	_
fructose	+
* - Trade-mark	

grucose	
mannose	
maltose	-tirub
xylose	***
inositol	_
mannitol	+ .
gluconate	+
N-acetylglucosamine	-
L-serine	
L-tryptophan	+
acetamide	+
mesaconate	+
citraconate	+
L-tartrate	+
urce	
NH ₄ ⁺	++
R,S-(±)-2,2-DMCPCA	+
butyramide	++
acetamide	+
propionamide	+
formamide	<u>+</u>
benzamide	+
nicotinamide	+
	mannose maltose xylose inositol mannitol gluconate N-acetylglucosamine L-serine L-tryptophan acetamide mesaconate citraconate L-tartrate arce NH ₄ ⁺ R,S-(±)-2,2-DMCPCA butyramide acetamide propionamide formamide benzamide

API ZONE --- Cs.acidovorans 99.0 percent

The scientific (taxonomic) description of <u>Comamonas</u> acidovorans TG 308 (DSM No. 6552) is:

cell shape	rods
Gram reaction (KOH test)	
Gram stain	
spores	
mobility	+
°C growth	
37°C	
41°C	_
45°C`	_
catalase	+
oxidase	+
fermentation in	
glucose (OF test)	
	isolates
	<u>TG308</u>
nitrate reduction	+
indole production	
acid from glucose	••••
arginine dehydrolase	
urease	-
aesculin hydrolysis	·
gelatin hydrolysis	
β-galactosidase	•==
glucose assimilation	

arabinose assimilation	·
mannose assimilation	
mannitol assimilation	+
N-acetyl-glucosamine assimilation	
maltose assimilation	
gluconate assimilation	-\-
caprate assimilation	- 1 -
adipate assimilation	-
malate assimilation	
citrate assimilation	
phenyl acetate assimilation	+
cytochrome oxidase	+
NO ₂ from NO ₃	+
hydrolysis from urea	
use of fructose	+
alkalization of acetamide	-
alkalization of tartrate	+
alkalization of Simmon's citrate	+
alkalization of malonate	(+)
(+) weakly positive	
The scientific (taxonomic) desc	ription of <u>Pseudomonas</u> <u>sp.</u>
NSAK: 42 (DSM No. 6433) is:	
cell shape	rods
width micron	0.6 to 0.8
length micron	1.5 to 3.0

mobility

Gram	reaction	
lysis	by 3% KOH	+
amino	peptidase (Cerny)	+-
spore	es	•
oxida	ase	+
catal	lase	
growt	:h	
	anaerobic	
	37°/41°C	+/-
	pH 5.6	+
	MacConkey agar	+
	SS agar	
	cetrimide agar	
pigme	ents	yellow
acid	from (OF test)	
	glucose, aerobic	
	glucose, anaerobic	
gas :	from glucose	
acid	from	
	glucose	
	fructose	••••
	xylose	****
ONPG		

ODC

ADH	
VP	-
indole	
NO ₂ from NO ₃	_
denitrification	
phenylalaninedesaminase	
levan from saccharose	
lecithinase	
urease	-
hydrolysis of	
starch	
gelatin	
casein	·—
DNA	
Tween 80 *	
aesculin	
tyrosine catabolism	
growth material requirement -	
use of substrate	
acetate	+
caprate	+
citrate	+
glycolate	+
lactate	+
laevulinate	+
malate	+
* - Trade-mark	

	malonate	+		
	phenyl acetate	- - -		
	suberate	+		
	L-arabinose			
	fructose	+		
	glucose			
	mannose			
	maltose			
	xylose			
	mannitol			
	gluconate	+		
	2-ketogluconate	+		
	N-acetylglucosamine			
	L-serine	+		
	L-histidine	+		
	hydroxybutyrate	+		
N-so	urce			
	NH ₄ ⁺	+++		
	$R,S-(\pm)-2,2-DMCPCA$	+		
	The scientific description o	f Bacterium sp.	VIII:II	(DSM
No.	6316), is:			
	Gram stain	- †-		
	Gram reaction (KOH test)			
	oxidase			
	catalase			
	nitrate reduction			

tryptophan> indole	
glucose (anaerobic)	
arginine	
urease	
aesculin	+
gelatin	
β -galactosidase	+
glucose	+
arabinose	
mannose	(+
mannitol	+
N-acetylglucosamine	****
maltose	+
gluconate	-
caprate	
adipate	
malate	_
citrate	
phenyl acetate	-

The following examples further illustrate the present invention:

Example 1

1.1 <u>Preparation of the Chromosomol DNA of Comamonas</u> Acidovorans A:18

Section 2

The chromosomal DNA of a fresh overnight culture of Comamonas acidovorans A:18 (100 ml of nutrient yeast broth, 30°C) was isolated according to the modified methods of R.H. Chesney et al. [J. Mol. Biol., 130, (1979), pages 161 to 173].

After being centrifuged-off (15 min., 6'500 X g, 5 4°C) the cells were resuspended in tris-HCl-buffer (2.25 ml, 0.05 mol/1, pH 8.0, 10 percent (w/v) saccharose. Subsequently, 375 μ l of lysozyme solution (10 mg/ml, 0.24 mol/l tris-MCl-buffer, pH 8.0) and 900 μ l of 0.1 mol/1 EDTA, pH 8.0 was added and the suspension was cooled on ice 10 for 10 minutes. Then following the addition of 450 μl of 5 percent (w/v) SDS and 50 μ l of ribonuclease (10 mg/ml H₂O) an incubation was carried out at 37°C for 30 min. After the addition of a spatula tip full of proteinase K and 400 μ l of pronase (20 ml/ml H_2O) the incubation was continued for 15 2 hours. The suspension was centrifuged after mixing with 4.3 g of CsCl (30 min., 40'000 X g, 20°C), and then mixed with 250 μ l of ethidium bromide (10 mg/ml), and centrifuged in an ultracentrifuge (VTi 65.2-tube) (more than 8 hours, 246'000 X g, 20°C). The DNA band was suctioned off from the 20 tube by means of longwave UV light. After the addition of a 4-fold volume of TE-buffer (10 mmol/1 tris-HCl, pH 8.0, 1 mmol/l EDTA), the ethidium bromide was extracted three times with n-butanol saturated with water. The DNA was precipitated with isopropanol, taken up in TE-buffer and incubated for 15 minutes at 65°C. The preparation could be stored at 4°C.

1.2 Restriction and Ligation of Chromosomal DNA

5 μg of Comamonas acidovorans A:18 (DSM No. 6315)-DNA and 4.5 μg of Vector-DNA (pBLUESCRIPT-KS+*) were each cut (6.5 hours at 37°C) with 20 units of restriction 5 enzyme EcoRI in a total volume of restriction buffer of 100 μl. The DNAs were precipitated with ethanol and dried in a Speed Vac* concentrator. The precipitates were taken up in the ligation buffer [20 mmol/l tris-buffer, 10 mmol/l DTT (dithiothreitol), 10 mmol/l MgCl₂, 0.6 mol/l ATP (adenosine triphosphate, pH 7.2], and combined (ligation volume 100 μl). After the addition of 1 unit of T4-DNA-ligase, it was incubated over night at 13°C. The DNA of the ligation mixture was precipitated with isopropanol and taken up in 30 μl of water for transformation.

1.3 Transformation of E. coli XL1-Blue* and Selection
Competent cells of E. coli XL1-Blue* were
transformed by electroporation with the ligation mixture
according to the method described by S. Fieldler and R.
Wirth [Analyt. Biochem., 170, (1988), pages 38 to 44]. For
plasmid detection nutrient agar with ampicillin (100 μg/ml)
was selected and for "insert" detection with 0.5 mmol/1
IPTG (isopropyl-β-D-thiogalactoside) and x-Gal (30 μg/ml,
5-bromo-4-chloro-3-idnolyl-β-D-galactopyranoside) was used.
Incubation was carried out at 37°C. At a transformation
25 sequence of 1.7 X 108 cfu/ml ("colony forming units" =
active cells), almost all of the clones had an EcoRI"insert".

^{* -} Trade-mark

Example 2

2. Screening of Comamonas Acidovorans A:18-Gene Bank According to the R-specific Amidase Gene

Clones with hybrid plasmids (EcoRI-"insert") were examined for their growth capabilities on minimal medium agar according to H. Kulla et al. [Arch. Microbiol., 135, (1983), pages 1 to 7] with 0.2 percent (v/v) of glycerol as the C-source, 0.15 percent (w/v) of R,S-(\pm)-2,2-DMCPCA as the sole N-source, and 0.5 mmol/l of IPTG as the inductor of the lac promoter, as well as ampicillin (5 μ g/ml) for plasmid stabilization. Only clones, which contained the intact hydrolase gene rad on the DNA "insert" in the plasmid, were able to use R-(-)-2,2-DMCPCA as the N-source, to react the latter into the desired R-acid and to grow on this minimal medium. Clones so selected all contained a hybrid plasmid from the pBLUESCRIPT-KS+ $^{\odot}$ vector with an EcoRI-"insert" of about 23 kb. The plasmid pCAR1 was isolated and more closely characterized.

Example 3

- 3.1 <u>Isolation of the R-specific Hydrolase from Comamonas</u>
 acidovorans A:18 and N-terminal Peptide Analysis
- (a) Preparation of Cell-Free Extract

16 liters of a cell suspension of <u>Comamonas acidovorans</u> A:18 (DSM No. 6315) was concentrated to 700 ml ($OD_{650} = 33.5$) with a hydrolase activity at 37°C of 0.6 g of R-(-)-2,2-DMCPCS/l/h/optical density at 650 nm (OD_{650}) = 1, that was

previously induced with R,S-(±)-DMCPCA. Then the cells were centrifuged several times, resuspended in HEPES-buffer, and then taken up in HEPES-buffer (40 ml). The volume of the total cell suspension was then 95 ml (OD₆₅₀ = 210). The hydrolase activity was determined at 30°C and was 0.34 g of product/1/h/OD₆₅₀ = 1. Then the cells were broken down twice in the French press at a pressure of 1200 bars. To obtain a cell-free extract, this suspension was centrifuged at 20000 X g for 20 min. 50 ml of extract was obtained with a protein amount (measured according to the Bradford method) of 39.3 mg/ml and with a hydrolase activity at 30°C of 12.5 g of R-(-)-2,2-DMCPCS/1/h/mg of protein.

(b) Chromatography

•

This crude-cell extract (50 ml) was applied to a column

filled with Q-sepharose* (Pharmacia) which was equilibrated

against a HEPES-buffer (0.1 mol/l, pH 7.5). This column was

flushed twice more with the same buffer and then the proteins

were eluted with a HEPES-buffer-gradient (0.1-1 mol/l).

Altogether 140 ml of protein solution with hydrolase activity

was eluted with HEPES-buffer (1 mol/l) that was then

concentrated by ultrafiltration (Amicon membrane YM10*). The

amount of protein of this enzyme solution was 131 mg/ml and

the hydrolase activity was 1 µmol/min/ng of protein. Then 2

ml of this protein solution was applied to a column with

Superose-12* (Pharmacia) which had been equilibrated against a

HEPES-buffer (0.1 mol/l, pH 7.5). With this buffer altogether

^{* -} Trade-mark

36 ml of protein solution was eluted. The latter was also concentrated by ultrafiltration (Amicon membrane YM10*). The amount of protein was 20.1 mg/ml and the hydrolase activity was 1.2 μmol/min/ng of protein. The protein solution thus obtained was then applied to a column with anion exchanger Li Chirospher 2000 TMAE (trimethylammoniumethyl salt) (Merck) which was equilibrated against a HEPES-buffer (0.1 mol/1, pH 7.5). After flushing of the column with the same buffer, the protein solution was eluted with a NaCl gradient (0-1 mol/1) in the same buffer. The protein concentration was 15 mg/ml and the hydrolase activity was 1.2 μmol/min/ng of protein.

(c) <u>Identification of the Hydrolase by 1- and 2-Dimensional</u> <u>Electrophoresis</u>

In the crude-cell extract the hydrolase protein was

identified by SDS-PAGE. At the same time non-induced cell
extract was compared with induced cell extract on the SDS-PAGE
(induction with R,S-(±)-2,2-DMCPCA). A protein band with a
molecular weight around 46000 was detected in the induced cell
extract. The protein fractions obtained by chromatography

with hydrolase activity were also analyzed by SDS-PAGE. The
protein with a molecular weight of about 46000 was
concentrated by this chromatographic purification and it was
concentrated after the third chromatography to about 80
percent. This 80 percent pure sample was then analyzed by

biodimensional electrophoresis (2-D SDS-PAGE). Using this
method

5

^{* -} Trade-mark

a protein "spot" with a molecular weight of about 46000, which corresponded to the hydrolase, could be detected.

(d) Sequencing

The protein "spot" obtained by 2-D SDS-PAGE was then blotted on a PVDF (polyvinylidene difluoride) membrane and cut out from the membrane. Then this protein was directly sequenced according to the method of <u>Hochstrasser et al.</u>

[Applied and Theoretical Electrophoresis, 1, (1988), pages 73 to 76, "HDL particle-associated proteins in plasma and cerebrospinal fluid"]. 21 amino acids (AS) of the N-terminal amino acid sequence was identified by this method.

Example 4

4. Localization of the Hydrolase Gene (rad) of the Cloned EcoRI Fragment

4.1 Rough Restriction Map of pCAR1

A rough restriction map of pCAR1 relative to EcoRV,
PVuII, KspI, SmaI, PstI, StuI and BamHI was made by
restriction analysis according to a conventional process
[Current Protocols Molecular Biology, John Wiley and Sons, New
York, (1987), section 2].

4.2 Formulation of Mixed DNA-oligomers Based on the N-terminal Peptide Sequence of the Hydrolase

By virtue of the nature of the genetic code, two mixed DNA oligomers could be formulated for the N-terminal peptide sequence of <u>Comamonas acidovorans</u> A:18 hydrolase and synthesized with a DNA-synthesis machine.

DNA-oligomer (mixture)

See Figure 4.

DNA-"Antisense" oligomer (mixture)

See Figure 5.

5 4.3 "Southern Blot-Hybridization" of Restriction Fragments Of
Plasmid pCAR1

The DNA fragments separated by agarose gel electrophoresis (0.6 percent), which were obtained according to various restrictions (BamHI, PstI, EcoRI) or pCAR1, were transferred by the known "Southern Blot process" to nitrocellulose [Current Protocols in Molecular Biology, John Wiley and Sons, New York, (1987), section 2.9 ff].

The DNA-oligomers were likewise end-labeled with [32P]-gamma-ATP:

- 400 ng of DNA-oligomer, 22 μ Ci³²P-Gamma-ATP, and 11 units of polynucleotide kinase phosphate-free, in a total of 25 μ l of polynucleotide kinase-buffer (0.05 mol/l tris-HCl, pH 7.5, 0.01 mol/l MgCl₂, 5 mmol/l DTT) were incubated for 30 minutes at 37°C.
- Purification was then effected by Sephadex G-25* gel filtration (Pharmacia) and hybridization against the "Southern Blots" according to the process disclosed in the abovementioned reference.

By hybridization against the nucleotide-oligomers

corresponding to the N-terminal protein sequence, a 2.3 kb of

EcoRI-BamHI DNA fragment of a 1.85 kb or PvuII-BamHI DNA

^{* -} Trade-mark

fragment could be labeled on hybrid plasmid pCAR1.

4.4 Subclonings of the Hydrolase Gene (rad)

The 2.3 kb EcoRI-BamHI DNA fragment of the 1.85 kb PvuII-BamHI DNA fragment, which codes for the R-specific hydrolase from Comamonas acidovorans A:18, was inserted in likewise digested vector-DNA pBLUESCRIPT-KS+® or pBLUESCRIPT-SK+®. The desired hydrolase activity only shows an orientation of the "insert" toward promoter P_{Lac} in the clones after IPTG induction. The vector pBLUESCRIPT-KS+® with the 2.3 kb EcoRI-BamHI DNA fragment was designated as hybrid plasmid pCAR6. Vector pBLUESCRIPT-KS+® with the 1.85 kb PvuII-BamHI DNA fragment was designated hybrid plasmid pCAR5.

Example 5

5. Determination of Activity of R-(-)-2,2-DMCPCA Hydrolase

The microorganism suspension was adjusted to an optical density of 0.5 at 650 nm for the determination of the hydrolase activity. A phosphate buffer (10 mmol/l), pH 7.0, with 0.2 percent by weight of $R-(\pm)-2$, 2-DMCPCA served as the medium. This suspension was incubated for 4 hours at 30°C with shaking. The NH_4^* released by the hydrolase or the R-(-)-2, 2-DMCPCS was measured and the activity was expressed as g of R-(-)-2, 2-DMCPCA reacted per 1/h/optical density at 650 nm, provided that 1 mmol of formed $NH_4^* = 1$ mmol corresponds to the reacted R-(-)-2, 2-DMCPCA.

Example 6

Production of S-(+)-2,2-DMCPCA

E. coli K12 with hybrid plasmid pCAR6, in the mineral salt medium containing 0.2 percent (v/v) of glycerol and 0.15 percent by weight of R,S-(\pm)-2,2-DMCPCA, showed a specific hydrolase activity of 1.2 g of R-(-)-2,2-DMCPCS/l/h/OD₆₅₀ after IPTG-induction. The reaction of R-(-)-2,2-DMCPCA to R-(-)-acid was confirmed by NH $^+$ 4 release and GC analysis. The target product S-(+)-2,2-DMCPCA remained unchanged in the racemic mixture.

Corresponding to \underline{E} . \underline{coli} K12, the microorganisms listed in Table 1 were cultivated and the results of the reaction were shown in Table 1.

Strain	Specific Activity g/1/h/OD	Factor	Stability in % (4)	Max. ODesonm	Total Activ 9/1/h
Comamonas acidovorans A:18 (1) (not according to the invention	0.5		•	\Q	3.0
E. coli K12/pcar6 (2)	1.2	2.4	06	nt	1
E. coli HB101/pcar6 (2)	0.25	0.5	nt	nt	•
E. coli MC4100/pcar6 (3)	0.53		8 9	nt	‡
E. coli XLIBLUE/pCAR6 (5) (DSM No. 6551)			0 6	30	15.0
E. coli DH5/pCAR6 (5) (DSM No. 7053)	7.7	4.2	100	30	63.0

amide IPTG

24 induction with ami induction with IPT constitutive plasmid stability without induction

Example 7

Activity Test With C,-C, alcohols

.

The activity tests were performed first with <u>Comamonas</u> acidovorans A:18 at 37°C with 0.5 percent R,S-2,2-DMCPCA in 10 mM of potassium phosphate buffer at pH 7.0. The control was without a solvent; the test studies were with 5 to 16 volume percent of solvent. The computation of the specific activity took place as described in Example 5.

	Solvent	Activity for the reaction of
10	(Volume percent)	g R-2,2-DMCPCA/1/h/OD ₆₅₀ nm
		0.64
	Ethanol (10)	1.24
	Isopropanol (10)	1.85
	Methanol (5)	1.79
15	Methanol (10)	1.54
•	Methanol (16)	1.66

In biotransformations in the 20 1-fermenter with 2 to 3 percent R,S-2,2-DMCPCA (37°C, 10 mM, potassium phosphate buffer, pH 7.0) with the addition of 5 to 7.5 volume percent of methanol or ethanol, a shortening of the reaction time and a higher yield of S-(+)-2,2-DMCPCA (selectivity enhancement) was achieved. The same effect was observed in the E. coli-strain XL1-Blue* with the hydrolase gene. The results are compiled in Table 2.

^{* -} Trade-mark

Table 2

[The same activities (in water) were used for each strain.]

•	R,S-2,2-	Solvent	Time	ee	Yield
Strain	DMCPCA (%)	(Vol. %)	(h)	(왕)	(%) *
-	,	· · · · · · · · · · · · · · · · · · ·			
A:18	2.0		22	99	41.5
A:18	2.3	Methanol (7.5)	15	99.2	47
XL1/pCAR6	2.8		24	100	36
XL1/pCAR6	2.8	Methanol (7.5)	7	98.2	46
XL1/pCAR6	2.8	Ethanol (5)	7	98.6	. 4 4
Note:					

^{*} of S-(+)-2,2-DMCPCA relative to the R,S-DMCPCA used.

Immobilization of the Stereospecific Hydrolase of E. coli XL1-Blue*/pCAR6

Example 8

The cell-free extract (288 ml) of <u>E. coli</u> XL1-Blue*/pCAR6

containing 28 mg of protein/ml with a hydrolase activity at

37°C of 0.29 µmol R-(-)-2,2-DMCPCA/min·mg of protein was first
prepurified by column chromatography on Q-Sepharose*

(Pharmacia). In this connection the hydrolase protein was
eluted with a NaCl-gradient (0-1 mol/1) in a tris-HCl buffer

(0.1 molar, pH 7.5). The protein with hydrolase activity,
which had been eluted between 40 percent and 80 percent of the
NaCl-gradient, was then concentrated by ultrafiltration

(Amicon membrane YM10*) and desalinated by gel filtration

^{* -} Trade-mark

(PD-10, Sephadex G-25M*, Pharmacia LKB). The end volume was then 67 mg of protein/ml containing 47 ml in potassium phosphate buffer (0.1 molar, pH 7.0) with a hydrolase activity at 37°C of 0.69 μ mol R-(-)-2,2-DMCPCA/min•mg of protein. 5 this prepurified stereospecific hydrolase was immobilized on Eupergit C as the carrier material (Rohm Pharma GmbH, Weiterstadt, FRG). In this connection the oxirane groups of the insoluble carrier material were covalently bound to the free amino groups of the hydrolase protein. The 10 immobilization was performed for 90 hours at room temperature in potassium phosphate-buffer (1 molar, pH 8.5). 10.2 mg of immobilized protein/g moist weight of Eupergit C with a hydrolase activity at 37°C of 1.5 μ mol of R-(-)-2,2-DMCPCA/min•g moist weight of Eupergit C was obtained. The 15 stability of the immobilized hydrolase at 37°C in the potassium phosphate buffer (10 molar, pH 8.5), containing 0.5 percent by weight of $R,S-(\pm)-2,2-DMCPCA$, is represented in Table 3.

^{* -} Trade-mark

Table 3

Time,	Activity of the immobilized hydrolase [μ mol
	R-(-)-2,2-DMCPCA/min*g moist weight of Eupergit C]

hours	·····	······································
0 - 90	1.5	
90 - 185	0.68	

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

- 1. A genetic engineering process for the production of $S^-(+)$ -2,2-dimethylcyclopropanecarboxamide, wherein $R^-(-)$ -2,2-dimethylcyclopropanecarboxamide in racemic $R,S^-(+)$ -2,2-dimethylcyclopropanecarboxamide is biotransformed, by microorganisms which have been transformed with a gene that encodes a stereospecific hydrolase, and which is characterized by the restriction map which is represented in Figure 1, to form $R^-(-)$ -2,2-dimethylcyclopropanecarboxylic acid, and optically active $S^-(+)$ -2,2-dimethylcyclopropanecarboxamide is thus obtained and is then isolated.
- 2. A process according to Claim 1, wherein the biotransformation is performed with microorganisms which have been transformed with a DNA fragment whose nucleotide sequence is represented in Figure 3 and which codes for a polypeptide with stereospecific hydrolase activity.
- 3. A process according to Claim 1, wherein the biotransformation is performed with microorganisms which have been transformed with a DNA fragment that codes for a polypeptide with stereospecific hydrolase activity and whose amino acid sequence is represented in Figure 3.

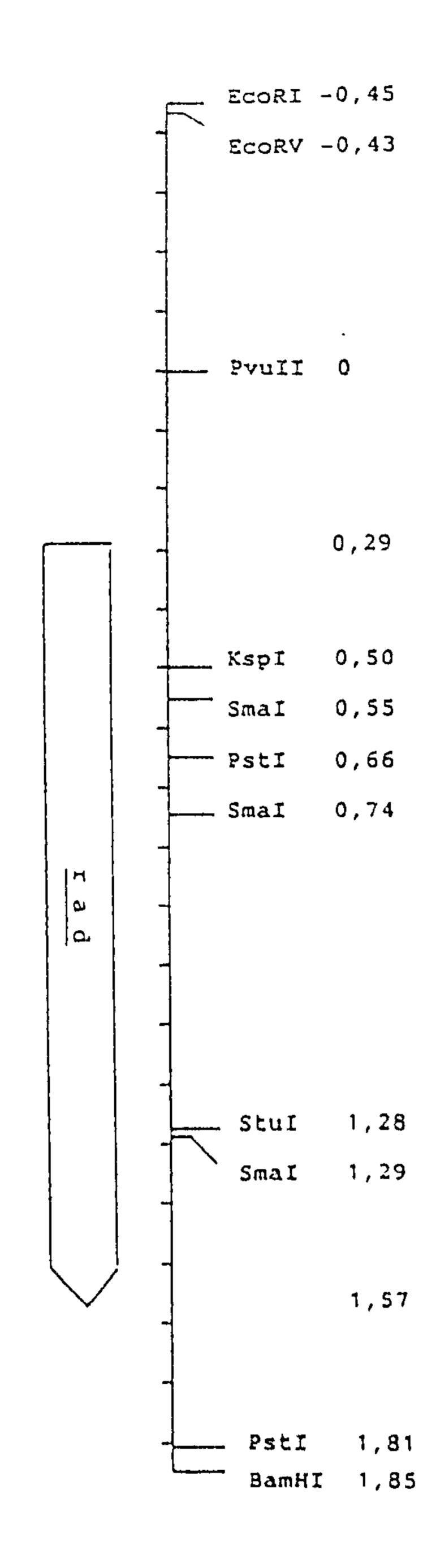
- 4. A process according to Claim 1, 2 or 3, wherein the biotransformation is performed with microorganisms which have been transformed with a DNA fragment that hybridizes under conditions effective to achieve such hybridization and has at least a homology with the DNA fragment represented by the nucleotide sequence in Figure 3 of 90 percent and which codes for a polypeptide with stereospecific hydrolase activity.
- 5. A process according to Claim 1, 2 or 3, wherein the biotransformation is performed with microorganisms of the genus <u>Escherichia</u>, <u>Pseudomonas</u>, <u>Comamonas</u>, <u>Acinetobacter</u>, <u>Rhizobium</u> or <u>Agrobacterium</u>.
- 6. A process according to Claim 1, 2 or 3, wherein the biotransformation is performed with microorganisms of the species <u>Escherichia coli</u>.
- 7. The process according to Claim 1, 2 or 3, wherein the biotransformation is performed with microorganisms of the species Escherichia coli XL1-Blue* (DSM No. 6551) or a descendant thereof, or a mutant thereof, which have been transformed with the hybrid plasmid pCAR6.
- 8. A process according to Claim 1, 2 or 3, wherein the biotransformation is performed with microorganisms of the species <u>Escherichia coli</u> DH5* (DSM No. 7053) or with a

^{*} Trade-mark

descendant thereof, or a mutant thereof, which have been transformed with the hybrid plasmid pCAR6.

- 9. A process according to Claim 1, 2 or 3, wherein the biotransformation is performed with an immobilized stereospecific hydrolase.
- 10. A process according to Claim 1, 2 or 3, wherein the biotransformation is performed in a medium containing racemic $R,S-(\pm)-2,2$ -dimethylcyclopropanecarboxamide in an amount of 0.2 to 5 percent by weight.
- 11. A process according to Claim 1, 2 or 3, wherein the biotransformation is performed at a pH of 6 to 11 and a temperature of 15° to 55°C.
- 12. A DNA coding for a stereospecific hydrolase characterized by the nucleotide sequence which is represented in Figure 3.
- 13. A DNA fragment coding for a polypeptide with stereospecific hydrolase activity whose amino acid sequence is represented in Figure 3.
- 14. A DNA fragment that hybridizes under conditions effective to achieve such hybridization and has at least a homology with the DNA fragment represented by the nucleotide sequence in Figure 3 of 90 percent and which codes for a polypeptide with stereospecific hydrolase activity.

- 15. The DNA or the DNA fragment according to Claim 12, 13 or 14, in hybrid plasmid pCAR6, deposited in Escherichia coli XL1-Blue* (DSM No. 6551).
- 16. The DNA or the DNA fragment according to Claim 12, 13 or 14, in hybrid plasmid pCAR6, deposited in Escherichia coli DH5* (DSM No. 7053).
- 17. A hybrid plasmid consisting of an expression vector with the DNA or the DNA fragment according to Claim 12, 13 or 14 inserted in it.
- 18. Hybrid plasmid pCAR6 consisting of the DNA or the DNA fragment according to Claim 12, 13 or 14 and expression vector pBLUESCRIPT-KS+*, deposited in <u>Escherichia</u> coli XL1-Blue* (DSM No. 6551).
- 19. Hybrid plasmid pCAR6 consisting of the DNA or the DNA fragment according to Claim 12, 13 or 14 and expression vector pBLUESCRIPT-KS+*, deposited in <u>Escherichia</u> coli DH5* (DSM No. 7053).
- 20. A microorganism that has been transformed with a hybrid plasmid selected from the group consisting of: a hybrid plasmid consisting of an expression vector with the DNA or the DNA fragment according to Claim 12, 13 or 14 inserted


^{* -} Trade-mark

in it, a hybrid plasmid pCAR6 consisting of the DNA or the DNA fragment according to Claim 12, 13 or 14 and expression vector pBLUESCRIPT-KS+*, deposited in <u>Escherichia coli</u> XL1-Blue* (DSM No. 6551), and a hybrid plasmid pCAR6 consisting of the DNA or the DNA fragment according to Claim 12, 13 or 14 and expression vector pBLUESCRIPT-KS+*, deposited in <u>Escherichia</u> coli DH5* (DSM No. 7053).

- 21. A microorganism according to Claim 20 of the species Escherichia coli XL1-Blue* (DSM No. 6551) or a descendant thereof or a mutant thereof, that has been transformed with hybrid plasmid pCAR6.
- 22. A microorganism according to Claim 20 of the species Escherichia coli DH5* (DSM No. 7053) or a descendant thereof or a mutant thereof, that has been transformed with hybrid plasmid pCAR6.

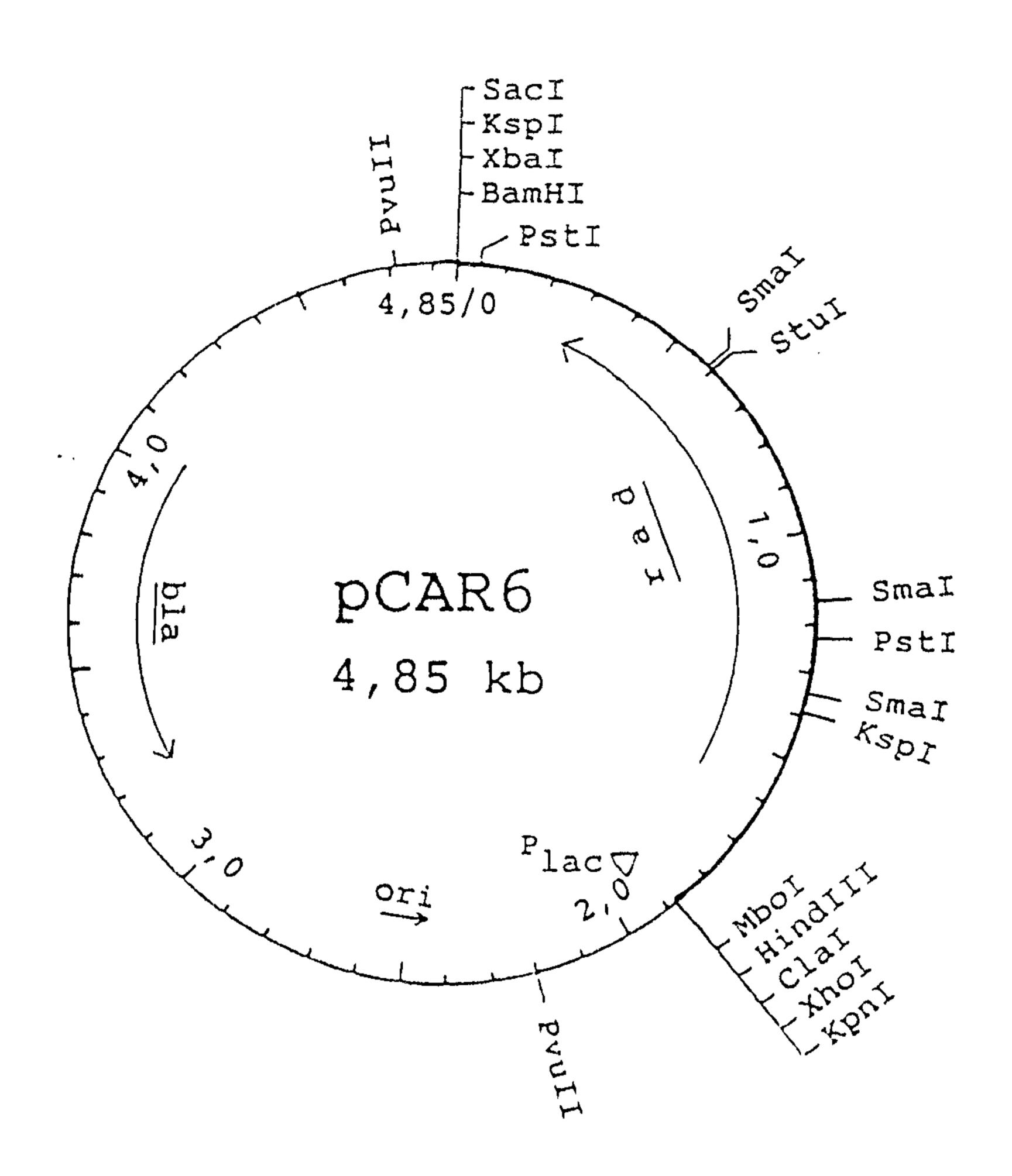

* - Trade-mark

Fig. 1

BELL, WALTER & BROUSSEAU

Fig. 2

PVUIII
c age tye age cea see see age gee tya

BamHI CGA CCG 550 920 GCG tgg 665 994 TCC C/3 gcc CCC **1**01 GAG GAC GGA Gly CAC CAG CGG A La CGG CCG GGC G1y CGA Arg Q gac CBC **acc** GCG CGA TTC CTG ATC Ile GCG Ala GAC GGT G1y CAG GAT Asp cta tga GGT Gly Sit Sit CCC ATC Ile SSC SP SP SCS SCS SCS CGC GTC Val CCC Ç cat CCC AGC GCG Ala Ala GAG Glu TGG Trp GGC G1y TGC Cys C3G G1n AGG CTC gcg GGG G1 y CAC ATC Ile CAT H13 GTG Val 252 900 917 ccr ccc Pro cly Sma I ccc ccc tct **ACA** CGG ATC KET TCC CCA CGT CCA CBC 998 990 GGC CAC Cert SCC Ala CTT CAG CGG GGA G1y Ser Ser CGA Arg gct GGA G1y Ala Ala ccg gcc CGC CGC Arg CCC CAT CCG GGC G1y GGA G1y ATC CCT 93 gcc ggc S Sop. at ACC CGC Arg GCG Ala City CT 124 a L 44 stI 665 500 114 124 613 ACG Thr CGC Arg gcg CCG CTC 66C 61y CCC CCC CCA ű ACA CGG Arg TGC Cys 666 61y ATG MET 5 GGT G1y CGC GGC G1y GGA G1y 30 Q **6**26 CCC 626 GAG GGC CCC CCC 663 G17 GAG Glu GCA Ala ACT GCT Ala **3**66 Cac ATG TCG Ser **c**66 STT Val CTC Val CCA Arg SCA ALA CAC H13 CCC CCG CTG CGA Arg **99**t CAC GGC G1 y 666 617 23 tg TCG GCT Ala A14 A13 CAC H13 61,7 663 617 SCT Ala CCC GGA G1y CGT Arg Cit g CBC GCG Ala CCC CAG GIn CGC Arg CAT CAC HES GGC G1y CAA GCT Ala CCA cct 666 61 y 66C 61y CCC Arg CGG Arg CGC 666 61 y GGA Gly CGT Arg CGG Arg cgc ctg CTA 666 617 CCT Pro CCC CCA Ala 35 CCC SCT Ala CCA CCC Arg tg Ç **ag**c các CCA Arg GGC G17 GCG Ala CCT TCC ATG MET CCG ATC 110 TGC Cys CXT H13 ctg CCC Arg CBB cga 99t SCC Ala CGT Arg CAG Gln CCC Arg 626 61u GGC CCC 96 S CCC C33 CCC CCC Arg ATC Ile CGT G1y 85 X 15.2 CGT Arg CCC Arg **z**gc tgt GTC Val CTC GCC GAC Asp CAG GAG Glu CTC Val 76C Cy3 CGA A L TGC Cy3 ga ctg XTT Ile 900 917 TAC GCG Ala GCT Ala 977 TCC ST ST AGA Afg UU SCT ALA ALA ALA 666 61 y ACG Thr AGC Ser CCC 666 917 663 617 CCA Ser Ser Ala £89 CCC Arg CAC H13 CCC Arg CCT GGC GTG S. H. 62.4 62.4 11.3 11.3 tgc 530 337 617 GGG Gly ctt CCC Arg 515 666 A13 GAG Glu CTG CČC Pro 66C 617 CCA Arg 75C C/3 हुं हुं हुं हुं हुं gat gca 36c ८६५ १६५ १६५ १६५ १६५ १६५ gcc CGC Arg CAC 813 660 CGG Arg Crd GTG TCG Ser 35 Spir 25 45 45 55 E ctt cgt KI ST 66. 66. 67. gtg CTG GGC SCT Ala CCA 76C C74 Arg Val gct 614 813 813 S GAT Asp 200 GYA G1u 960 917 CGC 75C CGT Arg 656 617 CGA Arg E3 57 cgt Ser 017 017 017 017 017 017 Cic AGG AFG Sig Val SCC Ala 666 61y CAC H13 CCG CAG Gla

U

FIGURE 4

DNA-oligomer (mixture)

		${f T}$	${f T}$	TCT	Α	\mathbf{T} \mathbf{T}	${f T}$		
5 ′	ATG	AAC	GAC	AGC	GAG	CTC	CAC	CA	3′
				C		С			
				A		A			
			_			_	•		
AS	Met	Asn	Asp	Ser	Glu	Leu	His		AS

FIGURE 5

DNA-"Antisense" oligomer (mixture)

5 ′	TG	A GAT	-	CCG	T CCC G A	CAC		3 '
AS		Ile	Glu	Arg	Gly	Val	Glu	AS