
USOO6418531B1

(12) United States Patent (10) Patent No.: US 6,418,531 B1
Nakahara (45) Date of Patent: Jul. 9, 2002

(54) PROCESSOR, LOOP PROGRAM CONTROL 5,287,509 A 2/1994 Yamada 709/107
DEVICE AND MULTIPROCESSOR SYSTEM 5,355,462 A * 10/1994 Rousseau et al. 711/215

5,375,238 A 12/1994 Ooi 711/241
(75) Inventor: Makoto Nakahara, Kawasaki (JP) 5,524.223 A 6/1996 Lazaravich et al. 712/241

5,712.999 A * 1/1998 Guttag et al. 711/211
(73) Assignee: Fujitsu Limited, Kawasaki (JP) 5,765,218 A 6/1998 Ozawa et al. 711/219

(*) Notice: Subject to any disclaimer, the term of this sk -
patent is extended or adjusted under 35 cited by examiner
U.S.C. 154(b) by 0 days.

Primary Examiner William M. Treat
(21) Appl. No.: 09/262,332 74) Attorney, Agent, or Firm-Staas & Halsey LLP y, Ag y

(22) Filed: Mar. 4, 1999 (57) ABSTRACT
(30) Foreign Application Priority Data

A processor which can execute a loop program including a
Mar. 4, 1998 (JP) ... 10-052369 loop instruction includes an addressing unit which generates

7
(51) Int. Cl." .. G06F 15/16 a data address with which data can be read from a memory
(52) U.S. Cl. ... 712/241 during execution of the loop instruction. The data address
(58) Field of Search 712/241; 711/214, 9. p

711/217, 218, 219, 220 includes information indicative of which loop of a loop
process defined by the loop instruction should be executed.

(56) References Cited The information forms part of the data address.
U.S. PATENT DOCUMENTS

5,226,128 A 7/1993 Rau et al. 712/241 16 Claims, 18 Drawing Sheets

PROGRAM
COUNTER

MASTER
LOOP SNG
SEQUENCER

14
(6X78) (9) (6)(7)8(9)

--2, 3, 4
---------as-os------------------

16

18

PROGRAM
COUNTER 17

(1)

: PROGRAM SEQUENCE CONTROL SIGNAL
: PROGRAM COUNTER WALUE
: RESULT OF DECODNG INSTRUCTION
: NUMBER OF LOOPS N LOOP NSTRUCTION
: SIGNAL INDICATING (2) IS ADDRESS OF JUMP DESTINATION
: LEADING ADDRESS OF LOOP EXECUTED BY EACH PROCESSOR

(7): SIGNAL INDICATING PROCESSOR ASSOCATED WITH ADDRESS
BEING OUTPUT

(8): SIGNAL INDICATING WHICH LOOP
(9): BUSY SIGNAL FROM EACH PROCESSOR

U.S. Patent Jul. 9, 2002 Sheet 1 of 18 US 6,418,531 B1

F G. 1 P R OR ART

DATA ADDRESS MEMORY MAP

0000~0004h FOR LOOPO

O008-N-OOOC FOR LOOP1

O010~0014h FOR LOOP2 READ DATA

0018-N-001 Ch FOR LOOP3

002OM0024h FOR LOOP4

RESERVED

0080-N-0090h
FOR STORE } WRITE DATA

RESERVED

U.S. Patent Jul. 9, 2002

F G. 2 P R OR ART

OTH-LOOP EXECUTION

1ST-LOOP EXECUTION

2ND-LOOP EXECUTION

3RD-LOOP EXECUTION

4TH-LOOP EXECUTION

Sheet 2 of 18

labell:

label1:

label1:

label1:

label1:

US 6,418,531 B1

LD(OOh)+, RO
LD(04h)+, R1
ADD RO, R1
ST R1, (8Oh)+
LOOP 4, label1

LD(08h)+, RO
D(0Ch)+, R1
ADD RO, R1
ST R1, (84h)+
LOOP 3, label1

LD(1Oh)+, RO
LD(14h)+, R1
ADD RO, R1
ST R1, (88h)+
LOOP 2, label1

LD(18h)+, RO
LD(1 Ch)+, R1
ADD RO, R1
ST R1, (8Ch)+
LOOP 1, label1

LD(2Oh), RO
LD(24h)+, R1
ADD RO, R1
ST R1, (90h)+
LOOP 0, label1

U.S. Patent Jul. 9, 2002 Sheet 3 of 18

F G. 3 PR OR ART

OTH-LOOP
EXECUTION
BY PROCESSOR
(O)

1ST LOOP
EXECUTION
BY PROCESSOR
(1)

2ND-LOOP
EXECUTION
BY PROCESSOR
(2)

3RD-LOOP
EXECUTION
BY PROCESSOR
(3)

4TH-LOOP
EXECUTION
BY PROCESSOR
(4)

LD(OOh), RO
LD(04h), R1
ADD RO, R1
ST R1, (8Oh)

LD(08h), RO
LD(0Ch), R1
ADD RO, R1
ST R1, (84h)

LD(1Oh), RO
LD(14h), R1
ADD RO, R1
ST R1, (88h)

LD(18h), RO
LD(1 Ch), R1
ADD RO, R1
ST R1, (8Ch)

D(2Oh), RO
LD(24h), R1
ADD RO, R1
ST R1, (90h)

s LOAD DATA FROM ADDRESS (OOh)
AND STORE THE DATA N RO

a LOAD DATA FROM ADDRESS (O4h)
AND STORE THE DATA N R1

a STORE RESULT OF R1+RO N R1
o STORE DATA OF R1 IN ADDRESS (8Oh)

LOAD DATA FROM ADDRESS (08h)
AND STORE THE DATA IN RO

o LOAD DATA FROM ADDRESS (OCh)
AND STORE THE DATA IN R1
STORE RESULT OF R1+RO N R1

s STORE DATA OF R1 IN ADDRESS (84h)

to LOAD DATA FROM ADDRESS (1Oh)
AND STORE THE DATA N RO

o LOAD DATA FROM ADDRESS (14h)
AND STORE THE DATA IN R1
STORE RESULT OF R1+RO N R1

o STORE DATA OF R1 IN ADDRESS (8Oh)

a LOAD DATA FROM ADDRESS (18h)
AND STORE THE DATA IN RO

a LOAD DATA FROM ADDRESS (1 Ch)
AND STORE THE DATA IN R1

I STORE RESULT OF R1+RO N R1
STORE DATA OF R1 IN ADDRESS (8Ch)

LOAD DATA FROM ADDRESS (2Oh)
AND STORE THE DATA INRO

a LOAD DATA FROM ADDRESS (24h)
AND STORE THE DATA IN R1
STORE RESULT OF R1+RO N R1

I STORE DATA OF R1 IN ADDRESS (90h)

US 6,418,531 B1

U.S. Patent Jul. 9, 2002 Sheet 4 of 18 US 6,418,531 B1

F G. 4

t PROCESSOR PROCESSOR

II DATA MEMORY

4 e- ADDRESS
-- DATA

LOOP MASTER SLAVE - - - - - CONTROL
CONTROL KE--- SIGNAL
BLOCK

U.S. Patent Jul. 9, 2002 Sheet 5 of 18 US 6,418,531 B1

F G. 5

BASE ADDRESS OFFSET ADDRESS MEMORY MAP

OOh 00-N-FFh FOR LOOPO

01h 00-N-FFh FOR LOOP1

02h OO-N-FFh FOR LOOP2

O3h OO-N-FFh FOR LOOP3

04h OOMFFh FOR LOOP4

RESERVED

80h 00-N-FFh
FOR STORE

RESERVED

DATA ADDRESS 16 UPPER BTS = BASE ADDRESS
DATA ADDRESS 16 LOWER BITS = OFFSET ADDRESS

U.S. Patent

OTH-LOOP
EXECUTION

1ST-LOOP
EXECUTION

2ND-LOOP
EXECUTION

3RD-LOOP
EXECUTION

4TH-LOOP
EXECUTION

Jul. 9, 2002 Sheet 6 of 18

F G. 6

LD O(ARO), RO
LD O(AR1), R1
ADD RO, R1
ST R1, BRO(loop{K2)
new 00P label1

LD O(ARO), RO
LD O(AR1), R1
ADD RO, R1
ST R1, BRO(loop{K2)
new 00P label1

LD O(ARO), RO
LD O(AR1), R1
ADD RO, R1
ST R1, BRO(loopk2)
new OOP label1

LD O(ARO), RO
LD O(AR1), R1
ADD RO, R1
ST R1, BRO(loopk2)
new OOP label1

LD O(ARO), RO
LD O(AR1), R1
ADD RO, R1
ST R1, BRO(loopkk2)
new 00P label1

US 6,418,531 B1

EXECUTED BY
PROCESSOR 1

LOOP INSTRUCTION
OF THE INVENTION

EXECUTED BY
PROCESSOR 1

LOOP NSTRUCTION
OF THE INVENTION

EXECUTED BY
PROCESSOR 2

LOOP INSTRUCTION
OF THE INVENTION

EXECUTED BY
PROCESSOR 3

LOOP INSTRUCTION
OF THE INVENTION

EXECUTED BY
PROCESSOR 4

LOOP (NSTRUCTION
OF THE INVENTION

U.S. Patent

OTH-LOOP
EXECUTION

1ST-LOOP
EXECUTION

2ND-LOOP
EXECUTION

3RD-LOOP
EXECUTION

4THLOOP
EXECUTION

Jul. 9, 2002 Sheet 7 of 18

F G. 7

MOV 0, ARO
LD loop (ARO)+, RO
LD loop (ARO)+, R1
ADD RO, R1
ST R1, BRO(loop{K2)
new00P label1

MOV 0, ARO
LD loop.(ARO)+, RO
LD loop.(ARO), R1
ADD RO, R1
ST R1, BRO(loop{{2)
new 00P label1

MOV 0, ARO
LD loop (ARO)+, RO
LD loop (ARO)+, R1
ADD RO, R1
ST R1, BRO(loop{K2)
new OOP label1

MOV 0, ARO
LD loop (ARO)+, RO
LD loop (ARO)+, R1
ADD RO, R1
ST R1, BRO(loopKK2)
new 00P label1

MOV 0, ARO
LD loop (ARO)+, RO
LD loop (ARO)+, R1
ADD RO, R1
ST R1, BRO(loopKK2)
new 00P label1

US 6,418,531 B1

EXECUTED BY
PROCESSOR 1

LOOP NSTRUCTION
OF THE INVENTION

EXECUTED BY
PROCESSOR 1

LOOP INSTRUCTION
OF THE INVENTION

EXECUTED BY
PROCESSOR 2

LOOP INSTRUCTION
OF THE INVENTION

EXECUTED BY
PROCESSOR 3

LOOP NSTRUCTION
OF THE INVENTION

EXECUTED BY
PROCESSOR 4

LOOP NSTRUCTION
OF THE INVENTION

U.S. Patent Jul. 9, 2002 Sheet 8 of 18 US 6,418,531 B1

F G. 8

PROGRAM
COUNTER

MASTER o DATA
LOOP ADDRESSING
SEQUENCER UNIT

a a ------------------------------
v w w V 14

(6X7)(8) (9) (6)(7)(8)(9)
N - 2, 3, 4

16- (e) - SLAVE DATA
OOP ADDRESSING 18

SEQUENCER UNIT

PROGRAM
COUNTER 17

(1) : PROGRAM SEQUENCE CONTROL SIGNAL
(2): PROGRAM COUNTER WALUE
(3) : RESULT OF DECODING INSTRUCTION
(4): NUMBER OF LOOP5 IN LOOP (NSTRUCTION
(5): SIGNAL INDICATING (2) IS ADDRESS OF JUMP DESTINATION
(6):LEADING ADDRESS OF LOOP EXECUTED BY EACH PROCESSOR

: SIGNAL INDICATING PROCESSOR ASSOCATED WITH ADDRESS
BEING OUTPUT

: SIGNAL INDICATING WHICH LOOP
: BUSY SIGNAL FROM EACH PROCESSOR :

U.S. Patent Jul. 9, 2002 Sheet 9 of 18 US 6,418,531 B1

F G. 9

LEADING
ADDRESS
DETECTION
CIRCUIT

LEADING
ADDRESS
NOTIFICATION
CIRCUIT

LOOP COUNT
CIRCUIT

U.S. Patent Jul. 9, 2002 Sheet 10 0f 18 US 6,418,531 B1

F G. 1 O

ADDRESS ADDER

(1)
(1) LEADING ADDRESS (6)

OF LOOP PROGRAM
(7)

LOOP COUNTER PROGRAM. COUNTER

USED TO CALCULATE
DATA ADDRESS

WALD

LOOP COUNTER
VALUE (8)

VALID: INDICATE LOOP PROGRAM TO BE EXECUTED.
WHEN WALD IS ACTIVE, SELECTOR SELECTS LOOP ADDRESS
AND WRITING INTO REGISTER INDICATING LOOP NUMBER IS
PERFORMED.

US 6,418,531 B1 Sheet 11 of 18 Jul. 9, 2002 U.S. Patent

8 |

|

\ / | |

"9 | -

US 6,418,531 B1 Sheet 12 of 18 Jul. 9, 2002 U.S. Patent

Z

SSE HOOW WIW0
| '5) | –

U.S. Patent Jul. 9, 2002 Sheet 13 of 18 US 6,418,531 B1

F G. 1 3

BASE ADDRESS OFFSET ADDRESS

LOOP NUMBER OF LOOP OF LOOP OFFSET 2
PRESS IN LOOP NSTRUCTION (PROCESSOR O)

LOOP NUMBER OF LOOP OF LOOP OFFSET 2
PROCESS IN LOOP NSTRUCTION (PROCESSOR 1)
(UPPER)
LOOP NUMBER OF LOOP OF LOOP OFFSET 2
PROCESS IN LOOP INSTRUCTION (PROCESSOR 2)
(UPPER)
LOOP NUMBER OF LOOP OF LOOP OFFSET 2
PSSESS IN LOOP INSTRUCTION (PROCESSOR 3)

OFFSET 1 (2 LOWER BTS)

U.S. Patent Jul. 9, 2002 Sheet 14 of 18 US 6,418,531 B1

F G. 1 4

CONTROL
BLOCK

4

PROCESSOR

61 TOTAL
COMPARATOR NUMBER OF

LOOPS

LOOP PROCESS ENDS WHEN NUMBER OF
LOOPNG, TIMES BECOMES LESS THAN
NUMBER OF TIMES ALREADY EXECUTED

U.S. Patent Jul. 9, 2002 Sheet 15 0f 18 US 6,418,531 B1

F G. 1 5

PROCESSOR PROCESSOR

DATA MEMORY

<e- ADDRESS
-- DATA

LOOP NUMBER
... -- NOTIFY OF EXECUTION

(PROCESSOR NUMBER)
as BUSY

H LOOP NUMBER BEING
EXECUTED

U.S. Patent Jul. 9, 2002 Sheet 16 of 18 US 6,418,531 B1

F G. 1 6

FROM EACH PROCESSOR

LOOP NUMBER
CORRESPONDING
TO BUFFER

LOOP NUMBER BEING
EXECUTED FOREACH
PROCESSOR

COMPARE

ASSIGN ACCESS RIGHT TO PROCESSORMATCHED

U.S. Patent Jul. 9, 2002 Sheet 17 of 18 US 6,418,531 B1

F G. 1 7

sincine -
LOOP CONTROL, BLOCK

81
PROCESSOR PROCESSOR

9
BUFFER (MEMORY SPACE COMMONLY OWNED)

DATA MEMORY

<e- ADDRESS
-H DATA
d x LOOP NUMBER

----- ACKNOWLEDGE
is a B REQUEST

H LOOP NUMBER BEING
EXECUTED

U.S. Patent Jul. 9, 2002 Sheet 18 of 18 US 6,418,531 B1

F G. 1 8

FROM EACH PROCESSOR

REQUEST FROM EACH
PROCESSOR

INCREASING ORDER
OF LOOP NUMBER

LOOP NUMBER BEING
EXECUTED FOREACH
PROCESSOR

ARBITER

ACKNOWLEDGE

US 6,418,531 B1
1

PROCESSOR, LOOP PROGRAM CONTROL
DEVICE AND MULTIPROCESSOR SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a processor which can
execute a loop program having a loop instruction including
a repetitive access to data Stored in a memory, and a loop
program control device which can execute a control to make
a plurality of processors execute, in parallel, respective
loops of a loop process of a loop instruction. Further, the
present invention is concerned with a multiprocessor System
which includes a plurality of processors and a loop program
control device as described above.

Recently, it has been required to execute high-Speed,
high-performance processing in a computer. Such a require
ment can be achieved by parallel processing of instructions
or the like.
A typical method related to the parallel process of instruc

tions executed by processors is a multiprocessor System
capable of executing programs by a plurality of processors
in a parallel fashion.

2. Description of the Related Art
A description will be given of a conventional Single

processor System which executes a loop program including
a loop instruction including a repetitive access to data Stored
in a memory, and a conventional multiprocessor System.
AS an example of the loop program including the loop

instruction, a description will be given of a case where the
following program is executed by a conventional Single
processor System or a conventional multiprocessor System.

instruction #1
instruction #2
instruction #3
instruction #4
instruction #5
instruction #6
instruction #7

MOVO, ARO
MOV 80, AR1
LD (ARO)+, RO
LD (ARO)+, R1
ADD RO, R1
ST R1, (AR1)+
LOOP 4, labell

labell:

The above loop program is a program that includes a loop
instruction and repetitive access to data Stored in a memory.

The loop program has an initial Setting in which an
immediate value of 00h (h denotes hexadecimal notation)
written into an ARO register (instruction #1), and an imme
diate value of 80h is written into an AR1 register (instruction
#2).

Instruction #3 loads data to an R0 register from address
00h indicated by the AR0 register, and increments AR0 after
the loading. That is, 04h is written into the ARO register. The
data consists of 32 bits. Instruction #4 loads data to an R1
register from address 04h indicated by the AR0 register, and
increments AR0 after the loading. That is, 08h is stored in
the ARO register. The data consists of 32 bits.

Instruction #5 Stores the result of an adding operation on
R0 and R1 in the R1 register.

Instruction #6 Stores data in the R1 register in a memory
area indicated by address 80h stored in the AR1 register, and
then updates the address by incrementing it. That is, the
incremented address in the register AR1 becomes 84h. The
data consists of 32 bits.

Instruction #7 jumps execution of instructions to labell
and causes instructions #3-#7 to be repeatedly executed
until a variable num becomes equal to 4 (num=4). The

15

25

35

40

45

50

55

60

65

2
variable num has an initial value of 0, and is incremented
each time the proceSS is jumped by the loop instruction
LOOP
The above loop program including the loop instruction is

executed by the conventional Single processor or the con
ventional multiprocessor System as follows. A data memory
Space for the loop program is configured as shown in FIG.
1. More particularly, the data memory Space includes a read
(load) data area related to the Zeroth-loop execution of the
loop process to the fourth-loop execution thereof, and a
write (Store) data area. The read data area is accessed by data
addresses 0000h-0024h, and the write data area is accessed
by data addresses 0080h-0093h.

The loop instruction LOOP is executed by the single
processor, as shown in FIG. 2. The Single processor System
time-Serially executes respective loops of the loop process
four times (the Zeroth-loop execution to the fourth-loop
execution). The Single processor accesses the memory space
shown in FIG. 1 each time a loop of the loop proceSS is
executed.

The loop instruction LOOP can also be executed by the
multiprocessor System, as shown in FIG. 3. AS shown in
FIG. 3, the loop process of the loop instruction LOOP is
Separated into the respective loop processes by a compiler,
and the processors execute the respective loops in parallel.
In this case, the loops executed by the respective processors
are assigned to areas of an instruction memory that are
accessible by the processors at the time of compiling. For
example, in FIG. 3, processor (0) is involved with the
Zeroth-loop execution of the loop process, and processor (1)
is involved with the first-loop execution thereof. Similarly,
processor (2) is involved with the Second-loop execution of
the loop process, and processor (3) is involved with the
third-loop execution thereof. Further, processor (4) is
involved with the fourth-loop execution of the loop instruc
tion. The process of the loop instruction is separated into the
respective loops by the compiler, and the respective loops
are assigned to the processors. Hence, it is not necessary to
Serially execute the loop processors. Thus, the branch
instruction LOOP is not needed.
The conventional multiprocessor System has high perfor

mance when the processors respectively execute different
programs. However, the conventional multiprocessor Sys
tem does not have high performance when a single program
is Segmented and executed.
More particularly, the conventional multiprocessor Sys

tem employs a Scheduling method in order to process the
program including the loop instruction in parallel. At the
time of compiling, the loop process of the loop instruction
of the program is separated into the respective loops, and the
processors are respectively Scheduled to execute the loops.
In other words, the processors are Scheduled to be assigned
to the respective accessible instruction memory areas.
Hence, the conventional multiprocessor System is required
to Store the program for each of the loops and thus has a huge
memory area. This increases the cost in practice.

SUMMARY OF THE INVENTION

It is a general object of the present invention to eliminate
the above disadvantages.
A more Specific object of the present invention is to

provide a multiprocessor System capable of executing a loop
process in a program in parallel by processors without an
increased memory area.

Another object of the present invention is to provide a
processor and a loop program control device applicable to
the above-mentioned multiprocessor System.

US 6,418,531 B1
3

The above objects of the present invention are achieved
by a processor which can execute a loop program including
a loop instruction, the processor comprising: an addressing
unit which generates a data address with which data can be
read from a memory during execution of the loop
instruction, the above data address including information
indicative of which loop of a loop process defined by the
loop instruction should be executed; the information form
ing part of the data address. AS has been described
previously, the prior art multiprocessor System Separates a
loop process of a loop instruction into respective loops,
which are then Stored in a memory. Hence, the prior art
multiprocessor System needs an extremely large memory
Space. In contrast, the present invention makes it possible for
the processor to recognize which loop of the loop proceSS
should be executed. Hence, it is no longer required to
Separate the loop process of the loop instruction into the
respective loop processes defined thereby. The present
invention loads the loop program Stored in an instruction
memory and recognizes which loop of the loop proceSS
should be executed. In this case, data to be processed can be
obtained by the data address including the information
indicative of which loop of the loop process should be
executed.

The above objects of the present invention are also
achieved by a processor which can execute a loop program
including a loop instruction, the processor comprising: an
addressing unit which generates a data address with which
data can be read from a memory during execution of the loop
instruction, the above data address including information
indicative of which loop of a loop process defined by the
loop instruction should be executed, the information form
ing part of the data address, and an increment unit which
automatically updates the information after the loop is
executed; the updated information forming part of the data
address So that a next data address can be generated.
The processor may be configured So that: the updated

information indicates a number of times loops of the loop
process that have been executed; the processor further
comprises a comparator unit which determines whether the
number of loops indicated by the updated information
exceeds a given number of loops, and the loop proceSS
continues to be executed until the number of loops indicated
by the updated information exceeds the given number of
loops.

The above objects of the present invention are also
achieved by a loop program control device adapted to a
multiprocessor System having a master processor and Slave
processors, the loop program control device comprising: a
leading address detection unit which detects a leading
address of a loop program when the master processor
executes the loop program; a detection unit which detects a
total number of loops of a loop process defined by a loop
instruction included in the loop program that should be
executed; a first notification unit which notifies the proces
Sors of the leading address detected by the leading address
detection unit; and a Second notification unit which notifies
each of the processors of information indicating which loop
of the loop proceSS Should be executed. Hence, it is possible
to recognize the number of processors required to execute
the parallel processing of the loop program. Each of the
processors thus recognized is notified of which one of the
loops should be executed, namely, which times of the loop
proceSS should be executed. Hence, the parallel processing
can easily be realized.

The above loop program control device may further
comprise: a Snooping unit which monitors whether the

15

25

35

40

45

50

55

60

65

4
master and Slave processors can execute the loop instruction
in parallel; and a loop count unit which counts up or down,
each time the Second notification unit notifies one of the
processors of the information, a count value which is related
to a number of loops of the loop process that have been
executed. Hence, it is possible to easily identify processors
which can be involved with the parallel processing of the
loop program.
The above objects of the present invention are also

achieved by a multiprocessor System comprising: processors
capable of executing loops of a loop process defined by a
loop instruction included in a loop program, each of the
processors comprising an addressing unit which generates a
data address with which data can be read from a memory
during execution of the loop instruction, the above data
address including information indicative of which loop of
the loop proceSS defined by the loop instruction should be
executed; and a loop program control device which controls
the same number of processors as a number of loops of the
loop process should repeatedly be executed So that the same
number of processors executes the respective loops in par
allel. AS has been described previously, the prior art employs
a compiler which Separates the loop process of the loop
program into respective loops, to which processors are
respectively assigned by the Scheduling method. Hence, the
processors respectively use pre-computed and fixed data
addresses. In contrast, the present invention employs the
information indicative of which loop of the loop process
should be executed by the respective processor. Hence, it is
no longer required to Separate the loop process of the loop
program into the respective loops by a compiler. Hence, it is
possible for the processors to access the same loop program
Stored in a memory.
The above multiprocessor System may be configured So

that the loop program control device comprises: a leading
address detection unit which detects a leading address of the
loop program when one of the processors Serving as a master
processor executes the loop program; a detection unit which
detects a total number of loops of the loop process that
should be executed; a first notification unit which notifies the
processors including processors Serving as Slave processors
of the leading address detected by the leading address
detection unit; and a Second notification unit which notifies
each of the processors of information indicating which loop
of the loop process should be executed. By recognizing the
total number of loops of the loop process which should be
carried out, it is possible to identify the number of proces
sors which should be involved with the parallel processing
of the loop program or instruction. Then, the processors thus
determined are Supplied with the leading address of the loop
program. Further, each of the processors is notified of which
loop of the loop proceSS Should be handled. Hence, the
multiprocessor System can realize parallel processing of the
loop program without increasing the memory Space.
The above multiprocessor System may be configured So

that the loop program control device further comprises: a
Snooping unit which monitors whether the master and Slave
processors can execute the loop instruction in parallel; and
a loop count unit which counts up or down, each time the
Second notification unit notifies one of the processors of the
information, a count value which is related to a number of
loops of the loop process that have been executed.
The multiprocessor System may be configured So that

each of the processors comprises an addressing unit which
generates a data address with which data can be read from
a memory during execution of the loop instruction, the
above data address including information indicative of

US 6,418,531 B1
S

which loop of the loop process defined by the loop instruc
tion should be executed.

The multiprocessor System may be configured So that
each of the processors comprises: an addressing unit which
generates a data address with which data can be read from
a memory during execution of the loop instruction, the
above data address including information indicative of
which loop of the loop process defined by the loop instruc
tion should be executed; and an increment unit which
automatically updates the information after the loop is
executed, the updated information forming part of the data
address So that a next data address can be generated.
The multiprocessor System may be configured So that: the

updated information indicates the number of loops of the
loop process that have been executed; the processor further
comprises a comparator unit which determines whether the
number of loops indicated by the updated information
exceeds a given number of loops, and the loop proceSS
continues to be executed until the number of loops indicated
by the updated information exceeds the given number of
loops.

The multiprocessor System may further comprise: a buffer
having a memory Space accessed by the processors when the
processors execute the loop instruction in parallel; and a
Snooping which monitors which loop of the loop proceSS
uses data input to the buffer from the memory and monitors
which loop of the loop proceSS is being executed for each of
the processors, one of the processors which is executing the
loop of the loop process which uses the data in the buffer
being assigned a right to access the buffer.

The multiprocessor System may further comprise: a buffer
having a memory Space accessed by the processors when the
processorS eXecute the loop instruction in parallel, and a
Snooping unit which monitors which loop of the loop
proceSS is being executed for each of the processors, a right
to access the buffer being Serially given to the processors in
the increasing order of loop numbers of the loops of the loop
proceSS which are being executed when the processors
commonly use the data Stored in the buffer and generate an
identical data address.

The multiprocessor System may be configured So that
when a specific one of the processors recognizes the loop
instruction while executing the loop program, the processors
including the above Specific one of the processors execute
the loops of the loop proceSS defined by the loop instruction.

The above objects of the present invention are also
achieved by a processor which can execute a loop program
including a loop instruction, comprising: an addressing unit
which generates a data address with which data can be read
from a memory during execution of the loop instruction, the
above data address including information indicative of
which loops of a loop proceSS defined by the loop instruction
should be executed, the information forming part of the data
address, and a decrement unit which automatically decre
ments a loop number of the above-mentioned loop after the
loop is executed, the decrement unit adding information
indicative of the decremented loop number to the data
address So that a next data address can automatically be
generated.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features and advantages of the present
invention will become apparent from the following detailed
description when read in conjunction with the accompany
ing drawings, in which:

FIG. 1 is a diagram showing a data memory Space used
when a loop program is executed by a conventional manner;

1O

15

25

35

40

45

50

55

60

65

6
FIG. 2 is a diagram Showing an execution of the loop

program by a Single processor,
FIG. 3 is a diagram Showing an execution of the loop

program by a multiprocessor System;
FIG. 4 is a block diagram of a multiprocessor System

according to the present invention;
FIG. 5 shows a data memory space related to loop

programs (1) and (2) described in the specification;
FIG. 6 is a diagram Showing an execution of loop program

(1) by the multiprocessor System of the present invention;
FIG. 7 is a diagram Showing an execution of loop program

(2) by the multiprocessor System of the present invention;
FIG. 8 is a block diagram showing a detailed structure of

the multiprocessor system shown in FIG. 4;
FIG. 9 is a block diagram of a structure of a loop control

block;
FIG. 10 is a diagram showing an operation of a processor

of the present invention;
FIGS. 11A and 11B show addressing of the processor;
FIGS. 12A and 12B show another addressing of the

proceSSOr,

FIGS. 13 show yet another addressing of the processor;
FIG. 14 is a block diagram of a configuration to which the

addressing shown in FIG. 13 is applied;
FIG. 15 is a block diagram of another multiprocessor

System of the present invention;
FIG. 16 shows an operation of the loop control block

employed in FIG. 15;
FIG. 17 shows an operation of the loop control block; and
FIG. 18 is a block diagram of yet another multiprocessor

System of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

A description will now be given of a multiprocessor
System of the present invention by referring to the accom
panying drawings.

FIG. 4 is a block diagram of a multiprocessor System
according to an embodiment of the present invention. The
multiprocessor System shown in FIG. 4 includes a master
processor 1, Slave processors 2, 3 and 4, a loop control block
5, an instruction memory 6 and a data memory 7. The
processors 1-4 can execute a loop program that includes a
loop instruction and an instruction which accesses data
stored in the data memory 7. The loop control block 5
performs a control to make the processors 1-4 execute, in
parallel, respective loops of a loop process of the loop
instruction in the loop program executed by the master
processor 1. Although the multiprocessor System shown in
FIG. 4 has four processors, the present invention is not
limited thereto but can include an arbitrary number of
processors.

The following loop programs (1) and (2) are shown below
as examples of a loop program including a loop instruction
and an instruction which accesses data in the data memory
7. The loop programs (1) and (2) are stored in the instruction
memory 6 and are read by the processors.

US 6,418,531 B1

Loop program (1):

MOVO, ARO instruction #1
MOV 04, AR1 instruction #2
MOV 80, BRO instruction #3

labell: instruction #4
instruction #5
instruction #6
instruction #7
instruction #8

LD loop (ARO), RO
LD loop (AR1), R1
ADD RO, R1
ST R1, BRO(loop <<2)
LOOP 4, labell

The loop program (1) includes a loop instruction LOOP
(instruction #8) and instructions which access data stored in
the data memory 7 (instructions #4 #5).

The loop program (1) has an initial Setting in which an
immediate value of 00h (h denotes hexadecimal notation) is
written into an ARO register (instruction #1), and an imme
diate value of 04h is written into an AR1 register (instruction
#2). Further, an immediate value of 80h is written into a BR0
register (instruction #3).

Instruction #4 loads 32-bit data from a memory area of the
data memory 7 Specified by a combined data address to the
R0 register. The above combined data address is a combi
nation of a base address indicated by “loop' (indicating the
ith loop process where i is 0, 1, 2, 3 or 4 in the example of
concern, in other words, indicating which loop of the loop
process is involved with instruction #4) and an offset address
00h indicated by the AR0 register (see FIG. 5).

Instruction #5 loads 32-bit data from a memory area of the
data memory 7 Specified by a combined data address to the
R1 register. The combined data address is a combination of
the base address indicated by “loop" (indicating which loop
of the loop process is involved herewith) and an offset
address 04h indicated by the AR1 register.

Instruction #6 Stores the result of an adding operation on
R0 and R1 in the R1 register.

Instruction #7 loads the data in the R1 register to a
memory area Specified by a combined data address, which is
a combination of a base address 80h indicated by the BR0
register and an offset address (indicating which loop of the
loop process is involved herewith) indicated by “loop'. An
expression “loop-2” denotes a two-bit leftward shift for
accomplishing a word address formation.

Instruction #8 jumps execution of instructions to label and
causes instructions i4-#8 to be repeatedly executed until a
variable num becomes equal to 4 (num=4). The variable
num has its initial value of 0, and is incremented each time
the process is jumped by the loop instruction LOOP. Loop
program (2):

Loop program (2):

instruction #11
instruction #12
instruction #13
instruction #14
instruction #15
instruction #16
instruction #17

MOV 80, BRO
MOVO, ARO
LD loop (ARO)+, RO
LD loop (ARO)+, R1
ADD RO, R1
ST R1, BRO(loop <<2)
LOOP 4, labell

labell:

The loop program (2) includes a loop instruction LOOP
(instruction #17) and access to data stored in the data
memory 7 (instructions #13-#14).
The loop program (2) has an initial Setting in which an

immediate value of 80h (h denotes hexadecimal notation) is

15

25

35

40

45

50

55

60

65

8
written into a BR0 register (instruction #11), and an imme
diate value of 00h is written into an AR0 register (instruction
#12).

Instruction #13 loads 32-bit data from a memory area of
the data memory 7 specified by a combined data address to
the R0 register. The above combined data address is a
combination of the base address indicated by “loop'
(indicating which loops of the loop process is involved
herewith) and an offset address indicated by the AR0 reg
ister. After the loading, the address in the AR0 register is
incremented and thus becomes equal to 04h.

Instruction #14 loads 32-bit data from a memory area of
the data memory 7 specified by a combined data address to
the R1 register. The combined data address is a combination
of the base address indicated by “loop” (indicating which
loops of the loop process is involved herewith) and the offset
address 04h indicated by the ARO register. After the loading,
the address in the AR0 register is incremented and thus
becomes equal to 08h.

Instruction #15 Stores the result of an adding operation on
R0 and R1 in the R1 register.

Instruction #16 Stores data from a memory area of the data
memory 7 specified by a combined data address to the R1
register. The combined data address is a combination of the
base address 80h indicated by the BR0 register and the offset
address indicated by “loop” (indicating which loop of the
loop process is involved here with). An expression
“loop-2” denotes a two-bit leftward shift for accomplish
ing a word address formation.

Instruction #17 jumps execution of instructions to labell
and causes instructions #12 #17 to be repeatedly executed
until the variable num becomes equal to 4 (num=4). AS
described before, the variable num has an initial value of 0,
and is incremented each time the proceSS is jumped by the
loop instruction LOOP.
The loop program (1) or (2) can be executed by the

multiprocessor system shown in FIG. 4 as follows. In this
case, the data memory 7 is arranged as shown in FIG. 5.
More particularly, the data memory Space of the data
memory 7 includes a read (load) data area related to the
Zeroth-loop execution of the loop process to the fourth-loop
execution thereof, and a write (Store) data area. The read
data area is accessed by data addresses 0000h-04FFh, and
the write data area is accessed by data addresses
8OOOh-8OFFh.
When the loop instruction LOOP included in the loop

program (1) is executed by the multiprocessor System, as
shown in FIG. 6, the loop process of the loop instruction
LOOP is separated into the respective loops, which are
respectively executed by the processors 1-4 in parallel. Each
of the loops executed by the respective processors 1-4 is
executed by loading the loop program (1) stored in the
instruction memory 6. For example, in the case shown in
FIG. 6, the Zeroth-loop execution of the loop process is
handled by the processor 1, and the first-loop execution
thereof is also handled by the processor 1. The second-loop
execution of the loop proceSS is handled by the processor 2,
and the third-loop execution thereof is handled by the
processor 3. Further, the fourth-loop execution of the loop
process is handled by the processor 4.
The loop process of the loop instruction is separated into

the respective loops, which are assigned to the processors
1-4. Hence, it is not necessary to Serially execute the loops.
Thus, the conventional branch instruction LOOP is not
needed. However, instead of the conventional branch
instruction LOOP, a new branch instruction “newLOOP” is

US 6,418,531 B1
9

used only for the Zeroth-loop execution of the loop process.
The branch instruction “new LOOP drives a given circuit
provided in the loop control block 5, which will be described
later. The given circuit includes circuits which detect the
address of labell (the leading address of the loop program
(1)), detect the total number of loops of the loop process of
the loop instruction that should be executed, and notify the
processors 1-4 of the address of labell and information
indicative of which loop of the loop process should be
executed by the processors 1-4, respectively.
When the loop instruction LOOP included in the loop

program (2) is executed by the multiprocessor System, as
shown in FIG. 7, the loop process of the loop instruction
LOOP is separated into the respective loops, which are
respectively executed by the processors 1-4 in parallel. Each
of the loops executed by the respective processors 1-4 is
executed by loading the loop program (2) stored in the
instruction memory 6. For example, in the case shown in
FIG. 7, the zeroth-loop execution of the loop process is
handled by the processor 1, and the first-loop execution
thereof is also handled by the processor 1. The second-loop
execution of the loop proceSS is handled by the processor 2,
and the third-loop execution thereof is handled by the
processor 3. Further, the fourth-loop execution of the loop
proceSS is handled by the processor 4.

The loop process of the loop instruction is separated into
the respective loops which are assigned to the processors
1-4. Hence, it is not necessary to Serially execute the loops.
Thus, the conventional branch instruction LOOP is not
needed. AS described before, instead of the conventional
branch instruction LOOP, the new branch instruction
“new OOP is used.

A description will now be given, with reference to FIG. 8,
of operations of the multiprocessor System that are executed
when the loop programs (1) and (2) are respectively
executed.

The master processor 1 includes, as a program Sequence
control mechanism, a program counter 11, a master loop
Sequencer 12, a Sequencer 13, and a data addressing unit 14.
The program counter 11 is used to Set the leading address of
the loop program (1) or (2). The master loop sequencer 12
controls, as a master, execution of the loop program (1) or
(2). The Sequencer 13 performs an ordinary Sequence control
of the processors. The data addressing unit 14 generates, as
a data addressing mechanism, a data address of the data
memory 7.

Each of the slave processors 2,3 and 4 includes a program
counter 15, a Slave loop Sequencer 16, a Sequencer 17 and a
data addressing unit 18. The program counter 15 functions
to set the leading address of the loop program (1) or (2) as
a program Sequence control mechanism. The Slave loop
Sequencer 16 controls, as a Slave, execution of the loop
program (1) or (2). The Sequencer 17 performs an ordinary
Sequence control of the processors. The data addressing unit
18 generates a data address of the data memory 7 as a data
addressing mechanism.
As shown in FIG. 9, the loop control block of the

microprocessor System includes a leading address detection
circuit 21, a detection circuit 22, a leading address notifi
cation circuit 23, a notification circuit 24, a Snooping circuit
25 and a loop count circuit 26. The leading address detection
circuit 21 detects thé leading address (lavell) of the loop
program. The detection circuit 22 detects the total number of
loops of the loop process of the loop instruction that should
be executed. The leading address notification circuit 23
notifies the processors of the address of the labell. The

15

25

35

40

45

50

55

60

65

10
notification circuit 24 notifies the processors of information
indicating the respective loops. The above information indi
cates which loop of the loop process should be executed. The
Snooping circuit 25 monitors processors which can execute
the loop program. The loop count circuit 26 automatically
counts up the count value each time the loop control block
5 notifies one of the processors of the respective loop to be
executed. Thus, the count Value indicates the number of
loops of the loop process that have been executed. On the
other hand, the loop count circuit 26 may be designed to
automatically count down the count value each time the loop
control block 5 notifies one of the processors of the respec
tive loop to be executed.
The microprocessor System configured as described

above executes the loop program (1) as follows. The
Sequencer 13 executes the ordinary Sequence control of the
processors. More particularly, the Sequencer 13 fetches and
decodes the loop program (1). The master loop sequencer 12
and the data addressing unit 14 are notified of the results
obtained by decoding an instruction ((3) shown in FIG. 8).
If the results obtained by decoding the instruction show that
the program does not include any loop instruction, the
Sequencer 13 Sets the leading address of the program to the
program counter 11. The above Setting is carried out by a
program sequence control signal (1) in FIG. 8. Hence, the
instructions can Sequentially be executed without activating
the loop control block 5.
When the master loop Sequencer 12 receives, from the

Sequencer 13, the decoded results which show that a loop
instruction is included in the loop program (1), the master
loop Sequencer 12 Sets the leading address thereof to the
program counter 11 ((1) in FIG. 8). Then, the master loop
sequencer 12 notifies the loop control block 5 of the total
number of loops of the loop process of the loop instruction
included in the loop program (1) that should be executed.

After the leading address of the loop program (1) is set to
the program counter 11, the master processor 1 executes the
Zeroth loop starting from the leading address, as shown in
FIG. 6.

At that time (during execution of the Zeroth loop), the
leading address detection circuit 21 of the loop control block
5 detects the program counter value in the program counter
11 ((2) in FIG. 8). Here, the address of labell is detected.
Then, the detection circuit 22 detects the total number of
loops of the loop process of the loop instruction that should
be executed ((4) in FIG. 8).

If the program counter value in progress of the loop
program (1) indicates the address (labell) of the jump
destination Specified in the loop instruction, the master loop
Sequencer 12 notifies the loop control block 5 of a signal
indicating that the program counter value (2) corresponds to
the address of the jump destination of the loop instruction
(5) in FIG. 8).

After the loop control block 5 detects, during the zeroth
loop execution of the loop process, the number of loops of
the loop process that should repeatedly be executed, the loop
control block 5 recognizes the number of processors that are
required to process the loop instruction in the loop program
(1) in parallel. Further, the leading address notification
circuit 23 notifies the same number of processors as the
number of loops of the loop process that should be executed
of the address of labell (6) in FIG. 8).
The notification circuit 24 of the loop control block 5

provides the Sequencers 12 and 16 with a signal indicating
the processors to be supplied with the address of labell ((7)
in FIG. 8), and notifies the sequencers 12 and 16 of infor

US 6,418,531 B1
11

mation indicating which respective loops of the loop proceSS
should be executed by the processors which are informed of
the address of labell ((8) in FIG. 8).

The processors are Simultaneously notified of the address
of the labell by the leading address notification circuit 23,
because the same program is loaded to the processors which
should execute the respective loops of the loop process of
the loop program (1). However, the processors are time
Serially informed of the respective loops to be executed
because the processors execute different loops. Hence, the
count Value of the loop count circuit 26 is counted up or
incremented each time one processor is notified of which
loop of the loop proceSS is to be executed. Hence, the
processors which should execute the loop instruction can
time-serially be informed of the respective loops to be
executed.
As described above, the loop control block performs the

control to have the processors execute the respective loops
of the loop process included in the loop program (1) in
parallel.
The processors which receive information items (6), (7)

and (8) respectively execute the loops So that these proces
Sors download the same loop program (1) Stored in the
instruction memory 6. For example, as shown in FIG. 6, the
first-loop execution of the loop proceSS is handled by the
master processor 1, and the Second-loop execution thereof is
handled by the slave processor 2. Similarly, the third-loop
execution of the loop proceSS is handled by the Slave
processor 3, and the fourth-loop execution of the loop
proceSS is handled by the Slave processor 4.

The processors which are executing the loop program (1)
in parallel output the respective busy signals which Show
that the processors are in progreSS. Before the leading
address notification circuit 23 notifies the same number of
processors as the number of loops of the loop process that
should be carried out of the address of the labell ((6) in FIG.
8), the Snooping circuit 25 monitors the busy signals from
the processors in order to recognize which processors can
execute the loop program (1).

The aforementioned loop program (2) is executed by the
multiprocessor System shown in FIG. 4 in the same manner
as the loop program (1), and a description thereof will be
omitted here.
A description will now be given, with reference to FIGS.

10, 11A, 11B, 12A and 12B, of internal operations of the
processors 1, 2, 3 and 4 in the multiprocessor System shown
in FIG. 4, when these processors Simultaneously execute the
loops of the loop process included in the loop program (1)
or (2) in parallel.

FIG. 10 shows the principle of the operation of each of the
processors 1-4. For the Sake of convenience, the following
description is related to the internal operation of the master
processor 1. However, the Slave processors 2, 3 and 4
operate in the same manner as the master processor 1.
When the master processor 1 handles the first-loop execu

tion of the loop process in the loop program (1), in other
words, when the signal (7) shown in FIG. 8 from the
notification circuit 24 is valid, the leading address of the
loop program (1), that is, the address of labell, is set to the
program counter 11 of the master processor 1.

Then, the master processor 1 Serially performs the first
loop execution of the loop proceSS Starting from the address
of labell. The address in the program counter 11 is auto
matically incremented by an address adder 31 provided in
the Sequencer 13.

Similarly, the Second-loop, third-loop and fourth-loop
executions of the loop process in the loop program (1) are
Simultaneously performed by the Slave processors 2, 3 and
4.

15

25

35

40

45

50

55

60

65

12
The master processor 1 includes the data addressing unit

14, which is configured as shown in FIGS. 11A and 11B or
FIGS. 12A and 12B. In the configuration shown in FIGS.
11A and 11B, the base address is the information indicating
a loop number of the loop of that the loop process that should
be executed, and is added, as upper bits of the data address,
to the offset address which serves as lower bits thereof. The
configurations shown in FIGS. 11A and 11B differ from each
other in that an incrementer and a decrementer are respec
tively used. For example, Since all of the processors 1-4
should be involved with parallel execution of the loops of
the loop process in the loop program (1) or (2), the loop
counter shown in FIG. 11A or 11B is incremented or
decremented by +1 three times.

In the configuration shown in FIGS. 12A and 12B, the
offset address is the information indicating a loop number of
the loop of the loop process that should be executed, and is
added, as lower bits of the data address, to the base address
which Serves as upper bits thereof. The configurations
shown in FIGS. 12A and 12B differ from each other in that
an incrementer and a decrementer are respectively used. For
example, Since all of the processors 1-4 should be involved
with parallel execution of the loops of the loop process in the
loop program (1) or (2), the loop counter shown in FIG. 11A
or 11B is incremented or decremented by +1 three times.
The master processor 1 employs any of the addressing

method shown in FIG. 11A in which the base address is
automatically incremented, the addressing method shown in
FIG. 11B in which the base address is automatically
decremented, the addressing method shown in FIG. 12A in
which the offset address is automatically incremented and
the addressing method shown in FIG. 12B in which the
offset address is automatically decremented.

Hence, the processors download the same (single) loop
instruction of the loop program (1) or (2) stored in the
instruction memory 6, while the data addresses related to the
respective loops of the loop proceSS executed by the pro
ceSSorS can automatically be generated.

Alternatively, it is possible to employ an addressing
method shown in FIG. 13 other than those shown in FIGS.
11A, 11B, 12A and 12B.
The addressing method shown in FIG. 13 can be imple

mented by a configuration shown in FIG. 14. The configu
ration shown in FIG. 14 includes the data addressing unit 14
and an incrementer 42. More particularly, information which
is supplied from the notification circuit 24 and which
indicates which loop of the loop proceSS should be executed
forms the base address. The base address is added, as upper
bits, to the offset address which is the subject of the data
access prescribed in the loop program (1). Thus, the data
address generated by the data addressing unit 14 includes the
base address that is the upper address part and the offset
address that is the lower address part. The incrementer 42
automatically increments the base address in accordance
with the information indicating which loop of the loop
process should be executed.

In each of the processors 1-4 configured as shown in FIG.
14, the data addressing unit 14 automatically generates the
next data address by adding the base address, incremented
by the incrementer according to the information indicates
which loop is to be executed, to the offset address. Referring
to FIG. 13, each of the four processors 1-4 recognizes, as
being an offset 1 address, two bits immediately lower than
the bits out of the bits indicating which loop of the loop
process is to be carried out, and recognizes, as the base
address, the upper bits. Further, another offset address which

US 6,418,531 B1
13

is the Subject of the data access in the loop program (1) is
added to the lower side of the offset 1. The above other offset
will particularly be referred to as offset 2.
As shown in FIG. 13, the data address generated in the

addressing method is assigned to the master processor 1
when offset 1 is '00', and is assigned to the slave processor
2 when offset 1 is 01. Similarly, the data address is
assigned to the slave processor 3 when offset 1 is 10, and
is assigned to the Slave processor 4 when offset 1 is 11.

Hence, each of the processors can recognize which loop
of the loop proceSS Should be executed, and can Separately
generate the data addresses from the loop program (1) Stored
in the instruction memory 6. Further, each of the processors
can automatically increment the base address by the incre
menter 42, and can execute a plurality of loops of the loop
proceSS.

In each of the processors is equipped with a comparator
61, which determines whether the loop number incremented
by the incrementer 42 exceeds the total number of loops
detected by the detection circuit 22. The loop process is
continuously carried out until the incremented loop number
exceeds the total number of loops.

FIG. 15 is a block diagram of another multiprocessor
System according to the present invention. In FIG. 15, parts
that are the same as those shown in the previously described
drawings are given the same reference numbers.

The multiprocessor system shown in FIG. 15 includes the
master processor 1, the slave processors 2-4, the instruction
memory 6, the data memory 7, a buffer 8, and a loop control
block 5a. The buffer 8 is provided to commonly use the data
memory Space by the processors when the processors
execute the respective loops of the loop process of the loop
program in parallel. The loop control block 5a is equipped
with a loop Snooping circuit 71, which monitors at which
times of the loop process the data input to the buffer 8 from
the data memory 7 is used and monitors which loop of the
loop process each processor is executing.
As shown in FIG. 16, the multiprocessor system shown in

FIG. 15 compares, in the loop Snooping circuit 71, the loop
number associated with the data in the buffer 8 with the loop
number in progreSS in each processor. Then, the right to
access the buffer 8 is given to the processor in which the loop
numbers match in the comparing operation. Hence, it is
possible to efficiently avoid a collision in use of the bus
between the processors.

FIG. 17 is a block diagram of yet another multiprocessor
System according to the present invention. In FIG. 17, parts
that are the same as those shown in the previously described
figures are given the same reference numbers.

The multiprocessor system shown in FIG. 17 includes the
master processor 1, the slave processors 2-4, the instruction
memory 6, the data memory 7, a buffer 9 and a loop control
block 5b equipped with a loop Snooping circuit 81. The
buffer 9 is provided to commonly use the data memory space
by the processors when the processors execute the respective
loops of the loop processes of the loop program in parallel.
The loop Snooping circuit 71 monitors for which loop of the
loop process the data input to the buffer 9 from the data
memory 7 is used and monitors which loop of the loop
proceSS each processor is executing.
When the data is commonly used by the processors and an

identical data address is generated by two or three
processors, the right to access the buffer 9 is Serially given
to the processors in an increasing order of the loop number,
as shown in FIG. 18. Hence, it is possible to efficiently avoid
a collision in use of the bus between the processors.

15

25

35

40

45

50

55

60

65

14
The present invention is not limited to the Specifically

disclosed embodiments, and variations and modifications
may be made without departing from the Scope of the
present invention.
What is claimed is:
1. A loop program control device adapted to a multipro

cessor System having a master processor and Slave
processors, the loop program control device comprising:

a leading address detection unit detecting a leading
address of a loop program when the master processor
executes the loop program;

a detection unit detecting a total number of loops of a loop
process defined by a loop instruction included in the
loop program that should be executed;

a first notification unit notifying the processors of the
leading address detected by the leading address detec
tion unit;

a Second notification unit notifying each of the processors
of information indicating which loops of the loop
process should be executed;

a Snooping unit which monitors whether the master and
slave processors can execute the loop instruction in
parallel; and

a loop count unit which counts up or down, each time the
Second notification unit notifies one of the processors of
the information, a count Value which is related to a
number of loops of the loop process that have been
executed.

2. A multiprocessor System, comprising:
processors executing loops of a loop proceSS defined by a

loop instruction included in a loop program, each of the
processors comprising an addressing unit generating a
data address with which data can be read from a
memory during execution of the loop instruction, Said
data address including information indicative of which
loops of the loop proceSS defined by the loop instruc
tion should be executed;

a loop program control device controlling the same num
ber of processors as a number of loops of the loop
processor that should be executed So that the same
number of processors executes the respective loops in
parallel; and

the loop program control device further comprising:
a leading address detection unit detecting a leading

address of the loop program when one of the pro
ceSSorS Serving as a master processor executes the
loop program,

a detection unit detecting a total number of loops of the
loop process that should be executed,
a first notification unit notifying the processors includ

ing processors Serving as slave processors of the
leading address detected by the leading address
detection unit,

a Second notification unit notifying each of the proces
Sors of information indicating which loop of the loop
proceSS should be executed,

a Snooping unit monitoring whether the master and
Slave processors can execute the loop instruction in
parallel, and

a loop count unit counting up or down, each time the
Second notification unit notifies one of the processors
of the information, a count value which is related to
a number of loops of the loop process that have been
executed.

3. The multiprocessor System as claimed in claim 2,
wherein each of the processors comprises an addressing unit

US 6,418,531 B1
15

generating a data address with which data can be read from
a memory during execution of the loop instruction, Said data
address including information indicative of which loop of
the loop proceSS defined by the loop instruction should be
executed.

4. The multiprocessor System as claimed in claim 2,
wherein each of the processors comprises:

an addressing unit generating a data address with which
data can be read from a memory during execution of the
loop instruction, Said data address including informa
tion indicative of which loop of the loop proceSS
defined by the loop instruction should be executed; and

an increment unit automatically updating the information
after the loop is executed, the updated information
forming part of the data address So that a next data
address can be generated.

5. The multiprocessor System as claimed in claim 4,
wherein:

the updated information indicates the number of loops of
the loop process that have been executed;

the processor further comprises a comparator unit which
determines whether the number of loops indicated by
the updated information exceeds a given number of
loops, and

the loop process continues to be executed until the num
ber of loops indicated by the updated information
exceeds the given number of loops.

6. The multiprocessor System as claimed in claim 2,
wherein when a specific one of the processors recognizes the
loop instruction while executing the loop program, the
processors including Said specific one of the processors
execute the loops of the loop process defined by the loop
instruction.

7. A multiprocessor System, comprising:
processors executing loops of a loop proceSS defined by a

loop instruction included in a loop program, each of the
processors comprising an addressing unit which gen
erates a data address with which data can be read from
a memory during execution of the loop instruction, Said
data address including information indicative of which
loops of the loop proceSS defined by the loop instruc
tion should be executed;

a loop program control device controlling a common
number of processors as a number of loops of the loop
process that should be executed So that the common
number of processors execute the respective, common
number loops in parallel;

a buffer having a memory Space accessed by the proces
Sors when the processors execute the loop instruction in
parallel;

a Snooping unit monitoring which loop of the loop proceSS
uses data input to the buffer from the memory and
monitors which loop of the loop process is being
executed for each of the processors, a processor execut
ing the loop of the loop process which uses the data in
the buffer being assigned a right to access the buffer;
and

the loop program control device further comprising:
a leading address detection unit detecting a leading

address of the loop program when one of the pro
ceSSorS Serving as a master processor executes the
loop program,

a detection unit detecting a total number of loops of the
loop process that should be executed,

a first notification unit notifying the processors includ
ing processors Serving as a Slave processors of the

15

25

35

40

45

50

55

60

65

16
leading address detected by the leading address
detection unit, and

a Second notification unit notifying each of the proces
Sors of information indicating which loop of the loop
proceSS should be executed.

8. The multiprocessor system as claimed in claim 7,
wherein each of the processors comprises an addressing unit
which generates a data address with which data can be read
from a memory during execution of the loop instruction, Said
data address including information indicative of which loop
of the loop process defined by the loop instruction should be
executed.

9. The multiprocessor system as claimed in claim 7,
wherein each of the processors comprises:

an addressing unit which generates a data address with
which data can be read from a memory during execu
tion of the loop instruction, Said data address including
information indicative of which loop of the loop pro
ceSS defined by the loop instruction should be executed;
and

an increment unit which automatically updates the infor
mation after the loop is executed, the updated infor
mation forming part of the data address So that a next
data address can be generated.

10. The multiprocessor system as claimed in claim 7,
wherein:

the updated information indicates the number of loops of
the loop process that have been executed;

the processor further comprises a comparator unit which
determines whether the number of loops indicated by
the updated information exceeds given number of
loops, and

the loop proceSS continues to be executed until the num
ber of loops indicated by the updated information
exceeds the given number of loops.

11. The multiprocessor System as claimed in claim 7,
wherein when a specific one of the processors recognizes the
loop instruction while executing the loop program, the
processors execute the loops of the loop process defined by
the loop instruction.

12. A multiprocessor System comprising:
processors capable of executing loops of a loop process

defined by a loop instruction included in a loop
program, each of the processors comprising an address
ing unit which generates a data address with which data
can be read from a memory during execution of the
loop instruction, Said data address including informa
tion indicative of which loops of the loop process
defined by the loop instruction should be executed;

a loop program control device which controls a common
number of processors as a number of loops of the loop
process that should be executed So that the common
number of processors execute the respective, common
loops in parallel;

a buffer having a memory Space accessed by the proces
Sors when the processors execute the loop instruction in
parallel;

a Snooping which monitors which loop of the loop process
is being executed for each of the processors, a right to
access the buffer being Serially given to the processors
in the increasing order of loop numbers of the loops of
the loop process which are being executed when the
processors commonly use the data Stored in the buffer
and generate an identical data address, and

US 6,418,531 B1
17

the loop program control device further comprising:
a leading address detection unit detecting a leading

address of the loop program when one of the pro
ceSSorS Servicing as a master processor executes the
loop program,

a detection unit detecting a total number of loops of the
loop process that should be executed,

a first notification unit notifying the processors includ
ing processors Serving as Slave processors of the
leading address detected by the leading address
detection unit, and

a Second notification unit notifying each of the proces
Sors of information indicating which loop of the loop
proceSS should be executed.

13. The multiprocessor System as claimed in claim 12,
wherein each of the processors comprises an addressing unit
which generates a data address with which data can be read
from a memory during execution of the loop instruction, Said
data address including information indicative of which loop
of the loop process defined by the loop instruction should be
executed.

14. The multiprocessor System as claimed in claim 12,
wherein each of the processors comprises:

an addressing unit which generates a data address by
which data can be read from a memory during execu
tion of the loop instruction, Said data address including

15

25

18
information indicative of which loop of the loop pro
ceSS defined by the loop instruction should be executed;
and

an increment unit which automatically updates the infor
mation after the loop is executed, the update informa
tion forming part of the data address So that a next data
address can been generated.

15. The multiprocessor System as claimed in claim 12,
wherein:

the updated information indicates the number of loops of
the loop process that have been executed;

the processor further comprises a comparator unit which
determines whether the number of loops indicated by
the updated information exceeds given number of
loops, and

the loop proceSS continues to be executed until the num
ber of loops indicated by the updated information
exceeds the given number of loops.

16. The multiprocessor System as claimed in claim 12,
wherein when a specific one of the processors recognizes the
loop instruction while executing the loop program, the
processors execute the loops of the loop process defined by
the loop instruction.

